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Determination of second-order nonlinear coefficients in semiconductors
using pseudospin equations for three-level systems

D. C. Hutchings and J. M. Arnold
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom

~Received 19 March 1997!

A pseudospin formalism is developed for analyzing the dynamics of a three-level system analogous to the
Maxwell-Bloch equations in the two-level case. These are used in the nonresonant regime to obtain the
complete and general form of the second-order optical susceptibility. All the nonzero second-order tensor
elements for second-harmonic generation are calculated for bulk GaAs and asymmetric GaAs/AlxGa12xAs
quantum wells. It is demonstrated that a partial cancellation of terms occurs which limits the values obtained
in the asymmetric quantum wells. It is also demonstrated by example that the band structure can also strongly
influence the values obtained. While small values are obtained for the examples given here, it is reasoned that
large second-order susceptibilities should be obtainable with short-period asymmetric superlattices.
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I. INTRODUCTION

There is intense current interest in semiconduc
waveguides for second-order nonlinear optical applicatio
These include second-harmonic generation, difference
quency generation, parametric generation and amplificat
optical rectification, the electro-optic effect,1,2 and all-optical
switching and solitons using the cascade process.3 Not only
do semiconductors have larger second-order coefficients
commonly used second-order nonlinear crystals@GaAs has a
second-order susceptibilityxxyz

(2) of around 300 pmV21 in the
near ir~Ref. 4!#, but the mature fabrication technology len
itself to device integration, particularly with semiconduct
diode lasers. However, the principal deficit is that cu
semiconductors lack birefringence and hence phase matc
is not trivial.

There are currently three principal techniques under
vestigation to solve this phase-matching problem. First, b
fringence can be introduced structurally~e.g., waveguide!.5,6

However, the degree of birefringence possible in this cas
limited and it is likely to be difficult to compensate for dis
persion in the near-resonant frequency regime where la
nonlinear coefficients are obtainable. Second, quasi-ph
matching by domain reversal is possible using patterned
strate growth7,8 ~an extension of the stack of plate
technique9,10!. This method shows promise although scatt
ing problems at domain interfaces still have to be fully
solved. Third, second-order nonlinearities can be induced
introducing an asymmetry into the structure.11,12 In this case
a promising quasi-phase-matching technique is to peri
cally destroy this asymmetry by quantum we
disordering.13,14

There have been a number of theory papers discussing
magnitude of second-order nonlinear coefficients for seco
harmonic generation in asymmetric semiconduc
heterostructures.15–25 It is interesting to note that prediction
as large as several hundred pmV21 have been predicted fo
the second-order susceptibility in the near ir and yet co
sponding experimental measurements are of the orde
560163-1829/97/56~7!/4056~12!/$10.00
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10 pmV21.26–28 All of these theoretical papers apparent
base their determination of the second-order coefficient o
density matrix formalism using anE•r dipole perturbation.
The calculation is usually truncated so that only the m
resonant term~s! are retained. A commonly quoted form fo
the second-order susceptibility has the difference betw
two terms containing dipole matrix elementsrab .15–19,23,24

This form cannot be justified, as a rigorous derivation of t
second-order susceptibility using anE•r dipole perturbation
~for example, using the density matrix! provides an expres
sion where all terms~whether resonant or nonresonant! have
the same sign.29 Furthermore, in semiconductors electro
are, in general, delocalized and momentum is a better qu
tum number than position. Therefore interband optical m
trix elements are usually formulated in terms of moment
matrix elements. This is often accounted for with the sub
tution er vc→2 iepvc /(m0v). Clearly this substitution is no
correct since the matrix elements contain no informat
about the optical field and a Hermitian operator is replac
by a non-Hermitian one. The correct form of substitution
this case iser vc→2 iepvc /(m0vvc).

Since momentum matrix elements are required for se
conductors, the approach we take here is to use anA•p di-
pole perturbation from the initial stages. Both forms of pe
turbation are equivalent although in principle a summat
over all terms and energy levels is required to duplicate
sults from both approaches. A density-matrix approach to
derivation of nonlinear susceptibilities with anA•p pertur-
bation is developed in Refs. 29 and 30. However, in the fi
expression for the susceptibility the relative signs of the va
ous terms are not immediately obvious. One further d
ciency of the standard density-matrix expression for the n
linear susceptibility is that it is derived for one occupied a
two vacant levels~although in principle the density-matri
approach could be reapplied with arbitrary population le
els!. For the near-ir operation, the contributing intersubba
transition can occur between two valence subbands~initially
occupied! in addition to between two electron subbands~ini-
tially vacant!. A complete analysis would allow both poss
bilities to be addressed.
4056 © 1997 The American Physical Society



iv

o
w
pa
n
il
es
e
s

nt

in
se

a

d;

f

to

ou-

tor
-
nd
ns.
e
uan-

8

56 4057DETERMINATION OF SECOND-ORDER NONLINEAR . . .
In this paper, pseudospin dynamical equations are der
to describe the dynamics of a three-level system~equivalent
to the Maxwell-Bloch equations for a two-level system!.
These can be applied to a number of resonant nonlinear
tical processes, for example, excited-state absorption, t
photon absorption, and electromagnetically induced trans
ency. Here the nonresonant regime will be taken a
expressions are derived for the second-order susceptib
for both single and double occupancy of the levels in qu
tion. These are used to determine the second-order susc
bility for two example asymmetric quantum well structure
The consequences of the magnitude of these coefficients
discussed with an indication given on how useful coefficie
can be obtained.

II. PSEUDOSPIN FORMALISM
FOR THREE-LEVEL SYSTEM

The dynamical evolution of anN-level system can be
expressed in terms of itsN3N density matrix. Rather than
consider each element of the density matrix individually,
stead the density matrix and Hamiltonian will be expres
in terms of theN221 matrices,l i which have SU(N) sym-
metry. In particular, for a three-level system, we will use
a basis the set of SU~3! generators in Table I.31–33The com-
mutator relations between these matrices will be require

@l i ,l j #5l il j2l jl i5(
k

2i f i jklk , ~1!

where the nonzero structure factorsf i jk are permutations o
those listed in Table II.

The time evolution of the expectation value of an opera
is given by

d^l i&
dt

52
i

\
^@l i ,H#&. ~2!

The time-dependent Hamiltonian includesA(t)•p coupling
between all three levels,

TABLE I. The generators of the SU~3! group ~Refs. 32 and 33!.

l15S0 1 0

1 0 0

0 0 0
D l25S0 0 0

0 0 1

0 1 0
D l35S0 0 1

0 0 0

1 0 0
D

l45S 0 i 0

2i 0 0

0 0 0
D l55S0 0 0

0 0 i

0 2i 0
D l65S 0 0 i

0 0 0

2i 0 0
D

l75S21 0 0

0 1 0

0 0 0
D l85

1

) S21 0 0

0 21 0

0 0 2
D

TABLE II. The value of the structure constantf i jk in the com-
mutator relations given by Eq.~1! between the SU~3! pseudospin
matrices in Table I.

i jk 147 135 126 432 465 736 752 368 25
f i jk 1 2

1
2 2

1
2 2

1
2 2

1
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1
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H~ t !5S ea
e

m0
A~ t !•pab

e

m0
A~ t !•pac

e

m0
A~ t !•pab* eb

e

m0
A~ t !•pbc

e

m0
A~ t !•pac*

e

m0
A~ t !•pbc* ec

D ,

5
ea1eb1ec

3
I 1

eb2ea

2
l71

2ec2eb2ea

2)
l8

1
e

m0
Re@A~ t !•pab#l11

e

m0
Re@A~ t !•pbc#l2

1
e

m0
Re@A~ t !•pac#l31

e

m0
Im@A~ t !•pab#l4

1
e

m0
Im@A~ t !•pbc#l51

e

m0
Im@A~ t !•pac#l6 , ~3!

wherepab5^bu2 i\“ua& and ea , eb , andec and the ener-
gies of the levels in the absence of the time-dependent c
pling. Strictly speaking, the Hamiltonian in Eq.~3! should
also contain a term proportional to the square of the vec
potential (eA)2/(2m0), but this is proportional to the iden
tity matrix I , commutes with all the generator matrices, a
therefore does not contribute to the dynamical equatio
Solving Eq. ~2! provides the equations of motion for th
three-level system where we have substituted the real q
tities si5^l i&,

d

dt
~s11 is4!5 iVab~s11 is4!22i

e

m0\
A•pabs7

1 i
e

m0\
A•pbc* ~s31 is6!

2 i
e

m0\
A•pac~s22 is5!,

d

dt
~s21 is5!5 iVbc~s21 is5!2 i

e

m0\
A•pab* ~s31 is6!

1 i
e

m0\
A•pbc~s72)s8!

1 i
e

m0\
A•pac~s12 is4!,

d

dt
~s31 is6!5 iVac~s31 is6!2 i

e

m0\
A•pab~s21 is5!

1 i
e

m0\
A•pbc~s11 is4!

2 i
e

m0\
A•pac~s71)s8!,
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d

dt
s7522

e

m0\
Im@A•pab~s12 is4!#1

e

m0\
Im@A•pbc

3~s22 is5!#2
e

m0\
Im@A•pac~s32 is6!#,

d

dt
s852

)e

m0\
Im@A•pbc~s22 is5!#

2
)e

m0\
Im@A•pac~s32 is6!#. ~4!

The energy differences have been written
\Vab5eb2ea,etc.

FIG. 1. Virtual transition schemes contributing to second-or
optical nonlinearities.~a! initially has one filled state and two empt
~e.g., multiple conduction states! and ~b! initially has two filled
states~e.g., multiple valence states!. Note the time ordering in~b!
leads to an exchange of electrons.
s

The system of differential equations~4! can be regarded
as the evolution of a real eight-dimensional pseudospin v
tor S5(s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8)T,

dS

dt
5MS. ~5!

A similar system has been employed to study the dynam
of a three-level atomic system with the followin
modifications:33 ~1! E•r dipole coupling is used,~2! coupling
between the levelsa and c is absent, and~3! near-resonant
excitation is studied so the rotating-wave approximation
implemented and phenomenological damping terms are
cluded. Here the purpose is to study the nonresonant ex
tion so Eq.~4! is left in its time-dependent form~so resonant
and antiresonant terms will both be present! and it is not
necessary to explicitly include damping. However, if r
quired, dephasing can be included in Eq.~4! with the substi-
tution V i j→V i j 1 ig.

The optical coupling will be taken to be the combinatio
of two monochromatic waves at frequenciesv1 andv2 ,

A~ t !52E
2`

t

E~ t8!dt8

52
i

2v1
@E1e2 iv1t2E1* eiv1t#

2
i

2v2
@E2e2 iv2t2E2* eiv2t#. ~6!

Eventually contributions at the sum frequencyv11v2 will
be examined. Inserting in Eq.~4! and transforming to the
frequency domain~making use of the Fourier shift theorem!
provides

r

i
m0\

e
~v1Vab!S1~v!5FE1s7~v2v1!2E1* s7~v1v1!

v1
1

E2s7~v2v2!2E2* s7~v1v2!

v2
G•pab

2FE1S3~v2v1!2E1* S3~v1v1!

2v1
1

E2S3~v2v2!2E2* S3~v1v2!

2v2
G•pbc*

1FE1S2* ~2v1v1!2E1* S2* ~2v2v1!

2v1
1

E2S2* ~2v1v2!2E2* S2* ~2v2v2!

2v2
G•pac , ~7!

i
m0\

e
~v1Vbc!S2~v!5FE1S3~v2v1!2E1* S3~v1v1!

2v1
1

E2S3~v2v2!2E2* S3~v1v2!

2v2
G•pab*

2FE1s2~v2v1!2E1* s2~v1v1!

2v1
1

E2s2~v2v2!2E2* s2~v1v2!

2v2
G•pbc

2FE1S1* ~2v1v1!2E1* S1* ~2v2v1!

2v1
1

E2S1* ~2v1v2!2E2* S1* ~2v2v2!

2v2
G•pac , ~8!
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i
m0\

e
~v1Vac!S3~v!5FE1S2~v2v1!2E1* S2~v1v1!

2v1
1

E2S2~v2v2!2E2* S2~v1v2!

2v2
G•pab

2FE1S1~v2v1!2E1* S1~v1v1!

2v1
1

E2S1~v2v2!2E2* S1~v1v2!

2v2
G•pbc

1FE1s1~v2v1!2E1* s1~v1v1!

2v1
1

E2s1~v2v2!2E2* s1~v1v2!

2v2
G•pac , ~9!

where we defineS15s11 is4 , S25s21 is5 , S35s31 is6 , s25s72)s8 , and s15s71)s8 . Equations fors7(v) and
s8(v) can also be derived by Fourier transform ofs7(t) and s8(t) in Eq. ~4! but the details of these are not necessary
nonresonant second-order nonlinearities.

From the pseudospin vector solution we can obtain the expectation value of the momentum,

^p~v!&5
1

2
@S1~v!pab* 1S1* ~2v!pab1S2~v!pbc* 1S2* ~2v!pbc1S3~v!pac* 1S3* ~2v!pac#. ~10!

Subsequently we can obtain the current and hence the polarization,

P~v!52 i
e

m0v ( ^p~v!1eA~v!&, ~11!

where the summation will be performed over combinations of three levels~e.g., for a solid this would involve the density o
states!.

The method of solution is a perturbative expansion as follows. First we obtain the pseudospin vector in the abs
optical coupling. For the coherence termss1–s6 , dephasing ensures that these tend to zero in the absence of the field
population terms depend only on the initial occupation levels,s7(t)5Nb2Na ands8(t)5(2Nc2Nb2Na)/). These initial
values are substituted in Eqs.~7!–~9! to obtain the pseudospin vector to first order in the field amplitude. Then these first-
values are substituted again in Eqs.~7!–~9! to obtain the pseudospin vector to second order in the field amplitude. This pr
could be repeated to the required order. The second-order optical susceptibility is obtained by substitution of the seco
pseudospin vector into Eq.~11!.

A. One occupied state

If statea is initially filled (Na51) and statesb andc are empty (Nb5Nc50) then the only non-zero expectation valu
of the pseudospin vector to order zero ares7

(0)(t)521 and s8
(0)(t)521/). Hence s7

(0)(v)52d(v) and s8
(0)(v)

52d(v)/). Inserting these in Eqs.~7!–~9! gives to the first order in the pseudospin vector

i
m0\

e
~v1Vab!S1

~1!~v!52FE1d~v2v1!2E1* d~v1v1!

v1
1

E2d~v2v2!2E2* d~v1v2!

v2
G•pab ,

i
m0\

e
~v1Vac!S3

~1!~v!52FE1d~v2v1!2E1* d~v1v1!

v1
1

E2d~v2v2!2E2* d~v1v2!

v2
G•pac , ~12!

andS2
(1)5s7

(1)5s8
(1)50.

Inserting Eq.~12! into Eq. ~11! gives the usual form for the contribution at frequencyv1 from the pair of states (a,b) to
the first-order polarization,29

P~1!~v!uv1
5

e2

2m0
2\v1

2 ( FE1•pabpab*

Vab1v1
1

E1•pab* pab

Vab2v1
Gd~v2v1!. ~13!

The pseudospin vector to second-order is obtained by resubstituting Eq.~12! into Eqs.~7!–~9!. For simplicity we only retain
terms which contribute at frequencies6(v11v2),

S1
~2!~v!u6~v11v2!52

e2

2m0
2\2

1

v1v2~Vab1v! H F ~E1•pbc* !~E2•pac!

Vac1v2v1
1

~E1•pac!~E2•pbc* !

Vac1v2v2
Gd~v2v12v2!

1F ~E1* •pbc* !~E2* •pac!

Vac1v1v1
1

~E1* •pac!~E2* •pbc* !

Vac1v1v2
Gd~v1v11v2!J , ~14!
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S2
~2!~v!u6~v11v2!52

e2

2m0
2\2

1

v1v2~Vbc1v! H F ~E1•pac!~E2•pab* !

Vab2v1v1
1

~E1•pab* !~E2•pac!

Vab2v1v2
2

~E1•pab* !~E2•pac!

Vac1v2v1

2
~E1•pac!~E2•pab* !

Vac1v2v2
Gd~v2v12v2!1F ~E1* •pac!~E2* •pab* !

Vab2v2v1
1

~E1* •pab* !~E2* •pac!

Vab2v2v2
2

~E1* •pab* !~E2* •pac!

Vac1v1v1

2
~E1* •pac!~E2* •pab* !

Vac1v1v2
Gd~v1v11v2!J , ~15!

S3
~2!~v!u6~v11v2!52

e2

2m0
2\2

1

v1v2~Vac1v! H F ~E1•pbc!~E2•pab!

Vab1v2v1
1

~E1•pab!~E2•pbc!

Vab1v2v2
Gd~v2v12v2!

1F ~E1* •pbc!~E2* •pab!

Vab1v1v1
1

~E1* •pab!~E2* •pbc!

Vab1v1v2
Gd~v1v11v2!J . ~16!

Inserting the second-order pseudospin vector into Eq.~11! gives the second-order polarization at the sum freque
v11v2 ,

P~2!~v!uv11v2
5

ie3

4m0
3\2

d~v2v12v2!

v1v2~v11v2! ( F pab* ~E1•pbc* !~E2•pac!

~Vab1v11v2!~Vac1v2!
1

pab* ~E2•pbc* !~E1•pac!

~Vab1v11v2!~Vac1v1!

1
pab~E1•pbc!~E2•pac* !

~Vab2v12v2!~Vac2v2!
1

pab~E2•pbc!~E1•pac* !

~Vab2v12v2!~Vac2v1!
1

pbc* ~E1•pac!~E2•pab* !

~Vab2v2!~Vac1v1!

1
pbc* ~E2•pac!~E1•pab* !

~Vab2v1!~Vac1v2!
1

pbc~E1•pac* !~E2•pab!

~Vab1v2!~Vac2v1!
1

pbc~E2•pac* !~E1•pab!

~Vab1v1!~Vac2v2!
1

pac* ~E1•pab!~E2•pbc!

~Vab1v1!~Vac1v11v2!

1
pac* ~E2•pab!~E1•pbc!

~Vab1v2!~Vac1v11v2!
1

pac~E1•pab* !~E2•pbc* !

~Vab2v1!~Vac2v12v2!
1

pac~E2•pab* !~E1•pbc* !

~Vab2v2!~Vac2v12v2!
G . ~17!

The sequence of three momentum matrix elements can be thought of as a closed loop of three virtual transitions as
Fig. 1~a!. Equation~17! follows the standard form for the second-order polarization determined using density-matrix theo
anA•p perturbation. However, it is commonly written in the form that the sum over possible levels and permutations s
to be performed.29,30 Here the complete form is presented for the term involving the three levelsa, b, andc, which in terms
of virtual transitions includes botha→b→c→a anda→c→b→a. Now the product of the three momentum matrix eleme
round the closed loop of virtual transitions must be imaginary. This must be the case for the polarizationP(2) to be in phase
with the driving electric field and ensure the second-order susceptibility is pure real for nonresonant excitation~note the factor
of i in the prefactor!.

Taking linearly polarized light we have, for example,

pab* ~ ê1•pbc* !~ ê2•pac!52pab~ ê1•pbc!~ ê2•pac* !, ~18!

where ê1 and ê2 are the~real! unit polarization vectors parallel toE1 and E2 , respectively. Therefore there is a parti
cancellation of terms between the virtual transition schemesa→b→c→a anda→c→b→a. A similar analysis based on a
E•r perturbation leads to the result that the product of the dipole matrix elements is pure real and this partial cance
not obtained.

From Eq.~17! the second-order nonlinear susceptibility can be written for linearly polarized light,

x i jk
~2!~v1 ,v2!5

ie3

m0
3\2e0

1

v1v2~v11v2! ( H pab
i pbc

j pac
k* @Vabv21Vac~v11v2!#

~Vab2v12v2!~Vab1v11v2!~Vac2v2!~Vac1v2!

1
pab

i pbc
k pac

j* @Vabv11Vac~v11v2!#

~Vab2v12v2!~Vab1v11v2!~Vac2v1!~Vac1v1!
1

pab
k pbc

i pac
j* @Vabv12Vacv2#

~Vab2v2!~Vab1v2!~Vac2v1!~Vac1v1!

1
pab

j pbc
i pac

k* @Vabv22Vacv1#

~Vab2v1!~Vab1v1!~Vac2v2!~Vac1v2!
2

pab
j pbc

k pac
i* @Vab~v11v2!1Vacv1#

~Vab2v1!~Vab1v1!~Vac2v12v2!~Vac1v11v2!

2
pab

k pbc
j pac

i* @Vab~v11v2!1Vacv2#

~Vab2v2!~Vab1v2!~Vac2v12v2!~Vac1v11v2! J , ~19!

wherepab
j 5êj•pab, etc.
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56 4061DETERMINATION OF SECOND-ORDER NONLINEAR . . .
For the case of second-harmonic generationv25v15v and Eq.~19! can be somewhat simplified,

x i jk
~2!~v,v!5

ie3

2m0
3\2e0v2 H pab

i ~pbc
j pac

k* 1pbc
k pac

j* !~Vab12Vac!

~Vab22v!~Vab12v!~Vac2v!~Vac1v!
2

pbc
i ~pab

j pac
k* 1pab

k pac
j* !~Vac2Vab!

~Vab2v!~Vab1v!~Vac2v!~Vac1v!

2
pac

i* ~pab
j pbc

k 1pab
k pbc

j !~2Vab1Vac!

~Vab2v!~Vab1v!~Vac22v!~Vac12v! J . ~20!

Equation~20! contains three terms. The second of these is proportional to the separation of the two upper levelsVbc . The
combination of the first and third terms may also be proportional toVbc in the lowest order. For example, the on-diagon
tensor elements~e.g., zzz! contain the same momentum matrix factor. The remaining frequency terms transform in
negative of each other by interchangingVab↔Vac . Hence this combination of two terms is proportional
Vac2Vab5Vbc . It is therefore anticipated that the overall contribution from the three levels may vanish asVbc /Vab→0.

B. Two occupied states

The pseudospin matrix formalism described above can be extended to describe the contribution to the nonlinea
coefficients from a set of states where more than one is initially occupied as shown in Fig. 1~b!. In semiconductors the obviou
application is to include terms associated with multiple valence bands. To obtain the three level contribution to the
order susceptibility, an analysis similar to that of Sec. II A is followed, but starting instead from the initial v
Na5Nb51, Nc50 and hence,s7

(0)(v)50 ands8
(0)(v)522d(v)/). In this case the only non-zero first order pseudos

vector components areS2
(1) andS3

(1) , which corresponds to the fact that onlya→c andb→c optical transitions are initially
allowed by the Pauli exclusion principle.

Taking the results forS2
(1) and S3

(1) , the second-order termsS1
(2) , S2

(2) , andS3
(2) can be generated. Thus a second-or

polarization is found from which the second-order susceptibility is obtained,

x i jk
~2!~v1 ,v2!5

2 ie3

m0
3\2e0

1

v1v2~v11v2! ( H pac
i pab

j* pbc
k* @Vacv21Vbc~v11v2!#

~Vac2v12v2!~Vac1v11v2!~Vbc2v2!~Vbc1v2!

1
pac

i pab
k* pbc

j* @Vacv11Vbc~v11v2!#

~Vac2v12v2!~Vac1v11v2!~Vbc2v1!~Vbc1v1!
1

pac
k pab

i* pbc
j* @Vacv12Vbcv2#

~Vac2v2!~Vac1v2!~Vbc2v1!~Vbc1v1!

1
pac

j pab
i* pbc

k* @Vacv22Vbcv1#

~Vac2v1!~Vac1v1!~Vbc2v2!~Vbc1v2!
2

pac
j pab

k* pbc
i* @Vac~v11v2!1Vbcv1#

~Vac2v1!~Vac1v1!~Vbc2v12v2!~Vbc1v11v2!

2
pac

k pab
j* pbc

i* @Vac~v11v2!1Vbcv2#

~Vac2v2!~Vac1v2!~Vbc2v12v2!~Vbc1v11v2! J . ~21!
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This form can be generated from the previous result in
~19! using the following rules. The time ordering of the tra
sitions changes froma→b, b→c, c→a to a→c, b→a,
c→b @Fig. 1~b!#. Hence the momentum matrix elemen
transform, pab→pac , pbc→pab* , and pac* →pbc* . The fre-
quency denominators denote the energy mismatch after
virtual transition~divided by Planck’s constant! and hence
the transformationsVab→Vac and Vac→Vbc are per-
formed. Finally, this set of virtual transitions leads to
exchange of electrons in statesa and b so an additional
Fermi factor of (21) must also be included. This set o
transformation rules has previously been applied to de
mining the third-order effects of two-photon absorption34

and nonlinear refraction35,36 in semiconductors.

III. BULK ZINC-BLENDE SEMICONDUCTORS

The only nonzero second-order nonlinear susceptib
tensor element for the 4̄3m zinc-blende structure is th
xxyz

(2) coefficient.29 Existing calculations in the literature o
.

ch

r-

y

the dispersion of the second-harmonic generation coeffic
quote the form of Butcher and McLean30 which includes the
six terms for the transition schemea→b→c→a ~not includ-
ing a→c→b→a! where a corresponds to a valence ban
and b and c correspond to conduction bands.37,38 It is not
clear whether these calculations include correctly terms fr
the reverse transition order or from multiple valence ban
However, the dominant~half-band-gap! resonant term arise
from the transition schemeG15

v →G1
c→G15

c →G15
v and since in

GaAs and InSb theG15
c 2G1

c band gap is much larger than th
fundamentalG1

c2G15
v band gap, the required correction fo

the partial cancellation~if necessary! is negligible.
In Fig. 2 the calculated dispersion ofxxyz

(2) (v,v) using
Eqs.~19! and ~21! is shown for GaAs in the spectral regio
beneath the half band gap. The band structure model
ployed was a seven-band~G15

v , G1
c andG15

c ! k•p model ex-
panded around theG point.39 Because this model does no
provide an accurate representation of the band structur
the edge of the Brillouin zone there are two inconsistenc
First, an unphysical divergent term is introduced prop
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tional to v22. The present calculation therefore expands
expression for the nonlinear susceptibility as a Laurent se
and subtracts terms of this order. Second, the constant b
ground contribution to the nonlinear susceptibility cannot
accurately obtained. This is apparent in Fig. 2 by noting
difference in result for integrating over the different volum
of k space shown. Note that the Brillouin zone correspo
roughly tokmax.1.5 ~eV!1/2. The resonance feature, thoug
is determined by the states around theG point ~direct gap!
and is largely unaffected.

IV. ASYMMETRIC SEMICONDUCTOR
HETEROSTRUCTURES

A @001#-grown asymmetric semiconductor heterostruct
superimposes a 4mm tetragonal symmetry which induce
second-order nonlinear coefficientsxxzx

(2) , xzxx
(2) , and xzzz

(2) .29

There are two possible regimes for frequency conversion
ing such structures: long wavelength operation based so
on intersubband virtual transitions in doped structures (xzzz

(2)

only! and near-ir operation based on a combination of in
band and intersubband virtual transitions in intrins
material.12 For the long wavelength intersubband operat
the effects of the partial cancellation will be limited as t
n52 to n53 subband spacing is of a similar magnitude
the n51 to n52 subband spacing. However, in the case
the near-gap operation it is anticipated that the partial c
cellation should have dramatic consequences as the u
level spacing~intersubband! is much smaller than the lowe
level spacing ~interband!. For example, in typical
GaAs/AlxGa12xAs quantum wells there is an order of ma
nitude difference between the intersubband separation
the band gap.

As examples, the asymmetric quantum well structu
shown in Fig. 3 will be considered in this paper. These str

FIG. 2. Calculated dispersion of the second-order optical s
ceptibility xxyz

(2) (v,v) for GaAs using a seven-band model with
fundamental band gap of 1.519 eV. The three curves shown co
spond to integrating over spheres of different radius ink space
centered on theG point,A\2kmax

2 /m050.6, 1.0, and 1.5~eV!1/2. The
arrow indicates the position of the half band gap\v5Eg/2.
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tures were initially designed such that the communicatio
wavelength of 1.55mm corresponds to a photon energy ju
beneath half of the band gap~such that any second harmon
generated lies in the transparency range of the material!. The
structures also contain a maximum of two differe
Al xGa12xAs compositions in order to simplify the growt
~only two aluminum sources will be required!, but are other-
wise similar to structures considered in earlier papers wh
second-order susceptibilities in the range 10– 103 pmV21 are
predicted.15,16,20,22In the expressions for the optical susce
tibilities, both band energies and momentum matrix eleme
are required. The algorithm employed in this paper to de
mine these allows mixing of conduction band and hea
hole, light-hole, and split-off valence band states and is
scribed in the Appendix.

Figure 4 shows the valence band dispersion for
coupled quantum well example. Note that the asymmetry
this structure causes the Kramers spin degeneracy to
lifted. It is also apparent that the dispersion can only
approximated with a parabolic form over a very restrict
region close to the Brillioun zone center and hence the
velope functions contain substantial mixtures of the ba
Bloch functions. This has important repercussions for cal
lations of nonresonant optical constants~such asx (2)! which
require a summation over at least a significant fraction of
Brillioun zone.

An investigation of the envelope functions themselv
also reveals a strong mixing of the basis Bloch functio
This will have a major influence on the optical matrix el
ments. As an example, for a typical;10 nm GaAs quantum

s-

e-

FIG. 3. Example asymmetric quantum well designs for seco
harmonic generation using 1.55mm. ~a! is a coupled quantum wel
with 9 and 18 monolayer thickness GaAs wells separated by
monolayer thickness Al0.4Ga0.6As barrier.~b! is a stepped quantum
well consisting of a 6 monolayer thickness of GaAs and a 25 mon
layer thickness of Al0.4Ga0.6As surrounded by Al0.6Ga0.4As barriers.
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56 4063DETERMINATION OF SECOND-ORDER NONLINEAR . . .
well, the lowest conduction bound state has;20% light-
hole component to it. This is usually concealed within t
effective mass approximation but for the detail of the mat
elements required here it is advisable to use a band struc
model that allows full mixing of the basis Bloch function
Showing all the components of an envelope function is
necessarily complex to be plotted here but Figs. 5 an
show the probability distributions~sum of the moduli
squared of the envelope function components! for two lowest
conduction and five highest valence bound states. One
sequence of this band mixing is that the probability distrib
tion for the second bound conduction state does not ha
minimum value of zero~even though the conduction env
lope function component changes sign! due mainly to a finite
light-hole component.

For the determination of the second-order susceptibili
Eqs.~19! and~21! are summed over sets of bound states~two
conduction and five valence subbands! and integrated overk
space@over the area of the circle defined byki<0.6 ~eV!1/2

which corresponds to roughly half the extent of the Brillio
zone#. The structures described in Fig. 3 are taken be
peated with a separation of 12 nm barriers in both cases.
quotedx (2) values are for the entire structure which shou
be borne in mind when comparing with other published v
ues, some of which are quoted on a per-well basis. It is fo
that as the valence band dispersion is quite complex,
integrals generally have a slow convergence.

Figure 7 shows the dispersion of the threex (2)(v,v)
@second-harmonic generation~SHG!# tensor elements as
function of detuning from the half band gap for the coupl
quantum well example. Note that this band edge correspo
to the heavy-holen51 to conductionn51 transition. For
photon energies greater than the half band gap, the se
harmonic generated will be absorbed and hence high con
sion efficiencies are not possible. This can appear as an
fective two-photon absorption of the fundamental.40,41 It is
clear from Fig. 7 that the tensor elements show a resona

FIG. 4. Valence band dispersion for the asymmetric coup
quantum well used as an example here. The wave vectork has been
scaled toA\2k2/em0 to give a value in~eV!1/2. The asymmetry
leads to a lifting of the Kramers degeneracy.
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at the half band gap, with the most resonant term beingxxzx
(2) .

However, the valence band dispersion is intricate eno
~i.e., nonparabolic! such that these resonances do not obe
simple power law and therefore do not appear as stra
lines on a log-log plot. The reason that thexzx element is
most resonant can be obtained by considering the momen
matrix elements between the heavy-holen51 and conduc-
tion n51,2 subbands. Only thepz matrix element is signifi-
cant for the conduction intersubband transition and only
px ~and py! matrix element is significant for heavy-hole
conduction interband transitions~as there is noz variation in
the heavy-hole Bloch function!. These combinations of ma
trix elements only appear in the most resonant terms in
~19! @(Vab22v) as the denominator# for thexzx. Of course
this is only a simplified description as there are other s
bands to be summed over and the envelope functions
contain portions of other Bloch functions. The overall valu
are somewhat disappointing in that birefringent ferroelectr
used in practice for SHG have second-order susceptibili
of a few pmV21 @no allowance has yet been made for t
reduction in the conversion efficiency for quasi-phas
matching in comparison to full phase matching, e.g.,
(2/p)2 for domain reversal#. However, the predicted magn
tude of the coefficients is comparable with recent experim
tal observations.26–28

d

FIG. 5. Probability distributionuc(z)u2 for the zone-center
(ki50) conduction and valence band states for the asymme
coupled quantum well. The states are labeled in order of ene
with v1, v3, andv4 being predominantly heavy-hole states andv2
a light-hole state.
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4064 56D. C. HUTCHINGS AND J. M. ARNOLD
Figure 8 shows the dispersion of the threex (2)(v,v)
~SHG! tensor elements as a function of detuning from
half band gap for the stepped quantum well example. In c
trast to the previous example, there is little indication o
resonance at the heavy-hole/conduction half band gap~also
note the thexzx element is not the largest value!. On exam-
ining the probability distributions in Fig. 6 it can be seen th
there is almost no overlap between then51 heavy-hole state
(v1) and then52 conduction band state. This is a result
the narrow, deep well~due to the growth restrictions! which
ensures that then51 large effective mass states are high
confined. It seems reasonable to suggest that the opt
stepped well structure for resonantx (2) values will have
similar layer widths and depths roughly in the ratio 1:2.

V. CONCLUSIONS

In this paper, the equivalents of the Maxwell-Bloch equ
tions have been derived for a three-level system, specific
tailored for media with extended wave functions such
semiconductors. This formalism can be used to investig
several resonant nonlinear optical processes such as
photon absorption, excited-state absorption, and electrom
netically induced transparency. Here nonresonant sec
order processes are examined and complete expression

FIG. 6. Probability distributionuc(z)u2 for the zone-center
(ki50) conduction and valence band states for the asymme
stepped quantum well. The states are labeled in order of en
with v1 andv3 being predominantly heavy-hole states andv2 and
v4, light-hole states.
e
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derived for the second-order optical susceptibility both
the case of single and double occupation. It is noted th
partial cancellation of terms occurs which can lead to a s
stantial overestimation of the nonlinear coefficient if only t
most resonant term is retained. For the very large value
interband second-order susceptibility (.100 pmV21) pre-
dicted previously, only the equivalents of terms with d
nominators (Vab2v12v2) in Eq. ~17! are retained~for ex-
ample, Refs. 20 and 22!. More reasonable values ar
obtained when the equivalent of terms with denominat
(Vac2v12v2) are additionally included with the opposit
sign. We note that the incorrect form of the second-or
susceptibility withE•r and the incorrect substitution for th
momentum matrix element in Refs. 15, 16, and 24 provid
this partial cancellation and predicts a reasonable magni
for the nonlinear coefficient. For quantum wells, this deg
of cancellation is strongly influenced by the intersubba
spacing.

ic
gy

FIG. 7. Calculated dispersion of thex (2) tensor components fo
the asymmetric coupled quantum well example as a function
detuning from the half band gap~0.872 eV!.

FIG. 8. Calculated dispersion of thex (2) tensor components fo
the asymmetric stepped quantum well example as a function
detuning from the half band gap~0.886 eV!.



l
s

wa

nc
as
pe
to
th

nli
th
Th
w
th
an
o

n-
o

e
ne
n
et

al
ie
on

er
s
e

y
in
g

n
be
n

er
.
th
tio

te
ffi
a

mo-
ut

ow
ith
re
iod
ap-

a
em
eep
n-

-
not

a

ed

ng
ntial

s

ncil

ar
p-
nd

for

-
r-

56 4065DETERMINATION OF SECOND-ORDER NONLINEAR . . .
Two example AlxGa12xAs asymmetric quantum wel
structures are analyzed for second-harmonic generation u
a fundamental of wavelength around 1.5mm. It is found that
the only case of a coefficient which may be of some use
a few pmV21 obtained near resonance for thexzx compo-
nent in the coupled quantum well example. There is evide
that the nonparabolicity of the valence band dispersion h
major influence on the nonlinear coefficients. The step
quantum well example demonstrates that it is not difficult
design a structure where the lack of overlap between
various bound states results in a small second-order no
earity. In the example calculations used in this paper only
contribution of the bound states have been included.
continuum states with energies greater than the barrier
also make a contribution but for photon energies below
half band gap this will be as a relatively small nonreson
background. For the cases where very small values are
tained it is likely that the relative contribution of the co
tinuum states are significant but the overall magnitude
coefficient is still too small to be of any practical use.

Using theA•p form for the susceptibility allows som
generalities to be made in discussing second-order nonli
coefficients in semiconductors. Momentum matrix eleme
are basically a product of the Kane momentum param
P ~which has a similar value for all semiconductors! and an
overlap integral. If the overlap integral is close to optim
then the major influences on the magnitude of the coeffic
are the frequency denominators and the number of electr
states. The expressions for the susceptibility in Eqs.~19! and
~21! contain frequency denominators to the fifth pow
Hence, providing it can be arranged to still operate at a re
nance, long wavelength operation can have huge nonlin
coefficients. For example, increasing the wavelength b
factor of 10 will give five orders of magnitude increase
scaling of the nonlinear coefficient, which explains why hu
coefficients are possible with~solely! intersubband
transitions.12 However, for a fixed wavelength of operatio
the major influence on the overall magnitude is the num
of electronic states. For the unconfined dimensions the ra
of electronic wave vectors is2p/a,k,p/a wherea is the
lattice constant. However, for a quantum well structure th
is only one bound state per periodLp for each subband
Therefore with quantum confinement in one dimension
number of contributing states has been reduced in propor
to the factor a/Lp . In our examples,a50.565 nm and
Lp;20 nm and therefore the upper limit that can be expec
with structures of this size is around 1/40 of the bulk coe
cient. This argument does not take account of all the det
ing
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such as overlap integrals and precisely what interband
mentum matrix elements contribute to the bulk result b
does give an idea of the scaling involved.

This scaling argument also provides a clue into h
larger second-order susceptibilities can be obtained w
asymmetric growth: reduction of the quantum well structu
period towards the lattice constant. Asymmetric short-per
superlattices can potentially have nonlinear coefficients
proaching the bulk value. Although conduction states in
superlattice are no longer localized this is not a probl
since resonant carrier generation is avoided. Narrow, d
wells will also be of benefit in considering the partial ca
cellation of terms as the intersubband energy difference~or
interminiband for superlattices! is increased. Asymmetric su
perlattices with layer thicknesses of one monolayer are
too dissimilar from the asymmetric structure in the@111#
direction in a bulk zinc-blende structure which gives rise to
second-order susceptibilityxxyz

(2) of around 300 pmV21 in
GaAs.4 Similar types of structures arise with self-organiz
growth such as are observed in Ga0.5In0.5P.42 Defining the
asymmetry during growth allows quantum well disorderi
to be employed as a phase-matching technique. Pote
asymmetric structures could consist of coupled wells~e.g.,
GaAs/AlAs/GaAs/AlAs superlattice with thicknesse
in the ratio 1:1:2:2! or stepped wells ~e.g.,
GaAs/Al0.5Ga0.5As/AlAs or GaAs/InAs/AlAs since thin lay-
ers can incorporate strain!.
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APPENDIX: SEMICONDUCTOR HETEROSTRUCTURE
BAND STRUCTURE

The band structure algorithm employed in the nonline
optical coefficient calculations in this paper is a hybrid a
proach where explicit mixing of the lowest conduction ba
G1

c and highest valence band setG15
v occurs43 but the semi-

empirical Luttinger-Kohn approach is used to account
interactions with other bands.44 The exact envelope function
form of Burt is used to derive the resulting 838 ~asymmet-
ric! interaction Hamiltonian matrix.45,46 This can be subse
quently block diagonalized with a suitable unitary transfo
mation into two 434 real Hamiltonian matrices,47
H53
Ec )T T6& iU &T7 iU

)T 2~E11E2! W7 iSi &W6
i

&
Si

T7& iU W6 iSi
† 2E11E26 iC 2&E26 iA3

2 S i

&T6 iU &W7
i

&
Si

† 2&E27 iA 3
2 S i

† 2E12D7 iC
4 . ~A1!
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The off-diagonal blocks contain only zero or small term
proportional tomki

2 sin 4f which can be neglected. We de
fine

Ec5Ec0~z!1
s

2
~ki

21kz
2!,

E152Ev0~z!1
1

2
~g1ki

21kzg1kz!,

E252j~z!1
1

2
~g2ki

222kzg2kz!,

T5
1

A6
Pki ,

U5
1

2)
~Pkz1kzP!,

W52
)

2
ki

2~ ḡ2m cos 4f!,

Si5)kiF S ḡ2
3

2
d D kz1kzS m1

3

2
d D G ,

C5ki@kz~ ḡ2m23d!2~ ḡ2m23d!kz#,

S i5
1

)
kiF S ḡ12m1

3

2
d D kz1kzS 2ḡ1m2

3

2
d D G ,
le

N

.

ys
.

ha

n.

J

.

ḡ5
1

2
~g31g2!,

m5
1

2
~g32g2!,

d5
1

9
~11g11g223g3!. ~A2!

HereEc0 , Ev0 , and (Ev02D) are theG-point energies~in-
cluding hydrostatic strain!, j is the shear-strain splitting en
ergy, andP is the Kane momentum parameter.43 The param-
eters s and the modified Luttinger-Kohn parametersg i
represent the contribution to the effective mass from ba
other than the set considered here~G1

c andG15
v !. The in-plane

electronic wave vector is given in terms of polar coordina
(ki ,f). Thez-component of the electronic wave vector w
be replaced by the differential operatorkz→2 i ]/]z.

The method of solution is as follows. The heterostructu
is discretized intoN points in the z direction ~typically
N;200! and thez derivatives are replaced with their corre
sponding finite differences. The 4N34N matrix diagonaliza-
tion is performed in real space, taking advantage of
sparseness of the matrix. This is performed in two stages~1!
the matrix is symmetrized to obtain all the eigenvalues th
~2! selected eigenvalues~corresponding to bound solutions!
are refined by inverse iteration using the correct asymme
form of the Hamiltonian matrix, which also determines t
eigenvectors. In calculating the optical constants, the ene
eigenvalues and the momentum matrix elements~which can
be obtained from overlap integrals of the eigenvectors! are
required.
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