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Determination of second-order nonlinear coefficients in semiconductors
using pseudospin equations for three-level systems

D. C. Hutchings and J. M. Arnold
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
(Received 19 March 1997

A pseudospin formalism is developed for analyzing the dynamics of a three-level system analogous to the
Maxwell-Bloch equations in the two-level case. These are used in the nonresonant regime to obtain the
complete and general form of the second-order optical susceptibility. All the nonzero second-order tensor
elements for second-harmonic generation are calculated for bulk GaAs and asymmetric Ga&s/Ms
guantum wells. It is demonstrated that a partial cancellation of terms occurs which limits the values obtained
in the asymmetric quantum wells. It is also demonstrated by example that the band structure can also strongly
influence the values obtained. While small values are obtained for the examples given here, it is reasoned that
large second-order susceptibilities should be obtainable with short-period asymmetric superlattices.
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. INTRODUCTION 10 pmV 1.26-28 Al of these theoretical papers apparently
base their determination of the second-order coefficient on a
There is intense current interest in semiconductordensity matrix formalism using aB-r dipole perturbation.
waveguides for second-order nonlinear optical applicationsThe calculation is usually truncated so that only the most
These include second-harmonic generation, difference fré’esonant terit) are retained. A commonly quoted form for
quency generation, parametric generation and amplificatioih® second-order susceptibility has the dlﬁerelr;c% g’e,eztxvee”
optical rectification, the electro-optic effettand all-optical WO terms containing dipole matrix elementg,. =~
switching and solitons using the cascade proéesst only This form cannot be Jl_Js_t|_f|ed, as a rigorous derivation _of the
do semiconductors have larger second-order coefficients th cond-order susceptibility using &nr dipole perturbation

commonly used second-order nonlinear crysit@aAs has a f_or example, using the density mafriprovides an expres-
2) sion where all term$whether resonant or nonresonanave

_ . age l - .
Second or(fjer susce%t|b|l| xyz O]; ak:qunc_i 300 prr1‘n\7| n tTe q the same sigh’ Furthermore, in semiconductors electrons
near ir(Ref. 4], but the mature fabrication technology lends 5o i general, delocalized and momentum is a better quan-

itself to device integration, particularly with semiconductor ¢,y number than position. Therefore interband optical ma-
diode lasers. However, the principal deficit is that cubiCyiy elements are usually formulated in terms of momentum
semiconductors lack birefringence and hence phase matchingatrix elements. This is often accounted for with the substi-
is not trivial. tution er ,.— —iep,./(Mow). Clearly this substitution is not
There are currently three principal techniques under incorrect since the matrix elements contain no information
vestigation to solve this phase-matching problem. First, bireabout the optical field and a Hermitian operator is replaced
fringence can be introduced structural®.g., waveguide>® by a non-Hermitian one. The correct form of substitution in
However, the degree of birefringence possible in this case ithis case i®r,.— —iep,./(Myw,¢).
limited and it is likely to be difficult to compensate for dis-  Since momentum matrix elements are required for semi-
persion in the near-resonant frequency regime where largeonductors, the approach we take here is to usé gndi-
nonlinear coefficients are obtainable. Second, quasi-phaseele perturbation from the initial stages. Both forms of per-
matching by domain reversal is possible using patterned sulturbation are equivalent although in principle a summation
strate growth® (an extension of the stack of plates over all terms and energy levels is required to duplicate re-
techniqué®®. This method shows promise although scatter-sults from both approaches. A density-matrix approach to the
ing problems at domain interfaces still have to be fully re-derivation of nonlinear susceptibilities with & p pertur-
solved. Third, second-order nonlinearities can be induced biation is developed in Refs. 29 and 30. However, in the final
introducing an asymmetry into the structdfé? In this case expression for the susceptibility the relative signs of the vari-
a promising quasi-phase-matching technique is to periodieus terms are not immediately obvious. One further defi-
cally destroy this asymmetry by quantum well ciency of the standard density-matrix expression for the non-
disordering3* linear susceptibility is that it is derived for one occupied and
There have been a number of theory papers discussing th@o vacant levelgalthough in principle the density-matrix
magnitude of second-order nonlinear coefficients for secondapproach could be reapplied with arbitrary population lev-
harmonic  generation in asymmetric semiconductorels). For the near-ir operation, the contributing intersubband
heterostructure® 2t is interesting to note that predictions transition can occur between two valence subbdidsally
as large as several hundred pifvhave been predicted for occupied in addition to between two electron subbarfiths-
the second-order susceptibility in the near ir and yet corretially vacan). A complete analysis would allow both possi-
sponding experimental measurements are of the order dfilities to be addressed.
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In this paper, pseudospin dynamical equations are derived

to describe the dynamics of a three-level systequivalent € €

to the Maxwell-Bloch equations for a two-level system e Re['A‘(t)'p"°“3])‘3+m_o IMLACD)- Pap] s

These can be applied to a number of resonant nonlinear op-

tical processes, for example, excited-state absorption, two-

photon absorption, and electromagnetically induced transpar-

ency. Here the nonresonant regime will be taken and

expressions are derived for the second-order susceptibilitgherep,,=(b|—i%V|a) ande,, €,, ande. and the ener-

for both single and double occupancy of the levels in quesgjes of the levels in the absence of the time-dependent cou-

tion. These are used to determine the second-order suscepfing. Strictly speaking, the Hamiltonian in E¢8) should

bility for two example asymmetric quantum well structures. ajso contain a term proportional to the square of the vector

The consequences of the magnitude of these coefficients agpyential €A)2/(2m,), but this is proportional to the iden-

discussed with an indication given on how useful coefficientsjty matrix I, commutes with all the generator matrices, and

can be obtained. therefore does not contribute to the dynamical equations.

Solving Eg. (2) provides the equations of motion for the

[l. PSEUDOSPIN FORMALISM three-level system where we have substituted the real quan-
FOR THREE-LEVEL SYSTEM tities s;=(\,),

e e
+ m_O Im[A(t)'pbc])\5+m_o Im[A(t)'pac])\Gv (3)

The dynamical evolution of amN-level system can be
expressed in terms of itd X N density matrix. Rather than i . . . e
consider each element of the density matrix individually, in- g (S1+1S4)=1Qap(S1+184) —2i mofi A-PabS7
stead the density matrix and Hamiltonian will be expressed
in terms of theN?— 1 matrices)\; which have SUK) sym- ) N .
metry. In particular, for a three-level system, we will use as +I mohi A Ppc(S3tise)
a basis the set of 98) generators in Table¥*3The com-

mutator relations between these matrices will be required,; . € .
—I _ﬁ A-Pac(S2—iSs),

Mo
[xi,x,—]:xix,——xjxsz 2if ik (1)
d e
where the nonzero structure factdrg, are permutations of gt (Sp+iss)=iQp(Sytisg) —i o A-phy(sstisg)
those listed in Table I1. 0
The time evolution of the expectation value of an operator e
is given by +i mof A Pyc(S7—V3Sg)
d<)\i> I e
gt g (DHD @ Hi - Apa(si-isy),

mefi
The time-dependent Hamiltonian includAst) - p coupling
between all three levels, e
— (S3+iSg) =10 ,(S3tiSg) —i — A-pap(Sytis
TABLE II. The value of the structure constafyf, in the com- dt (Ss 2 ac(Ss 2 Moft Pa(S2 2
mutator relations given by Ed1) between the S(B) pseudospin
matrices in Table I.

. e -
+i m_oﬁ A-Ppc(S1tiss)

ijk 147 135 126 432 465 736 752 368 258

W 1 -3 -3 b -1 4 4 % % LI

! I A Pac(S7+V3sg),
Mot
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C The system of differential equatiortd) can be regarded
as the evolution of a real eight-dimensional pseudospin vec-
c tor S=(s,S,,53,54,55,55,57,58) »

A ds

at MS. (5)

A similar system has been employed to study the dynamics
' b of a three-level atomic system with the following
modifications® (1) E-r dipole coupling is used?) coupling
between the levela andc is absent, and3) near-resonant
excitation is studied so the rotating-wave approximation is
implemented and phenomenological damping terms are in-
(a) (b) cluded. Here the purpose is to study the nonresonant excita-
tion so Eq.(4) is left in its time-dependent forrso resonant
FIG. 1. Virtual transition schemes contributing to second-orderand antiresonant terms will both be pregeand it is not
optical nonlinearities(a) initially has one filled state and two empty necessary to explicitly include damping. However, if re-
(e.g., multiple conduction statesind (b) initially has two filled  quired, dephasing can be included in E4). with the substi-
states(e.g., multiple valence statesNote the time ordering irib) tution Qj;— Q;+ivy.
leads to an exchange of electrons. The optical coupling will be taken to be the combination
of two monochromatic waves at frequencies and w,,

d e ) e
rri _Zm_oh IM[A- Pap(S1—isa) ]+ mofi IM[A- Py

A(t)=— f;cE(t’)dt’

. e .
X(52_|55)]_m0h Im[A'pac(SS_lsﬁ)]v i ot * alogt
= [E1e7|w1 _Elelwl]

3w
‘ ~ IMLA-ppe(sp—i5s)] i
e 88:__ m 'pb SZ_|S5 | e i
dt Mot ¢ ~%a; [Epe~@2t—EXel @], (6)
€ .
"ok IM[A-pac(S3—ise)]. (4)  Eventually contributions at the sum frequenoy+ w, will

be examined. Inserting in Eq4) and transforming to the
The energy differences have been written asfrequency domairimaking use of the Fourier shift theorgm
Q) = €p— €,,€tC. provides

Eis7/(w—w1) —Els;(0+ wy) N Exs7(w—w;y) —E>s7(0+ wp)

. mpf
I (0+Qap) S (w)=

*Pab

w1 w2

*
bc

E1Ss(w—w1) —EI Ss(w+ wy) N E2Ss(w—wp) —E; Ss(w+ w,)
B 2(1)1 2(1)2

EiS(—wtw)—EISi(—w—w;) ES(—wtw)-ES(-0—w))
+ 2(1)1 + 2(1)2 -paC' (7)
_ Moh EiSs(w—w1) —EiSs(w+w;) ESs(w—wy) —E;Sj(wtwy)| |
=5 (04 Qp)Sylw) = Zor + Dy “Pab
Eis (0—wq1)—Ejs (0+wy) Eys (w—wy)—E5s (o+w,)
- 2(1)1 + 2w2 'pr
E:Si(—o+tw)—E[SI(—w—w;) ES/(—wtw)—E;S/(—o— v,
- + *Pac> (8)
2(1)1 2(1)2
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E1Sy(w— ;1) —EI S)(w+ w;) N ExSy(w—wp) —E3Sy(w+ w))
2w, 2w,

*Pab

. myh
| T (0+Q40)S3(w)=

B { E1Si(w—w;)—EISj(0+w;) N ExSi(w—wp) —E3Si(0+ w))

2w, 2w, “Poc
Ei;si(0—w1)—Efs;(0t+w) Esi(0—wy)—E;s,(0+w,)
2(1)1 * 2&)2 'paC, (9)

where we defineS;=s;+is,, S,=s,+is5, S;=S3+isg, S_=5S;,—v3sg, and s, =s;+v3sg. Equations fors;(w) and
sg(w) can also be derived by Fourier transforms({t) andsg(t) in Eq. (4) but the details of these are not necessary for
nonresonant second-order nonlinearities.

From the pseudospin vector solution we can obtain the expectation value of the momentum,

1
(p(@))= 5 [Su(@)pzpt S (—@)Papt So(@)Phet S5 (— @) Poct Sy(@)P3et S5 (— ©)Pac)- (10)

Subsequently we can obtain the current and hence the polarization,

P(w)=—i m—OwZ (p(w)+eA(w)), (11)

where the summation will be performed over combinations of three léeads, for a solid this would involve the density of
states.

The method of solution is a perturbative expansion as follows. First we obtain the pseudospin vector in the absence of
optical coupling. For the coherence tersis-sg, dephasing ensures that these tend to zero in the absence of the field. The
population terms depend only on the initial occupation levgl§) =N,—N, andsg(t) =(2N.— Np—N_)/v3. These initial
values are substituted in Eq3)—(9) to obtain the pseudospin vector to first order in the field amplitude. Then these first-order
values are substituted again in EG8~(9) to obtain the pseudospin vector to second order in the field amplitude. This process
could be repeated to the required order. The second-order optical susceptibility is obtained by substitution of the second-order
pseudospin vector into Eq11).

A. One occupied state

If statea is initially filled (N,=1) and stateb andc are empty N,=N.=0) then the only non-zero expectation values
of the pseudospin vector to order zero & (t)=-1 and s{)(t)=—1#3. Hence s’(w)=—8(w) and s (w)
=—5(w)/V3. Inserting these in Eq$7)—(9) gives to the first order in the pseudospin vector

Ei8(w—wq)—E} 80+ wq) N E;8(w—wy) —E3 8w+ wy)

(05} w2

- mph
| <w+9ab>s<1“<w>:—{

Pab

Mgt

i — (w+Qac)§31>(w)=_{Elé(w—wl)—Ej‘ S+ wy) . E»rd(w— w,) — EX S(w+ w,)

(OF} w2

*Pac» (12)

and SV =st=s{M=0.
Inserting Eq.(12) into Eq.(11) gives the usual form for the contribution at frequeney from the pair of statesab) to
the first-order polarizatiof?

El' pabp;b El' p;bpab
Qapt o Qap— o,

o2
P(l)(w)|w1: ngﬁwi E [ Slw—wy). (13

The pseudospin vector to second-order is obtained by resubstitutif@ZEinto Eqs.(7)—(9). For simplicity we only retain
terms which contribute at frequencieq w;+ w,),

(El' p;c)(EZ' pac) (El' pac)(Ez' pgc)
+
Q,cto—wq Queto—ow,

S(w—wi— wy)

2
S 0)| - 0y =~ :
1At T 2mih? w102(Qapt o)

(EE’I.C : p;c)(Eg : pac) (EI : pac)(Eér : pgc)
Qac+ w+ w1 Qac+ w+ wo

Nw+wi+wy)f, (14
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2)( )| @ 1 (El'pac)(Ez‘p;b)+(E1'p;b)(E2'pac)_(El'p;b)(EZ'pac)
Sz (w Hlogtay) ™ 2m3h2 W105(Qpet o) Qp— o0+ o, Qp— o0+ o, Qe+ o—wq
_(El'pac)(EZ'p;b) 5( _ _ )+ (EI'pac)(Eg'p;b)+(EI'p;b)(Eg'pac)_(Ei'p;b)(Ez'pac)
Q,cto—ws @m0 @2 Qp—w—w; Qp—0—w, Q,ctoto
(ET -Pac)(E3 - Pap)
— O, toto, o+ wi+w,y)r, (15

(E1-Ppe)(Ez* Pab) N (E1-Pan)(E2- Ppe)

S(w—wi— wy)

2 )] € 1
S @) 0y 0y = 2mah? w1wo(Qaet @)

Qab-i-w—wl Qab-l-w—wz
(ET -Poo)(E3 -Pan)  (ET - Pab)(E3 - Poe)
+[ Q biw+wla + Q :+w+w2 - S(wtwitwy);. (16)
a a

Inserting the second-order pseudospin vector into @d) gives the second-order polarization at the sum frequency
wl+ (1)2,

3
P(Z)(w)|w1+ w2:

e’ dow—w;—w)) [ Pab(E1-Pho) (E2- Pac) Pan(E2- Poo) (E1- Pac)
Amh? w10y w1+ w)) (Qapt w1t 0)(Qaetwy)  (Qgpt w1+ 0)(Qget og)

Pab(E1-Poc) (E2- Pac) N Pab(E2- Poc) (E1- Pac) +pf§c(El'pac)(E2‘p§b)
(Qap— 01— 02)(Qae—w3)  (Qap— 01— 02)(Qge—w1)  (Qap— 02)(Qygct ©1)

Poe(E2 Pac)(E1-Pan)  Poc(E1-Pac) (B2 Pab) N Poc(E2" Pac) (E1-Pab) PAc(E1-Pap) (E2- Poe)
(Qap=01)(Qact ©2)  (Qapt 02)(Qae— 1)  (Qapt 01)(Qae—03)  (Qapt ©1)(Qact w1+ wy)

Pic(E2- Pab) (E1- Poc) N Pac(E1-Pab) (E2- Ppo) N Pac(E2- Pab) (E1- Ppo) 17
(Qapt ©2)(Qact w1+ 0r)  (Qap= 01)(Qac— 01— w3)  (Qgp— 02)(Qge— w1~ w)) |

The sequence of three momentum matrix elements can be thought of as a closed loop of three virtual transitions as shown in
Fig. 1(a). Equation(17) follows the standard form for the second-order polarization determined using density-matrix theory for
anA-p perturbation. However, it is commonly written in the form that the sum over possible levels and permutations still has
to be performed®3°Here the complete form is presented for the term involving the three laydds andc, which in terms
of virtual transitions includes both—b—c—a anda—c—b—a. Now the product of the three momentum matrix elements
round the closed loop of virtual transitions must be imaginary. This must be the case for the polaRZtiorbe in phase
with the driving electric field and ensure the second-order susceptibility is pure real for nonresonant exoivatiohe factor
of i in the prefactor.

Taking linearly polarized light we have, for example,

p;b( é1' p;c)(éz' pac) = pab( é1' pbc)(éz' p;c) ’ (18)

where g, and e, are the(rea) unit polarization vectors parallel t&, and E,, respectively. Therefore there is a partial
cancellation of terms between the virtual transition schemed®—c—a anda—c—b—a. A similar analysis based on an
E-r perturbation leads to the result that the product of the dipole matrix elements is pure real and this partial cancellation is
not obtained.

From Eq.(17) the second-order nonlinear susceptibility can be written for linearly polarized light,

(_2)((1) 0,)= ie? 1 piabp{)cp:’é[ﬂabwzdl'ﬂac(wl"'wz)]
Aijict @1, 02 Mo 2ey w1wo( w1+ wy) (Qap= 017 02) (Qapt w11 ©2) (Qgc— w2) (Qact w3)
PhoPhcPil Qap®1+ Qa1+ 5)] PhoPbPoL Qap®1— Qacw2]

+ +
(Qap= 017 02)(Qapt 01+ ©2)(Qae— 01) (Qact @1)  (Qap= 02) (Lapt @2) (Qae— ©01)(Qact 1)

n piibpibcpg’é[ﬂabwz_ﬂacwl] B piabpgcpi;:[ﬂab(wl'*_w2)+Qacwl]
(Qap=01)(Qapt ©1)(Qac= 02)(Qact w2)  (Qap— 01) (Qapt @) (Qac— 01— 02) (Lt 01+ w))

B p:bp{)cp;’::[ﬂab(wl‘{'w2)+Qacw2]
(Qap= 02)(Qapt 02)(Qac— 01— 02) (gt 01+ w3) |

(19

wherepl,=8&-pap, etc.
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For the case of second-harmonic generatigi w,=w and Eq.(19) can be somewhat simplified,

i83 pab( pbcpac + pbcp )(Qab+ ZQac) pbc( pabpac + pabp )(Qac Qab)
ZmOﬁZEOW (Qab_ 2(")(Qab"' 20")(Qac_ w)(Qac+ o) (Qab_ w)(Qab+ w)(Qac_ w)(Qac+ o)

X|]k(w (1))

 Phe(PhoPbct PibPh) (2Qap+ Qac)
(Qap= 0)(Qapt ©)(Qae=2w) (Lt 20)

Equation(20) contains three terms. The second of these is proportional to the separation of the two uppe jevélte
combination of the first and third terms may also be proportiondl e in the lowest order. For example, the on-diagonal
tensor elements¢e.g.,zz2 contain the same momentum matrix factor. The remaining frequency terms transform into the
negative of each other by interchangin@,,—,.. Hence this combination of two terms is proportional to
Q.= Q=0 Itis therefore anticipated that the overall contribution from the three levels may vani3j. .49 ,,—O.

(20

B. Two occupied states

The pseudospin matrix formalism described above can be extended to describe the contribution to the nonlinear optical
coefficients from a set of states where more than one is initially occupied as shown iildrign semiconductors the obvious
application is to include terms associated with multiple valence bands. To obtain the three level contribution to the second-
order susceptibility, an analysis similar to that of Sec. Il A is followed, but starting instead from the initial values
N,=N,=1, N;=0 and hences{”(»)=0 ands{®(w)=—268(w)/V3. In this case the only non-zero first order pseudospin
vector components arfé(zl) and 831), which corresponds to the fact that ordy~c andb— c optical transitions are initially
allowed by the Pauli exclusion principle.

Taking the results foss" and S, the second-order tern&?, S{?), andS{) can be generated. Thus a second-order
polarization is found from which the second-order susceptibility is obtained,

-(-2)((1) W)= —ie® 1 pacp pbc[Qacw2+ch(w1+w2)]
Xijt @1, ©2 mahi2ey w1wo( w1+ wy) (Qac= 01— 02) (Lt 01+ 02) (Qpe— 02) (Lt wp)
PhcPab bl Qacw1t Qpe( @1+ w,)] PhcPaPbEL Qacw1— Qpcws]

+

(Qae— o 1_“’2)(Qac+‘l’l+‘*’2)(ch_‘l’l)(ch'l'wl)—'—(Q ¢~ 02)(Qact 02)(Qpe— 01) (Qpet @)

pgicpiz:;)pgt [Qacwo— Qpewq] pacpg’t; plbt:[ﬂac( w1+ ©3) + Qpeoq]

+ —
(Qac= 1) (Qact ©1)(Qpe= 02) (Qpet @) (Qae— 01)(Qaet ©1)(Qpe— 01— @) (Qpet 01+ w))

B pacp pbc[Qac(w1+w2)+chw2]
(Qac= ©2)(Qact ©2) (Qpe— 01— 02) (Qpct w1+ @3)

(21)

This form can be generated from the previous result in Eqthe dispersion of the second-harmonic generation coefficient
(19) using the following rules. The time ordering of the tran- quote the form of Butcher and McLe®rwhich includes the
sitions changes fronrm—b, b—c, c—a to a—c, b—a, six terms for the transition scherae-b— c—a (not includ-
c—b [Fig. A(b)]. Hence the momentum matrix elementsing a—c—b—a) wherea corresponds to a valence band
transform, pap—Pac, Poc— Pap. and pi.—pPy.. The fre-  andb andc correspond to conduction bands® It is not
quency denominators denote the energy mismatch after eaghear whether these calculations include correctly terms from
virtual transition(divided by Planck’s constaneand hence the reverse transition order or from multiple valence bands.
the transformationsQap—Qac and Qac—QOpe are per-  However, the dominanthalf-band-gapresonant term arises
formed. Finally, this set of virtual transitions leads to anfom the transition schemil—T¢—T'$—T'% and since in

exchange of electrons in statasand b so an additional GaAs and InSb thES.— I'¢ band gap is much larger than the

Fermi factor of (-1) must also be included. This set of d tal S~ I3 b d h q tion f
transformation rules has previously been applied to deterIun amenta 15 band gap, the required correction for
the partial cancellanon(lf necessaryis negllg|ble

mining the third-order effects of two-photon absorptfbn
and nonlinear refraction®®in semiconductors. In Fig. 2 the calculated dispersion gf;(w,®) using
Egs.(19) and(21) is shown for GaAs in the spectral region

beneath the half band gap. The band structure model em-
lll. BULK ZINC-BLENDE SEMICONDUCTORS ployed was a seven-barill}s, I'y andI'jy) k-p model ex-
_ ~ panded around thE point® Because this model does not
The only nonzero second-order nonlinear susceptibilityprovide an accurate representation of the band structure at
tensor element for the 3n zinc-blende structure is the the edge of the Brillouin zone there are two inconsistencies.

Xﬁ(zy)z coefficient?® Existing calculations in the literature of First, an unphysical divergent term is introduced propor-
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FIG. 2. Calculated dispersion of the second-order optical sus- -
ceptibility x3{w,w) for GaAs using a seven-band model with a 0 10 20 30
fundamental band gap of 1.519 eV. The three curves shown corre-
spond to integrating over spheres of different radiuskispace Monolayers
centered on th& point, V%2k2,,/my=0.6, 1.0, and 1.5eV)*2 The
arrow indicates the position of the half band gap=E/2. FIG. 3. Example asymmetric quantum well designs for second-

harmonic generation using 1.65. (a) is a coupled quantum well
tional to w™2. The present calculation therefore expands thevith 9 and 18 monolayer thickness GaAs wells separated by a 5
expression for the nonlinear susceptibility as a Laurent serie@onolayer thickness fLGa (As barrier.(b) is a stepped guantum
and subtracts terms of this order. Second, the constant backell consisting 6a 6 monolayer thickness of GaAs and a 25 mono-
ground contribution to the nonlinear susceptibility cannot be@yer thickness of Al Ga ¢As surrounded by AlGa /As barriers.
accurately obtained. This is apparent in Fig. 2 by noting the
difference in result for integrating over the different volumestures were initially designed such that the communications
of k space shown. Note that the Brillouin zone correspondsvavelength of 1.55m corresponds to a photon energy just
roughly tok,=1.5 (V)*2. The resonance feature, though, beneath half of the band gapuch that any second harmonic
is determined by the states around fhepoint (direct gap  generated lies in the transparency range of the majeTiaé

and is largely unaffected. structures also contain a maximum of two different
AlL,Ga _,As compositions in order to simplify the growth
IV. ASYMMETRIC SEMICONDUCTOR (only two aluminum sources will be requirgdut are other-
HETEROSTRUCTURES wise similar to structures considered in earlier papers where

second-order susceptibilities in the range 10>-a@V ! are

A [001]'gr0Wn asymmetl’ic semiconductor heteI’OStrUCtur%redicted%5!16’20122|n the expressions for the optica| Suscep-
superimposes amm tetragonal symmetry which induces tjpjlities, both band energies and momentum matrix elements
second-order nonlinear coefficient§2,, x2% andx2,.%°  are required. The algorithm employed in this paper to deter-
There are two possible regimes for frequency conversion usmine these allows mixing of conduction band and heavy-
ing such structures: long wavelength operation based solelyole, light-hole, and split-off valence band states and is de-
on intersubband virtual transitions in doped structurg$)  scribed in the Appendix.
only) and near-ir operation based on a combination of inter- Figure 4 shows the valence band dispersion for the
band and intersubband virtual transitions in intrinsiccoupled quantum well example. Note that the asymmetry of
material'? For the long wavelength intersubband operationthis structure causes the Kramers spin degeneracy to be
the effects of the partial cancellation will be limited as thelifted. It is also apparent that the dispersion can only be
n=2 to n=3 subband spacing is of a similar magnitude toapproximated with a parabolic form over a very restricted
then=1 to n=2 subband spacing. However, in the case ofregion close to the Brillioun zone center and hence the en-
the near-gap operation it is anticipated that the partial canvelope functions contain substantial mixtures of the basis
cellation should have dramatic consequences as the uppBtoch functions. This has important repercussions for calcu-
level spacing(intersubbangis much smaller than the lower lations of nonresonant optical constatgach asy(®)) which
level spacing (interband. For example, in typical require a summation over at least a significant fraction of the
GaAs/ALGa, _,As quantum wells there is an order of mag- Brillioun zone.
nitude difference between the intersubband separation and An investigation of the envelope functions themselves
the band gap. also reveals a strong mixing of the basis Bloch functions.

As examples, the asymmetric quantum well structuredhis will have a major influence on the optical matrix ele-
shown in Fig. 3 will be considered in this paper. These strucments. As an example, for a typicall0 nm GaAs quantum
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FIG. 4. Valence band dispersion for the asymmetric coupled
quantum well used as an example here. The wave v&dtas been _5_ 0.2 .
scaled to\%%k?/em, to give a value in(eV)*2 The asymmetry
leads to a lifting of the Kramers degeneracy.
01 | ,' | e
well, the lowest conduction bound state ha®20% light- H \
hole component to it. This is usually concealed within the [ ! \\\
effective mass approximation but for the detail of the matrix 0.0 N > N
elements required here it is advisable to use a band structure 0 20 40 60 80 100
model that allows full mixing of the basis Bloch functions. Monolayers

Showing all the components of an envelope function is un- - o 5
necessarily complex to be plotted here but Figs. 5 and 6 FIG. 5. Probability distribution| ¢(z)|* for the zone-center _
show the probability distributiongsum of the moduli (k,=0) conduction and valence band states fc_Jr the asymmetric
squared of the envelope function compongfastwo lowest cqupled quantum WeI_I. The state_s are labeled in order of energy
conduction and five highest valence bound states. One coﬁ\f'lt.hﬁlr’]vls’ andv4 being predominantly heavy-hole states aid
sequence of this band mixing is that the probability distribu-* "9 t-hole state.
tion for the second bound conduction state does not have a
minimum value of zergeven though the conduction enve- at the half band gap, with the most resonant term bgﬁib.
lope function component changes sigilne mainly to a finite However, the valence band dispersion is intricate enough
light-hole component. (i.e., nonparabolicsuch that these resonances do not obey a
For the determination of the second-order susceptibilitiesimple power law and therefore do not appear as straight
Egs.(19) and(21) are summed over sets of bound statem lines on a log-log plot. The reason that tkex element is
conduction and five valence subbahdad integrated ovedt  most resonant can be obtained by considering the momentum
spacefover the area of the circle defined ky<0.6 (eV)>  matrix elements between the heavy-hake 1 and conduc-
which corresponds to roughly half the extent of the Brilliountion n=1,2 subbands. Only thg, matrix element is signifi-
zond. The structures described in Fig. 3 are taken be reeant for the conduction intersubband transition and only the
peated with a separation of 12 nm barriers in both cases. Thg, (and p,) matrix element is significant for heavy-hole/
quotedy(® values are for the entire structure which shouldconduction interband transitiorias there is na variation in
be borne in mind when comparing with other published val-the heavy-hole Bloch functionThese combinations of ma-
ues, some of which are quoted on a per-well basis. It is foundrix elements only appear in the most resonant terms in Eq.
that as the valence band dispersion is quite complex, thél9) [(Q,,—2w) as the denominatdfor thexzx Of course
integrals generally have a slow convergence. this is only a simplified description as there are other sub-
Figure 7 shows the dispersion of the thrg€)(w,w) bands to be summed over and the envelope functions do
[second-harmonic generatigSHG)] tensor elements as a contain portions of other Bloch functions. The overall values
function of detuning from the half band gap for the coupledare somewhat disappointing in that birefringent ferroelectrics
guantum well example. Note that this band edge correspondssed in practice for SHG have second-order susceptibilities
to the heavy-holem=1 to conductionn=1 transition. For of a few pmV ! [no allowance has yet been made for the
photon energies greater than the half band gap, the secomeduction in the conversion efficiency for quasi-phase-
harmonic generated will be absorbed and hence high converatching in comparison to full phase matching, e.g., by
sion efficiencies are not possible. This can appear as an ef2/7)? for domain reversal However, the predicted magni-
fective two-photon absorption of the fundamerifii! It is  tude of the coefficients is comparable with recent experimen-
clear from Fig. 7 that the tensor elements show a resonandal observation$®-28
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=
02 } derived for the second-order optical susceptibility both for
the case of single and double occupation. It is noted that a
partial cancellation of terms occurs which can lead to a sub-
stantial overestimation of the nonlinear coefficient if only the
{ most resonant term is retained. For the very large values of
00— 20 40 P 80 100 interband second-order susceptibility> {00 pmV'1) pre-

Monolayers dicted previously, only the equivalents of terms with de-
: nominators (),,— w1 — w,) in Eq. (17) are retainedfor ex-
ample, Refs. 20 and 22 More reasonable values are

FIG. 6. Probability distribution|y(2)|* for the zone-center opiained when the equivalent of terms with denominators
(k;=0) conduction and valence band states for the asymmetri Q..— 01— w,) are additionally included with the opposite
stepped quantum well. The states are labeled in order of energ& ac ! 2

with 01 andv3 beina predominantly heavy-hole states adand ign. We note that the incorrect form of the second-order

oa "v ht-hoIZ Statesg P y heavy susceptibility withE-r and the incorrect substitution for the
19 ' momentum matrix element in Refs. 15, 16, and 24 provides

. . . this partial cancellation and predicts a reasonable magnitude

)
(SI—'TIGg)utrgnssorsg(I)gvrﬁetr:E gészefrjlr?cr;ioc:: gf]edé::ﬁi (“]fr(;"% inefor the nonlinear coefficient. For quantum wells, this degree
9 of cancellation is strongly influenced by the intersubband
half band gap for the stepped quantum well example. In con=__" -
. L ST spacing.

trast to the previous example, there is little indication of a

resonance at the heavy-hole/conduction half band(gko

note the thexzx element is not the largest vaju®©n exam- 10' Ty

ining the probability distributions in Fig. 6 it can be seen that ]

there is almost no overlap between tive 1 heavy-hole state

(v1) and then=2 conduction band state. This is a result of .~

the narrow, deep welldue to the growth restrictionsvhich 'T> Rl e T —— -
ensures that tha=1 large effective mass states are highly c _ __________ ]
confined. It seems reasonable to suggest that the optimal & [~ T T T TR S
stepped well structure for resonagt?) values will have ~ [ T~
similar layer widths and depths roughly in the ratio 1:2. »

8" 10 3 XZX E

V. CONCLUSIONS @: o
In this paper, the equivalents of the Maxwell-Bloch equa-

tions have been derived for a three-level system, specifically 10° L e S
tailored for media with extended wave functions such as 10 10 . 10 10
semiconductors. This formalism can be used to investigate Detunlng (eV)

several resonant nonlinear optical processes such as two-

photon absorption, excited-state absorption, and electromag- FIG. 8. Calculated dispersion of thé? tensor components for
netically induced transparency. Here nonresonant seconghe asymmetric stepped quantum well example as a function of
order processes are examined and complete expressions @eguning from the half band g&p.886 eV.
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Two example AlGa _,As asymmetric quantum well such as overlap integrals and precisely what interband mo-
structures are analyzed for second-harmonic generation usimgentum matrix elements contribute to the bulk result but
a fundamental of wavelength around Jubn. Itis found that does give an idea of the scaling involved.
the only case of a coefficient which may be of some use was This scaling argument also provides a clue into how
a few pmV ! obtained near resonance for thex compo- larger second-order susceptibilities can be obtained with
nent in the coupled quantum well example. There is evidencasymmetric growth: reduction of the quantum well structure
that the nonparabolicity of the valence band dispersion has period towards the lattice constant. Asymmetric short-period
major influence on the nonlinear coefficients. The steppeduperlattices can potentially have nonlinear coefficients ap-
guantum well example demonstrates that it is not difficult toproaching the bulk value. Although conduction states in a
design a structure where the lack of overlap between theuperlattice are no longer localized this is not a problem
various bound states results in a small second-order nonlirsince resonant carrier generation is avoided. Narrow, deep
earity. In the example calculations used in this paper only thevells will also be of benefit in considering the partial can-
contribution of the bound states have been included. Theellation of terms as the intersubband energy differgjoce
continuum states with energies greater than the barrier wilinterminiband for superlatticess increased. Asymmetric su-
also make a contribution but for photon energies below theperlattices with layer thicknesses of one monolayer are not
half band gap this will be as a relatively small nonresonantoo dissimilar from the asymmetric structure in thEl1]
background. For the cases where very small values are oldirection in a bulk zinc-blende structure which gives rise to a
tained it is likely that the relative contribution of the con- second-order susceptlblllty((z) of around 300 pmV? in
tinuum states are significant but the overall magnitude ofzaAs? Similar types of structures arise with self-organized
coefficient is still too small to be of any practical use. growth such as are observed in G, £ *? Defining the

Using theA-p form for the susceptibility allows some asymmetry during growth allows quantum well disordering
generalities to be made in discussing second-order nonlinea be employed as a phase-matching technique. Potential
coefficients in semiconductors. Momentum matrix elementsasymmetric structures could consist of coupled wédls).,
are basically a product of the Kane momentum parameteGaAs/AlAs/GaAs/AlAs  superlattice  with  thicknesses
P (which has a similar value for all semiconducioasid an in the ratio 1:1:2:2 or stepped wells (e.g.,
overlap integral. If the overlap integral is close to optimal, GaAs/Al, sGa, sAS/AlAs or GaAs/InAs/AlAs since thin lay-
then the major influences on the magnitude of the coefficiengrs can incorporate strain
are the frequency denominators and the number of electronic
states. The expressions for the susceptibility in E4@). and
(21) contain frequency denominators to the fifth power. ACKNOWLEDGMENT
Hence, providing it can be arranged to still operate at a reso-
nance, long wavelength operation can have huge nonlinear The Engineering and Physical Sciences Research Council
coefficients. For example, increasing the wavelength by & thanked for financial support.
factor of 10 will give five orders of magnitude increase in
scaling of the nonlinear coefficient, which explains why huge
coefficients are possible with(solely) intersubband  APPENDIX: SEMICONDUCTOR HETEROSTRUCTURE
transitions'> However, for a fixed wavelength of operation BAND STRUCTURE
the major influence on the overall magnitude is the number
of electronic states. For the unconfined dimensions the range The band structure algorithm employed in the nonlinear
of electronic wave vectors is m/a<k<m/a wherea is the  optical coefficient calculations in this paper is a hybrid ap-
lattice constant. However, for a quantum well structure thergoroach where explicit mixing of the lowest conduction band
is only one bound state per peridd, for each subband. T'{ and highest valence band d&f; occuré® but the semi-
Therefore with quantum confinement in one dimension theempirical Luttinger-Kohn approach is used to account for
number of contributing states has been reduced in proportioimteractions with other band§.The exact envelope function
to the factora/L,. In our examples,a=0.565nm and form of Burt is used to derive the resulting<@8 (asymmet-
L,~20 nm and therefore the upper limit that can be expectedic) interaction Hamiltonian matri$>® This can be subse-
with structures of this size is around 1/40 of the bulk coeffi-quently block diagonalized with a suitable unitary transfor-
cient. This argument does not take account of all the detailsation into two 4x 4 real Hamiltonian matrice$’

E, V3T T+v2iU VaT+iu
VAT —(E;+Ep) WIS, V?Wii— S
= rsvaiv weis! “E;TEiC —v2E,x '\/—EH -
V2T=iU x/zw:é s -viEFiNi3]  -E-AFiC
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The off-diagonal blocks contain only zero or small terms 1
proportional to,ukﬁ sin 4¢ which can be neglected. We de- ) (y3+v2),
fine
s = ( )
Ec=Eco(2)+ 5 (KE+KD), SRS
1
1 ) o=g (I+y1ty2=373). (A2)
Ei=—E,(2)+ > (y1ki +kzyika),
HereE.y, E,q, and E,,—A) are thel'-point energiegin-
1 cluding hydrostatic strajn ¢ is the shear-strain splitting en-
Er=—£2)+ 5 (y2k2— 2K, yk,), ergy, andP is the Kane momentum paramefdThe param-
eters s and the modified Luttinger-Kohn parametets
represent the contribution to the effective mass from bands
1 other than the set considered hér§ andI'}s). The in-plane
T= % Pk, electronic wave vector is given in terms of polar coordinates
(ky,¢). Thez-component of the electronic wave vector will
1 be replaced by the differential operator— —id/dz.
U= — (Pk,+k,P), ~ The method of solution is as follows. The heterostructure
3 is discretized intoN points in thez direction (typically
N~200 and thez derivatives are replaced with their corre-
3o, sponding finite differences. TheN4< 4N matrix diagonaliza-
W=~ kj(y—u cos 4p), tion is performed in real space, taking advantage of the
sparseness of the matrix. This is performed in two stadgs:
3 3 the matrix is symmetrized to obtain all the eigenvalues then
SZ\/?;kH Y5 5) k,+ kz(,u+ > 5” (2) selected eigenvalugsorresponding to bound solutions
are refined by inverse iteration using the correct asymmetric
_ — — form of the Hamiltonian matrix, which also determines the
C=kilkly=p=30)=(y=u=39)k], eigenvectors. In calculating the optical constants, the energy
1 3 3 eigenvalues and the momentum matrix eleméwtsich can
Si=— k|| y+2u+ 5 S|k tk,| 2yt u—5 5”, be obtained from overlap integrals of the eigenvegtare
V3 2 2 required.
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