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Excitons in T-shaped quantum wires
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Binding energies and wave functions are calculated for the ground-state exciton in T-shaped quantum wires.
It is shown that, if Coulomb interaction is taken into account, the hole is strongly localized by correlation with
the electron. We demonstrate that no one-dimensional hole confinement is necessary for the formation of a
one-dimensional exciton and that the exciton is roughly described by a two-dimensional hole, bound to a
one-dimensional electron. Reasons are given for the shortcoming of the product Ansatz and the subband
expansion for the pair wave function. For symmetric T structures with a thickness in the range from 5.4 to 7.0
nm, the calculated binding energies are larger than the values from approximate treatments, but smaller than
the experimental result§S0163-18207)04331-3

I. INTRODUCTION lem was solved only by factorization or variational
methods>~'® However, because of the strong delocalization
More than a decade ago a new semiconductor structuref the _hole, such approximations cannot give accurate re-
was proposed, based upon a cleaved-edge overgrowgilts. Ldfler et al. suggest a calculation that starts with a
superlatticé:?> The authors predicted that one-dimensionallocalized electron and then calculates the eigenstates of the
quantization is possible even without rigorous confinementhole in the Coulomb potential of the electron and the outer
in any of the space directions. Very recently, it was demonconfinement. An interesting aspect is, whether one- or two-
strated theoretically that even quantum dots, i.e., zerodimensional hole confinement is necessary for the formation

dimensional semiconductors, can be realized by twofoldf a one-dimensional exciton.
cleaved-edge overgrowth. Experimentally, it is impossible to directly measure the
In contrast to quantum-well wires, where the active regionPinding energy by photoluminescence. Instead, the published
is completely surrounded by the barrier material, the originnumbers are determined from various experimental and the-
of the one-dimensional bound states in T-shaped quantu@retical data, with errors likely to accumulate. Therefore, it is
wires is the expansion of the wave function into the largedmportant to have some theoretical predictions about what
available volume at the T-shaped junction of two quanturrPrder of magnitude can be expected for the binding energy.
wells. Consequently, the exciton binding energy in such a In this paper we numerically solve the two-particle prob-
T-shaped structure should be less than that in “convenlem within the effective-mass approximation. Scattering
tional” quantum wires with comparable dimensions. Never-States of the electron and hole are fully taken into account.
theless, these structures are the subject of current intensiVéde resulting binding energy and oscillator strength is com-
research and have been realized by several grodpghe  pared with results of a v_ar|at|onal calculan_on. To study the
reason for this is the fabrication technique. Lateral definitionhature of the hole confinement, we consider model cases
of quantum-well wires especially by etching techniques doeyvhere the hole confinement is only two dimensional or is
not lead to sufficiently narrow wires with smooth interfaces.totally neglected. Finally, single-particle and binding ener-
As a consequence, the binding energy of quantum-well wire§ies of different T-shaped wires are compared. The paper is
hard|y exceeds the value of the under|ying quantum We”prganiZEd as follows: in Sec. I, we introduce the basic equa-
and the optical spectra reveal a large inhomogeneous broations; the numerical method is outlined in Sec. IlI; the results
ening. In contrast, T-shaped quantum wires can be produce?f€® presented in Sec. IV; and conclusions are drawn in Sec.
in a controlled way by molecular-beam epitaxy, with a qual-V-
ity, comparable to that of quantum wells. They are charac-

terized py sizes less th';m the Bohr radius of the exciton and II. BASIC EQUATIONS
small thickness fluctuations.
While quantum-well wires are well understotidthe We consider a sample that is based upon a GaAs—

theory of T-shaped quantum wires is not developed to th&a _,Al,As single quantum well, grown if001] direction.
same extent. In particular, the reasons for the extreme erffter cleavage, successive layers of GaAs and_Gal,As
hancement of the binding energy seen experimentally needse deposited onto thd 10 surface. We identify the crystal
to be clarified. The numerical treatment is much more comeorientationd110], [001], and[110] with thex, y, andz axes.
plicated because of the continuum degrees of freedom in alfhe thicknesses of thél10) and (001) quantum wells are
three space directions. Only the single-particle problem hadenoted a®, andD,, respectively. A sketch of the sample
been solved accurately/'**~1°Hitherto, the exciton prob- is shown in Fig. 1.
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Now, we take into account the coupling of the quantum

wells via the T intersection. In this case, the electron and
FIG. 1. Sketch of the T-shaped quantum wire under considerhole motions satisfy
ation, and notations.
h? 9% K2 92

Our theoretical description is based upon the two-band { 2Mpy ax? 2m,, ay2+Tp(X’y) Ppu(XY)
model in the effective-mass approximation with anisotropic
hole mass. We usen,=0.0665n, for the electron mass = Epuepu(x.y), )
(me=9.109< 10" 3! kg — electron rest magsand a set of with
Luttinger parametersy;=6.85, y,=2.10, andy;=2.901°
The hole masses aren,,=m,,=Mpyy110=2/ (271~ 72
—3y3)Mp=0.69my and mMyy=Mpp001= 1/(v1—2¥2)Mg Tp(x,y):{
=0.38ny. The spherically averaged heavy-hole mass
IS Mp=1/(y1—0.8y,+1.2y3)my=0.59m;, leading to  One-dimensional confinement is realized if the ground
a reduced heavy-hole exciton mas®:i=meMys/(Me  states of the T intersectidf, is below the lowest quantum-
+ Mpns) =0.0598n,. We assume a static dielectric con- well ground states, mitd,,,E,y). We call the differences
stant £e=13.2 and band offsets of the formil,=AE,
=79 meV and H,=AE,=46x meV, with x being Ecp=mIn(Epy,Epy) —Ep
the aluminum mole fraction in the mixed crystal layér. ] )
The vacuum dielectric  constant is e,=8.854 electron and hole confinement energies. The sum
X 10 12 As/(Vm). For this choice of parameters, the
binding energy of the three-dimensional heavy-hole exciton
is Eg="1/,mée*/[(4meoe)?h?]=4.67 meV and its Bohr ra-

dius isag=4meoeh?/(Me?)=11.6 nm. TE? parameters are .,nfinement energy. It is a common beligf4that the larg-
verygclose to those used by Somegaal™" and Gislason gt exciton binding energy is obtained whep reaches its
etal. maximum. In the case of one-dimensional confinement, the
First, we treat the quantum wells in tleandy directions  \yave functions ¢, can be normalized to unity, and
separately, thus neglecting the coupling on the T interseqy, (x,y)|? is interpreted as the probability density of the
tion. The eigenfunctions in the growth direction and theparticle p.
corresponding energies obey one-dimensional stationary In the next step, we take into account Coulomb interaction
Schralinger (Heisenbery equations p=e,h; &=X,y;  between electron and hole. After separation of center-of-
Mes=Me), mass and relative motion in tredirection we end up with
the exciton equation,

Wp(x) ~ for x<D,/2
Wy (y) for x=D,/2.

Ec=EcetEcn

is referred to as the wire confinement energy, or simply,

£2 d? " _
[_mEz+Wp§(§)}@p§(§):Epg)\@pgx(f), (1) (He,)(Xe,Ye  Xn:Yn 2) =E,@,(Xe,Ye Xn Yn,2),  (4)
where
where g K2 52 #2 9 T
= - —— —+
perehl 2mpx (9X§ 2mpy (9)/’2J p(xp ’yp)
W 0 for |&<Dg2 h? 92 v
= —— —+V(X,—X —Vh,Z

pe( &) H, elsewhere. 2m, dz° (Xe™Xn.Ye™ ¥n2),
The discrete eigenvalues follow from the transcendental 1 1 1 e’

g —=—1 ;o V(xy,z)=—

equation&® m, m,e my, Amege X2t y2t 22
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The binding energy of the one-dimensional exciton is de-exceed the resources of memory and computing time. Hith-
fined as the ground-state energy of the interaction-fre@rto, Eq.(4) has been treated approximately by variational
electron-hole pair minus the ground-state energy of the twomethods'>'* but a complete numerical solution has not
particle equation, been accomplished so far. Therefore, we shall concentrate
mainly on how to solve Eq4). For all explicit calculations
Ep=E.+En—E. we use dimensionless quantities, defined by the convention

— a2 — = H
The oscillator strength per unit lengt|? is the modulus 7 =€7/(4meoe)=m=1. Energies and lengths are then mea-
square of the integrated wave function, taken at equal ele@Uréd in units of £g andag, respectively.

tron and hole positions: The Hamiltonian in Eq(4) can be written in the form:
2 2 R m 1 (92 N
|f] ZJ dXdYe(X,Y,X,Y,0)| . Hzgl ~om, o8 +U(§). (7)

Intuitively it is plausible thatf|? increases with the localiza- Introducing a uniform gridG={£}N , with mesh sizes

tion of wave functions. This has also been confirmed by, z_ : :
experiment®. The functions Aé=(A&,, ... A&y, a function ¢ is represented by an

N-dimensional vectonZ=(¢1, . i), where o= ¢(§i).
A discretization of the operatdi7) can be performed by

Bty P= [[| axaystzete .o 21

( PN PEAER) 20+ Y(EHALE,)
(e=h, h=e) 2’| (A7 |
represent conditional probability densities and play the role -

of the functions|¢,|? in the interaction-free case. Further- (U)i=Uih(&).

more, we define a correlation function The single-particle potentials are discretized according to

_ ij=Tp(§j) and the Coulomb potentid is replaced b$P
B0~ [[[] axcyaranlotesn.veyn 2P 1
2 (A<Pg.s)j

Vi=—— 4

which can be interpreted as the probability density of the j Py

one-dimensional exciton. y
An approximate solution of Eoiz4) for the lowest subband here Egs= -1 and @gs(X,Y,2) =exp(— X2 +yZ+7?) are

has been proposed by Chaegal” in the form the ground-state energy and wave function of the three-

dimensional hydrogen problem. The matriX, resulting

XerYerXn Yn Z) = @elXe, Xp s z), (5 : o G .

r(Xe:Ye Xn Y 1 Z) = PelXe Ve en(Xn Yn) @2 (2), - (5) from the discretization of the Hamiltoniad [Eq. (7)], is

with a variational functionp,, . By inserting the ansaté)  sparse, i.e., onl{D(N) of its elements are nonzero. Further-
in Eq. (4), an effective one-dimensional equation for the mo-more, H is Hermitian and has real eigenvalues

g.s.

tion in the wire direction is obtained: Ei,....EN=Emax and orthonormal eigenvectors
p2 @1, .. | ";’\." As_tTedmesh _siz(e;sbareh reduced, th? Ir?rglf_st ei-
Eot Ep— =~ +Ver(2) |0 (2)=Eyon(z), (6) genvalue is mainly determined by the operator of the kinetic
e TN 2m,dZ2 " e 2 N energy, and it holds that
where m
2
E < 21 m+ma><{uj}.
Veff(z): ffJJ‘ dxedyedxhdyh|@e(xeyye)|2 ¢ ¢

x| o V(o= X —yr.2) In order to find the ground-state vec'rcfarof the matrixH,
enlXn Y &~ Xn Yo~ Yh 2 we consider a sequende®};_, defined by a recurrence
Equation(6) has only qualitative character for two reasons:relation

(i) the convergence of the one-subband approximation is

very slow in one-dimensional structurEsand (i) the as- >4t 1) e —gHe®
sumption |¢,|?~[¢,|> on which the factorization(5) is ZM'
based is strongly violated for the hole, as we will demon-
strate in Sec. IV. Provided that ¢,¢(®)+#0, it holds that lim_..¢™M=¢ if
0<q<2/(Emaxt E1). The number of iterations is deter-
Il. NUMERICAL PROCEDURE mined by the slow decrease of the lowest-order excited

states, and is in the order &,,,/(E,—E;). However, the
‘convergence can be considerably accelerated by using a ba-

lated numerically. The solutions of E@2) can be found . id g f th ltiarid meth %}V)\/l h »yG _g

using a pocket calculator. EquatigB8) can be solved by sic idea of the multigrid methot. We assume thap[ G, ] is

standard techniquéé:® An application of those methods to the ground state ofi, discretized on a grig, . To find the
the two-particle problem is not feasible because it wouldground statep[ G, ;] on a refined grids, ;D G,, we start

In this section we specify how the ground state is calcu
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FIG. 2. One-particle propertiega) probability density of the electrothe|?; (b) probability density of the holdp|?; and(c) ground-
state probability densit}p,|?> obtained from the effective one-dimensional problem.

the iteration with initial valuesp(®[G,.,], determined by influence of the hole confinement are discussed in detail for

interpolation between the values Gf[Gd. The error the sampleW. Then, in order. to stgdy the dependence on the

~(0) - . . well thickness and the barrier heights, we compare the data

o“V[G11]— ¢[G,;41] is dominated by large-wave vector, f th leaV. S d

high-energy components that are efficiently suppressed by% € samplesV, =y, an So- .

relaxation parameteq=1/E,,[G.,], while the small- The single-particle energies for the samplé were

wave vector, low-energy components are vanishingly smalfound to be Ee,=E.,=56.2meV, En=8.0 meV, Ey,

Starting from some coarse g, the solution is calculated = 13-2MeV, Ec=47.2meV, E,=7.5meV, E..=9.0 meV,

by successive refineme6i,C - - - CG,=G, where the itera- Ecn=0.5 meV, andE,=9.5 meV. Obviously, the one-

tion on each grid is terminated when machine accuracy igimensional confinement for the hole is much smaller than

reached. that for the electron. The theoretical results are very close or
Another important issue is the accuracy, since the mesiflentical to those of Wegscheidet al. with E;.=10 meV,

sizes cannot be made arbitrarily small for the solution of theKiselev and Resler withE..=9.0 meV, and Bryanet al.

full two-particle problem(4). A binding energy calculated with E;.=9.6 meV.

from the exact single-particle energiés,, and the numeri- The single-particle densiti¢$>p|2 and the modulus square

cal value ofE according taE,=E.+E,—E[G] is subjectto  of the correlation functiofe,|? are shown in Figs. (@) and

the full discretization error oE[ G]. A partial compensation (b). The contours represent lines of constant probability

of the discretization errors can be achieved when the Sing'i;pp(x,yﬂz/maﬁ(pp(x,y)|2=0.1,0.2. ..,0.9. Obviously, the

particle energies are calculated with the same finite mesfycalization of the electron is much stronger than that of the

sizes:Ep=E[G]+E,[G]—E[G]. This is equivalent to re- nole, The reason is not the difference in the dimensionless

placing to dlsciet|2|ng the single-particle potentials accord‘parameter$2) , Cox=0.64 versuL,,=0.26, but the aniso-

ing to Tp;=Tp(§;) +E,—E,[G], so that the exact value of tropic hole mass; sincEp,>Ey,, a penetration of the hole

E is recovered foV=0. But one can go even further and into the (001) quantum well is not energetically favorable.

assure that botlE and @(Ej) coincide with the exact solu- Since our analysis is limited to heavy holes only, an im-
tions for V=0 by using potentials of the form portant question is whether this picture is changed when
valence-band mixing is taken into account. This point was
1 1 9 addressed in previous publicatiots The results of both
sm a2 2m ay? ®p papers for the heavy hole are in qualitative agreement with
— o iad j h f th t At th time, there i

Tpi= +Ep. those of the present paper. e same time, there is some

Pp1j controversy about the localization of the light hole. Langbein

The above discretization was found to give an error that i
about 3 times smaller than for the partial compensation, an
about 30 times smaller than for the crude method.

ole, whereas Lifler and co-workerS predict a stronger
ocalization for the light hole.
The product ansatzb) yields a binding energy of 10.1
meV. The modulus square of the wavefunctidg,|?, is
IV. RESULTS shown in Fig. 2c). In contrast to three- or two-dimensional
In this section we present numerical solutions of the equa(_axc?tons, the wave functio_n of the effective one—dimens_ional
tions in Sec. Il. We consider the following samples: sampleEXciton does not have a kink far=0, because the effective
W with well thicknesse®,=D,=D=7 nm and an alumi- one—dlmensmna}l Coulomb potential is finite 'fm:O. '
num content ok=0.35, studied by Wegscheidet al:% and The two-particle problen@) was solved using mesh sizes
samples S; with D=5.4nm, x=0.30 and S, with AXe=Ay.=Ax,=Ay,=3D andAz=§D. The result for the
D=5.3 nm and AlAs barriersX=1), studied by Someya binding energy i€,=(13.2-0.2) meV. The experimental
et al’ The single-particle propertig8), the excitonic ground value is 17 meM(Ref. 5 and Bryantet al. obtained 9.6 meV,
state(4), the result of the variational treatmef®), and the although their value foE. is somewhat larger than ours.

ﬁt al* found that the light hole behaves similar as the heavy
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FIG. 3. Two-particle propertiega) conditional probability density of the electro@e|2; (b) conditional probability density of the hole,
|on|2; and correlation functiofie,|? for the z direction.

The conditional probability densitid§p|2 are shown in Coulomb attraction to the localized electron. This raises the
Figs. 3a) and(b). Surprisingly, the hole is much more local- question of whether one-dimensional hole confinement is
ized than the electron, in contrast to the situation fornecessary for the formation of a quantum-wire exciton. For a
interaction-free particles. A simplified explanation can bequantitative study, we consider two model casils, and
given by decoupling the center-of-mass and relative motiorM,. For M; we only allow for a two-dimensional hole con-
such that ¢(Xe,Ye :Xn Yh:2) = @cm(X,Y) @rel(X,Y,2) with  finement in the(110 quantum well, i.e..T,(X,y)=Wu(X);
center-of-mass and relative coordinates defined in the usuahd no confinement, i.eT,,(x,y)=0, is assumed foM,. A
way: one-dimensional excitonic bound state is observed in both

cases with a binding energy &,=12.0 meV forM; and
Megfet Mneéh E=é—&: (E=XY: &=xy) E,=9.8 meV forM,. Furthermore, despite the lack of one-
Mez+Mpe e Sh A= 7" dimensional confinement, the localization of the hole was
stronger than the localization of the electron in both cases.
s"l:‘his model calculation also shows that the binding energy
for M, is closer to the binding energy of the samglethan

[
==
—_

As a measure for the extension of the wave functions, we u
the mean variances, generally defined @&A)=(A?)

~ 2 . . pu _ A K
—(A)“. One easily verifies that to the result of the variational calculation. Even though we
5 have found that a one-dimensional hole bound state truly
2 20— Mh¢ 2 exists, the latter findings show that an exciton in a T-shaped
o°(ée)=0"(E)+ a*(§), P TR e ; ) .
Meg+ Mpg quantum wire is nearly built up by a two-dimensional hole,

bound to a one-dimensional electron.

Mg )2 2 In the light of these results, it is worthwhile to discuss the
Meg+ My, &) quality of the approximatiorf5). The variational treatment
) i considerably underestimates the binding energy. The reason
Since the electron_mass is much smaller than_the holes 1he strong deviation offg,|2 from |ep|2. The variational
masses, the extension of the hole wave fun(_:tlon 1S Smalle|result is even smaller than the binding energy of example
than the exten.smn of the _eile;:tlron wave- fun.ct|on. M, where the hole is completely delocalized. Since the true
~ The correlation functiof,|* is shown in Fig. &). There  gycitonic binding energy is rather insensitive to the single-
is no essential difference t,|? [cf. Fig. Ac)], except that particle hole wave function, the approximati¢s) is am-
the localization of|e,|* is stronger, which becomes clear piguous and should not even give the right trends if the struc-
from the higher binding energy. ture is to be optimized. The variational result for the

Bryant et al. point out that intercoupling of wires be- ggillator strength|f|? is disastrous: 0.047 nmt versus
comes important when the structure is based upon @ 145 nni? for the full solution.

superlatticé? As follows from Figs. 2 and 3, this is not the
case for the uncorrelated electron and the exciton when th
interlayer spacing is larger than 20 nm, such as in Refsd

5,6,8,10. A significant influence from the hole is not ex- band energies become continuous if the energy exdeggs

pected, becausé) the energyE,, is also lowered due to S ; o
interwell coupling, thus partially compensating the reductionWhICh IS very small_ compared With th_e binding energy. In
most cases of practical interest, there is only one hole bound

of E;,, and (ii) the contribution of the hole to the confine- i — .
n (i) state, and it holds that,|2=]¢p|2, which was found to be

ment energ\E, is much smaller than the contribution of the . ) e
electron anyway. the main reason for the failure of the variational method.
From the previous calculation we learned ttiathe one- Nevertheless, since the solution of E4) requires exten-

dimensional confinement is dominated by the electron an§Ve computations, it is desirable to have a simple method
that (i) the localization of the hole is mainly due to the that yields a reasonable estimate f6;. For example, if

o?(&)=0*(E)+

It is important to note that no significant increase of ac-
racy is expected, when E@6) is extended to all one-
imensional subbands. The reason for this is that the sub-
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TABLE I. Comparison of different samplesnodels. All units In all cases, the theoretical result f, was found to be
are in meVv. smaller than the experimental result. Therefore, we shortly
discuss the influences of the approximations made in our
Sample(mode) w My My S S, theoretical model. It is known that nonparabolicity and di-
E, 56.2 56.2 56.2 63.4 935 electric mismatch lead to.an increase of the binding energy
E -5 8.0 0.0 112 139 for small quantum-well thicknessé$0n the other hand, it
" ' ' ' ' ' was claimed that the wire binding energy is rather insensitive
Ece 9.0 9.0 9.0 107 192 :
to the electron masS. To see the order of magnitude, we
Ech 0.5 0.0 0.0 0.9 11 . . .
E 0.5 0.0 9.0 1.6 20.3 repeated the calculations with the thickness-dependent elec-
EC 1é ) 12' 0 9.8 14'3 16-4 tron masses given by Andreani and Pasquarélisamely,
b 73 : . b e m.= 0.074, 0.076, and 0.084, for W, S;, and S,. The
Ep, exp. 1 17 27 resulting binding energies are 13.9, 15.3, and 17.9 meV.
% rom Ref. 5. There is indee_d an increase in the binding energy, _but the
bErom Ref. 7. enhancement is less than for quantum wells. Taking into ac-

count the dielectric mismatch, the measured values\Wor

¢ and¢y, are also variational functions, then the accuracy is2ndS; can be explained by theory. Another effect has not yet
increased —eveM; andM, could be treated in this way—, been tqken into account, namely, t.hat the exciton binding
while the complexity is not fundamentally changed; instead®nergy is of the same order of magnitude as the energy of the
of Egs.(3) and(6), a set of three coupled Heisenberg equa-optical phonon. Consequently, the effective static dielectric
tions has to be solved self-consistently. Grundmann angonstant is in between the static valeg and the high-
Bimberg proposed an ansatz of the form frequency limite.. and leads to an increase &,. This
Wo(fe,rn)=To(re) ¥h(ry) for the exciton wave function influence becomes larger as the binding energy increases.
¥, that depends on six space coordinates. The resulting two
coupled Heisenberg equations show a fast convergence, and
the accuracy is significantly improved, compared to ). V. SUMMARY

To study the influence of the well thicknesses and the
barrier heights, we have repeated the calculation for th?h
samplesS; andS,. For the electron confinement in sample th

az,_WAeEUSI? trle7ggergyvd|f$ehr_en_ce of thel dlr;’Ctbtrans't'OnsCoulomb—correlated hole is strongly localized, in contrast to
e=AE(T'g) = meV. This Is certainly the better ap- w,q jnteraction-free case. This was identified as the main rea-

proximation when phonon-assisted transitions are UNIMpPOTs 4, for the failure of the variational calculation. It was dem-

tant, but has a tendency to overestimate the binding eNer9¥nstrated that one-dimensional hole confinement is not nec-

Tlhe results are sur:nmarggg In szle | For completeness, Wessary for the formation of a one-dimensional exciton and
aiso mcorporatdethe ”E)c.’ di 1 andM,.. ¢ I that a two-dimensional hole, bound to a one-dimensional
As expected, the binding energy increases for smallefqqyron is a good approximation for an excitarai T struc-

well thicknesses or larger aluminum contents. For the elecs, .o Eor the sample&/ andS,, the calculated binding ener-

';_ron, the effect of the arl]ummum cohncen;ratl?fn on fthﬁ CO”I ies are found to be slightly smaller than the experimental
inement energy is much stronger than the effect of the we esults, but the difference can be explained by taking into

thickness. The exact opposite is the case for the hole, b%fccount the assumptions that have been made in our simpli-

cause the hole already “sees” infinite barnergﬁm&O.BO_. It fied model. FoIS, our results seem to be in contradiction to
is also found true for T-shaped quantum wires thgtin- 4 o experiment

creases ag. increases. However, the relative increase of
Ey is smaller than the relative increasekf. This relation-
ship is also not universal, as becomes clear from the com-
parison ofM; andM,, which both have a wire confinement
energy of 9.0 meV, but quite different binding energies. The authors are indebted to J.M. Baker, G.W. Bryant, M.
Therefore, a structure optimization based on single-particlé&rundmann, J.M. Hvam, and W. Langbein for interesting
confinement enerdy!*can only serve as guideline. A defi- discussions or communicating results prior to publication.
nite answer can only be given by a solution of the two-Two of the authorqfW.W. and G.S. also acknowledge fi-
particle problem for a large variety of well thicknesses andnancial support from the Deutsche Forschungsgemeinschaft

We have performed an accurate numerical calculation of
e ground-state exciton in a T-shaped quantum-well wire, in
e effective-mass approximation. We have found that the
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