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Continuum treatment of phonon polaritons in semiconductor heterogeneous structures
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A phenomenological approach is applied to the theory of phonon polaritons in semiconductor heterogeneous
structures, with special emphasis on semiconductor nanostructures. Applying the macroscopic approach to
continuous media, seven coupled partial differential equations are derived for the fundamental quantities
involved: the three components of the displacement fieldu, those of the magnetic potentialA, and the electric
potentialf in the Lorentz gauge. Our treatment is rather general in its conception: no assumptions on the
system geometry and composition are made. We develop a general method allowing us to obtain the exact
analytical solutions of the equations when the constituent materials can be assumed to be isotropic. The
matching boundary conditions at the structure interfaces are derived from the differential equations and inter-
preted in physical terms. This theory leads to a phenomenological description of phonon polaritons valid in the
long-wavelength limit. We apply it to the case of the double heterostructure, and calculate both the mechanical
displacementsu and the potentialsA, f of normal modes in the GaAs/AlAs prototype system. We also discuss
the dispersion relations for these modes which are of transverse-electric and transverse-magnetic character. A
comparison is made with some limiting cases: the unretarded case (c→`) reproducing our previous results for
polar-optical phonons, and the nondispersive case (bT→0), which leads to the Fuchs-Kliewer slab modes.
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I. INTRODUCTION

The long-wavelength optical vibrations of semiconduc
nanostructures have been the subject of extensive studi
the past years.1 However, since the early papers
Kliewer-Fuchs2,3 and Ruppin-Englman,4 only a few works5–8

have been devoted to the investigation of phonon-polar
modes in such systems as quantum wells, superlatt
quantum wires, etc. Raman scattering by interface-pho
polaritons in an Air/GaAs/AlAs structure was reported
Ref. 9 and the dispersion relation for polariton modes eva
ated along the lines of the dielectric model in quantum-w
superlattices10–12 and quantum-wire superlattices13 have
been also discussed. The theory of phonon polaritons in l
dimensional semiconductor structures requires reconsid
tion with respect to that of bulk semiconductors. The me
scopic dimensions of the system, the presence of interfa
as well as details of the geometry and fabrication lead
fundamental changes in the physical situation. Thus, a
theoretical treatment is needed.

For the long-wave limit we consider a phenomenologi
macroscopic approach. In the phenomenological treatme
polar-optical phonons in semiconductor nanostructures
kind of approach has provided rather satisfactory results~see
Refs. 14–16 and references therein!. Polar-optical phonons
should be contained in the phonon polaritons as a limit w
retardation effects in the electromagnetic field are neglec
(c→`). We thus expect that phonon polaritons should a
be well described with a phenomenological approach. T
existing literature on the subject suggests that a general
sistent discussion in the case of semiconductor nanos
tures, making a systematic application of the physics of c
560163-1829/97/56~7!/4115~13!/$10.00
r
in

n
s,
n

-
ll

-
ra-
-
s,

o
w

l
of
is

n
d

o
e
n-
c-
-

tinuous media, is lacking. Such a discussion is the aim of
present work.

Here we present a general theoretical discussion of p
non polaritons for nanostructures of arbitrary shape a
structure. We start from a Lagrangian density considerin
mechanical displacement fieldu and the electromagneti
field described by the potentialsA and f in the Lorentz
gauge. The medium is characterized by its elastic and die
tric properties, but assumed to be nonmagnetic and, in
most general case, the anisotropy of the constituent mate
is considered. The material physical properties experie
abrupt steplike changes at the interfaces, which are t
treated by means of appropriate matching-boundary co
tions which are derived directly from the differential equ
tions and interpreted in physical terms. We are thus led
seven coupled second-order partial differential equatio
Their solution yields the normal modes which, in our ca
bear a dispersive character. These modes are neither p
transverse nor longitudinal, but of a mixed nature, in clo
analogy with the results obtained in the case of polar-opt
phonons.17,18The purpose of this work is the development
a general mathematical method allowing us to generate
analytical solutions of the coupled differential equatio
when each homogeneous part of the structure is assu
isotropic in its elastic and electromagnetic properties. T
method is rather general and can be applied to nanostruc
of different geometry and composition. As an example
method is applied to a double heterostructure~DHS! with
matching-boundary conditions suitable for the GaAs/Al
prototype. For this kind of system a high confinement of t
mechanical vibrations is expected within each layer. We
plicitly calculate analytical expressions foru, A, andf giv-
4115 © 1997 The American Physical Society
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ing a detailed discussion of the TE and TM oscillation mod
and the corresponding dispersion relations.

II. THEORETICAL ANALYSIS OF THE MODEL

Let us consider polar semiconductor compounds of
zinc-blende type. The fieldu(r ,t) ~with units of length! rep-
resents the relative displacement of the ions from their e
librium positions. The vectoru is treated in the spirit of the
theory of continuous media. Coupled to the displacem
vector there is an electromagnetic field with the electric- a
magnetic-field intensitiesE(r ,t) and H(r ,t). They are re-
lated to the electromagnetic potentialsA(r ,t) andf(r ,t) by

E52¹f2
1

c

]A

]t
; H5“3A, ~1!

which satisfy the Lorentz gauge:

“•A1
1

c

]f

]t
50. ~2!

For a given homogeneous segment of the system we in
duce the following Lagrangian density:

L5
1

2
r

]uj

]t

]uj

]t
1

1

2
g j l ujul1

1

2
l j lmn

]uj

]xl

]um

]xn

1
1

8p
b j l EjEl2a j l ujEl1

1

8p
H jH j . ~3!

In all the equations the subscripts take values 1, 2, an
labeling the Cartesian components of vectors and tens
Moreover, the summation convention over repeated ind
is assumed~unless the contrary is stated!. r is the reduced-
mass density,g j l a symmetric tensor coupling the mechan
cal displacement field with itself,b j l a symmetric tensor
coupling the electric field with itself, anda j l a tensor~not
necessarily symmetric! coupling the displacement with th
electric field. The fourth rank tensorl j lmn describes elastic
properties of the medium.15,19 Hence, the third term at the
right-hand side of Eq.~3! represents internal stresses in t
medium and leads to dispersive oscillation modes. Fina
the last term at the right-hand side of Eq.~3! is the energy
density of the magnetic field, the same as in a vacuum s
we assume a nonmagnetic medium.

We have found it convenient to useuj , Aj , andf as the
generalized coordinates of this system. Equations~1! must
then be substituted in Eq.~3! in order to obtain

L5LS uj ,
]uj

]xl
,Aj ,

]Aj

]xl
,f,

]f

]xl
D . ~4!

All the arguments inL appear quadratically, thus leading
linear differential equations. The tensor character of the
rameters allows us to consider the anisotropy of the cons
ent materials. Moreover, all parameters are assumed to s
steplike abrupt changes at the interfaces of the nanostruc

Straightforward application of the Lagrange equatio
leads to the following equations:20

r
]2uj

]t2 5g j l ul2
]

]xl
s j l 1a j l El ; ~5!
s

e
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d
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,
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re.
s

~“3H! j5
1

c

]

]t
D j ; ~6!

]

]xl
Dl50, ~7!

where

D j5b j l El14pa j l ul . ~8!

Equations~5!–~7! could have been written directly by in
spection as a generalization of those given in Ref. 17 so a
add electromagnetic propagation effects~retardation!. Here,
however, we have used the Lagrangian formulation which
crucial if one wants to quantize the fields involved.18

In the equations above we have introduced the effec
‘‘stress’’ tensor:

s j l 5l j lmn

]um

]xn
; ~9!

applying the same notation as in Ref. 19. Using the exp
sionD5E14pP the material relation can also be written

Pj5
1

4p
~b j l 2d j l !El1a j l ul , ~10!

whered j l is the Kroneckerd. The remaining Maxwell equa
tions are directly derived from Eq.~1! and read

“•H50, “3E52
1

c

]H

]t
. ~11!

For the sake of compactness and ease of their physical in
pretation we have written the above equations in terms
vector fieldsE, H, andD instead of the potentialsA andf.
As stressed before, these equations are valid within each
mogeneous portion of the structure. Let us assume:

u~r ,t !5u~r !e2 ivt, A~r ,t !5A~r !e2 ivt,

and f~r ,t !5f~r !e2 ivt.

The physical parameters entering our equations should
given in terms of macroscopic physical properties of the m
dium by the straightforward application of well-know
procedures.21 We thus have the following results:

g j l 52rv0 j
2 d j l ~without summation convention!;

~12!

wherev0 j are the characteristic oscillation frequencies of t
medium~TO phonons atk.0! along the fundamental sym
metry directions. We also have

b j l 5e j l
` . ~13!

The tensora j l must be determined by solving the system
algebraic equations:

a i l gkl
21ak j5

1

4p
@e i j

0 2e i j
`#. ~14!

In the above equationse j l
`(e j l

0 ) is the high-frequency~static!
dielectric constant tensor of the medium.
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Using Eqs.~12!–~14!, Eqs.~5!, ~6!, and~7! can be trans-
formed into

r~v22v0 j
2 !uj5

]

]xl
s j l 2

iv

c
a j l Al1a j l

]f

]xl
; ~15!

¹2Aj1
v2

c2 e j l
`Al52

iv

c F ~e j l
`2d j l !

]f

]xl
24pa j l ul G ;

~16!

e j l
`

]2f

]xj]xl
5

iv

c
e j l

`
]Aj

]xl
14pa j l

]uj

]xl
. ~17!

This is a system of seven second-order coupled partial
ferential equations. However, it is important to note that o
six of these equations are linearly independent. In fact
~17! follows from Eq.~16! when the Lorentz condition@Eq.
~2!# is applied. In all the subsequent equations the fundam
tal quantities describing the fields are explicit functions
only r . In principle, the solutions of the above equations c
be written in the form of certain ‘‘six-vectors’’F5@u,A#, a
notation which will prove to be very useful. In order to sp
the solution space in each homogeneous region we mus
termine twelve six-vectorsFn representing a given basis fo
the solution space, while the general solution will be a lin
combination of these six-vectors. The admixture coefficie
must, of course, be determined by imposing the match
boundary conditions at each interface.

A. Matching boundary conditions

As in Ref. 17, the matching boundary conditions must
derived from the fundamental equations of our model, i
Eqs.~15!–~17! and~11! and should have a transparent phy
cal meaning. In the first place we must require the functio
u, A, and f to be bounded and continuous in the who
space. Moreover, the standard boundary conditions of c
sical electrodynamics should be fulfilled. Hence, accord
to Eqs.~6!, ~7!, and ~11!, the following quantities must be
continuous at each interface of the structure:~i! DN5D•N;
~ii ! HN5H•N; ~iii ! HT5H•T; ~iv! ET5E•T. In the expres-
sions above the vectorN(T) is the unit vector normal~tan-
gential! to the interface surface.

Another important matching boundary condition is d
rived from Eq. ~15! and is thus related to the mechanic
aspects of the problem. By fairly standard techniques~see for
instance Ref. 17! we are led to the continuity of (v)sN
5s•N, at each interface of the structure.

The above conditions applied at all interfaces betwe
homogeneous parts of the system completely determine
solutions of the mathematical problem. From a rigoro
analysis of the fundamental equations we have to require
continuity:u, A, f, sN , DN , andHT ~twelve conditions for
the twelve constants present in the general solutions!. The
remaining quantities involved~HN and ET! are then auto-
matically continuous at the interfaces.

B. Solution method

We present next a method for generating analytical so
tions of the Eqs.~15!–~17! irrespective of the particular ge
ometry and nature of the nanostructure under considera
if-
y
q.

n-
f
n

e-

r
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g

e
.,
-
s

s-
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-
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We shall limit ourselves to the case where the constitu
materials are modeled as isotropic continuous media.
such a case Eqs.~15!–~17! read

L1“
2u1L2““•u2r~v22v0

2!u5
iv

c
aA2a“f;

~18!

“

2A1e`

v2

c2 A52
iv

c
@~e`21!“f24pau#; ~19!

“

2f1
v2

c2 f54pa
1

e`
“•u, ~20!

where

a25
1

4p
~e02e`!rv0

2, ~21!

and L1 and L2 are two independent phenomenological p
rameters describing the ‘‘elastic tensor’’l j lmn for an isotro-
pic material. Notice that this tensor is obtained from the c
vature of the phonon dispersion relation neark50.14,16,17

The above equations can be solved in the following w
Taking the divergence of Eq.~18!, after Eq.~20! is appropri-
ately rewritten we are led to

F¹21
1

bL
2 ~vL

22v2!GC50, ~22!

F“21
v2

c2 Gf5
4pa

e`
C, ~23!

where bL
25(L11L2)/r, C5“•u, and vL

25(e0 /e`)v0
2.

Equation~22! is a standard Helmholtz equation with wel
known solutions for a given geometry. It is easy to show t
the solution of Eq.~23! is

f5fh1
4pa

e`
Fv2

c2 2
1

bL
2 ~vL

22v2!G21

C, ~24!

wherefh satisfies the equation

F“21
v2

c2 Gfh50, ~25!

which is again a Helmholtz equation. We can thus determ
C andf. Taking thecurl of Eqs.~18! and~19! we are led to

F“21
1

bT
2 ~v0

22v2!GG5
ia2

rbT
2 S, ~26!

F“21e`

v2

c2 GS54p i
v2

c2 G, ~27!

where

bT
25L1 /r, G5“3u, ~28!

and we have introduced the dimensionless vector fieldS de-
fined by
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S5
v

ca
H. ~29!

The solutions of the set of Eqs.~26! and~27! are of the form:

G5Gh1p1S ~30!

and

S5Sh1p2G, ~31!

where pi ( i 51,2) are parameters to be determined belo
and Gh and Sh are vectors conveniently chosen to satis
independent vector Helmholtz equations. Using~30! and
~31! it is possible to show that the solutions of Eqs.~26! and
~27! are given by

G5
1

2 S 11
1

bD FGh2
i

a~11b!
ShG ; ~32!

S5
1

2 S 11
1

bD @Sh1 ia~12b!Gh#; ~33!

with

a5
2p

e`x0
2 S v22v0

2x0
2

vL
22v0

2 D ; ~34!

and

b25124x0
4e`~bT /c!2

v2~vL
22v0

2!

~v22v0
2x0

2!2 , ~35!

where the parameterx0
25@11e`(bT /c)2#21 has been intro-

duced.
The vector fieldsGh andSh satisfy the Helmholtz equations

~“21q2!Gh50, ~“21Q2!Sh50; ~36!

with

q25
1

bT
2x0

2 F1

2
~12b!~v22v0

2x0
2!2x0

2~v22v0
2!G ; ~37!

Q25
e`

c2 F1

2
~b21!

v22v0
2x0

2

12x0
2 1v2G . ~38!

The methods for solving Eq.~36! are well known and presen
a simple separated form only in rectangular, cylindr
spherical, elliptical, parabolical, and conical coordinates.4,22

The particular form of the solutions depends on the geom
of the system. Once the functionsC, f, G, andS are known,
we can determineu andA. Equation~18! can be rewritten in
the form:

~v22v0
2!u5bL

2
“C2bT

2
“3G2

iav

rc
A1

a

r
“f ,

~39!

where the vector identity“2u5¹C2“3G has been ap-
plied. In the same way from the Eq.~19! we obtain:

A5
ac3

e`v3 “3S2
ic

v
“f1

4p iac

e`v
u . ~40!

Hence, in a rather general way and independently of
particular geometry of the nanostructure, we have shown
the relative mechanical displacementu and the vector poten
tial A can be obtained with the following expressions:
,

,

ry

y
at

u5
1

v22vL
2 FbL

2
“C2bT

2
“3G2

ic2

4p

vL
22v0

2

v2 “3SG ,
~41!

A5
ac3

e`v~v22vL
2!

H v22v0
2

v2 “3S24p i ~bT /c!2
“3G

14p i ~bL /c!4v2$@11~bL /c!2#v22vL
2%21

“CJ
2

ic

v
“fh . ~42!

These solutions take into account retardation and the c
pling between the mechanical displacement fieldu and the
electromagnetic field described by the potentialsA and f.
We should notice that, as a general property, the vector fi
fulfill the conditions:“•uÞ0, “•AÞ0 and“3uÞ0, “
3AÞ0, and hence the corresponding modes are nei
purely longitudinal nor purely transverse, but bear a mix
character. We must also stress that the influence ofA andf
on the oscillations does not lead to polariton modes o
purely interface character. The vector fieldu in Eq. ~41! has
three independent contributions: a longitudinal contribut
from bL

2¹C, a transverse contribution proportional tobT
2
“

3G, and a third contribution including the phonon-photo
coupling through (vL

22v0
2)“3S. The same analysis hold

for the vector potential in Eq.~42!. We have thus develope
a mathematical method leading to general analytical so
tions for the phonon polariton in semiconductor nanostr
tures considering the phonon dispersion and coupling
tween the longitudinal and transverse parts of the mechan
and electromagnetic fields. In this way we determine set
u, A, andf for each homogeneous segment of the structu
i.e., six-vector fields describing the oscillation modes of th
segment. The rest of the mathematical treatment is stand
the general solution is found by superposition of these mo
with arbitrary coefficients which are then determined by i
posing the matching boundary conditions at the interface
the structure. In this manner, we also obtain the phon
polariton dispersion relations.

III. DOUBLE HETEROSTRUCTURES

Let us consider a DHS grown along thez axis with inter-
faces atz56d/2. The appropriate solutions forfh , C, “
3G, and“3S are given in Appendix A. Combining Eq
~41! and Eqs.~A7!–~A11! the vector displacementu is given
by

ux5$ iG1~C3sinkTz1C4coskTz!

1G2~C̃3sinkz1C̃4coskz!%eiky,

uy5$ ikTG1~C1coskTz2C2sinkTz!1kG2~C̃1coskz

2C̃2sinkz!1 ik~C6sinkLz1C̃6coskLz!%eiky,

uz5$kG1~C1sinkTz1C2coskTz!2 ikG2~C̃1sinkz

1C̃2coskz!1kL~C6coskLz2C̃6sinkLz!%eiky. ~43!
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In the same way expressions for the vector potentialA and
the scalar potentialf are determined as follows:

Ax5@G3~C3sinkTz1C4coskTz!1 iG4~C̃3sinkz

1C̃4coskz!#eiky,

Ay5FkTG3~C1coskTz2C2sinkTz!1 ikG4~C̃1coskz

2C̃2sinkz!2kG5~C6 sinkLz1C̃6coskLz!

1
ck

v
~C5sink0z1C̃5cosk0z!Geiky,

Az5F2 ikG3~C1sinkTz1C2coskTz!1kG4~C̃1sinkz

1C̃2coskz!1 ikLG5~C6coskLz2C̃6sinkLz!

2
ic

v
k0~C5cosk0z2C̃5sink0z!Geiky, ~44!

f5@C5sink0z1C̃5cosk0z1G6~C6sinkLz1C̃6coskLz!#eiky.
~45!

The coefficientsGi ( i 51,...,6) in Eqs.~43!–~45! are defined
in Appendix B. An analysis of Eqs.~43! and~44! shows that
the componentsux andAx display independent constants a
thus they are completely decoupled from the other com
nents along they andz directions. These modes are a com
bination of the TO phonons and a transverse electromagn
field Ax not involving the scalar potentialf. This kind of
mode corresponds to transverse-electric~TE! waves, the
electric field being parallel to the interface:E5(Ex,0,0) and
H5(0,Hy ,Hz). The TE solutions can be interpreted as line
combinations of the following four linearly independe
seven-vectors:

3
iG1

0
0
G3

0
0
0

4 sinkTz, 3
iG1

0
0
G3

0
0
0

4 coskTz,

3
G2

0
0
iG4

0
0
0

4 sinkz, 3
G2

0
0
iG4

0
0
0

4 coskz. ~46!

The other solutions, given by Eqs.~43!–~45!, correspond to
the coupled modes, which can be interpreted as transve
magnetic~TM! waves with the electric fieldE lying in theyz
plane and the magnetic fieldH along thex direction: E
5(0,Ey ,Ez) andH5(Hx,0,0). Theuy anduz are combina-
tions of transverse-TO (kT), longitudinal-LO (kL), and
-
-
tic

r

se-

transverse electromagnetic parts (k), while the functions
Ay ,Az have transverse and longitudinal mechanical and e
tromagnetic contributions. The scalar potentialf involves
just longitudinal contributions~kL and k0!. From Eq. ~19!
follows thatuy , Ay , andf have the same parity with respe
to the reflectionz→2z; on the other handuz andAz display
the same parity between them but opposite to the other fu
tions. From the Lorentz gauge@Eq. ~2!# it is evident that the
y andz components ofA must have different parity. Hence
the linearly independent solutions for the TM waves are s
into two groups described by the following seven-vectors

3
0
ikTG1coskTz
kG1sinkTz
0
kTG3coskTz
2 ikG3sinkTz
0

4 , 3
0
kG2coskz
2 ikG2sinkz
0
ikG4coskz
kG4sinkz
0

4 ,

3
0
ikcoskLz
2kLsinkLz
0
2kG5coskLz
2 ikLG5sinkLz
G6coskLz

4 , 3
0
0
0
0
~ck/v!cosk0z
i ~ck0 /v!sink0z
cosk0z

4 ~47!

and

3
0
ikTG1sinkTz
2kG1coskTz
0
kTG3sinkTz
ikG3coskTz
0

4 , 3
0
kG2sinkz
ikG2coskz
0
ikG4sinkz
2kG4coskz
0

4 ,

3
0
iksinkLz
kLcoskLz
0
2kG5sinkLz
ikLG5coskLz
G6sinkLz

4 , 3
0
0
0
0
~ck/v!sink0z
2 i ~ck0 /v!cosk0z
sin k0z

4 . ~48!

Solution ~47! corresponds touy-even, uz-odd, Ay-even,
Az-odd, andf-even; solution~48! corresponds touy-odd,
uz-even, Ay-odd, Az-even, andf-odd. The seven-vector
~46!, ~47!, and ~48! are each a basis for the functional su
spaces of the solution space of the present problem. S
subspaces do not mix among them and should be han
separately. They provide a rather useful way for the c
struction of the general solutions in the case of a DHS.

Let us now consider a DHS involving the GaAs/AlA
components where the large frequency gap between
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optical-phonon branches of the constituent materials per
us to apply more restrictive matching-boundary conditions
the form

~i! continuity of f, A, andHT at the interfaces,
~ii ! u50 at the interfaces,
~iii ! continuity of e`@(]f/]z)2( iv/c)Az# at the inter-

faces.
~49!

The conditions~49! give a rather accurate description of th
polar-optical-phonon modes when retardation effects
neglected.14,16 In this case the stress boundary conditio
~sN continuous at the interfaces! become unnecessary.

The solutions~46!–~48! are strictly valid foruzu<d/2. In
the regionsuzu>d/2 the corresponding solutions are eas
found by realizing thatu[0. We are led to two kinds o
solutions:decoupled modes or TE waves. Here Ay5Az[0
andf[0, while

Ax5eikyH CeiK z~z1d/2!1C̃e2 iK z~z1d/2!; z,2d/2

6@Ce2 iK z~z2d/2!1C̃eiK z~z2d/2!#; z.d/2,
~50!

with

Kz5Ae`
~1!~v/c!22k2, ~51!

where e`
(1) is the high-frequency dielectric constant in th

uzu>d/2 region and1~2! is a label for the even~odd! states.
In what follows we consider the nonradiative regime wh
k.Ae`

(1)(v/c)(Kz5 im) with an exponentially decayingAx

for uzu>d/2. Applying the matching boundary condition
~49! to linear combinations of Eqs.~46! and using Eq.~50!
we are led to the following results.

~a! Odd states:

ux5 iCeikyH 0; uzu.d/2

sinkTz2
sin~kTd/2!

sin~kd/2!
sinkz; uzu,d/2 ,

~52!

Ax5C
G3

G1
eiky5

2~11G!sin~kTd/2!em~z1d/2!; z,2d/2

sinkTz1G
sin~kTd/2!

sin~kd/2!
sinkz; uzu,d/2

~11G!sin~kTd/2!e2m~z2d/2!; z.d/2
~53!

whereG5G1G4 /G2G3 and C is a normalization constant
The eigenfrequencies are given after the solution of the
lowing dispersion relation:

tan~kTd/2!52kT@kG cot~kd/2!1~11G!m#21. ~54!

~b! Even states:

ux5 iCeikyH 0; uzu.d/2

coskTz2
cos~kTd/2!

cos~kd/2!
coskz; uzu,d/2,

~55!
its
f

re
s

l-

Ax5C
G3

G1
eiky5

~11G!cos~kTd/2!em~z1d/2!; z,2d/2

coskTz1G
cos~kTd/2!

cos~kd/2!
coskz; uzu,d/2

~11G!cos~kTd/2!e2m~z2d/2!; z.d/2,
~56!

with the dispersion relation:

cot~kTd/2!52kT@kG tan~kd/2!2~11G!m#21. ~57!

In the limit c→` ~phonon wavelengths are small compar
to the reststrahlen wavelengths of the constituent mater
i.e., no retardation! the dispersion relations~54! and ~57!
reduce to those for the unretarded, uncoupled transv
polar-optical phonons:16

tan~kTd/2!50, kT5
np

d
; n5even

and

cot~kTd/2!50, kT5
np

d
; n5odd, ~58!

with the frequencies

v25v0
22bT

2~k21kT
2!, ~59!

while Ax50 and the vector displacement is reduced to

ux5 iCH sin
np

d
z; n5even

cos
np

d
z; n5odd.

~60!

Another important limit corresponds to the nondispers
phonons (bT→0). From Eqs.~54! and ~57! it follows that

k̃

m
tan~ k̃d/2!51 ~61!

and

k̃

m
cot~ k̃d/2!521. ~62!

This case is equivalent to the results obtained by the di
solution of Maxwell’s equations for the electromagne
fields and are in complete coincidence with the dispers
relations for a semiconductor slab found by Kliewer a
Fuchs in the absence of mechanical dispersion@see Eqs.
~2.70! and ~2.71! of Ref. 2# with

k̃5Ae~v!~v/c!22k2, e~v!5e`S v22vL
2

v22v0
2D . ~63!

Note that in this case the mechanical boundary conditi
cannot be fulfilled. As can be easily seen from Eq.~46! the



al-
E
(

s.

56 4121CONTINUUM TREATMENT OF PHONON POLARITONS IN . . .
TE waves give no contribution to the electric-potenti
induced ~Fröhlich! electron-phonon interaction. The T
waves do not have solutions in the reststrahlen regionv0
,v,vL) wheree(v),0. In order to get a realk out of the
reststrahlen region@where e(v).0#, we should require
k,(v/c)Ae(v). This determines the region where Eq
~61! and ~62! have solutions.

Coupled modes or TM waves.In the region with uzu
.d/2 the corresponding solutions are given byu50, Ax
50, and
ns
Ay5eikyH 2
Kz

k
~DeiK z~z1d/2!2D̃e2 iK z~z1d/2!!1

ck

v
~Beikz~z1d/2!1B̃e2 ikz~z1d/2!!; z,2d/2

7
Kz

k
~De2 iK z~z2d/2!2D̃eiK z~z2d/2!!6

ck

v
~Be2 ikz~z2d/2!1B̃eikz~z1d/2!!; z.d/2,

~64!

Az5eikyH 6~DeiK z~z1d/2!1D̃e2 iK z~z1d/2!!1
ckz

v
~Beikz~z1d/2!2B̃e2 ikz~z1d/2!!; z,2d/2

7~De2 iK z~z2d/2!1D̃eiK z~z2d/2!!7
ckz

v
~Be2 ikz~z2d/2!2B̃eikz~z2d/2!!; z.d/2,

~65!

f5eikyH Beikz~z1d/2!1B̃e2 ikz~z1d/2!; z,2d/2

6~Be2 ikz~z2d/2!1B̃eikz~z2d/2!!; z.d/2.
~66!

In Eqs.~64!–~66! wherever a6 or 7 appears the upper~lower! sign corresponds to the even~odd! potential states,

kz5A~v/c!22k2 ~67!

andB,B̃,D,D̃ are constants.
In the nonradiative regimekz5 ig5 iAk22(v/c)2 and, in order that the fields remain finite asuzu→`, we should require

D̃5B̃50. Applying the matching boundary conditions~49! to a linear combination of the linearly independent solutio
described in Eq.~47! ~uy-even,uz-odd, Ay-even,Az-odd, f-even! or Eq. ~48! ~uy-odd, uz-even,Ay-odd, Az-even,f-odd!
together with Eqs.~64!–~66!, we obtain for the coupled TM waves:

~a! Even potential states:

uy5 iC̃0eikyH 0; uzu.d/2

2kTG̃ coskTz1k coskz1kG̃1coskLz; uzu,d/2,
~68!

uz5C̃0eikyH 0; uzu.d/2

2kG̃ sinkTz1k sinkz2kLG̃1sinkLz; uzu,d/2,
~69!

Ay5
G4

G2
C̃0eiky5

2H̃1em~z1d/2!1kH̃2eg~z1d/2!; z,2d/2

2
kT

G
G̃ coskTz2k coskz2kG̃1~G5G2 /G4!coskLz2@k/cos~k0d/2!#H̃3cosk0z; uzu,d/2

2H̃1e2m~z2d/2!1kH̃2e2g~z2d/2!; z.d/2,

~70!

Az5
iG4

G2
C̃0eiky5

k

m
H̃1em~z1d/2!2gH̃2eg~z1d/2!; z,2d/2

k

G
G̃ sinkTz1k sinkz2kL~G5G2 /G4!G̃1sinkLz1@k0 /cos~k0d/2!#H̃3sink0z; uzu,d/2

2
k

m
H̃1e2m~z2d/2!1gH̃2e2g~z2d/2!; z.d/2,

~71!
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f5
G4

G2
C̃0eiky5

v

c
H̃2eg~z1d/2!; z,2d/2

G6

G2

G4
G̃1coskLz2@v/c cos~k0d/2!#H̃3cosk0z; uzu,d/2

v

c
H̃2e2g~z2d/2!; z.d/2

~72!

whereC̃0 is a normalization constant. The corresponding dispersion relation is given by

Fm
e`

e`
~1! sin~kTd/2!1kTcos~kTd/2!G G̃

G
1Fk cos~kLd/2!2

kLm

k

e`

e`
~1! sin~kLd/2!G 4pacG̃1G2

e`vG4
1m

e`

e`
~1! sin~kd/2!

1k cos~kd/2!50. ~73!

~b! Odd potential states:

uy5 iC0eikyH 0; uzu.d/2

2kTG sinkTz1k sinkz1kG1sinkLz; uzu,d/2,
~74!

uz5C0eikyH 0; uzu.d/2

kG coskTz2k coskz1kLG1coskLz; uzu,d/2,
~75!

Ay5
G4C0

G2
eiky5

H1em~z1d/2!2kH2eg~z1d/2!; z,2d/2

2
kTG

G
sinkTz2k sinkz2k~G5G2 /G4!G1sinkLz2@k/sin~k0d/2!#H3sink0z; uzu,d/2

2H1e2m~z2d/2!1kH2e2g~z2d/2!; z.d/2,

~76!

Az52 i
G4C0

G2
eiky5

2
k

m
H1em~z1d/2!1gH2eg~z1d2!; z,2d/2

2
kG

G
coskTz2k coskz2kL~G5G2 /G4!G1coskLz2@k0 /sin~k0d/2!#H3cosk0z; uzu,d/2

2
k

m
H1e2m~z2d/2!1gkH2e2g~z2d/2!; z.d/2 ,

~77!

f5
G4C0

G2
eiky5

2
v

c
H2eg~z1d/2!; z,2d/2

~G6G2 /G4!G1sinkLz2@v/c sin~k0d/2!#H3sink0z; uzu,d/2

v

c
H2e2g~z2d/2!; z.d/2.

~78!
is
For the latter states the following dispersion relation
found:

FkTsin~kTd/2!2
e`m

e`
~1! cos~kTd/2!G G

G
1Fk sin~kLd/2!

1
mkL

k

e`

e`
~1! cos~kLd/2!G 4pac

e`v

G2G1

G4
1k sin~kd/2!

2
e`

e`
~1! m cos~kd/2!50. ~79!

The functionsG, G1 , G̃, G̃1 , Hi , andH̃ i ( i 51,2,3) are given
in Appendix B.
Taking the unretarded limit (c→`) in Eqs.~73! and~79!
~and also assuminge`5e`

(1)! it follows that

~vL
22v2!

@k sin~kTd/2!1kTcos~kTd/2!#
@kT cos~kTd/2!sinh~kd/2!

2k sin~kTd/2!cosh~kd/2!#

5
~v0

22v2!

@k cos~kLd/2!2kLsin~kLd/2!#

3@kLsin~kLd/2!cosh~kd/2!

1k cos~kLd/2!sinh~kd/2!# ~80!
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for the even potential states and

~vL
22v2!

@k cos~kTd/2!2kT sin~kTd/2!#
@kTsin~kTd/2!cosh~kd/2!

1k cos~kTd/2!sinh~kd/2!#

5
~v0

22v2!

@kLcos~kLd/2!1k sin~kLd/2!#

3@kLcos~kLd/2!sinh~kd/2!

2k sin~kLd/2!cosh~kd/2!# ~81!

for the odd potential states. The above expressions co
spond to the dispersion laws of the polar optical phonon
GaAs-based DHS which were reported in Ref. 16.

Another important limit is the nondispersive case~bL ,
bT→0!. The mode frequencies can then be directly deriv
by solving Maxwell equations. From Eq.~73! and noting that

limFm
e`

e`
~1! sin~kTd/2!1kTcos~kTd/2!G G̃

G
50,

and

limFk2cos~kLd/2!2
e`

e`
~1! kLm sin~kLd/2!G 4pacG̃1

e`v

G2

G4

52
vL

22v0
2

v22v0
2

e`m

e`
~1! sin~ k̃d/2! for bT ,bL→0,

it immediately follows that

k̃

m
cot~ k̃d/2!52

e~v!

e`
~1! . ~82!

In the same way, from Eq.~79! we obtain

k̃

m
tan~ k̃d/2!5

e~v!

e`
~1! . ~83!

The quantityk̃ was defined in Eq.~63!. In the case of Eqs
~82! and ~83! they are defined forv0,v,vL , where k̃
5 i ã andã5@ ue(v)u(v/c)21k2#1/2, ã being a real quantity.
We are thus led to the so-called electrostatic interface mo
Such interface modes can be directly derived by applying
dielectric continuum model and correspond to Eqs.~2.44!
and~2.46! of Ref. 2. Our Eqs.~73! and~79! introduce slight
modifications into these interface modes in the case w
bT , bLÞ0. For the TM waves we also have modes outs
the restsrahlen region~i.e., for v,v0 andv.vL!.

IV. DISCUSSION OF THE OBTAINED RESULTS

We have established a general treatment for obtaining
phonon polariton modes of semiconductor nanostructure
arbitrary geometry and composition. An essential feature
our treatment is the full consideration of the coupling b
tween the mechanical and electromagnetic parts of the p
lem. Most of the existing heterogeneous semiconductor
tems, and especially nanostructures, can in principle
studied by this procedure. By construction, the treatmen
e-
in

d

s.
e

n
e

e
of
f

-
b-
s-
e

is

valid for long wavelengths~l@a0 , wherea0 is the lattice
parameter!. In the case of nanostructures, due to their sm
dimensions, this approach, based on the application of
laws of macroscopic physics, should be within its range
applicability. The model involves a consistent formulation
the matching boundary conditions taking into account b
the mechanical and electromagnetic fields. A unified a
relatively simple method, providing the analytical solutio
of the 737 system of coupled differential equations f
semiconductor nanostructures of a different nature and
ometry, has been developed. It is shown that the soluti
involve, in general, a combination of longitudinal and tran
verse fields. The GaAs/AlAs DHS case was studied in de
and the analytical solutions for this case are presented
both the mechanical displacements and electromagn
fields. We have shown that, in the nonradiative regime,
model gives~a! TE waves~decoupled modes described b
the ux and Ax components! and with frequencies belowv0

and abovevL and withk,Ae(v)(v/c), ~b! TM waves in-
volving coupled modes with a mixed LO–TO character a
expressed by theuy and uz components of the mechanica
displacements and theAy andAz components of the electro
magnetic vector potential~in the Lorentz gauge the scala
potential f is not independent of the above quantities a
can be directly derived once the former are known!. For this
latter case we find interface-phonon-polariton modes in
frequency rangevL,v,v0 and in the regions belowv0
and abovevL other modes are also detected.

The dispersion law of the Kliewer-Fuchs model for pola
iton modes and the unretarded coupled modes of Refs
and 18 were derived as the appropriate limiting cases of E
~54!, ~57!, ~73!, and ~79! of the present work. It is worth-
while to analyze the relation of our treatment with that
Ref. 2. As established above, our equations contain thos
Kliewer and Fuchs as a limit whenbT ,bL→0. The introduc-
tion of such parameters in our treatment bears an impor
methodological role allowing us to make a mathematical d
cussion on the basis of coupled differential equations~in-
stead of the integral equations of Ref. 2!. This permits us to
introduce the complete matching boundary conditions of
problem~mechanical and electromagnetic! providing a fully
consistent treatment of the normal modes. Our approac
flexible and allows the analysis of different geometries of
possible nanostructures. In the DHS case the influence o
corrections related to theb’s ~for values typically of the or-
der of 105 cm/seg! is of importance just for the lower value
of d (d;1210 nm). For larger values ofd the relative in-
fluence of these corrections is negligible and we are es
tially led to the results of Kliewer and Fuchs.

In Fig. 1 we show for the TE~odd! modes the dependenc
of the frequencyv on in-plane wave vectork for different
modes~dispersion relations! in the regionv,v0 and taking
d53 nm. For the numerical calculations the parameters
GaAs and AlAs of Ref. 16 were used. As corresponds to
nonradiative regime, the curves are at the right-hand sid
the straight linev5c(e`

(1))21/2k. They emerge from tha
line and bear a weak electromagnetic component, resemb
the uncoupled TO polar-optical phonons.16 It can be seen, as
expected, that the curves do not show significant dispers
~they are very flat!. Hence, in this region we are essentia
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led to thek→0 limit of the phonon dispersion curves for th
uncoupled modes.16 In the frequency intervalv0,v,vL

we do not have TE modes, as expected from general p
ciples. Forv.vL we obtain high-frequency modes esse
tially of electromagnetic nature. We have setd53
3103 nm in Fig. 2, a relatively larged value. For much
smaller values ofd the corresponding frequencies becom
too large ~visible region and beyond!. As in Fig. 1, the
curves of Fig. 2 are at the right of the photon straight line
above the hyperbolav5c„e(v)…21/2k. These high modes
exist only when retardation effects are included.2 They begin
on the linev5kc/(e`

(1))1/2 and can be considered as wav
mainly confined to the interior of the DHS. The small size
the heterostructure gives rise to standing waves with p
dominant electromagnetic character for the value ofd given
in Fig. 2. Of course, the large values ofd here considered ar
not typical for DHS usually grown by molecular beam ep
taxy. Hence, this kind of mode is not relevant for usual DH
Let us now analyze the coupled TM modes. We again h
modes in the intervalsv,v0 andv.vL . Very interesting
are, in this case, the interfacelike modes in the intervalv0
,v,vL . In Fig. 3 we show these modes for three values
d. These results are very similar to those of Kliewer a
Fuchs. Let us recall that in the regione(v),0 all the curves
emerge from the same lower limit~crossing of the straigh
line for the photon with thev5v0 horizontal line!. This
result is at variance with the corresponding result for b
polar-optical phonons, where the high-frequency curves
the interface modes emerge from thev5vL horizontal line
~at k50!. When k→` all the curves asymptotically ap
proach a horizontal line corresponding tov5v I for e(v I)

FIG. 1. Dispersion relation of the decoupled TE modes in
3-nm-wide GaAs/AlAs DHS for the odd states@Eq. ~54!# in the
regionv,v0 . For the numerical calculations the values of para
eters of Ref. 16 were used. The photon dispersion relationv
5kc/(e`

(1))1/2 for the AlAs is shown as a dashed line.
n-
-

t

f
e-

.
e

f
d

k
r

52e`
(1) as seen in the figure. The curves of Fig. 3 we

constructed from Eqs.~82! and ~83!, taking k̃5 i ã @i.e., we
are limiting ourselves to the caseb→0 of Eqs. ~73! and
~79!#. The corrections introduced by theb’s are relevant for
the smallerd values~for instance,d;3 nm!; otherwise the
results for interface polariton modes essentially coinc
with those of Kliewer and Fuchs. It should be possible
observe the deviation between experimental data for forw
scattering~which should follow the

a

-

FIG. 2. As Fig. 1 for a 33103 nm wide DHS andv.vL . The
photon-dispersion relationv5kc/„e(v)…1/2 in the frequency region
of the GaAs optical phonon andv5kc/(e`

(1))1/2 are shown as
dashed lines.

FIG. 3. Dispersion relations of interface-phonon polaritons
GaAs/AlAs DHS for d533103 nm ~solid lines!, d513103 nm
~short-dashed lines!, and d5300 nm ~dot-dashed lines! calculated
following Eqs. ~82! and ~86!. The horizontal line indicates the
asymptotic frequency valuev I of the modes fork→` given by
e(v I)52(e`

(1)). The unretarded interface mode ford5300 nm is
indicated by the highest-frequency solid line.
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calculations including retardation! and the theory without re
tardation also shown in Fig. 3.

It is also interesting to discuss the radiative modes, wh
should appear for frequencies at the left-hand side of
photon curvev5c(e`

(1))21/2k. In that case we no longe
have vibrational eigenstates in the strict sense. The sys
loses energy in the form of radiation. However we can sp
of certain virtual modes characterized by a comple
frequency.3 Radiative modes are of interest for a discuss
of the optical properties in their region and require a some
what different solution of the equations which may be d
cussed in future work.
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APPENDIX A: VECTOR HELMHOLTZ EQUATION:
CARTESIAN COORDINATES

For Cartesian coordinates the solution of the vector He
holtz equation is

~“21q2!F50, ~A1!

with “•F50 is given by22

F5F1~x,y,z!1F2~x,y,z!1F3~x,y,z!, ~A2!

where
h
e

m
k

n

-

s
a

-

F15“3~vez!; F25
1

q
“3“~vez!; F35“u.

~A3!

The functionsv(x,y,z) and u(x,y,z) must satisfy the fol-
lowing equations:

~“21q2!v50 and“2u50. ~A4!

The solutionF3 is not relevant to the present problem sin
we only need“3F. The general solution of the equation fo
v, taking into account the translational symmetry in thex,y
plane, is of the form:

v~x,y,z!5~C sinjz1C̃ cosjz!ei k•R, ~A5!

where k[(kx ,ky), R[(x,y), j25q22k2, C, and C̃ are
constants. Hence, the solution of~A1! is given by

F5 i ~kyex2kxey!~C1sinjz1C2cosjz!ei k•R

1 i
jk

q
~C3cosjz2C4sinjz!ei k•R

1
k2

q
ez~C3sinjz2C4cosjz!ei k•R. ~A6!

Applying solutions of the type~A6! to Eq. ~36!, the expres-
sions for G and S are obtained from Eqs.~32! and ~33!,
respectively. The present problem shows invariance un
arbitrary rotations about thez axis. Taking advantage of thi
symmetry we choose they axis along the in-plane wave
vector k without loss of generality. Hence, we havek
[(0,ky). We now write the final expressions for“3G and
“3S:
“3G5eikyH F i ~C3sinkTz1C4coskTz!1
1

a~11b!
~C̃3sinkz1C̃4coskz!Gex1F ikT~C1coskTz2C2sinkTz!

1
k

a~11b!
~C̃1coskz2C̃2sinkz!Gey1Fk~C1sinkTz1C2coskTz!2

ik

a~11b!
~C̃1sinkz1C̃2coskz!GezJ , ~A7!

“3S5eiky$@ i ~C̃3sinkz1C̃4coskz!2a~12b!~C3sinkTz1C4coskTz!#ex1@ ik~C̃1coskz2C̃2sinkz!

2a~12b!kT~C1coskTz2C2sinkTz!#ey1@k~C̃1sinkz1C̃2coskz!1 ia~12b!k~C1sinkTz1C2coskTz!#ez%,

~A8!
where

kT5F 1

bT
2 ~v0

22v2!2
4pv2

c2a~11b!
2k2G1/2

,

k5Fe`~v/c!22
a2a~12b!

rbT
2 2k2G1/2

. ~A9!

The solutions forC andfh are
C5~C6sinkLz1C̃6coskLz!eiky,

fh5~C5sink0z1C̃5sink0z!eiky, ~A10!

with

kL5F 1

bL
2 ~vL

22v2!2k2G1/2

, k05@~v/c!22k2#1/2.

~A11!
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The coefficientsGi ( i 51,...,6) are

G152
bT

2

v0
2 1

c2a~12b!

4pv0
2v2 ~vL

22v0
2!, ~B1!

G252
bT

2

v0
2

1

a~11b!
1

c2

4pv0
2v2 ~vL

22v0
2!, ~B2!

G35
ac3

e`v0
2 Fa~12b!

v3 ~v0
22v2!1

4p

v
~bT /c!2G , ~B3!

G45
ac3

e`v0
2 F 1

v3 ~v22v0
2!2

4p

va~11b!
~bT /c!2G ,

~B4!

G55
4pabL

2

e`c
v$v2@11~bL /c2!#2vL

2%21, ~B5!

and

G65
~v22vL

2!c

bL
2v

G5 . ~B6!

Other parameters present in the main text are

G̃5@kkLcos~kd/2!sin~kLd/2!1k2 sin~kd/2!cos~kLd/2!#
C

@kTkLcos~kTd/2!sin~kLd/2!1k2sin~kTd/2!cos~kLd/2!#21,

~B7!

G̃15k@kTsin~kd/2!cos~kTd/2!2kTsin~kTd/2!cos~kd/2!#

3@kTkLcos~kTd/2!sin~kLd/2!

1k2sin~kTd/2!cos~kLd/2!#21, ~B8!

G5@kkLsin~kd/2!cos~kLd/2!1k2 cos~kd/2!sin~kLd/2!#

3@kTkLsin~kTd/2!cos~kLd/2!

1k2 cos~kTd/2!sin~kLd/2!#21, ~B9!

G15k@kTsin~kTd/2!cos~kd/2!2k sin~kd/2!cos~kTd/2!#

3@kTkLsin~kTd/2!cos~kLd/2!

1k2cos~kTd/2!sin~kLd/2!#21, ~B10!

H̃15
G̃

G
kTcos~kTd/2!1k cos~kd/2!

1
4pack

e`v
G̃1

G2

G4
cos~kLd/2!, ~B11!

H̃25
4pac

e`v

G2

G4

v22vL
2

v2@~bL /c!211#2vL
2 G̃1cos~kLd/2!2H̃3 ,

~B12!
H̃35H S 12
e`

e`
~1!D kS G̃

G
sin~kTd/2!1sin~kd/2! D 2

4pac

e`v

G2

G4
G̃1F ~v22vL

2!g cos~kLd/2!

v2@~bL /c!211#2vL
2

1
~vbL /c!2kLsin~kLd/2!

v2@11~bL /c!2#2vL
2 2

e`

e`
~1! kLsin~kLd/2!G J @k0tan~k0d/2!2g#21, ~B13!
H15
kTG

G
sin~kTd/2!1k sin~kd/2!

1
4pack

e`v

G2

G4
G1sin~kLd/2!, ~B14!

H25
4pac

e`v

G2

G4
G1

v22vL
2

v2@11~bL /c!2#2vL
2 sin~kLd/2!2H3 ,

~B15!
H35H S 12
e`

e`
~1!D kS G

G
cos~kTd/2!1cos~kd/2! D

1
4pac

e`v

G2

G4
G1F ~v22vL

2!g sin~kLd/2!

v2@11~bL /c!2#2vL
2

2
~vbL /c!2kLcos~kLd/2!

v2@11~bL /c!2#2vL
2 1

e`

e`
~1! kLcos~kLd/2!G J

3@k0cot~k0d/2!1g#21. ~B16!
.

*Also at Dept. of Theoretical Physics, Univ. of Havana, 10400
Havana, Cuba.
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