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Effective-mass reproducibility of the nearest-neighborsp3s* models: Analytic results
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We derive the exact expressions for the effective masses of the conduction andall three hole bands atG in
the nearest-neighborsp3s* model, both with and without the spin-orbit interaction. From these expressions we
find that the nearest-neighborsp3s* model can usually fit the electron mass better than the light- and heavy-
hole masses and willnot be equally successful across a broad spectrum of materials.@S0163-1829~97!03432-2#
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It has been recognized for some time now that empir
tight-binding techniques are well-suited to modeling qua
tum heterostructures such as resonant tunneling dio
~RTD’s! and quantum wells~QW’s! since these methods ca
potentially reproduce important band-structure features b
ter than either effective-mass ork•p-type approaches can
The widespread recognition of this potential has unfor
nately led many workers to mistakenly believe that the m
use of a multiband tight-binding model guarantees accu
results. Specifically, the band structures of the constitu
materials in far too many applications of the tight-bindi
technique to heterostructures arenot well reproduced, sug-
gesting that there is little understanding of the band-struc
features important for heterostructure calculations. A care
examination of these issues reveals that aglobal fit of the
band structure is almost never desirable, for such a
necessarily results in broad compromises. In contr
good heterostructure calculations demand that certain en
gaps and effective masses be well modeled, even at
expense of the others, which are generally of little imp
tance. The proper application of the tight-binding techniq
thus requires that we first determinewhich multi band
tight-binding model will accurately reproduce the ban
structure features of interest, and second, parametrize
that way.

Neither of these issues has received much attention
the literature in spite of its importance. Most worke
mploy the nearest-neighborsp3s* model1 because it is
computationally convenient and can better fit t
onduction band than can itssp3 sibling, without having in-
vestigated its completeness. Thus, the capabilities nea
neighbor sp3s* model are not well-determined, and it
generally believed to be sufficient in all cases of intere
Compounding this problem is the fact that both man
and automated fits tend to ignore the effective masses: e
the very recent efforts at automatic parameter generat
such as those of Starrostet al.2 make no effort to reproduce
them.

A full understanding of the issues involved in choosi
the best tight-binding model for a given problem deman
that we investigate the band-structure features which
and are not well reproduced, and, more importantly,why
this is so: such a study is particularly relevant for t
560163-1829/97/56~7!/4102~6!/$10.00
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nearest-neighborsp3s* model due to its widespread us
In carrying out such a study we will generally fin
some features which are not well fit; this may occur f
ne of two reasons. First, it might be that we simply did n
find the very best parametrization since there are of
many adjustable parameters~13 in the conventional imple-
mentation of the no-spin-orbit nearest-neighborsp3s*
model1!. The second possibility is far more troublesom
namely, that there might be propertiesintrinsic to the model
which make it difficult to fit a given feature or to simulta
neously fit certain combinations of features. This is partic
larly true of the effective masses and the only way to se
this matter is to derive and study analytic expressions
them. Here we derive and study the effective-mass exp
sions for the nearest-neighborsp3s* model, both with and
without spin-orbit coupling. To our knowledge, neither ha
these formulas been previously published nor have their
plications been discussed. From these formulas we find
there are indeed properties intrinsic toboth models which
can adversely affect our ability to simultaneously fit all
the gaps and masses necessary for many heterostru
problems.

We consider the nearest-neighborsp3s* Hamiltonian
both with and without the spin-orbit interaction; as is cu
tomary, we set the following parameters to zero:Vs* a,s* c ,
Vsa,s* c , Vs* a,sc .1 The Hamiltonian operator is denotedH0
for the model without spin-orbit coupling, andH01HSO,
(HSO represents the spin-orbit interaction! for the model with
it. The resulting 10310 matrixH0 is reproduced in Ref. 1 so
we do not repeat it here. We employ Chadi’s3 approach and
notation when including the spin-orbit interaction. At theG
point, H0 is block diagonal, the subspaces being eith
one or two dimensional:$us* a&%, $us* c&%, $usa&,usc&%,
$uxa&,uxc&%, $uya&,uyc&%, $uza&,uzc&%. Note that the last
three subspaces are degenerate. When the spin-orbit int
tion is included, the 20320 Hamiltonian first separates int
10310 blocks, one in the basis$usm;↑&, us* m;↑&, uzm;↑&,
uxm;↓&, uym;↑&%, m5a,c, the other with the spins reverse
SinceHSO couples only thep-like orbitals on the same site
we may construct new basis states by diagonalizing it in
subspace$uzm;↑&, uxm;↓&, uym;↓&% to obtain new eigen-
states and energies~m5a or c!:4
4102 © 1997 The American Physical Society
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TABLE I. Energies and coefficients for the bands in terms of the generic notation of Eqs.~4!–~7!. The
‘‘ 1’’ solutions correspond to conduction bands, the ‘‘2’’ solutions to valence bands. The names ‘‘electron
and ‘‘hole’’ refer to both the ‘‘1’’ and ‘‘ 2’’ solutions of their respective 232 matrices. Thus, the lowes
conduction band is ‘‘e1, ’’ the light-hole valence band is ‘‘lh2, ’’ etc. The notation ‘‘both’’ refers to both
the spin-orbit and no-spin-orbit models while the exclusive designations ‘‘s-o’’ and ‘‘no s-o’’ refer to the
spin-orbit and no-spin-orbit models, respectively. The subscriptm refers to anions (a) or cations (c).

Quantity
in Eqs.~4!–~7!

Electrons
~both!

Holes
~no s-o!

Light
holes (s-o)

Heavy
holes (s-o)

Split off
holes (s-o)

Em Esm Epm Epm1lm Epm1lm Epm22lm

V Vs,s Vx,x Vx,x Vx,x Vx,x

E6 E6
(e) E6

(h) E6
(lh) E6

(lh) E6
(soh)

nm
1 sm

1 %m
1 %m

l ,1 %m
l ,1 %m

so,1

D D (e) D (h) D (lh) D (lh) D (soh)
o

-

ote

and
ht

f

r

,
find
uhm;2&5
1

&
@ uxm;↓&2 i uym;↓&], lm , ~1!

u lm;2&5
1

A6
@ uxm;↓&1 i uym;↓&22uzm;↑&], lm , ~2!

usom;2&5
1

)
@ uxm;↓&1 i uym;↓&1uzm;↑&], 22lm , ~3!

~Similar expressions result for$uzm;↓&, uxm;↑&, uym;↑&%,
labeled ‘‘1’’ instead of ‘‘2’’.! Writing H5H01HSO, with
the p orbitals replaced by Eqs.~1!–~3!, we see that each
10310 block again becomes block diagonal in one- and tw
dimensional subspaces. For the states above, these
$us* a;↑&%, $us* c;↑&%, $usa;↑&, usc;↑&%, $u la;2&, u lc;2&%,
$uha;2&, uhc;2&%, $usoa; 2&, usoc;&2&%. When dealing with
the spin-orbit model we shall from here on employ the~↑,2!
states since identical results are obtained for the~↓,1! states.

In all cases, the 232 blocks have a common form, ap
pearing in the subspace$una&,unc&%, wheren is the orbital
type, as

H25FEa

V
V
Ec

G , VPR, ~4!

with eigenvalues,
-
are

E6[Ē6D, Ē[
Ea1Ec

2
, ED[

Ea2Ec

2
,

D[AED
2 1V2 ~5!

and corresponding eigenvectors~1 and 2 refer to conduc-
tion and valence band, respectively!,

un6&5na
6una&1nc

6unc&, ~6!

na
65

D1ED

&AD21DED

5nc
2 , nc

15
V

&AD21DED

52na
2 .

~7!

In Table I we list the parameters relevant to each 232 block
and the notation for the eigenvalues and eigenvectors. N
that in the absence of the spin-orbit interaction allp-like
bands have identical eigenvalues, Eq.~5!, and coefficients,
Eq. ~7!, whereas in the spin-orbit case the eigenvalues
coefficients of the split-off band differ from those of the lig
and heavy bands, which are identical.

Having obtained the eigenvalues and eigenvectors oH
for both cases we now calculate the curvatures~inverse ef-
fective masses! at G. Different procedures are required fo
degenerate and nondegenerate bands.5 Calculating the in-
verse masses (m0 /mzz* ), wherem0 is the free-electron mass
and expressing the results in the notation of Table I, we
for the model without spin orbit
m0

me*
5

2m0

\2 S a

4D 2H 2sa
1sc

1Vs,s1
@sa

1%a
1Vsa,pc2sc

1%c
1Vpa,sc#

2

E1
~e!2E2

~h! 1
@sa

1%c
1Vsa,pc1sc

1%a
1Vpa,sc#

2

E1
~e!2E1

~h! J , ~8!

m0

meh*
5

2m0

\2 S a

4D 2H %a
1%c

1Vx,x1
@sa

1%c
1Vpa,sc1sc

1%a
1Vsa,pc#

2

E2
~h!2E2

~e! 1
@sa

1%a
1Vsa,pc2sc

1%c
1Vpa,sc#

2

E2
~h!2E1

~e!

1
~%a

1Vs* a,pc!
2

E2
~h!2Es* a

1
~%c

1Vpa,s* c!
2

E2
~h!2Es* c

J , ~9!

m0

mhh*
5

2m0

\2 S a

4D 2H %a
1%c

1Vx,x1
Vx,y

2

E2
~h!2E1

~h!J , ~10!
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wherea is the conventional unit-cell cube edge and the subscriptse, lh, and hh refer to the electron, the light hole, and hea
hole, respectively. Note that the hole masses will be negative and that in the no spin-orbit model the heavy hole is
degenerate. For the spin-orbit model, the inverse masses are

m0

me*
5

2m0

\2 S a

4D 2H 2sa
1sc

1Vs,s1S 2

3D @sa
1%a

l ,1Vsa,pc2sc
1%c

l ,1Vpa,sc#
2

E1
~e!2E2

~ lh! 1S 1

3D @sa
1%a

so,1Vsa,pc2sc
1%c

so,1Vpa,sc#
2

E1
~e!2E2

~soh!

1S 2

3D @sa
1%c

l ,1Vsa,pc1sc
1%a

l ,1Vpa,sc#
2

E1
~e!2E1

~ lh! 1S 1

3D @sa
1%c

so,1Vsa,pc1sc
1%a

so,1Vpa,sc#
2

E1
~e!2E1

~soh! J , ~11!

m0

mlh*
5

2m0

\2 S a

4D 2H %a
l ,1%c

l ,1Vx,x1S 2

3D @sa
1%c

l ,1Vpa,sc1sc
1%a

l ,1Vsa,pc#
2

E2
~lh!2E2

~e! 1S 2

3D @sa
1%a

l ,1Vsa,pc2sc
1%c

l ,1Vpa,sc#
2

E2
~lh!2E1

~e!

1S 2

3D ~%a
l ,1Vs* a,pc!

2

E2
~lh!22Es* a

1S 2

3D ~%c
l ,1Vpa,s* c!

2

E2
~ lh!2Es* c

1S 1

3D Vx,y
2

E2
~ lh!2E1

~ lh!J , ~12!

m0

mhh*
5

2m0

\2 S a

4D 2H %a
l ,1%c

l ,1Vx,x1S 1

3D Vx,y
2

E2
~ lh!2E1

~ lh! 1S 2

3DVx,y
2

@%a
so,1%a

l ,11%c
so,1%c

l ,1#2

E2
~ lh!2E1

~soh!

1S 2

3DVx,y
2

@%a
so,1%c

l ,12%c
so,1%a

l ,1#2

E2
~ lh!2E2

~soh! J , ~13!

m0

msoh*
5

2m0

\2 S a

4D 2H %a
so,1%c

so,1Vx,x1S 1

3D @sa
1%a

so,1Vsa,pc2sc
1%c

so,1Vpa,sc#
2

E2
~soh!2E1

~e! 1S 1

3D @sa
1%c

so,1Vpa,sc1sc
1%a

so,1Vsa,pc#
2

E2
~soh!2E2

~e!

1S 2

3DVx,y
2

@%a
so,1%c

l ,12%c
so,1%a

l ,1#2

E2
~soh!2E2

~ lh! 1S 2

3DVx,y
2

@%a
so,1%a

l ,11%c
so,1%c

l ,1#2

E2
~soh!2E1

~ lh! 1S 1

3D ~%a
so,1Vs* a,pc!

2

E2
~soh!2Es* a

1S 1

3D ~%c
so,1Vpa,s* c!

2

E2
~soh!2Es* c

J , ~14!
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where in Eqs.~11!–~14! soh refers to the split-off hole.~The
expressions for degenerate and nondegenerate bands
the same form due to our choice of basis, in which the
generate perturbation matrices are already diagonal.! While
these formulas will be useful to those fitting parameters
the two nearest-neighborsp3s* models, the insight they pro
vide into the capabilities and limitations of the models is
even greater importance. In particular, they explain cer
trends which should be apparent to anyone fitting parame
for a wide range of materials.

Neither model seems to have an advantage at reprodu
the electron mass, as is evident from the similarity of E
~8! and ~11!. In the limit of small spin-orbit interaction, the
second and third terms of Eq.~11! are together approxi
mately equal to the second term of Eq.~8!; this is also true of
the fourth and fifth terms of Eq.~11! compared to the third
term of Eq.~8!. Not surprisingly, the second term of Eq.~8!,
the conduction-band–light-hole coupling, is usually the m
jor contributor to the curvature: observe that sinceVs,s,0
andVxx.0, it follows that all of the%m

1 ~or %m
n,1! are posi-

tive, as issa
1 , but thatsc

1 is negative. This implies that th
numerator of the second term of Eq.~8! is usually signifi-
cantly larger than that of the third term~we assumeVsa,pc ,
Vpa,sc.0 as usual!. Taken together with the observation th
the gap in the denominator of the second term of Eq.~8!, the
ave
-

r

f
in
rs

ng
.

-

familiar band gap, is typically not too large and positiv
while that of the third term is generally larger and negativ
we see that the second term ordinarily produces a large p
tive contribution whereas the third provides a small, negat
one.@Similar reasoning applies to the second and third ter
of Eq. ~11! as compared to the fourth and fifth.# Because the
conduction-band–light-hole coupling also appears in
light-hole mass expression, it will tend to limit our ability t
independently fit the electron and light-hole masses al
with the gap. Finally, note that due to the incompleteness
the basis the first term of each expression~the d2H/dk2

term! differs from what one would expect based on the st
dardk•p formula for the inverse mass.5 This term~for both
expressions! is always negative and, sinceVs,s is usually one
of the largest-magnitude parameters, it can provide a sig
cant negative contribution, increasing the electron mass.

The situation with respect to the light-hole masses in
two models, Eqs.~9! and~12!, is another matter entirely, an
here the spin-orbit model has a distinct advantage: its lig
hole mass is usually larger~and sometimes much larger! than
that of the no-spin-orbit model. To see why this is so,
compare Eqs.~9! and ~12!. As with the electron mass, th
largest contribution ~here negative! is the light-hole–
conduction-band coupling. Negative contributions come
well from the light-hole-s* couplings~these exciteds-like
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orbitals are high-lying!; since%c
1.%a

1 in most cases thes* c
term is often the second most significant of all. The posit
contributions to the light-hole mass~first and second terms o
each expression!, unlike the negative contributions to th
electron mass, do not generally reduce the curvature m
For the first (d2H/dk2) term this is becauseVxx is usually
one of the smaller parameters. For the second~light-hole to
lowest valence-band coupling!, this follows from the preced-
ing discussion of the signs of the coefficientss and% and the
generally large, positive, gap in the denominator. The k
difference between the two models leading to a lower cur
ture in the spin-orbit case is that the second through fi
terms of Eq. ~12! contribute at only two-thirds strengt
whereas they contribute fully in the no-spin-orbit mod
While it is true that the last term of Eq.~12!, the coupling to
the ‘‘heavy’’ conduction band, is negative, and thatVx,y can
be sizeable, it is also the case that its denominator it typic
significant. Moreover, it contributes at only one-thi
strength and most often doesnot compensate for the reduc
tion in magnitude of the light-hole–conduction-band a
light-hole-s* c terms. Hence the heaver light-hole in the sp
orbit case.

The above analysis leads us to a startling conclusion:
model without spin-orbit coupling typically fails to repro
duce accurately both the electron and light-hole effect
masses. To see this, note that in both Eqs.~8! and ~9! the
electron-light-hole coupling typically accounts for most
the curvature. The difference in the two expressions
largely due to~i! the d2H/dk2 term, which significantly re-
duces the curvature of Eq.~8! but not of Eq.~9!; and~ii ! the
light-hole-s* couplings, which tend to increase the curvatu
of Eq. ~9! but have no positive counterparts in Eq.~8!. Thus,
without the spin-orbit interaction, the light-hole-band curv
ture is typicallygreaterthan that of the conduction band an
ume* u.umlh* u, in contradistinction to what holds experime
tally for most zinc-blende lattice materials.6

Including the spin-orbit interaction often ameliorates th
situation, but it is not sufficient to guarantee thatume* u
,umlh* u: most intriguingly, reproducing this feature tends
be materials dependent. Observe that the electron coup
to both the light and split-off holes in Eq.~11! vary inversely
with the gap atG ~with respect to the latter term we assum
small spin-orbit coupling!, whereas only the electron-light
hole term in Eq.~12! does. When the gap becomes suf
ciently large, the remaining negative terms of Eq.~12! can
together become comparable in magnitude to the elect
split-off-hole term of Eq.~11!; since the positive terms in th
light-hole expression are generally smaller in size than
negative terms of the electron expression, it follows t
here, too, we may findume* u.umlh* u. In practice, we have
found this is the case for materials such as AlAs and Al
and without examining the expressions for the inve
masses it is quite unexpected. Rather surprisingly, then
see that even when the spin-orbit coupling is included it w
be difficult to reproduceume* u,umlh* u for materials with
large gaps atG.

We may also encounter difficulties with the heavy-ho
masses, Eqs.~10! and ~13!. In the limit of small spin-orbit
interaction, the second and third terms of Eq.~13! together
approximately equal the second term of Eq.~10!. On first
e

h.

y
-

h

.

ly

-

e

e

is

-

gs

n-

e
t

,
e
e

l

inspection it appears that the last term of Eq.~13!, the cou-
pling of the heavy- and split-off- hole bands, might be s
nificant since its denominator is the often small spin-or
splitting. The numerator, however, is even smaller, as we
see from some simple analysis. Substituting the values f
Table I into this term we find

@%a
so,1%c

l ,12%c
so,1%a

l ,1#2

E2
~ lh!2E2

~soh!

5Vx,x
2

@D~soh!2D~ lh!1 3
2 ~lc2la!#2

D~soh!2D~ lh!1 3
2 ~lc1la!

. ~15!

Now, uniformly turning off the spin-orbit interaction by se
ting lc5ala and taking the limitla→0, we have

@%a
so,1%c

l ,12%c
so,1%a

l ,1#2

E2
~ lh!2E2

~soh! '
3

2 FVx,x
2 ~a21!2~11EP!2

~12EP!1a~11EP!
Gla ,

EP[
Epa2Epc

A~Epa2Epc!
214Vx,x

2
. ~16!

Thus, the last term of Eq.~13! is often quite small. What is
perhaps most remarkable about the heavy-hole mass in e
model is the relativelack of freedom we have in fitting it.
Notice that in both Eqs.~10! and ~13! the only nearest-
neighbor parameters which affect the mass areVxx ~both
directly and through the%! andVx,y . In contrast, the electron
mass depends onVx,x , Vs,s , Vsa,pc , andVpa,sc , while the
light-hole mass is a function of these plusVs* a,pc , and
Vpa,s* c , and, in the model with spin orbit,Vx,y as well.
While it is true that the freedom afforded by thes* orbitals
can be used to fit features at other points in the Brillou
zone, thus allowing us more leeway with the remaining
bitals, the above analysis makes it clear that we typica
have little control over the heavy-hole mass in either mod
These limitations, together with those associated with
light-hole mass, mean that we may encounter difficult
when using either model in valence- or inter-band hete
structure calculations.

The effective-mass formulas derived above and the c
clusions drawn from them can aid us in heterostructure m
eling; the most obvious use is of the formulas themselve
fitting the relevant effective masses. Our results on the h
masses reinforce the necessity of using the spin-orbit mo
for valence- or inter-band heterostructures. Interesting
they have implications for conduction-band devices, too,
equal reproducibility of the electron mass notwithstandin
The light-hole mass especially cannot be altogether igno
since if it is incorrect, so too is the dispersion of the ima
nary band linking the light hole and conduction bands atG.
This imaginary band is important in determining the barr
attenuation of a RTD or QW, which in turn affects the res
nances or energy levels; properly reproducing it requi
good fits to the energy gap, electron-, and light-hole mas
Our remarks about the relative abilities of the spin-orbit a
no-spin-orbit models to fit the both light-hole and electr
masses suggest that we further investigate this subject.

As an example, let us consider AlAs, a common barr
material. In Table II we present the energy gap, light-ho



bo
r
II
e
s
th
as
o
ar

t i
ric
ur
.
p

rb

s
rm
v
ta

-

st
-

bit

il-

es.

ial

bor

the
erse

e
he
it

is
t
As
nu-
As

4106 56BOYKIN, KLIMECK, BOWEN, AND LAKE
and electron masses reproduced by parametrizations of
the spin-orbit and no-spin-orbitsp3s* nearest-neighbo
models, the parameters of which may be found in Table
The complex bands of Fig. 1 were calculated using the g
eralized eigenproblem method7 and the experimental value
are from Ref. 8. As expected from the discussion about
masses for large-gap materials, we see that in both c
ume* u.umlh* u, the mismatch being much greater for the n
spin-orbit case. This mismatch in turn affects the imagin
band; the attenuation in the spin-orbit case is greater.

To see what effect this might have on a device we plo
Fig. 2 the transmission coefficient of a symmet
conduction-band GaAs/AlAs double-barrier heterostruct
~16-ML barriers, 22-ML well! under flatband conditions
~The transmission resonances are helpful in evaluating o
cal devices such as multiple-quantum-well structures.! In or-
der to isolate barrier attenuation effects we use the spin-o
nearest-neighborsp3s* model1 for GaAs along with either
the spin-orbit or no-spin-orbit nearest-neighborsp3s*
model1 for AlAs and we restrict our attention to the first QW
resonance. Although the calculations differ only in the AlA
model employed there is a significant disagreement in te
of background transmission and resonance width, and e
some difference in resonance position. Thus, even for cer
conduction-band heterostructures~particularly those incorpo-
rating materials with large gaps atG!, we see that the spin
orbit model is probably the better choice.

Finally, we discuss an important limitation of the neare
neighbor model used at theX points which makes it unde
sirable for AlAs transport~but not optical! device calcula-
tions; this limitation is most severe for the no-spin-or
model. It has been previously remarked9 that the bands are

TABLE II. Energy gap at G and effective masses of th
conduction- and light-hole bands of AlAs reproduced by t
nearest-neighborsp3s* model both with and without the spin-orb
interaction. Experimental values are from Ref. 8.

Quantity spin orbit No spin orbit Experiment

me
*

m0

0.182 0.141 0.15

mlh
*

m0

20.135 20.0786 20.15

Eg ~eV! 3.025 3.026 3.02
th

I.
n-

e
es

-
y

n

e

ti-

it

s
en
in
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flat in the transverse direction at theX points based on a
symbolic evaluation of the determinant of@H(k)2E#. Here
we give another demonstration: first, we evaluate the Ham
tonian matrix of Ref. 1 atkX5(kx,0,2p/a), that is, a vector
ending on one of the diamond-shaped Brillouin-zone fac
Then, we make the following change of basis:

uy8a&52 icxuya&1sxuza&, uz8a&5sxuya&2 icxuza&,
~17!

uy8c&5 icxuyc&1sxuzc&, uz8c&5sxuyc&1 icxuzc&,
~18!

wherecx5cos(kxa/4), sx5sin(kxa/4). The Hamiltonian ma-
trix in the new basis is now independent ofkx and so, there-
fore, are its eigenvalues, since they come from a polynom
equation independent ofkx . Hence, when theX-valley mini-
mum occurs at the Brillouin-zone face the nearest-neigh
model ~without spin orbit! will give an infinite transverse
mass. The position of theX-valley minimum along@001# is,
however, parameter dependent and so can occur before
zone boundary. Even in these cases, though, the transv

FIG. 1. Part of the complex band structure of AlAs (T
5300 K) as reproduced by the nearest-neighborsp3s* model with
~solid line! and without~dashed line! the spin-orbit interaction. The
real bands~conduction- and light-hole-valence-bands! are plotted in
the kz.0 part of the graph and the imaginary band linking them
plotted in thekz,0 part of the graph. The solid horizontal line a
around 1.4 eV indicates the approximate position of the Ga
conduction-band minimum; using it one may determine the atte
ation seen by an electron tunneling through AlAs from the Ga
minimum.
8 00
0 00
8 00

0 00
0 00
0 00
TABLE III. Parameters for GaAs and AlAs in the nearest-neighborsp3s* model; values are in eV.

Material Esa Esc Epa Epc Es* a Es* c la lc

AlAs 28.381 160 21.744 670 0.229 440 2.832 840 6.730 574 5.972 840 0.140 00 0.00
AlAsa 28.266 310 21.782 020 0.344 290 2.947 690 6.845 424 6.087 690 0.000 00 0.00
GaAs 28.510 704 22.774 754 0.954 046 3.434 046 8.454 046 6.584 046 0.140 00 0.05

Material Vs,s Vsa,pc Vpa,sc Vs* a,pc Vpa,s* c Vx,x Vx,y

AlAs 26.664 20 5.600 00 6.800 00 4.220 00 7.300 00 1.878 00 3.86
AlAsa 26.664 20 5.600 00 7.600 00 4.220 00 8.300 00 1.878 00 3.86
GaAs 26.451 30 4.680 00 7.700 00 4.850 00 7.010 00 1.954 60 4.77

aThe no-spin-orbit AlAs model.
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56 4107EFFECTIVE-MASS REPRODUCIBILITY OF THE . . .
mass tends to be about an order of magnitude~or more! too
large. ~It is difficult to say much about the details of th
parameter dependence since the subspace in question
dimensional in thesp3s* model and even four dimensiona
in the sp3 model.! In the model with spin-orbit interaction
the k-independent coupling of thep-like orbitals likewise
inhibits a detailed discussion of its properties at the zo
faces. Nevertheless, we have found that this model,
tends to do a poor job of reproducing theX-valley transverse
mass.

In conclusion, we have discussed the band-structure
tures of importance for transport and electronic structure
culations. Keeping these considerations in mind, we h
examined several properties of the widely employed near
neighborsp3s* model relevant to its use in describing sem

FIG. 2. Transmission-versus-energy graph under flatband~zero-
bias, zero-charge! conditions for the GaAs/AlAs RTD discussed
the text. Both curves employ the spin-orbit model for GaAs. T
solid curve uses the spin-orbit model for AlAs; the dashed cu
uses the no-spin-orbit model for AlAs.
em
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conductor heterostructures. We have derived and prese
exact expressions for the~inverse! effective masses of the
conduction, light-hole, heavy-hole, and, in the spin-or
model, split-off-hole bands atG. From these expressions w
have drawn several interesting conclusions about the rela
abilities of the spin-orbit and no-spin-orbit versions to
these masses. We find that the no-spin-orbit model tend
reproduceume* u.umlh* u, and that problems in fitting the light
hole mass tend to be worse with larger-gap materials.
have furthermore seen how this undesirable result can a
the attenuation of the barriers of a RTD or multipl
quantum-well structure, and thus transmission behavior
energies. We also find that there is relatively little freedo
available for fitting the heavy-hole mass; again, this tende
does not seem to have been previously noticed. From th
results, we can see that for some materialsneither nearest-
neighborsp3s* model is really appropriate and more com
plete models are likely required. The inverse mass formu
we have derived are immediately useful to those fitting
parameters of the twosp3s* nearest-neighbor models eithe
manually or by computer program. More importantly, the
formulas can serve as guides to selecting which, if any
these models is the more appropriate for a given purpos

Note added.The paper of Loehr and Talwar10 recently
appeared in which are given the expressions for only
electron and heavy-hole masses in the no spin-orbit, sec
nearest-neighborsp3 model. The expressions forall hole
bands as well as the conduction-band in even the spin-o
second-nearest-neighborsp3s* are readily obtainable using
the methods employed here, contrary to the conjecture
Loehr and Talwar. We have already derived these formu
and will present them in a future study.

T.B.B. gratefully acknowledges the support of Texas
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