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Excitons in T-shaped quantum wires
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Binding energies and wave functions are calculated for the ground-state exciton in T-shaped quantum wires.
It is shown that, if Coulomb interaction is taken into account, the hole is strongly localized by correlation with
the electron. We demonstrate that no one-dimensional hole confinement is necessary for the formation of a
one-dimensional exciton and that the exciton is roughly described by a two-dimensional hole, bound to a
one-dimensional electron. Reasons are given for the shortcoming of the product Ansatz and the subband
expansion for the pair wave function. For symmetric T structures with a thickness in the range from 5.4 to 7.0
nm, the calculated binding energies are larger than the values from approximate treatments, but smaller than
the experimental results.@S0163-1829~97!04331-2#
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I. INTRODUCTION

More than a decade ago a new semiconductor struc
was proposed, based upon a cleaved-edge overgr
superlattice.1,2 The authors predicted that one-dimension
quantization is possible even without rigorous confinem
in any of the space directions. Very recently, it was dem
strated theoretically that even quantum dots, i.e., ze
dimensional semiconductors, can be realized by twof
cleaved-edge overgrowth.3

In contrast to quantum-well wires, where the active reg
is completely surrounded by the barrier material, the ori
of the one-dimensional bound states in T-shaped quan
wires is the expansion of the wave function into the larg
available volume at the T-shaped junction of two quant
wells. Consequently, the exciton binding energy in suc
T-shaped structure should be less than that in ‘‘conv
tional’’ quantum wires with comparable dimensions. Nev
theless, these structures are the subject of current inten
research and have been realized by several groups.4–11 The
reason for this is the fabrication technique. Lateral definit
of quantum-well wires especially by etching techniques d
not lead to sufficiently narrow wires with smooth interface
As a consequence, the binding energy of quantum-well w
hardly exceeds the value of the underlying quantum w
and the optical spectra reveal a large inhomogeneous br
ening. In contrast, T-shaped quantum wires can be produ
in a controlled way by molecular-beam epitaxy, with a qu
ity, comparable to that of quantum wells. They are char
terized by sizes less than the Bohr radius of the exciton
small thickness fluctuations.

While quantum-well wires are well understood,12 the
theory of T-shaped quantum wires is not developed to
same extent. In particular, the reasons for the extreme
hancement of the binding energy seen experimentally ne
to be clarified. The numerical treatment is much more co
plicated because of the continuum degrees of freedom in
three space directions. Only the single-particle problem
been solved accurately.5,11,13–15Hitherto, the exciton prob-
560163-1829/97/56~7!/4108~7!/$10.00
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lem was solved only by factorization or variation
methods.13–15However, because of the strong delocalizati
of the hole, such approximations cannot give accurate
sults. Löffler et al. suggest a calculation that starts with
localized electron and then calculates the eigenstates o
hole in the Coulomb potential of the electron and the ou
confinement. An interesting aspect is, whether one- or tw
dimensional hole confinement is necessary for the forma
of a one-dimensional exciton.

Experimentally, it is impossible to directly measure t
binding energy by photoluminescence. Instead, the publis
numbers are determined from various experimental and
oretical data, with errors likely to accumulate. Therefore, i
important to have some theoretical predictions about w
order of magnitude can be expected for the binding ener

In this paper we numerically solve the two-particle pro
lem within the effective-mass approximation. Scatteri
states of the electron and hole are fully taken into accou
The resulting binding energy and oscillator strength is co
pared with results of a variational calculation. To study t
nature of the hole confinement, we consider model ca
where the hole confinement is only two dimensional or
totally neglected. Finally, single-particle and binding en
gies of different T-shaped wires are compared. The pape
organized as follows: in Sec. II, we introduce the basic eq
tions; the numerical method is outlined in Sec. III; the resu
are presented in Sec. IV; and conclusions are drawn in S
V.

II. BASIC EQUATIONS

We consider a sample that is based upon a GaA
Ga12xAl xAs single quantum well, grown in@001# direction.
After cleavage, successive layers of GaAs and Ga12xAl xAs
are deposited onto the~110! surface. We identify the crysta
orientations@110#, @001#, and@11̄0# with thex, y, andz axes.
The thicknesses of the~110! and ~001! quantum wells are
denoted asDx andDy , respectively. A sketch of the samp
is shown in Fig. 1.
4108 © 1997 The American Physical Society
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56 4109EXCITONS IN T-SHAPED QUANTUM WIRES
Our theoretical description is based upon the two-ba
model in the effective-mass approximation with anisotro
hole mass. We useme50.0665m0 for the electron mass
(m059.109310231 kg — electron rest mass! and a set of
Luttinger parametersg156.85, g252.10, andg352.90.16

The hole masses aremhx5mzh5mhh[110]52/(2g12g2

23g3)m050.69m0 and mhy5mhh[001]51/(g122g2)m0

50.38m0. The spherically averaged heavy-hole ma
is mhhs51/(g120.8g211.2g3)m050.59m0, leading to
a reduced heavy-hole exciton massm5memhhs /(me

1mhhs)50.0598m0. We assume a static dielectric co
stant «513.2 and band offsets of the formHe5DEc

5790x meV and Hh5DEv5460x meV, with x being
the aluminum mole fraction in the mixed crystal layer17

The vacuum dielectric constant is «058.854
310212 As/(Vm). For this choice of parameters, th
binding energy of the three-dimensional heavy-hole exci
is EB51/2me4/@(4p«0«)2\2#54.67 meV and its Bohr ra-
dius isaB54p«0«\2/(me2)511.6 nm. The parameters a
very close to those used by Someyaet al.6,7 and Gislason
et al.9

First, we treat the quantum wells in thex andy directions
separately, thus neglecting the coupling on the T inters
tion. The eigenfunctions in the growth direction and t
corresponding energies obey one-dimensional station
Schrödinger ~Heisenberg! equations (p5e,h; j5x,y;
mej5me),

F2
\2

2mpj

d2

dj2 1Wpj~j!Gwpj~j!5Epjlwpjl~j!, ~1!

where

Wpj~j!5H 0 for uju,Dj/2

Hp elsewhere.

The discrete eigenvalues follow from the transcende
equations18

FIG. 1. Sketch of the T-shaped quantum wire under consid
ation, and notations.
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Epj5
\2p2

2mpjDj
2 bpj

2 ; HcosS p

2
bpjD

sinS p

2
bpjD J 5Cpjbpj ;

b.0; Cpj
2 5

\2p2/~2mpjDj
2!

Hp
. ~2!

The discrete eigenvalues are labeled in ascending order
l51,2, . . . and a suppressed quantum number indicates
ground state (l51).

Now, we take into account the coupling of the quantu
wells via the T intersection. In this case, the electron a
hole motions satisfy

F2
\2

2mpx

]2

]x2 2
\2

2mpy

]2

]y2 1Tp~x,y!Gwpm~x,y!

5Epmwpm~x,y!, ~3!

with

Tp~x,y!5H Wpx~x! for x,Dx/2

Wpy~y! for x>Dy/2.

One-dimensional confinement is realized if the grou
states of the T intersectionEp is below the lowest quantum
well ground states, min(Epx ,Epy). We call the differences

Ecp5min~Epx ,Epy!2Ep

electron and hole confinement energies. The sum

Ec5Ece1Ech

is referred to as the wire confinement energy, or simp
confinement energy. It is a common belief7,11,14that the larg-
est exciton binding energy is obtained whenEc reaches its
maximum. In the case of one-dimensional confinement,
wave functions wp can be normalized to unity, an
uwp(x,y)u2 is interpreted as the probability density of th
particlep.

In the next step, we take into account Coulomb interact
between electron and hole. After separation of center
mass and relative motion in thez direction we end up with
the exciton equation,

~Ĥwn!~xe ,ye ,xh ,yh ,z!5Enwn~xe ,ye ,xh ,yh ,z!, ~4!

where

Ĥ5 (
pP$e,h%

F2
\2

2mpx

]2

]xp
2 2

\2

2mpy

]

]yp
2 1Tp~xp ,yp!G

2
\2

2mz

]2

]z2 1V~xe2xh ,ye2yh ,z!,

1

mz
5

1

mze
1

1

mzh
; V~x,y,z!52

e2

4p«0«Ax21y21z2
.

r-
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4110 56S. GLUTSCHet al.
The binding energy of the one-dimensional exciton is
fined as the ground-state energy of the interaction-f
electron-hole pair minus the ground-state energy of the t
particle equation,

Eb5Ee1Eh2E.

The oscillator strength per unit lengthu f u2 is the modulus
square of the integrated wave function, taken at equal e
tron and hole positions:

u f u25U EE dXdYw~X,Y,X,Y,0!U2

.

Intuitively it is plausible thatu f u2 increases with the localiza
tion of wave functions. This has also been confirmed
experiments.8 The functions

uw̃p~x,y!u25EEE dxp̄dyp̄dzuw~xe ,xh ,ye ,yh ,z!u2

~ ē5h, h̄5e!

represent conditional probability densities and play the r
of the functionsuwpu2 in the interaction-free case. Furthe
more, we define a correlation function

uw̃z~z!u25EEEE dxedyedxhdyhuw~xe ,xh ,ye ,yh ,z!u2,

which can be interpreted as the probability density of
one-dimensional exciton.

An approximate solution of Eq.~4! for the lowest subband
has been proposed by Changet al.2 in the form

wl~xe ,ye ,xh ,yh ,z!5we~xe ,ye!wh~xh ,yh!wzl~z!, ~5!

with a variational functionwzl . By inserting the ansatz~5!
in Eq. ~4!, an effective one-dimensional equation for the m
tion in the wire direction is obtained:

FEe1Eh2
\2

2mz

d2

dz2 1Veff~z!Gwzl~z!5Elwzl~z!, ~6!

where

Veff~z!5EEEE dxedyedxhdyhuwe~xe ,ye!u2

3uwh~xh ,yh!u2V~xe2xh ,ye2yh ,z!.

Equation~6! has only qualitative character for two reason
~i! the convergence of the one-subband approximation
very slow in one-dimensional structures,19 and ~ii ! the as-
sumption uwpu2'uw̃pu2 on which the factorization~5! is
based is strongly violated for the hole, as we will demo
strate in Sec. IV.

III. NUMERICAL PROCEDURE

In this section we specify how the ground state is cal
lated numerically. The solutions of Eq.~2! can be found
using a pocket calculator. Equation~3! can be solved by
standard techniques.14,15 An application of those methods t
the two-particle problem is not feasible because it wo
-
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exceed the resources of memory and computing time. H
erto, Eq.~4! has been treated approximately by variation
methods,2,15,14 but a complete numerical solution has n
been accomplished so far. Therefore, we shall concent
mainly on how to solve Eq.~4!. For all explicit calculations
we use dimensionless quantities, defined by the conven
\5e2/(4p«0«)5m51. Energies and lengths are then me
sured in units of 2EB andaB , respectively.

The Hamiltonian in Eq.~4! can be written in the form:

Ĥ5 (
a51

m S 2
1

2ma

]2

]ja
2 D 1U~jW !. ~7!

Introducing a uniform gridG5$jW i% i 51
N with mesh sizes

DjW5(Dj1 , . . . ,Djm), a function c is represented by an
N-dimensional vectorcW 5(c1 , . . . ,cN), where c i5c(jW i).
A discretization of the operator~7! can be performed by

S ]2

]ja
2 c D

i

5
c~jW2DjaeWa!22c~jW !1c~jW1DjaeWa!

~Dja!2 ,

~Uc! i5Uic~jW i !.

The single-particle potentials are discretized according
Tp j5Tp(jW j ) and the Coulomb potentialV is replaced by20

Vj5

1
2 ~Dwg.s.! j

w j
1Eg.s.,

whereEg.s.52 1
2 and wg.s.(x,y,z)5exp(2Ax21y21z2) are

the ground-state energy and wave function of the thr
dimensional hydrogen problem. The matrixH, resulting
from the discretization of the HamiltonianĤ @Eq. ~7!#, is
sparse, i.e., onlyO(N) of its elements are nonzero. Furthe
more, H is Hermitian and has real eigenvalue
E1 , . . . ,EN5Emax and orthonormal eigenvector
wW 1 , . . . ,wW N . As the mesh sizes are reduced, the largest
genvalue is mainly determined by the operator of the kine
energy, and it holds that

Emax< (
a51

m
2

ma~Dja!2 1max$U j%.

In order to find the ground-state vectorwW of the matrixH,
we consider a sequence$wW (k)%k50

` defined by a recurrence
relation

wW ~k11!5
wW ~k!2qHwW ~k!

iwW ~k!2qHwW ~k!i
.

Provided that (wW ,wW (0))Þ0, it holds that limk→`wW (k)5wW if
0,q,2/(Emax1E1). The number of iterations is deter
mined by the slow decrease of the lowest-order exci
states, and is in the order ofEmax/(E22E1). However, the
convergence can be considerably accelerated by using a
sic idea of the multigrid method.21 We assume thatwW @Gl # is
the ground state ofĤ, discretized on a gridGl . To find the
ground statewW @Gl 11# on a refined gridGl 11.Gl , we start
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FIG. 2. One-particle properties:~a! probability density of the electron,uweu2; ~b! probability density of the hole,uwhu2; and ~c! ground-
state probability densityuwzu2 obtained from the effective one-dimensional problem.
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the iteration with initial valueswW (0)@Gl 11#, determined by
interpolation between the values ofwW @Gl #. The error
wW (0)@Gl 11#2wW @Gl 11# is dominated by large-wave vecto
high-energy components that are efficiently suppressed
relaxation parameterq51/Emax@Gl 11#, while the small-
wave vector, low-energy components are vanishingly sm
Starting from some coarse gridG0, the solution is calculated
by successive refinementG0,•••,Gn5G, where the itera-
tion on each grid is terminated when machine accurac
reached.

Another important issue is the accuracy, since the m
sizes cannot be made arbitrarily small for the solution of
full two-particle problem~4!. A binding energy calculated
from the exact single-particle energies,Ep , and the numeri-
cal value ofE according toEb5Ee1Eh2E@G# is subject to
the full discretization error ofE@G#. A partial compensation
of the discretization errors can be achieved when the sin
particle energies are calculated with the same finite m
sizes:Eb5Ee@G#1Eh@G#2E@G#. This is equivalent to re-
placing to discretizing the single-particle potentials acco
ing to Tp j5Tp(jW j )1Ep2Ep@G#, so that the exact value o
E is recovered forV50. But one can go even further an
assure that bothE and w(jW j ) coincide with the exact solu
tions for V50 by using potentials of the form

Tp j5

F S 1

2mpx

]2

]x2 1
1

2mpy

]

]y2DwpG
j

wp1 j
1Ep .

The above discretization was found to give an error tha
about 3 times smaller than for the partial compensation,
about 30 times smaller than for the crude method.

IV. RESULTS

In this section we present numerical solutions of the eq
tions in Sec. II. We consider the following samples: sam
W with well thicknessesDx5Dy5D57 nm and an alumi-
num content ofx50.35, studied by Wegscheideret al.;5 and
samples S1 with D55.4 nm, x50.30 and S2 with
D55.3 nm and AlAs barriers (x51), studied by Someya
et al.7 The single-particle properties~3!, the excitonic ground
state~4!, the result of the variational treatment~5!, and the
a
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h
e

e-
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-
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d

-
e

influence of the hole confinement are discussed in detail
the sampleW. Then, in order to study the dependence on
well thickness and the barrier heights, we compare the d
of the samplesW, S1, andS2.

The single-particle energies for the sampleW were
found to be Eex5Eey556.2 meV, Ehx58.0 meV, Ehy

513.2 meV, Ee547.2 meV, Eh57.5 meV, Ece59.0 meV,
Ech50.5 meV, and Ec59.5 meV. Obviously, the one
dimensional confinement for the hole is much smaller th
that for the electron. The theoretical results are very close
identical to those of Wegscheideret al. with Ec510 meV,
Kiselev and Ro¨ssler withEce59.0 meV, and Bryantet al.
with Ec59.6 meV.

The single-particle densitiesuwpu2 and the modulus squar
of the correlation functionuwzu2 are shown in Figs. 2~a! and
~b!. The contours represent lines of constant probabi
uwp(x,y)u2/maxuwp(x,y)u250.1,0.2, . . . ,0.9. Obviously, the
localization of the electron is much stronger than that of
hole. The reason is not the difference in the dimensionl
parameters~2! , Cex50.64 versusChx50.26, but the aniso-
tropic hole mass; sinceEhy.Ehx , a penetration of the hole
into the ~001! quantum well is not energetically favorable.

Since our analysis is limited to heavy holes only, an i
portant question is whether this picture is changed wh
valence-band mixing is taken into account. This point w
addressed in previous publications.11,13 The results of both
papers for the heavy hole are in qualitative agreement w
those of the present paper. At the same time, there is s
controversy about the localization of the light hole. Langbe
et al.11 found that the light hole behaves similar as the hea
hole, whereas Lo¨ffler and co-workers13 predict a stronger
localization for the light hole.

The product ansatz~5! yields a binding energy of 10.1
meV. The modulus square of the wavefunction,uwzu2, is
shown in Fig. 2~c!. In contrast to three- or two-dimensiona
excitons, the wave function of the effective one-dimensio
exciton does not have a kink forz50, because the effective
one-dimensional Coulomb potential is finite forz50.

The two-particle problem~4! was solved using mesh size

Dxe5Dye5Dxh5Dyh5 1
8 D andDz5 5

8 D. The result for the
binding energy isEb5(13.260.2) meV. The experimenta
value is 17 meV~Ref. 5! and Bryantet al.obtained 9.6 meV,
although their value forEc is somewhat larger than ours.
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FIG. 3. Two-particle properties:~a! conditional probability density of the electron,uw̃eu2; ~b! conditional probability density of the hole

uw̃hu2; and correlation functionuw̃zu2 for the z direction.
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The conditional probability densitiesuw̃pu2 are shown in
Figs. 3~a! and~b!. Surprisingly, the hole is much more loca
ized than the electron, in contrast to the situation
interaction-free particles. A simplified explanation can
given by decoupling the center-of-mass and relative mo
such that w(xe ,ye ,xh ,yh ,z)5wc.m.(X,Y)w rel(x,y,z) with
center-of-mass and relative coordinates defined in the u
way:

J5
mejje1mhjjh

mej1mhj
; j5je2jh ; ~J5X,Y; j5x,y!.

As a measure for the extension of the wave functions, we
the mean variances, generally defined ass2(A)5^Â2&
2^Â&2. One easily verifies that

s2~je!5s2~J!1S mhj

mej1mhj
D 2

s2~j!,

s2~jh!5s2~J!1S mej

mej1mhj
D 2

s2~j!.

Since the electron mass is much smaller than the h
masses, the extension of the hole wave function is sma
than the extension of the electron wave function.

The correlation functionuw̃zu2 is shown in Fig. 3~c!. There
is no essential difference touwzu2 @cf. Fig. 2~c!#, except that
the localization ofuw̃zu2 is stronger, which becomes clea
from the higher binding energy.

Bryant et al. point out that intercoupling of wires be
comes important when the structure is based upon
superlattice.22 As follows from Figs. 2 and 3, this is not th
case for the uncorrelated electron and the exciton when
interlayer spacing is larger than 20 nm, such as in R
5,6,8,10. A significant influence from the hole is not e
pected, because~i! the energyEhy is also lowered due to
interwell coupling, thus partially compensating the reduct
of Eh , and ~ii ! the contribution of the hole to the confine
ment energyEc is much smaller than the contribution of th
electron anyway.

From the previous calculation we learned that~i! the one-
dimensional confinement is dominated by the electron
that ~ii ! the localization of the hole is mainly due to th
r
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Coulomb attraction to the localized electron. This raises
question of whether one-dimensional hole confinemen
necessary for the formation of a quantum-wire exciton. Fo
quantitative study, we consider two model cases,M1 and
M2. For M1 we only allow for a two-dimensional hole con
finement in the~110! quantum well, i.e.,Th(x,y)5Wh(x);
and no confinement, i.e.,Th(x,y)50, is assumed forM2. A
one-dimensional excitonic bound state is observed in b
cases with a binding energy ofEb512.0 meV forM1 and
Eb59.8 meV forM2. Furthermore, despite the lack of on
dimensional confinement, the localization of the hole w
stronger than the localization of the electron in both cas
This model calculation also shows that the binding ene
for M1 is closer to the binding energy of the sampleW than
to the result of the variational calculation. Even though
have found that a one-dimensional hole bound state t
exists, the latter findings show that an exciton in a T-sha
quantum wire is nearly built up by a two-dimensional ho
bound to a one-dimensional electron.

In the light of these results, it is worthwhile to discuss t
quality of the approximation~5!. The variational treatmen
considerably underestimates the binding energy. The rea
is the strong deviation ofuw̃hu2 from uwhu2. The variational
result is even smaller than the binding energy of exam
M1, where the hole is completely delocalized. Since the t
excitonic binding energy is rather insensitive to the sing
particle hole wave function, the approximation~5! is am-
biguous and should not even give the right trends if the str
ture is to be optimized. The variational result for th
oscillator strengthu f u2 is disastrous: 0.047 nm21 versus
0.145 nm21 for the full solution.

It is important to note that no significant increase of a
curacy is expected, when Eq.~6! is extended to all one-
dimensional subbands. The reason for this is that the s
band energies become continuous if the energy exceedsEch ,
which is very small compared with the binding energy.
most cases of practical interest, there is only one hole bo
state, and it holds thatuw̃hu25uwhu2, which was found to be
the main reason for the failure of the variational method.

Nevertheless, since the solution of Eq.~4! requires exten-
sive computations, it is desirable to have a simple meth
that yields a reasonable estimate forEb . For example, if
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56 4113EXCITONS IN T-SHAPED QUANTUM WIRES
we andwh are also variational functions, then the accuracy
increased —evenM1 andM2 could be treated in this way—
while the complexity is not fundamentally changed; inste
of Eqs.~3! and ~6!, a set of three coupled Heisenberg equ
tions has to be solved self-consistently. Grundmann
Bimberg3 proposed an ansatz of the for
Cex(re ,rh)5Ce(re)Ch(rh) for the exciton wave function
Cex that depends on six space coordinates. The resulting
coupled Heisenberg equations show a fast convergence
the accuracy is significantly improved, compared to Eq.~5!.

To study the influence of the well thicknesses and
barrier heights, we have repeated the calculation for
samplesS1 and S2. For the electron confinement in samp
S2, we use the energy difference of the direct transitio
He5DEc(G6)5790 meV. This is certainly the better ap
proximation when phonon-assisted transitions are unimp
tant, but has a tendency to overestimate the binding ene
The results are summarized in Table I. For completeness
also incorporate the modelsM1 andM2.

As expected, the binding energy increases for sma
well thicknesses or larger aluminum contents. For the e
tron, the effect of the aluminum concentration on the co
finement energy is much stronger than the effect of the w
thickness. The exact opposite is the case for the hole,
cause the hole already ‘‘sees’’ infinite barriers forx50.30. It
is also found true for T-shaped quantum wires thatEb in-
creases asEc increases. However, the relative increase
Eb is smaller than the relative increase ofEc . This relation-
ship is also not universal, as becomes clear from the c
parison ofM1 andM2, which both have a wire confinemen
energy of 9.0 meV, but quite different binding energie
Therefore, a structure optimization based on single-part
confinement energy11,14 can only serve as guideline. A defi
nite answer can only be given by a solution of the tw
particle problem for a large variety of well thicknesses a
aluminum contents.23

TABLE I. Comparison of different samples~models!. All units
are in meV.

Sample~model! W M1 M2 S1 S2

Ee 56.2 56.2 56.2 63.4 93.5
Eh 7.5 8.0 0.0 11.2 13.9
Ece 9.0 9.0 9.0 10.7 19.2
Ech 0.5 0.0 0.0 0.9 1.1
Ec 9.5 9.0 9.0 11.6 20.3
Eb 13.2 12.0 9.8 14.3 16.4
Eb , exp. 17a 17 b 27 b

aFrom Ref. 5.
bFrom Ref. 7.
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In all cases, the theoretical result forEb was found to be
smaller than the experimental result. Therefore, we sho
discuss the influences of the approximations made in
theoretical model. It is known that nonparabolicity and d
electric mismatch lead to an increase of the binding ene
for small quantum-well thicknesses.24 On the other hand, it
was claimed that the wire binding energy is rather insensi
to the electron mass.15 To see the order of magnitude, w
repeated the calculations with the thickness-dependent e
tron masses given by Andreani and Pasquarello,24 namely,
me5 0.074, 0.076, and 0.084m0 for W, S1, and S2. The
resulting binding energies are 13.9, 15.3, and 17.9 m
There is indeed an increase in the binding energy, but
enhancement is less than for quantum wells. Taking into
count the dielectric mismatch, the measured values forW
andS1 can be explained by theory. Another effect has not
been taken into account, namely, that the exciton bind
energy is of the same order of magnitude as the energy o
optical phonon. Consequently, the effective static dielec
constant is in between the static value«s and the high-
frequency limit «` and leads to an increase ofEb . This
influence becomes larger as the binding energy increase

V. SUMMARY

We have performed an accurate numerical calculation
the ground-state exciton in a T-shaped quantum-well wire
the effective-mass approximation. We have found that
Coulomb-correlated hole is strongly localized, in contrast
the interaction-free case. This was identified as the main
son for the failure of the variational calculation. It was dem
onstrated that one-dimensional hole confinement is not n
essary for the formation of a one-dimensional exciton a
that a two-dimensional hole, bound to a one-dimensio
electron, is a good approximation for an exciton in a T struc-
ture. For the samplesW andS1, the calculated binding ener
gies are found to be slightly smaller than the experimen
results, but the difference can be explained by taking i
account the assumptions that have been made in our sim
fied model. ForS2 our results seem to be in contradiction
the experiment.
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13A. Löffler, D. Brinkmann, and G. Fishman, inSemiconductor
Heteroepitaxy. Growth, Characterization and Device Applic
tions, edited by B. Gil and R.-L. Aulombard~World Scientific,
Singapore, 1995!, p. 375.

14A.A. Kiselev and U. Ro¨ssler, Semicond. Sci. Technol.11, 203
~1996!.

15G.W. Bryant, P.S. Julienne, and Y.B. Band, Superlattices Mic
r,

-

-

struct.20, 601 ~1996!.
16Physics of Group IV Elements and III-V Compounds,edited by O.

Madelung, M. Schulz, and H. Weiss, Landoldt-Bo¨rnstein, New
Series, Group III, Vol. 17, Pt. a~Springer, Berlin, 1982!.

17 S. Adachi,GaAs and Related Materials~World Scientific, Sin-
gapore, 1994!.
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