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Continuum treatment of phonon polaritons in semiconductor heterogeneous structures
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A phenomenological approach is applied to the theory of phonon polaritons in semiconductor heterogeneous
structures, with special emphasis on semiconductor nanostructures. Applying the macroscopic approach to
continuous media, seven coupled partial differential equations are derived for the fundamental quantities
involved: the three components of the displacement fielthose of the magnetic potenti&l and the electric
potential ¢ in the Lorentz gauge. Our treatment is rather general in its conception: no assumptions on the
system geometry and composition are made. We develop a general method allowing us to obtain the exact
analytical solutions of the equations when the constituent materials can be assumed to be isotropic. The
matching boundary conditions at the structure interfaces are derived from the differential equations and inter-
preted in physical terms. This theory leads to a phenomenological description of phonon polaritons valid in the
long-wavelength limit. We apply it to the case of the double heterostructure, and calculate both the mechanical
displacements and the potentialé,, ¢ of normal modes in the GaAs/AlAs prototype system. We also discuss
the dispersion relations for these modes which are of transverse-electric and transverse-magnetic character. A
comparison is made with some limiting cases: the unretarded case ) reproducing our previous results for
polar-optical phonons, and the nondispersive cg&e—{0), which leads to the Fuchs-Kliewer slab modes.
[S0163-182697)03731-4

[. INTRODUCTION tinuous media, is lacking. Such a discussion is the aim of the
present work.

The long-wavelength optical vibrations of semiconductor Here we present a general theoretical discussion of pho-
nanostructures have been the subject of extensive studiesmon polaritons for nanostructures of arbitrary shape and
the past years. However, since the early papers of structure. We start from a Lagrangian density considering a
Kliewer-Fuchg?and Ruppin-Englmafpnly a few works™®  mechanical displacement field and the electromagnetic
have been devoted to the investigation of phonon-polaritofield described by the potentials and ¢ in the Lorentz
modes in such systems as quantum wells, superlatticegauge. The medium is characterized by its elastic and dielec-
guantum wires, etc. Raman scattering by interface-phonotric properties, but assumed to be nonmagnetic and, in the
polaritons in an Air/GaAs/AlAs structure was reported in most general case, the anisotropy of the constituent materials
Ref. 9 and the dispersion relation for polariton modes evaluis considered. The material physical properties experience
ated along the lines of the dielectric model in quantum-wellabrupt steplike changes at the interfaces, which are then
superlattice® 2 and quantum-wire superlatticds have treated by means of appropriate matching-boundary condi-
been also discussed. The theory of phonon polaritons in lowtions which are derived directly from the differential equa-
dimensional semiconductor structures requires reconsideréions and interpreted in physical terms. We are thus led to
tion with respect to that of bulk semiconductors. The mesoseven coupled second-order partial differential equations.
scopic dimensions of the system, the presence of interface$heir solution yields the normal modes which, in our case,
as well as details of the geometry and fabrication lead tdear a dispersive character. These modes are neither purely
fundamental changes in the physical situation. Thus, a newansverse nor longitudinal, but of a mixed nature, in close
theoretical treatment is needed. analogy with the results obtained in the case of polar-optical

For the long-wave limit we consider a phenomenologicalphonons:’*The purpose of this work is the development of
macroscopic approach. In the phenomenological treatment @ general mathematical method allowing us to generate the
polar-optical phonons in semiconductor nanostructures thianalytical solutions of the coupled differential equations
kind of approach has provided rather satisfactory regstie ~ when each homogeneous part of the structure is assumed
Refs. 14-16 and references thejeiRolar-optical phonons isotropic in its elastic and electromagnetic properties. The
should be contained in the phonon polaritons as a limit whemethod is rather general and can be applied to nanostructures
retardation effects in the electromagnetic field are neglectedf different geometry and composition. As an example the
(c—). We thus expect that phonon polaritons should alsanethod is applied to a double heterostructpdS) with
be well described with a phenomenological approach. Thenatching-boundary conditions suitable for the GaAs/AlAs
existing literature on the subject suggests that a general coprototype. For this kind of system a high confinement of the
sistent discussion in the case of semiconductor nanostruecrechanical vibrations is expected within each layer. We ex-
tures, making a systematic application of the physics of conplicitly calculate analytical expressions far A, and ¢ giv-
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ing a detailed discussion of the TE and TM oscillation modes 9
and the corresponding dispersion relations. (VXH)j=¢ 2 Dis (6)
Il. THEORETICAL ANALYSIS OF THE MODEL J
. . — D=0, 7
Let us consider polar semiconductor compounds of the ax )

zinc-blende type. The field(r,t) (with units of length rep-

; . X i where
resents the relative displacement of the ions from their equi-
librium positions. The vectou is treated in the spirit of the D;=B; E +4ma; ;. (8)
theory of continuous media. Coupled to the displacement _ _ . _
vector there is an electromagnetic field with the electric- andEquations(5)—(7) could have been written directly by in-
magnetic-field intensitie€(r,t) and H(r,t). They are re- SPection as a generalization of those given in Ref. 17 so as to

lated to the electromagnetic potentidiér,t) and ¢(r,t) by ~ add electromagnetic propagation effe(tstardation. Here,
however, we have used the Lagrangian formulation which is

1 0A crucial if one wants to quantize the fields involvé&d.

E=-V¢-— P H=VXA, @ In the equations above we have introduced the effective

“stress’” tensor:

which satisfy the Lorentz gauge:
196 m
d jlmn ;

. - = ox

V-A+ ot 0. 2 n

O'J'| =\ (9)

) ~applying the same notation as in Ref. 19. Using the expres-
For a given homogeneous segment of the system we intraion D= E + 47P the material relation can also be written as
duce the following Lagrangian density:

1
1 odu du; 1 1 Ju; du Pi=—— (Bji— d;))Ei+ aju,, (10
S B BT N, —47m Y ! J
E=5p 50 0 T2 Mliut g Nimn 5 G
where g, is the Kroneckeis. The remaining Maxwell equa-

1 1 i i i
+ = BIEE—ayuE+ - HH,. 3 tions are directly derived from Eql) and read
8w 87w 1!
10H
In all the equations the subscripts take values 1, 2, and 3 V-H=0, VXE=- P (13)

labeling the Cartesian components of vectors and tensors.

Moreover, the summation convention over repeated indiceGor the sake of compactness and ease of their physical inter-
is assumedunless the contrary is staeg is the reduced- pretation we have written the above equations in terms of
mass densityy;; a symmetric tensor coupling the mechani- vector fieldsk, H, andD instead of the potential& and ¢.

cal displacement field with itselfg;; a symmetric tensor As stressed before, these equations are valid within each ho-
coupling the electric field with itself, and; a tensor(not  mogeneous portion of the structure. Let us assume:
necessarily symmetriccoupling the displacement with the _ _

electric field. The fourth ralr;k tensarm, describes elastic u(r,ty=u(rye™', A(r,t)y=A(r)e”',

properties qf the mediurf®: Hence,_the third term at the and ¢(r,t)= g(r)e 1L,

right-hand side of Eq(3) represents internal stresses in the
medium and leads to dispersive oscillation modes. FinallyThe physical parameters entering our equations should be
the last term at the right-hand side of E§) is the energy given in terms of macroscopic physical properties of the me-
density of the magnetic field, the same as in a vacuum sincgium by the straightforward application of well-known

we assume a nonmagnetic medium. procedure$! We thus have the following results:
We have found it convenient to usg, A;, and¢ as the
generalized coordinates of this system. Equati@smust Yii= —prj o) (without summation convention
then be substituted in E@3) in order to obtain (12
U A i wherew,; are the characteristic oscillation frequencies of the
L=L|u;, (9_X:’Aj (9_><,J’¢' Pl (4)  medium(TO phonons ak=0) along the fundamental sym-

metry directions. We also have

All the arguments inC appear quadratically, thus leading to .

linear differential equations. The tensor character of the pa- Bji=¢€j . (13
rameters gllows us to consider the anisotropy of the constitur, o tensor;; must be determined by solving the system of
ent materials. Moreover, all parameters are assumed to shg

Mgebraic equations:
steplike abrupt changes at the interfaces of the nanostructure.g q

Straightforward application of the Lagrange equations 1
leads to the following equatiorfs: i Vg o =1 GiGHE (14)
5u; d Oy _— .
o 21 =yt~ ~— oy + ay By (5) Ir} the gbove equations; (¢;)) is the h|gh frequencystatio
ot X dielectric constant tensor of the medium.
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Using Eqgs.(12—(14), Egs.(5), (6), and(7) can be trans- We shall limit ourselves to the case where the constituent
formed into materials are modeled as isotropic continuous media. For
such a case Eq$15—(17) read

s 2 J iw p
p(a) _woj)uj:ﬁ_)q 0'j|—Faj|A|+aj| (?_X|, (15) ) 5 9 iw
AVU+A,VV-u—p(w —wo)u=?aA—aV¢;
2 iw (9¢ (18)
2 o] .
\Y A +— €; A| C (6“— J|) (5'X|_477ajlul X , .
(16 2 w- ol )
VA+ €, ?A——?[(E@_l)vd)_‘l’”au]y (19)
. PP e SR, L
G axax, - c O ax AT gy 1D g

V2t O d—dma =V -u (20
This is a system of seven second-order coupled partial dif- ¢ €eo
ferential equations. However, it is important to note that onlyyhere
six of these equations are linearly independent. In fact Eq.

(17) follows from Eq.(16) when the Lorentz conditiofEq.

(2)] is applied. In all the subsequent equations the fundamen- az:ﬂ (€0 €) pwp, (21)

tal quantities describing the fields are explicit functions of

only r. In principle, the solutions of the above equations carand A; and A, are two independent phenomenological pa-
be written in the form of certain “six-vectorsF=[u,A], a  rameters describing the “elastic tenso)i“mn for an isotro-
notation which will prove to be very useful. In order to span pic material. Notice that this tensor is obtained from the cur-
the solution space in each homogeneous region we must deature of the phonon dispersion relation néas 0.141617
termine twelve six-vector, representing a given basis for The above equations can be solved in the following way.
the solution space, while the general solution will be a lineafTaking the divergence of E¢18), after Eq.(20) is appropri-
combination of these six-vectors. The admixture coefficientately rewritten we are led to

must, of course, be determined by imposing the matching

boundary conditions at each interface. , 1 2 5
\Y +Eg(w|_—w )| ¥=0, (22
L
A. Matching boundary conditions
As in Ref. 17, the matching boundary conditions must be Vit w_2 _A7ma v 29
derived from the fundamental equations of our model, i.e., c? b= e,

Egs.(15-(17) and(11) and should have a transparent physi-
cal meaning. In the first place we must require the functiongvhere BZ=(A1+A,)/p, ¥=V-u, and of=(eo/€.)wp.

u, A, and ¢ to be bounded and continuous in the whole Equation(22) is a standard Helmholtz equation with well-
space. Moreover, the standard boundary conditions of clagnown solutions for a given geometry. It is easy to show that
sical electrodynamics should be fulfilled. Hence, accordinghe solution of Eq(23) is
to Egs.(6), (7), and(11), the following quantities must be

continuous at each interface of the structuigDy=D-N; _ draf0® 1, L |7F
(i) Hy=H-N; (iii) Hy=H-T; (iv) E;=E-T. In the expres- =t —— ?__f(wL_w U (24)
sions above the vectd(T) is the unit vector normaftan-
gentia) to the interface surface. where ¢y, satisfies the equation

Another important matching boundary condition is de- )
rived from Eq. (15 and is thus related to the mechanical 2 lén=0 (25)
aspects of the problem. By fairly standard technigiseg for 2|¥h

instance Ref. 1)7we are led to the continuity of (W L ) ) )
= o-N, at each interface of the structure. which is again a Helmholtz equation. We can thus determine

The above conditions applied at all interfaces between? @nd . Taking thecurl of Egs.(18) and(19) we are led to
homogeneous parts of the system completely determine the

o?
solutions of the mathematical problem. From a rigorous V2+i2(w§ 2) F— —s, (26)
analysis of the fundamental equations we have to require the Bt pPBT
continuity: u, A, ¢, oy, Dy, andH+ (twelve conditions for
the twelve constants present in the general solutiohke ) w? W
remaining quantities involve@H, and E;) are then auto- Vite, 2 S=4mi oz T, (27)
matically continuous at the interfaces.
where
B. Solution method
Bi=A.lp, T=Vxu, (28

We present next a method for generating analytical solu-
tions of the Eqs(15)—(17) irrespective of the particular ge- and we have introduced the dimensionless vector fadie-
ometry and nature of the nanostructure under consideratiofined by
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w

Ca

S (29

The solutions of the set of EqR6) and(27) are of the form:
r=I,+p;:S (30)

and

where p; (i=1,2) are parameters to be determined below
andI';, and S, are vectors conveniently chosen to satisfy
independent vector Helmholtz equations. Usi(8)) and
(31) it is possible to show that the solutions of E¢®6) and
(27) are given by

1 1 i
1 1 .
S=5 |1+ |[Sytia(l-b)ly]; (33
with
2w [ %= wix}
a= —Exxg (—wﬁ_wg ) (34)
and
wz(a)z—wz)
2 auh 2 L™ @Wo
b?=1-4xge..(Br/C) D= 0Bl (39

where the parametetrgz[lJr €.(B1/c)?]"* has been intro-
duced.
The vector fieldd', and S, satisfy the Helmholtz equations:

(V2+g)I,=0, (V?+Q?)S,=0; (36)
with

2 1 1 2 2,2 2 2 2
0=z | 5 (1) 0= 0pd) ~xi(w?=ud) |; (30

T™0

2 2,2
2_6_00 E 3 w°— wyXy )
Q =23 (b—1) —1_Xc2) +w|. (38

The methods for solving E¢§36) are well known and present
a simple separated form only in rectangular, cylindric,
spherical, elliptical, parabolical, and conical coordin4t&s.

The particular form of the solutions depends on the geometry

of the system. Once the functiods ¢, I', andS are known,
we can determine andA. Equation(18) can be rewritten in
the form:

(0= 0?)u= B2VV— BV XT— 22 A+ Ly
0 L T pC o v
(39

where the vector identitW?u=VW¥ —V XTI has been ap-
plied. In the same way from the E(L9) we obtain:
c® d7iac
u.
w

ic
VXS—;V(ZJ-F

A:

(40)

630(1)3

©
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Lo wE_wgVXS
u=———> - - :
wZ_wL ﬁL :BT A1 w
(41
ac® —w?

5 2 VX S—4i(Br/c)2VXT

B Eww(u)z—wl_

2—w
15

+47Ti(,8|_/c)4a)2{[1+(,8|_ /C)Z]wz—wf}_lvq’]

ic

> V. (42)
These solutions take into account retardation and the cou-
pling between the mechanical displacement fieldnd the
electromagnetic field described by the potentialsand ¢.
We should notice that, as a general property, the vector fields
fulfill the conditions: V-u#0, V-A#0 and VXu#0, V
XA#0, and hence the corresponding modes are neither
purely longitudinal nor purely transverse, but bear a mixed
character. We must also stress that the influencé ahd ¢
on the oscillations does not lead to polariton modes of a
purely interface character. The vector fieldn Eq. (41) has
three independent contributions: a longitudinal contribution
from ,BEV\II, a transverse contribution proportionalﬁv
XT', and a third contribution including the phonon-photon
coupling through 2 — w3)V X S. The same analysis holds
for the vector potential in Eq42). We have thus developed
a mathematical method leading to general analytical solu-
tions for the phonon polariton in semiconductor nanostruc-
tures considering the phonon dispersion and coupling be-
tween the longitudinal and transverse parts of the mechanical
and electromagnetic fields. In this way we determine sets of
u, A, and ¢ for each homogeneous segment of the structure,
i.e., six-vector fields describing the oscillation modes of that
segment. The rest of the mathematical treatment is standard:
the general solution is found by superposition of these modes
with arbitrary coefficients which are then determined by im-
posing the matching boundary conditions at the interfaces of
the structure. In this manner, we also obtain the phonon-
polariton dispersion relations.

Ill. DOUBLE HETEROSTRUCTURES

Let us consider a DHS grown along thexis with inter-
faces atz= =d/2. The appropriate solutions feb,, ¥, V
XT', and VXS are given in Appendix A. Combining Eq.
(41) and Eqs(A7)—(A11) the vector displacementis given

by
u,={iG1(Czsinkyz+ C,coktz)

+G,(Casinkz+ C,cokz) e,

Uy={ik1G1(C;c0%z— C,Sinksz) + kGy(C,cokz

— C,sinkz) + i k(Cgsink z+ Cgcosk, 2) e,

Hence, in a rather general way and independently of any

particular geometry of the nanostructure, we have shown that

the relative mechanical displacemenand the vector poten-
tial A can be obtained with the following expressions:

u,={kG;(Cysink;z+ Cycokz) —i KGZ(Elsinkz

+C,cokz) + ki (Cgeok, z— Cesink, z)}e'*Y. (43)
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In the same way expressions for the vector potemtigind  transverse electromagnetic partk),( while the functions

the scalar potentiap are determined as follows:
A, =[Ga(Casinkz+ C,4c0K1Z) +iG 4( Casinkz

+C,cokz) e,

A,=| k1G3(C1cokrz— Cpsinkrz) +ikGy4(Ccokz
— C,sinkz) — kGs(Cg Sink 2+ CC0K, 2)
Ck ) ~ .
+ o (Cssinkgz+ Cscokgz) |€'Y,
A,=| —i kG3(Cysinkyz+ C,c0%k12) + kG 4(CySinkz

+C,c0K2) + ik, Gs(Cgcok, z— Cesink, 2)

ic ~ )
— — ko(Cscoskgz— Cssirkoz) €Y, (44)

b=[CsSinkgz+ Cscokoz+ Gg( CeSink, z+ CsCoK, z) ]/,
(45

The coefficients3; (i=1,...,6) in Eqs(43)—(45) are defined

in Appendix B. An analysis of Eq$43) and(44) shows that
the components, andA, display independent constants and
thus they are completely decoupled from the other compo-
nents along theg andz directions. These modes are a com-
bination of the TO phonons and a transverse electromagnetic d
field A, not involving the scalar potentiap. This kind of
mode corresponds to transverse-elec{lE) waves, the
electric field being parallel to the interfadé= (E,,0,0) and
H=(0H,,H,). The TE solutions can be interpreted as linear
combinations of the following four linearly independent
seven-vectors:

(iG] [iG,]
0 0
0 0
Gs |sinkyz, | Gz |cokqz,
0 0
0 0
-0 - -O -
G, ] G,
0 0
0 0
iG4|sinkz, |iG4|cokz (46)
0 0
0 0
-O - -0 -

0
ik1Gcoksz
kG4Sinkyz

0

k1Gzcok+z
—ikGzsinkyz
0

0

i kCOK, Z
—k;sink, z

0

— kG50, z
—ik Gssink, z

| GeCOK Z

0
iktG4sinkyz
— kG coksz
0
k1G3sinksz

i kGzc0KTZ
0

0

i kSink, z

k. cok, z

0

— kGssink, z
ik Gsco¥k, z
Ggsink, z

0

kG,cokz
—ikGysinkz
0

ikG,cokz
kG Sinkz

0

O O O

0

(cklw)cokyz

i(cky/w)sinkyz
| cokoz

0

kG,sinkz

i kG,cokz
0

ikGysinkz
— kG cokz
0

o O O

0
(cklw)sinkyz
—i(cky/w)coKyz

sinkyz

Ay A, have transverse and longitudinal mechanical and elec-
tromagnetic contributions. The scalar potentialinvolves
just longitudinal contributiongk, and ky). From Eq.(19)
follows thatuy, A, and¢ have the same parity with respect
to the reflectiore— —z; on the other hand, andA, display

the same parity between them but opposite to the other func-
tions. From the Lorentz gaud&g. (2)] it is evident that the

y andz components oA must have different parity. Hence,
the linearly independent solutions for the TM waves are split
into two groups described by the following seven-vectors:

(47)

(48)

Solution (47) corresponds touy-even, u,-odd, Ay-even,
A,-odd, and¢-even; solution(48) corresponds taiy-odd,
u,-even, Aj-odd, A,-even, and¢-odd. The seven-vectors
(46), (47), and (48) are each a basis for the functional sub-

The other solutions, given by Eggt3)—(45), correspond to  spaces of the solution space of the present problem. Such
the coupled modes, which can be interpreted as transverssubspaces do not mix among them and should be handled
magneti TM) waves with the electric fiel& lying intheyz  separately. They provide a rather useful way for the con-
plane and the magnetic field along thex direction: E  struction of the general solutions in the case of a DHS.
=(0E,,E,) andH=(H,,0,0). Theu, andu, are combina- Let us now consider a DHS involving the GaAs/AlAs
tions of transverse-TO k§), longitudinal-LO (;), and components where the large frequency gap between the
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optical-phonon branches of the constituent materials permits (1+ G)cog kyd/2)ex(z+d/2); 7< —d/2
us to apply more restrictive matching-boundary conditions of cosk;d/2)
the form —C 283 iy tinthl hied - |z|<dl2
A,=C 5, © cokrz+G cogkd2) cokz, |Z|

(i) continuity of ¢, A, andH at the interfaces, ~u(z—di2).

(i) u=0 at the interfaces, (1+G)cogksd/2)e ’ Z>d/%5’6)

(iii) continuity of e, [(d¢/dz)— (iw/Cc)A,] at the inter-

faces. with the dispersion relation:

(49)
The conditiong49) give a rather accurate description of the cot(krd/2) = —ki kG tankd/2) = (1+G)u]l *. (57)

polar-optical-phonon modes when retardation effects ar? the limit « (ph lenath I d
neglected®1® In this case the stress boundary conditions, 1€ Mt c—ce (phonon wavelengins aré small compare

(o continuous at the interfacebecome unnecessary. f[o the reststrahlgn wavel_ength§ of the ponstituent materials,
The solutiong46)—(48) are strictly valid for|z|<d/2. In i.e., no retardationthe dispersion relation$s4) and (57)

the regions|z|=d/2 the corresponding solutions are easily reduce to those forgethe unretarded, uncoupled transverse

found by realizing thau=0. We are led to two kinds of polar-optical phonons.

solutions:decoupled modes or TE wavedere Ay=A,=0

_ . nw
and ¢=0, while tar(krd/2)=0, kr=-5; n=even
CdKaz+d2) | Ca—iK (z+d/2). z<—d/2
A=eY _ - ' and
—_O—[Ce*'Kz(Z*d/Z)q—Ce'Kz(Z*d/Z)]; Z>d/2,
(50 nm
with cot k+d/2) =0, kT:T; n=odd, (58
K,= e (wlc)2— k2, (51  Wwith the frequencies
where €1 is the high-frequency dielectric constant in the w?=wi— B3(k?*+k3), (59)

|z|=d/2 region and+(—) is a label for the evefodd) states.
In what follows we consider the nonradiative regime whenwhile A,=0 and the vector displacement is reduced to

K> \/ew(lj(wlc)(KZZi,u) with an exponentially decaying,

for |z|=d/2. Applying the matching boundary conditions _nm n—even
(49) to linear combinations of Eq€46) and using Eq(50) sS4~ %
we are led to the following results. u,=iC N (60)
(a) Odd states: cos% z n=odd.
0; |z|>d/2 . o ) )
iy ko2 Another important limit corresponds to the nondispersive
U=ice sinkyz— —Sl.n( 1di2) sinkz  |z|<d/2, phonons 3t—0). From Eqs(54) and(57) it follows that
sin(kd/2)
(52 K~
— tankd/2)=1 (61
—(1+G)sin(kd/2)ex(z+92): 72 —d/2 M
Gs i sin(kd/2) . and
—C 2 aiky - - 7 . <d/2
A,=C 5, e'Y{ sinkrz+G Sinkd2) sinkz; 2| _
(1+G)sin(krd/2)e™#==92;  z>d/2 K cotkdi2 = -1, 62
(53 M

whereG=G;G,/G,G; and C is a normalization constant. This case is equivalent to the results obtained by the direct
The eigenfrequencies are given after the solution of the folsolution of Maxwell’'s equations for the electromagnetic
lowing dispersion relation: fields and are in complete coincidence with the dispersion
relations for a semiconductor slab found by Kliewer and
tan(ksd/2) = —k¢[KG cot(kd/2)+(1+G)u]™*. (549  Fuchs in the absence of mechanical disperdisee Egs.
(2.70 and(2.71) of Ref. 2] with
(b) Even states:
~ w?— w?
0: |z|>d/2 k= Ve(w)(w/c)’>— k>, 6(w)=6oc( 27
u,=iCe'®y cog krd/2) 0

coskrz= o qkdi)

) . (63

- |z|<d/2, . . . .
cokz |2 Note that in this case the mechanical boundary conditions

(55  cannot be fulfilled. As can be easily seen from Etp) the
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TE waves give no contribution to the electric-potential- k<(w/c)Ve(w). This determines the region where Egs.
induced (Frohlich) electron-phonon interaction. The TE (61) and(62) have solutions.

waves do not have solutions in the reststrahlen regiog ( Coupled modes or TM wavesin the region with|z]|
<w<w,) wheree(w)<0. In order to get a redd out of the  >d/2 the corresponding solutions are given by 0, A,
reststrahlen regiofwhere e(w)>0], we should require =0, and

_ & (DeiKZ(z+d/2)_Be—iKz(z+d/2))+ C_" (Beikz(z+d/2)+§e—ikz(z+d/2)); z< —d/2

. K w

Ay= e Y K ok (64)
T2 (De—iKZ(z—d/z)_BeiKZ(z—d/z))i_ (Be—ikz(z—dlz)+§eikz(z+d/2)); z>d/2,

\ K w

+ (DeiKZ(z+d/2>+Be—iKZ(z+d/2))+ C_kZ (Beikz(z+d/2)_’ée—ikz<z+d/2>); 7< —d/2
. w
A,=e'"YY K (65)
;(De—iKz(z—d/2)+“D‘eiKz(z—dlz))iz (Be—ikz(z—d/Z)_Eeikz(z—dlz)); z>d/2,
w

Belkz+di2) +§e—ikz(z+ dr2). 7< —d/2
— @iy '
o=e +(Be k(2792 4 Belkaz- 42, 7>d/2. (69
In Egs.(64)—(66) wherever a+ or + appears the uppdlower) sign corresponds to the evéodd potential states,
k,= V(w/c)?>—k? (67)

andB,B,D,D are constants.
__ In the nonradiative regiml§z=iy=i\/KZ—(w/c)2 and, in order that the fields remain finite |as—, we should require
D=B=0. Applying the matching boundary conditiof49) to a linear combination of the linearly independent solutions
described in Eq(47) (u,-even,u,odd, A -even,A,-odd, ¢-even or Eq. (48) (uy-odd, u,-even,A -odd, A,-even, ¢-odd
together with Eqs(64)—(66), we obtain for the coupled TM waves:

(a) Even potential states:

= iy 0; |z|>d/2
u,=iCgye'“ ~ ~ 68
y—o — kI cokrz+k cokz+ «I'jcok z; |z|<d/2, (68)
= )0 I2|>d/2
u,=Cpe'“ ~ =~ 69
20 — kI sinkz+ k sinkz—k I';sink, z; |z|<d/2, (69
—H,er®t a2 4 erztd), z<—d/2
~ kt ~ ~ ~
Ay=G—: Coe™¥{ — ET G cokz—k cokz— kT4(GsG,/G,)cok z—[ k/cogked/2) [Hacokoz, |2/<di2  (70)
—H,e #z 424 N, e Nz d2), z>d/2,
( K ~ —_
; Hle,tL(Z+d/2)_ ,szey(Z+d/2); z<—d/2
Gy~ ) xK= . : =~ ~
AZ=G—2 Coe'"Y4 e I sink;z+ k sinkz— Kk, (GsG,/G4)Tysink, z+[ko/cog kod/2) JHgsinkoz; |Z|<d/2 (72)
| S e e o, =2,
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( w ~
— HpeY(zrd2), z<—d/2
c
Gy~ Gy ~ -
=G Coe'"¢ Gg G, I';cok z—[w/c cogkoyd/2)JHscoKez; |Z|<d/2 (72
2 4
2 H,e iz, z>d/2
c

\

whereEo is a normalization constant. The corresponding dispersion relation is given by

€ . kep €. . 411'010’1:1G2 € |
2 ey sin(kyd/2) + kycog k1d/2) 6+ x cogk d/2)— T D sin(k, d/2) TewG, +u ey sin(kd/2)
+k cogkd/2)=0. (73
(b) Odd potential states:
o O |z|>d/2
=i K ) ) . 74
Uy=1Co€ — k¢ sinkyz+k sinkz+ «I";sink, z;  |z|<d/2, (74
el 0; |z|>d/2 25
Uz="0® kI’ cokyz— k cokz+k I';cok z; |z]<d/2, 79
. HleM(z+d/2)_ KHzey(z+d/2>; z<—d/2
G4C0 i I(Tl—‘ . . . . .
A= 5, © Y- g Sinkrz—k sinkz— x(GsG,/G,)I'ysirk z—[ x/sin(kod/2) JHsinkoz; 2] <d/2 (76)
_ Hlew(zfd/z)Jr kHoe™ Az—di2). z>d/2,
[ K
- Hyen (@2 4 ev(z+d2), z<—d/2
. G4Co i I’ ;
AZ: —1 GZ e Ky< - E Ccos kTZ_ Kk coKkz— kL(GE,Gz/G‘l)FlCOS(LZ_ [ko/S|n( kod/2)]H3CO§(OZ; |Z| <d/2 (77)
~ B e nE a2y oy e Y2 d2). z>d/2,
\
_ 2y erzran), z<—d/2
G,C ¢
b= é_o e Y (GgG,/Gy)T ' sink z—[ w/c sin(kyd/2)H4sinkgz; |z|<d/2 (78
2
2 e vz, z>d/2.
c

For the latter states the following dispersion relation is Taking the unretarded limito(— ) in Egs.(73) and(79)

found: (and also assuming..= €'V) it follows that
kysin(kyd/2) — ':f—ff cogkyd/2) g+ « sin(k,d/2) (02— 0?) ke oo _
- [x Sin(kod12) + krcog kyd/2)] KT oS krd/2)sinh«d/2)
+ “TkL % cog de/z)} LZZC Gézl +k sin(kd/2) — k sin(krd/2)cosh{ xd/2)]
. _ (05— w?)
- I?) w cogkd/2)=0. (79 [« cogk d/2) =k sin(k_d/2)]

_ ~ o~ ~ _ X[k sin(k,d/2)cosh «d/2)
The functiond’, I'y, T, I'y, H;, andH; (i=1,2,3) are given
in Appendix B. + k cogk, d/2)sinh(«kd/2)] (80
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for the even potential states and valid for long wavelengthgAr>a,, wherea, is the lattice
(07— o?) parameter. In the case of nanostructures, due to their small
02— . . . o
L [kysin(kyd/2)cost xd/2) dimensions, this approach, based on the application of the

[ k cogkyd/2) =kt sin(kyd/2)] laws of macroscopic physics, should be within its range of
. applicability. The model involves a consistent formulation of
+ « cog krd/2)sinh(«d/2)] the matching boundary conditions taking into account both
(03— w?) the mechanical and electromagnetic fields. A unified and
= - relatively simple method, providing the analytical solutions
[kicosk d/2)+ rc sin(k,d/2)] of the 7x7 system of coupled differential equations for
X[k cogk, d/2)sinh( «d/2) semiconductor nanostructures of a different nature and ge-
_ ometry, has been developed. It is shown that the solutions
—« sin(k d/2)costixd/2)] (82) involve, in general, a combination of longitudinal and trans-
for the odd potential states. The above expressions corr@erse fields. The GaAs/AlAs DHS case was studied in detail
spond to the dispersion laws of the polar optical phonons iand the analytical solutions for this case are presented for
GaAs-based DHS which were reported in Ref. 16. both the mechanical displacements and electromagnetic
Another important limit is the nondispersive cag® , fields. We have shown that, in the nonradiative regime, the
Br—0). The mode frequencies can then be directly derivednodel gives(a) TE waves(decoupled modes described by
by solving Maxwell equations. From E(3) and noting that  the u, and A, componentsand with frequencies below,
and abovew, and with k<+/e(w)(w/c), (b) TM waves in-
-0 volving coupled modes with a mixed LO-TO character and
’ expressed by the, andu, components of the mechanical
displacements and th&, andA, components of the electro-

lim

o

1~ sin(kyd/2) + kycog de/z)}
€5

and magnetic vector potentidin the Lorentz gauge the scalar
€. 4wacf1 G, potential ¢ is not independent of the above quantities and
lim| k?cogk d/2)— — Kew sin(k d/2)| ——— G, can be directly derived once the former are knavkor this
€ € 4 latter case we find interface-phonon-polariton modes in the
Wil ey ~ frequency rangew, <w<wg and in the regions beloww,
=———— —q sinkd/2) for Br,B,—0, and abovew other modes are also detected.
W T W € The dispersion law of the Kliewer-Fuchs model for polar-
it immediately follows that iton modes and the unretarded coupled modes of Refs. 16
and 18 were derived as the appropriate limiting cases of Egs.
k _ e(w) (54), (57), (73), and (79 of the present work. It is worth-
— cot(kd/2)=— —5. (82 while to analyze the relation of our treatment with that of
K €oo Ref. 2. As established above, our equations contain those of
In the same way, from Eq79) we obtain Kliewer and Fuchs as a limit whesy , 8, — 0. The introduc-
_ tion of such parameters in our treatment bears an important
k - e(w) methodological role allowing us to make a mathematical dis-
“ tankd/2) = D (83  cussion on the basis of coupled differential equatiéns

stead of the integral equations of Ref. Zhis permits us to
The quantityrlz was defined in Eq(63). In the case of Eqs. introduce the complete matching boundary conditions of the
(82) and (83) they are defined fowo<w<w , where k probl_em(mechanlcal and electromagnetmroviding a fully _
—ia anda=[|e(w)|(w/c)?+ x?]"2 G being a real quantity. consistent treatment of the normal modes. Our approach is
We are thus led to the so-called electrostatic interface modefl€xible and allows the analysis of different geometries of the
Such interface modes can be directly derived by applying thgos&b[e nanostructures. !n the DHS case _the influence of the
dielectric continuum model and correspond to E€s44) corrections relatecj to th,és (for valges typically of the or-
and(2.46 of Ref. 2. Our Eqs(73) and(79) introduce slight der of 1¢ cm/seg is of importance just for the Iowe.r vajues
modifications into these interface modes in the case whefif d (d~1—10nm). For larger values af the relative in-
B+, BL#0. For the TM waves we also have modes OutSideﬂuence of these corrections is negligible and we are essen-

the restsrahlen regiofi.e., for o< w, and w>w,). tially Ie_d to the results of Kliewer and Fuchs.
In Fig. 1 we show for the TEodd) modes the dependence

of the frequencyw on in-plane wave vectok for different
modes(dispersion relationsin the regionw<wg and taking

We have established a general treatment for obtaining thé=3 nm. For the numerical calculations the parameters of
phonon polariton modes of semiconductor nanostructures ¢faAs and AlAs of Ref. 16 were used. As corresponds to the
arbitrary geometry and composition. An essential feature ofonradiative regime, the curves are at the right-hand side of
our treatment is the full consideration of the coupling be-the straight linew=c(eY)"¥2. They emerge from that
tween the mechanical and electromagnetic parts of the proline and bear a weak electromagnetic component, resembling
lem. Most of the existing heterogeneous semiconductor syshe uncoupled TO polar-optical phonotfdt can be seen, as
tems, and especially nanostructures, can in principle bexpected, that the curves do not show significant dispersion
studied by this procedure. By construction, the treatment isthey are very flgt Hence, in this region we are essentially

IV. DISCUSSION OF THE OBTAINED RESULTS
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Ja— TE waves
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FIG. 1. Dispersion relation of the decoupled TE modes in a G- 2. AsFig. 1fora ¥10° nm Wng_DHS andv>w,_ . The
3-nm-wide GaAs/AlAs DHS for the odd statéEq. (54)] in the  Photon-dispersion relation = «c/(e(w))™"in the frequency region
regionw<wg. For the numerical calculations the values of param-Of the GaAs optical phonon and=«xc/(e”)*? are shown as
eters of Ref. 16 were used. The photon dispersion relaon 9ashed lines.
= Kel(e)* for the AlAs is shown as a dashed fine. =—&V as seen in the figure. The curves of Fig. 3 were

constructed from Eg982) and (83), taking]Zzi?& [i.e., we

led to thex— 0 limit of the phonon dispersion curves for the are limiting ourselves to the casg—0 of Egs.(73) and
uncoupled mode¥’ In the frequency intervabo<w<w_  (79)]. The corrections introduced by thgs are relevant for
we do not have TE modes, as expected from general prirthe smallerd values(for instance,d~ 3 nm); otherwise the

ciples. Fore>w, we obtain high-frequency modes essen-results for interface polariton modes essentially coincide
with those of Kliewer and Fuchs. It should be possible to

tially of electromagnetic nature. We have det 3 L .
% 10° nm in Fig. 2, a relatively largal value. For much observ_e the d_eV|at|0n between experimental data for forward
: . scattering(which should follow the

smaller values ofd the corresponding frequencies become
too large (visible region and beyond As in Fig. 1, the T ooy
curves of Fig. 2 are at the right of the photon straight line but el
above the hyperbola=c(e(w)) k. These high modes 1.07 _\:mﬁmgggw\
exist only when retardation effects are includethey begin B : T
on the linew= kc/ ()2 and can be considered as waves i/
mainly confined to the interior of the DHS. The small size of 1.05
the heterostructure gives rise to standing waves with pre- 5?
dominant electromagnetic character for the valuel gfiven -~
in Fig. 2. Of course, the large valuesahere considered are 3
not typical for DHS usually grown by molecular beam epi-
taxy. Hence, this kind of mode is not relevant for usual DHS.
Let us now analyze the coupled TM modes. We again have
modes in the interval®<wy and w>w . Very interesting 1.01
are, in this case, the interfacelike modes in the interygl

<w<w, . In Fig. 3 we show these modes for three values of

d. These results are very similar to those of Kliewer and

Fuchs. Let us recall that in the regiafiw) <0 all the curves

gmerge from the Sam_e lower IIn’ﬂtross_lng of the s”a'_ght FIG. 3. Dispersion relations of interface-phonon polaritons in
line for the photon with thew=wq horizontal ling. This  Gaas/AlAs DHS ford=3x 10 nm (solid lines, d=1x 10° nm
result is at variance with the corresponding result for bulk(short-dashed lingsand d=300 nm (dot-dashed lingscalculated
polar-optical phonons, where the high-frequency curves fofollowing Egs. (82) and (86). The horizontal line indicates the
the interface modes emerge from the= w, horizontal line  asymptotic frequency value, of the modes forx— given by

(at k=0). When k— all the curves asymptotically ap- e(w,)=— (). The unretarded interface mode fib=300 nm is

proach a horizontal line corresponding do= w, for e(w,) indicated by the highest-frequency solid line.

1.03




56 CONTINUUM TREATMENT OF PHONON POLARITONSN . .. 4125

calculations including retardatipand the theory without re- 1
tardation also shown in Fig. 3. F1=VX(ve,); F==VXV(ve); F=Vu.

It is also interesting to discuss the radiative modes, which q (A3)
should appear for frequencies at the left-hand side of the _ _
photon curvew=c(e§}))‘1’zx. In that case we no longer Thg funct|on_5v(x,y,z) and u(x,y,z) must satisfy the fol-
have vibrational eigenstates in the strict sense. The systeling equations:
loses energy in the form of radiation. However we can speak (V2+g?)p=0 and V2u=0. (A4)
of certain virtual modes characterized by a complex . ) .
frequency’ Radiative modes are of interest for a discussionThe solutionF; is not relevant to the present problem since
of the optical properties in thie region and require a some- We only needV X F. The general solution of the equation for

what different solution of the equations which may be dis-v. taking into account the translational symmetry in ty
cussed in future work. plane, is of the form:

v(x,y,2)=(C sinéz+C costz)e'* R, (A5)
where k= (k¢ k,), R=(x,y), £=0°~«? C, and C are

One of us(C.T.G) acknquledges the hospitality of the ~nstants. Hence, the solution @1) is given by
Max-Planck-Institut fu Festkoperforschung, where part of
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APPENDIX A: VECTOR HELMHOLTZ EQUATION: K2
CARTESIAN COORDINATES + q e,(Cssinéz— C,costz)e < R, (AB)

For Cartesian coordinates the solution of the vector Helms- . .
holtz equation is Applying solutions of the typ€A6) to Eq.(36), the expres-

sions forI" and S are obtained from Egs32) and (33),

(V2+q?)F=0, (A1)  respectively. The present problem shows invariance under
. o ) arbitrary rotations about theaxis. Taking advantage of this
with V-F=0 is given by symmetry we choose thg axis along the in-plane wave
_ vector x« without loss of generality. Hence, we have
F=Fi(xy,2) T Fa(xy.2) + Fs(xy,2), (A2) =(0k,). We now write the final expressions f&xT" and
where VXS
iev) | : 1 =~ ~ . .
VXI'=¢ "V{ i (C5sinkrz+ C,cok2) + ai+p) (Cgsinkz+ C,cokz) |+ | ik(C cokrz— C,Sink,2)

ey+

k ~ ~ ) i K ~ ~
+—a 1+b) (C,cokz—C,sinkz) K(Clslnsz+Czcossz)——a 1+D) (Cysinkz+ C,cok2) ez], (A7)

( (
V X S=e"Y{[i(Casinkz+ C,cokz) — a(1—b)(Casinkyz+ C,cokrz) Je,+ [ik(C,cokz— C,sirkz)
—a(1-Db)kr(Cycokrz— Cysinkrz) Jg,+( K(Elsinkz+ Ezcoskz) +ia(1l—Db)«(Cysinkyz+ C,cokz) e},

(A8)
|
where V= (Cgsink, z+ Cgcok, )6,
1 4 w? 172 . ~ ;
= (wP—?) - —— 2 = (Cssinkyz+ Cssinkyz)e' <Y, A10
kt $(w0 w?) cza(1+b) K , én=(Cs 0 5 02) ( )
with
a’a(l-b) ]*?
k=| e.(w/c)2— ——5—— &2 (A9) 12
pBT ! 2

k|_=[—z (0= w?)— k2| , ko=[(w/c)?>—k?]*2
L

The solutions forV and ¢y, are (A11)
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APPENDIX B: VALUES OF PARAMETERS CONTAINED
IN THE MAIN TEXT

The coefficientss; (i=1,...,6) are

B3 cZa(1-b) )
Gl__(?o mgw—z(wrwo), (B1)
B: 1 . L,
C2= = 2 ai+h) T amale? (LT @0 (B2
ac® [a(1-b) 4
3 a0} w® (wg_wz)—’_j(lgT/C)z , (B3)
00
— CYC3 1 2 2 477 / 2
MY F(w _wO)_M(ﬁT ©)°,
(B4)
47Ta,BE ) , -
Gs=—— o{o1+(B/c)]-w} ", (BY)
and
(0?-wf)c
T Be ¥ (B6)

Other parameters present in the main text are
r= [kk_cogkd/2)sin(k d/2)+ x? sin(kd/2)cog k d/2)]

H3:

(wpBIc)?k sin(k, d/2)
w0 [1+(B,Ic)?]— w?

k' .
leF sin(ktd/2) + k sin(kd/2)

d7ack G, .
— I'ysin(k, d/2),
G4

(B14)

€,

4mrac G, w?— w?

H,=

2 S|r(k|_d/2)_H3,

L
€.w G, o1+ (BL/c)?]— of
(B15)

F. COMAS, C. TRALLERO-GINER, AND M. CARDONA

LT
[ ( 1- %) "(6 sin(de/2)+sin(kd/2)) -

— 2 kesin( de/z)} J [kotan(kod/2)— y] %,
€y,

56

[krk,cog krd/2)sin(k,d/2) + ksin(krd/2)cog k, d/2)] 2,
(B7)
T, = k[ krsin(kd/2) cog k;d/2) — kTsin(krd/2)cog kd/2) ]
X[ krk_cog krd/2)sin(k d/2)
+ k2sin(kyd/2)cogk, d/2)]7 2, (B9)
T =[kk_sin(kd/2)cog k, d/2)+ «? cogkd/2)sin(k,_d/2)]
X[ kK, sin(kyd/2)cogk, d/2)
+ k2 cogkrd/2)sin(k, d/2)] 72, (B9)
T, = x[kysin(krd/2)cogkd/2) — k sin(kd/2)cogk:d/2)]
X[ kK, sin(kyd/2)cogk d/2)

+ k?cogkd/2)sin(k d/2)] 1, (B10)
~ T
Hl:@ krcogkd/2) +k cogkd/2)
Amace = G2 gk di2 B11
e 113G, codkud), (B1D)
~ 4mac G, 0’ — w? = < d/2) T
2= ) G4 w2[(BL/C)2+1]_wE ]_COi L ) 3
(B12)
dmac G, T (0?— w?)y cogk d/2)
€0 G, Y o[(BL/c)?+1]-w?
(B13)

L\ (T
H3=+ ( 1- %) K(_ cosde/2)+cos(kd/2))
€, G

(w?— w?)y sin(k d/2)
w’[1+(BL/0)%] - o]

47ac G,

e.w Gy 1

(w:BL /C)2k|_COS{ k|_d/2)
01+ (BLI0)]- w?

X[kocot(Kod/2) + ]~ L.

€
+ F kLCOi k|_d/2):| J

(B16)
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