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Mesoscopic conductance and its fluctuations at a nonzero Hall angle
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We consider the bilocal conductivity tensor and the two-probe conductance and its fluctuations for a disor-
dered phase-coherent two-dimensional system of noninteracting electrons in the presence of a magnetic field,
including correctly the edge effects. Analytical results are obtained by perturbation theory in the,ligit .

For mesoscopic systems the conduction process is dominated by diffusion, but we show that, due to the lack
of time-reversal symmetry, the boundary condition for diffusion is altered at the reflecting edges. Instead of the
usual condition that the derivative along the direction normal to the wall of the diffusing variable vanishes, the
derivative at the Hall angle to the normal vanishes. We demonstrate the origin of this boundary condition in
several approaches. Within the standard diagrammatic perturbation expansion, we evaluate the bilocal conduc-
tivity tensor to leading order in &, , exhibiting the edge currents and the boundary condition. We show how

to calculate conductivity and conductance using the nonline@odel with the topological term, to all orders

in 1/o,,. Edge effects are related to the topological term, and there are higher-order corrections to the
boundary condition. We discuss the general form of the current-conservation conditions. We evaluate explicitly
the mean and variance of the conductance, to leading ordeoin dhd to order (rxy/crxx)z, and find that the
variance of the conductance increases with the Hall ratio. Thus the conductance fluctuations are no longer
simply described by the unitary universality class of thg=0 case, but instead there is a one-parameter
family of probability distributions. Our results differ from previous calculations, which neglected
oxy-dependent effects other than the leading-order boundary condition. In the quasi-one-dimensional limit, the
usual universal result for the conductance fluctuations of the unitary ensemble is recovered, in contrast to
results of previous authorgS0163-18207)08128-9

[. INTRODUCTION phase in the zero-field propagator. This leads to the elimina-
tion of Cooperon contributions to conductance fluctuations,
In the past decade much attention has been given to theausing a crossover from the so-called orthogonal to the uni-
statistical properties of quantum conductors with completdary ensemble, and a consequent reduction of the variance by
phase coherendavith sizeL smaller than the phase coher- a factor of two®’ In the quasi-1D case, this result is also
ence lengthL, ). A notable feature of such systems is the recovered by the random-matrix approactfes.
lack of self-averaging in their transport properties. In meso- In two dimensions, the interplay of quantum interference
scopic systems for whiclL is less than the localization €ffects and magnetic field leads to the quantum Hall effect in
length¢, the conductance fluctuation amplitudee standard ~high magnetic field.* In mesoscopic samples, conductance
deviation of the conductangeis found, at low magnetic fluctuations persist in fairly high magnetic field.7o>1,
field, to be of order 1, and to be independent of system siz&here o is the cyclotron frequencys, is the elastic scat-
and the degree of disordésut dependent on the dimension- tering time in zero magnetic field, and the fluctuation ampli-
ality, shape, and overall symmetry properties of thetude remains comparable to the low-field lirhit> For B
systen)_l_7 (Note that, in the present paper, all conductivitiesfields sufficiently high that quantization of the Hall conduc-
o and conductances have the factoe?/h removed, so they tance sets in, the fluctuations are strongly suppressed in the
are dimensionless in two dimensions; their dimensionful anaplateau regions, but reappear in both longitudinal and Hall
logs are recovered by multiplying l8?/h.) These universal resistance in the transition regions between plateaus. It is
conductance fluctuation®/CF’s) have been well understood therefore of theoretical interest to generalize the theory for
within the framework of perturbation thed”rﬁﬂ and the one- conductance fluctuations to all fields. &t7,>1, the trajec-
parameter scaling theory of quantum conductditc@he  tories of the electrons are significantly influenced by the Lor-
physics underlying the UCF is the long-ranged spatial correentz force between successive scattering events, and the dy-
lation among the wave functions of the conduction electrongiamical effect of the magnetic field must be treated. The
in the diffusive regime. The universality of the phenomenondiffusion at high field occurs by a different mechanism from
has also stimulated the formulation of a random-matrixthe low-field regime. For the short-ranged random potential
theory description of quasi-one-dimensionéjjuasi-1D model, the center of the cyclotron orbit hops a length of
Refs. 10-13 and quasi-zero-dimensiondhuasi-0D order the cyclotron radiuR; whenever it encounters a scat-
conductors**>which reproduce quantitatively the results of tering center; thereforeR, plays the role of the mean
diagrammatic perturbation theory. In earlier perturbativefree pathl. The bare conductivitysd, in the middle of
work the effect of a magnetic field was only included the Nth Landau level is of order (2+1)/7 (Ref. 29
through the introduction of an appropriate Aharonov-Bohm(N=0, 1, ...). Despite the altered nature of the micro-
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AY C,  hard wall clusion about the correlation field is basically correct, the
"""""""""""""""""""" conclusion concerning the fluctuation amplitude is now un-

| derstood to be correct only for a periodic boundary condition

\ in the transverse direction and must be revised for the case of
disordered region ' a system with reflecting edges. As discovered independently
I
[}
1
|
|

G

lead

lead by Khmel'nitskii and YosefifKY), Maslov and LosgML),
and one of the present authof®ead,**~*° the boundary
condition is modified from the vanishing of the normal de-
ol é'h;rd:”au """"""" L ox r?vat@ve of the diffusing variable to the vanishing of the de-
4 rivative at an angle to the normal. KY and Read further
FIG. 1. The two-probe geometry. showed that this angle is the Hall anglg=tan ‘o, /oy,
where affy is the bare Hall conductivity. These authors
scopic diffusion, a unified treatment of mesoscopic conducpointed out the possibility that the mesoscopic conductance
tance fluctuations in relatively high fields is possible be-fluctuations may depend on magnetic field due to the bound-
cause, even ab.7o>1, there exists a perturbative regime ary condition. KY and ML attempted to evaluate this depen-
where the transport process is dominated by diffusion. Aglence both numerically and analytically. Simulations per-
long as there are many Landau levels occupied,,1lbr  formed for the two-probe conductance of small systems in
1kl serves as a small parameter, and perturbation theory ige nonquantized regirfieshow that the maximum fluctua-
still useful. Previous perturbation theories have shown thagign amplitude appears toward the bottom of the Landau lev-
the weak localization correction e, for the unitary class is  e|s where the Hall ratio is large, indicating some dependence
of order —(ay,) ~!In(L/1).?>"?" The localization correction on the Hall ratio. However, the analytic calculations by KY
is relatively smalol for systems with less than the crossover gnd ML (Refs. 33 and 34do not agree with our present
length §pe,t=Ie("xx)2 (for o, large. For | <L<&pern, the  results since these authors merely modified the diffusion
conductance fluctuations are expected to be similar to thpropagator in previous expressions for UCF diagrams. Like
UCF. At L> ¢, the renormalization-group flows for the KY, we find thatcrgy enters not only the boundary condition
system, driven by nonperturbative effetts®! carry it either  put also the current vertex. Moreover the altered boundary
to one of the localization fixed points wherg,—0 and  condition permits new diagrams to occur which, roughly
oy becomes quantized, or to one of the nontrivial fixedspeaking, describe interference effects associated with a
points wherevy, is a half-integer and approaches a uni- agy-dependent “interaction” of the diffusion modes. These
versal value. Numerical work finds that the Co”dUCtancediagrams which were not considered by ML and KY, must
fluctuations in the critical regimés*have a different dis- 1o heluded when edges are present. We evaluate the two-

tribution from the UCF, and one would expect this distribu- robe conductance and its variance to leadin orderdﬁ 1/
tion to be beyond the scope of a perturbative treatment. w8 5 0,0 -aring X
comment further on the critical regime in the conclusion,2nd 0 ordery®, wherey=o,,/oy,. For wide samples with

Sec. VI. W~L, whereL andW are now the length and width of the

In this paper we study the conductance and its variancé@mple, we find that the variance does not depenaigrand
for a two-probe geometry in two dimensions in the presencey, individually, but does depend og. The variance in-
of disorder and magnetic field, and in the perturbative regimereases ag? for small y, and hence is no longer indepen-
(I<L<{per). As shown in Fig. 1, the edges of the sampledent of magnetic fieldalthough it is still independent of size
are defined by a hard-wall confinement potential and the twan this order in 162,, and has no direct dependence on the
ends of the sample are connected to highly conducting leadsiean free path Interestingly, however, in the quasi-1D limit
The first analytic work on this problem was by two of the (W<L), the Hall ratio is absorbed into an effective 1D con-
authors(Xiong and Ston&), in which they generalized the ductivity which cancels in all diagrams. Therefore in this
previous diagrammatic perturbative technicfiée treat the limit the UCF result of the unitary class is recoveréd
conductance fluctuations. At the level of the self-consistentontrast to the claims by KY and ML that this is modified for
Born approximation, the only effect they found of the mag-y+0). The implication is that quasi-1D conductance fluctua-
netic field B was a field-dependent diffusion constanttions are still described by the standard random-matrix
D(B). Since the value of the diffusion constant cancels fromtheory of disordered conductors, but that the 2D fluctuations,
the conductance fluctuations, they found no effect of theeven in perturbation theory, define a family of random-
magnetic field on the amplitude of the two-probe conduc-matrix ensembles parametrized by the Hall ratio
tance fluctuationgother than the well-known factor of two In this paper, we use the disorder-averaged diagrammatic
reduction associated with the crossover to the unitary enapproach and the field-theoretical approach in a complemen-
semblg, although the correlation field,., which determines tary way. To study transport properties of a system with
the spacing of the fluctuations in magnetic field, was foundphase coherence, the appropriate starting point is the bilocal
to increase with increasing field in a manner consistent witfconductivity tensoro,,,(r,r'). In Sec. Il, we evaluate the
experiment® The reason for the increase is that for systemsneanao ,,(r,r’) to leading order in 17, using the diagram-
with L>L;,, B.~ ¢O/Lﬁ1, where Lﬁ1=D(B) Tin (po=hle, matic approach, and demonstrate the microscopic origin of
and 7;, is the inelastic scattering timeSince the diffusion the edge contributions. In Sec. lll, we set up the field-
constantD(B) decreases with increasing magnetic figdd theoretical formalism for the evaluation of linear-response
result reviewed in Sec. )l B; increases. Although this con- functions. We discuss the connection between the tilted
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boundary condition and the nonlinearmodel action with a  externally applied potential and the potential produced by the
topological term proportional ta, .25 Previously it was ~ electrons in the system; the latter potential is determined by
known that this topological term is crucial to the critical the change in the expectation value of the density, in re-
transition of the quantum Hall effect at large length scalesponse to the external field, through the 3D Poisson equation.
(L>§per0-29’30 For a system with reflecting edges, this term This is distinct from similar-looking equations below, which
is a nonvanishing surface term, whidoesinfluence trans- have the form of the 2D Laplace equation. Other short-range
port properties in perturbation theory, valid where &pe, interaction effects would contribute j@.) The chemical po-
through Variousggy-dependem boundary contributions. We tential in the above expressions is defined in terms of a local
show how to incorporate an external source field so that th@uasiequilibrium(in the presence of a nonzero response cur-
moments of the bilocal conductivity and conductance can b&end, which must be established by inelastic effects. Hence
calculated, and show the extent to which current conservahis formulation is only valid on scales greater than the in-
tion is maintained in this system. In Secs. IV and V, the€lastic lengthL;, (this of course requires that there be some
conductance and its variance are calculated by expanding ifteraction between the electronst is only in this sense,
power series in ygx and y. In the remainder of Sec. | we which implies the absence qf effgcts due to smgle—par_tlcle
begin the discussion of the main ideas and summarize outhase coherence, that Equatidnl) is a classical formula; it

results. The details of the calculations, and further discusdo€s not require that all effects of quantum mechanics be
sions, are given in later sections. neglected. Eq(1.1) (when valid is the most convenient

form for expressing the linear response, since a voltage mea-
surement determines electrochemical potential differences. It
does not imply that a local relation exists between the elec-
tromotive and electric fields. As the chemical potential is
In this paper we focus on calculations of the two-probedetermined by the local conditions, in particular by the local
conductance in a magnetic field. It is, however, possible talensity, and that density is affected by the transport, which
generalize our calculations to treat the conductance matrix dh our case will be diffusive, this relation is not local. Thus
a multiprobe conductor, as has been done previously for zerine current response to tled¢ectricfield is actually nonlocal,
(or weak field 33" Two-probe conductance describes an ex-as in Ref. 38, even in this “classical” case. We will return to
perimental setup in which voltage measurements are madis in Sec. | D.
only between the current source and sink and not between We will now calculate the two-probe conductance of a
distinct voltage probes as in a typical Hall measurementectangular sample with insulating edges connected to
(two-probe measurements are not uncommon for mesoscopionducting leads at each end. The potential in the leads
conductors, because of the difficulty of making multiple con-is assumed to be held at constant vallés and V,.
tactg. Therefore such a measurement cannot separately dét every point on the insulating edges the normal current
termine o,,(B) and o,(B). In this subsection, we show must vanish. Using Eq1.1) and £=—VV, it follows that
how the assumption of a local form for the conductivity in a (d,— yd,)V(r)=0, i.e., the electromotive field at the Hall
system with edges leads to the result that the two-probe corangle to the normal must vanish. Thus in this case the ap-
ductance is approximately proportional te,, when pearance of a tilted boundary condition on the electrochemi-
04| 0oyy|, and to|oy,| when |oy|>0y. Interestingly, cal potential follows simply from the fact that the field is
such an argument already indicates the appearance of thiéed from the current by the Hall angle. From the continuity
tited boundary condition which affects the conductance flucequation,V-j=0, and one finds thaf?V=0 in bulk. Solv-
tuations as well. ing the Laplace equation for(r) with fixed voltages at the
We wish to find the current produced in linear response tawo ends and the tilted boundary conditions at the edges is
an applied electric field. We will consider the two-probe con-not a simple exercise, but has been done for this 2D rectan-
ductance which results from assuming a local form for thegular geometry by conformal mappitigwe give a solution
conductivity, in another form in Sec. | D From this solution one can
obtain the two-probe conductance for an arbitrary Hall ratio;
) e however, here we analyze only its limiting behavior. The
Ju(N =5 0uE(1), (1) conductancg® can be found by integrating the current over
a cross section perpendicular to the current flow:
where, due to the macroscopic homogeneity of the sample
and Onsager relations, the conductivity parameters obey w
on= 0y, and o5, = —oy,. It is a common misconception g°= —agxf dy(dx+ ¥a,)V(N)I(Vo—Vy). (1.2
that € in this formula is the same as the applied electric field 0
E. In fact, in general€ in this formula should be interpeted ] o ) ]
as theelectromotivefield, that is, as minus the gradient of the First consider the case—0; it is then convenient to inte-
electrochemical potentidf = ¢— ule, where s is the elec- g_ra_te over all transverse cross s_ectlons in thg sample and
tric potential, andu the chemical potentiaimore generally, divide by the sample length. The integral then just evalu-
E£=E+Vyule). In this paper, we will neglect electron- ates _the voltqge at the two ends where it is fixed, yielding the
electron interactions of all kinds, s can be viewed as the familiar Ohmic result
externally applied electric potentiallf it is desired to in-
clude Coulomb interactions through a self-consistent poten- lim gozggXW/L_ (1.3
tial, then ¢ is the total electric potential, the sum of the y—0

A. Local conductivity parameters, two-probe conductance,
and edge states

2
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In the opposite limite%,—0, |y|—, the boundary condi-
tion implies that everywhere along the edge=0, i.e., there

is no voltage drop along the edge, and the voltage must re-
main equal toV,; along one edge and, at the other edge
except at singularities at diagonally opposite corriensere

it jumps betweerV,; andV,). The transverse potential drop
is equal to ¥1—V,)sgny, therefore

W
lim g°=— lim crgxf dy Yo \V(1)I(Vo= Vi) =|oq/.
[7]—e0 [y —e 0

(1.4)

So, using the classical local conductivity, the two-probe con- —
ductance changes from being dominated by the longitudinal
conductance at smaijt to being dominated by the Hall con-
ductance at largey. We can also solve the limit/W— o

with vy fixed; for a fixed current, the voltage drop is domi-
nated by the part of the geometry a distance greater \fflan
from the ends, in which the current distribution is essentiallyCO

: : 0 012
Indeger;deng ofy, ando one finds thatg"—[{(o,) condition arises from the fact that along each link, the random walk
+ (o) H o JWIL=(1/p,, )W/L. Note that the crossover is along only one direction.

to this behavior occurs at a value bfW that depends on
. In contrast to the above results for a rectangular samplg \y<

th ed ; odic bound giti i th épert» @nd localization effects have not inhibited back-
with edges, for periodic boundary conditions In the trans'scattering of edge states. The key ingredient to describe the
verse direction, which is equivalent to transport along a cyl-

_ . edge-bulk coupling in the perturbative regime is the tilted
inder, the conductance IS alwa_y:QXW/_L, for any value of boundary condition for diffusion which we derive in the next
v. We note that this geometry is equivalent, through a con

. . . ) ) Subsections. In the fully phase-coherent case, the boundary
formal mapping, to the Corbino disk geometry, in which thecondition is. however. modified further.

voltage drop is radial, and, since the equations are confor-
mally invariant, results for the cylinder also apply to the

FIG. 2. The Chalker-Coddington network model. Each unit cell
ntains four distinct linksA, B, C, andD. The tilted boundary

disk. Although the local formulation cannot be used in the B. Classical network model, edge states,

fully phase-coherent‘quantum”) case wherel,>L, we and tilted boundary condition on diffusion

expect that the physics illustrated by this argument will be  Khmel'nitskii and Yosefii® (KY), Maslov and Los¥
relevant to the average quantum conductance. (ML), and ReatP have previously obtained the boundary

Indeed, in thequantizedHall regimeL> £, previous ar-  condition on the diffusion process in high magnetic field.
guments based on the Landauer formula for two-probe corkY’s argument appears to be related in part to the classical
ductance in terms of transmission coefficients have noted theonductivity formulas reviewed in Sec. | A. ML considered
relation between two-probe conductance and Hall conducthe effect of the edge in high field on the microscopic diffu-
tance. These approaches assume that the incident and outgien process using a Boltzmann equation approach. They
ing channels aréN-edge state&* These edge states are found that the tendency to skip in only one direction when
analogous to classical skipping orbits advancing in one sensslliding with the edge does lead to the tilted boundary con-
along each edge and occasionally being scattered into thdition on the diffusion equation. They expressed the tilt
bulk. Any actual calculation of these transmission coeffi-angle in terms of the ratio of the mean free path along the
cients will be equivalent to evaluating the bilocal conductiv-edge and the bulk mean free path. R€acsed the nonlinear
ity between the two end®however, physical arguments are sigma model approach, which will be described later in this
made that in high field the backscattering of edge states wilpaper. KY and Read were able to identify the tilt angle as the
be suppressed giving perfect edge transmission anHall angle. In this subsection we rederive the boundary con-
g=N=|o,,|; i.e., the two-probe conductance is equal to thedition in a particularly transparent manner using a classical
Hall conductance which takes its quantized val(®ince version of the network model for high-field transport intro-
o=0 this is consistent with the classical result above duced by Chalker and Coddingthln this case one can
Although physically appealing, such arguments assume thaflso see immediately that the tilt angle is the Hall angle.
the interaction of bulk and edge states can be ignored. How- The original Chalker-Coddington mod2f“ describes the
ever, in a bulk 2D sample it is known that it is only local- quantum tunneling between the semiclassical orbits along the
ization effects which prevent edge states from backscatteringquipotential contours of the smooth random poter(sak
through the bulk states; they thus require thet¢, the  Fig. 2). To derive the diffusive behavior of the probability
localization length. We note that away from the critical val- density in this model we will neglect interference effects and
uesE.y (N=0, 1, ...) of the Fermi energy, which lie near describe each node by the probability that a walker ap-
the center of theNth Landau level{=¢,, while é—c as  proaching it makes a step to the righR)( or left (T);
Er—E.y for eachN. We cannot analytically calculate the T+R=1. (This simplified model has been considered by
conductance in this nonperturbative regirhe W>§&,¢; several earlier authofS7*’ it is essentially classical, and
however, our results below do describe samples for whicttould serve as a lattice realization of the classical behavior
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discussed in Sec. | AThe links of the lattice can be divided —pp(i+1,j)]/a andj,=[pp(i,j)—pc(i,j)]/a. For the low-

into four sublatticesse=A, B, C, andD (see Fig. 2 and frequency and long-wavelength modes, we can show that
each unit cell of the lattice contains one of each of the fouqy: _(ngay_ggyax)ﬁr,t)_ Along the reflecting walls, at
classes of links. The nearest-neighbor separatioa. i%e  zero frequency, the normal current is zero, e.g.,
usep,(i,],t) to denote the probability of being at link, site (i j)— pp(i+1,j) =0 at top edge, which gives the bound-
i,j attimet. Assuming that it takes time for a particle to  ary condition

move from one link to the next, one can define a random-

walk problem on the network and write down probability (9, v )p_=0 (1.9
evolution equations: noo ’ '

where n is the outward normalf=nxz is the tangential

e AT (i
pe(l.]t+ 1) =po(l.].OT+pall] OR, direction of the boundary, ang= — T/R= o2,/ oy, with our

pcliyj t+7)=pa(i,j, ) T+pp(i,j, R above identification of the bare conductivities in the model.
v Y R These expressions for the current density are of the form
pali,jt+7)=pg(i,j—1H)T+pc(i+1j,DR, used by KY and in Sec. | A.

It is interesting to note that, in the network model, the
poli,it+ 1) =pcli,j+1)T+pg(i—1,j,t)R. (1.5  definition for the local diffusion current density is not

unique. One can also define, e.g,= i,j)—pc(i,]
This problem differs from the usual random walk in the re- N 9x=Lpo(1 1) pcll.]

+1))/a, j.= i,j)— i,j)]/a.j. andj, differ by a to-
spect that on each link the walk is in only one direction,t Id)] . JtY [th( - pDc(j ﬂJ])] ly de' y .
hence breaking time-reversal symmetry. al derivative termj,p, and the correspondingcomponents

The above equation can be diagonalized in Fourier spacéliffer by —dyp and by a é-function boundary term
One can show that the long-time large-distance modes have@(x,W) 6(y — W) — p(x,0)5(y). In the presence of such an

diffusive spectrum edge current, the boundary condition that ensures “current
] 5 conservation,” which in the interior is the requirement
—lw =Dk V.j’=0, becomes
for o<1/ andk<€1/a, whereD, the diffusion constant, is .
i 1.2 2 2 . . W+0 ey , .
given byD = za RT/(R +T )T The assoc@ed eigenmodes <9xf dy’jx(x,y') =iy (x,W)=0 (1.10
are of the following form in Fourier space: -o*
pa(K) 1+a§xikxa+ogyikya at the top edge, which is still equivalent to Hd.9). These
forms for the current density are similar to those of ML. The
pa(K) _ 1 edge contribution ensures that the total current through a
pc(k) | | 1+ (02— a')(()y— 1ika+ (oo + ggy)ikya ' cross section transverse to theirection is the same, which-
(k) 14 (—0® —1ikat o0ik ever definition of current is used.
Po (—oy~Dikatogkya One can see that in the long-time, large-distance limit the

where, in anticipation of our discussion below, we identify lack of time-reversal symmetry affects the diffusion process
the two constantso®,=RT/(R?2+T?) and o2 =—T2  only through the tilted boundary condition, which is present

(T2+R?) as the the bare longitudinal and Hall conductivities Oy because of the edges. As we will show explicitly below,

of this model. Note that these conductivities satisfy thethese boundary conditions, although derived from a lattice

“semicircle relation” here for .convenience, are quite general fOI.' conduction with
broken time-reversal symmetry. As one might hope, in the
ol + (ot N+1/2)%=1, (1.6)  long-time, large-distance limit the microscopic details of dif-

ferent models cease to matter.
with N=0 here in the case of the lowest Landau level, which  As noted just above, the boundary condition derived in
has been claimed to be a general, exact result in the quantugy,. (1.7) applies fory= —T/R, the single-node transmission
Hall effect*’ In real space, all four components of the prob-and reflection coefficients of the classical network model.
ability distribution satisfy the same coarse-grained equationwe now must further justify identifying this ratio as the bare
_ _ Hall ratio. There are two approaches to this. There is no
—DV?p(r,t)=—dip(r,t). (1.7)  applied electric field or electric potential in this problem so
far, so one may simply define the chemical potential on each
tunneling region with constant velocity. The fact that the(?mk as proportional to the curregor density t_here(m ana_ll-
A, ) " ogy to the Landauer approach for the entire sampldis
re-entry probability is zero gives the boundary condition at 45
the leads was done by Kugera and Sti&"™ and !eads to the formulas
’ for ¢2, and agy given above. In our view a somewhat more
p—: 0 inthe lead. (1.9 satisfactory method is to cglculate the steady-state current for
the network under periodic transverse boundary conditions
Since the particles always move in the direction of the arrow(i.e., a cylindrical systefm when current is injected at only
on a link, the density on a link can also be considered as itone end of the network, with unit current on each incoming
current. The differences among the four components definknk at that end. This is just the appropriate time-independent
the diffusion current densities, which are suitable for coarsesolution of Eq.(1.5); in the absence of edges the solution is
graining. For instance, we can defing =[pg(i,j) the lineark=0 mode:
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pe(X,y)=bix+bg, 9

g
— —2V22(r)=0 inthe bulk,
whereb, =1/(L/a+ a2,), bo=1—[o%/(L/a+¢2)], and 4 (1.14
PA(X,Y) = pa(X,Y) oab1 (d,+ yd;)z(r)=0at the reflecting walls.
pc(K)=pa(xy) | =| (o9x—omy~Dby |,

At the absorbing boundaries, we simply impase z=0.
po(X,Y) = pa(Xy) (—ogy—1)b; These equations are equivalent to the zero-frequency limit of
those in Sec. | B. We observe that the boundary conditions
on z and onz are not consistent, which means we cannot
find any nonzero configuratiorgr) that satisfy both these
conditions simultaneously. This is due to the fact that the

where the constantsy, and o3, are as defined above Eg.
(1.6). The above solution has a uniform current distribution
with a total longitudinal current, fok>a,

W o2, W differential operator, that appears in Ed.12) betweenz
lx=9= fm:foix, and z, is not self-adjoint. As noted by KY and ML, equa-
XX tions similar to Eqs(1.13 and (1.14 define the right and
and a total transverse current, circulating around the cylinleft eigenfunctions of this operator; these eigenfunctions are
der, not complex conjugates of each other. The eigenfunctions
are not simple to obtain in our geometry, becausextaady
|yz—a;’y, dependence does not separate, whetD. The analysis of

L . . the eigenfunctions in KY and ML ignores the boundary con-
justifying the interpretation we have assumed. . ditions atx=0, L, and is appropriate only fdr/W— .
To solve for the current in the presence of edges is much " ain a(zero-frequencydiffusion propagator, we use

more difficult, even in this classical model._ We WI" see, S, as the action in a functional integral, and defth,r’)
however, that on large scales the problem is equivalent t

that solved by Rendell and Girvihand discussed in Sec.

I A. The reason for the similarity is already clear; in the 0

classical network model, we assumed that the chemical po- d(r r’)zﬁ«z_(r)z(r’)})o
tential was proportional to the density, and, when the exter- ' 4

nal electric field is zero, the coarse-grained current density 0
was related to this potential in the same way in both cases. _ Ixx D[z z_]z_(r)z(r’)eso(z'z_)lzo (1.15
2 , . .

C. Continuum action and propagator . . . .
propag [Here Z, is the same functional integral withoa{r) and

The diffusive behavior generated by the classical networkz—(r) inserted] Thend(r,r’) satisfies
model of Sec. | B can be reproduced in a simple continuum '

field theory. Consider the action CV2d(r,r")= —V'2d(r.r')=8(r—r’) inthe bulk,

_ Tx 2 — Ty 2 - . i
SO__T d r&MZ&MZ—T dre,,d,29,z. (dq—ydpd(r,r')=0, r atthe reflectingwalls, (1.16
(1.11

Herez(x) is a complex scalar fieldz is its complex conju-
gate, and the geometry is the same as in Sec. | B. The secoiithe propagator exists, and can be shown to satisfy the stated
term is clearly a total derivative. To obtain the equations ofconditions. One notices that the propagator is not symmetric
motion and boundary conditions in this model, we first re-with respect ta andr’, since the boundary conditions for
write S, as andr’ at the edges differ by a sign. In principle, the propa-

o o ggtorfcan 'be evalqatgﬂ( byde|>\</|p|)_anhding in the rihght and left
Oxx — Oy — eigenfunctions, as in an ; however, as these are not
Tf d2r[zV22]—Tf d?r[9,{z(9,+ v€,,d,) 2}, re?idily available for our geometry, we will just define it by

(1.12 Eqgs.(1.16 (see also Sec. lll D below
. . The actionS, has also appeared in the literature in con-
Then one can see that the second term is again a total dfaction with an open string with opposite electric charges
rivative, and that it can be written as a boundary term. Takuttached to the ends, in a uniform magnetic fildihe

ing the functional derivative with respect o we obtain the boundary conditions have also appeared there, along with

(oh+yo)d(r,r')=0, r' atthe reflecting walls.

equation of motion forz: explicit results for the diffusion propagatdrin some geom-
0 etries simpler than ours. We will see latar Sec. | E and in
Oxxep— Sec. ll)) that Eq.(1.11) also arises as the lowest-order part of

_ I XXy2 - i
4 v°z(r)=0 inthe bulk, the nonlinear sigma model action. In fact, the full Chalker-

(1.13  coddington model with phase cohereficis related to the
9 —va)z(r)=0 atthe reflecting walls. nonlmea_r sigma mod& in a manner closely analogous to
(Gn= v 2(r) g the relation between the models discussed in Sec. | B and
Similarly for z, we obtain here, which are just the linearized versions. In Sec. Ill, we
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will also discuss the expressions for the currents, like thoséield, contains not only terms involving* G~ at the Fermi
in Sec. |1 B, from the point of view of the nonlinear sigma energy, but also terms involving*G* and G" G~ inte-
model action. grated over all energids up to the Fermi energy. We denote
the G'G™, G'G" andG~ G~ terms aso,, , 0,, , and
D. Bilocal conductivity tensor and conductance o,, - In disordered systems, products of Green’s functions

In Sec. | A above we used a classical formulation of thethat are both retarded or both advanced are generally short

conductivity, and worked out some of the consequences fdi2n9ed because of the amplitude cancellations among differ-
the two-probe conductance in a high magnetic field. In thi€Nt wave frontsthey typically only extend over the range of
subsection we introduce a full quantum formulation for theth® mean free pajhso we can treat ™~ ando™ ~ as contact
bilocal conductivity tensor and the conductance in a disor!€/ms:
dered phase-coherent system in order to treat both the aver- anr s _aa ,
age quantum conductance and its variance. o (r,r)=os(r=r’),
For a quantum conductor with phase coherence, that is,vherea:Jr,_, o22= [, d?r g2(r 1),

whenL;, is larger than the sample size, the electron wave |, the presence of a magnetic fieg the current given by
function is sensitive to the external field in the entire SPacegq. (1.17) does not necessarily satisfj-j=0 even when
Equation(1.1) cannot be used, as there is no definition of thep is time-independent, unless we also reqiee E=0 (i.e.
chemical potential within the sample. We apply standardya¢ the componers of the magnetic field perpendicular to
linear-response theory to a finite disordered redenoted 1o 2p layer is also time independentAs shown by
by A) with Fermi energy. , connected to perfect leads held garanger and Storf8,under this condition “current conser-
at fixed voltages, which induce a local electric field in the, aiion” V.j=0 is satisfied, and from it we can derive con-
disordered region the detailed form of which is not relevantyitions  on  the bilocal ’ conductivity. Writing E(r")
(For the two-probe case, the sample occupies the regiog_vrqﬁ(r,) (where ¢ is the electric potential we have
0=x=<L, O=sy<W, see Fig. 1. Following the treatment of
Baranger and Storf€,one finds that there is a nonlocal rela-
tion between the current response and the applied electric

(1.19

field,

. el ,
JAU=T;LdWGMUJUExWL (1.17)

where the bilocal conductivity tenser(r,r’) (which has di-
mensions of inverse length squareat T=0 can be ex-
pressed in terms of a pair of Green’s functidfs:

4

T (r,r')= 4m2[G+(r,r’;EF)D:‘LDLGf(r’,r;EF)]
e
h* (Er d o o
— Mt ! ' * ! +
I dE [dE,G (r,r',E')D%D,G
><(r’,r,E’)+G*(r,r’,E’)5;5;
d G (r',r,E’ 1.1
XE (r ,r, ) , ( . 8)
where
¢ B~ Ehy,
and

G(r’,r)BG(r,r’)zG(r’,r)[V—i(e/ﬁ)AO(r)]G(r,r’)
—G(r,r")[V+i(elh)Ay(r)]1G(r',r).

HereH is the Hamiltonian, discussed further in Sec A, is

2
0= [ o) F )

eZ
-—> ¢J o(r,r')-ds, (1.20

h < Ci
where ¢, is the (constank potential in theith lead,C; is a
surface across thih lead, and the boundary terms at the
reflecting walls vanish because the normal component
on,(r,r') vanishes forr at the wall (and similarly for
v=n, r’ at the wal). ThusV-j=0 implies that the following
conditions are satisfied:

V.o(r,r')-V'=0,
o(r,r’) (1.2D

V-f o(r,r')-dsS'=0 for alli.
Ci

The above identities have been verified in Ref. 42 for the
exact bilocal conductivity tensor.

Using the second identity in E€L.21), one can transform
the linear response equati¢h17) into a different form. As-
suming, without loss of generality, that=E¢ in all the
leads (we always viewEr as a position-independent con-
stan}, the electric potentials there differ from the voltages
(electrochemical potentigl®nly by a constant, and the total
current in tha th lead can be written as a function of only the
voltages in the leads:

o2
|i:F; gV, (1.22

the vector potential representing the background magnetiwhereg;;’s are conductance coefficients. Thg's are re-

field, and we will also use-iAD=—iAV—eA,. In the pres-

lated to the bilocal conductivity tensor by

ence of the magnetic field, the bilocal conductivity tensor is

not entirely a Fermi-energy quantity. EvenTat 0, the com-

plete current response function, in the presence of magnetic

gij:_f fds.a(r,r')-dsj’. (123
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whereS; andS; are cross sections in théh andjth leads, physics literature in Ref. 38, although it may well have been
anddS andds; are differentials of outward-pointing nor- known earlier. It or Eq.(1.29 shows that the current re-
mals.[In Eq. (1.22, we used the relatiox;g;; =0, which  sponse to an electric field has a nonlocal part, the term con-
follows from Eq.(1.23, and the second of Eqél.21), and  tainingd® or d in the formulas, due to diffusion. For nonzero
implies that a constar¥ produces no current in any ledd. magnetic field, one finds from EqL.25 that

For cross section§; not intersectingS;, for i#j, the off- , o )

Fermi-energy termso**(r,r') and o~ ~(r,r’) can be 3,001, 17))scBA= €4,0xy 9, 0(r=r1"). (1.2
shown to make zero .contributitﬁﬁ,an'd therefore;; can be ¢ givergence of the response current is therefore
expressed as a Fermi-energy quantity. It has been shown that

gjj is proportional to the total transmission coefficient of the e?

scattering states at the Fermi energy fromitielead to the V-(j(r)= FJ d?r’'V-(o(r,r'))scea E(r')

jth lead?:%942|n this paper we will consider only the simple

case of the two-probe conductance, in which certain further e? "

simplifications are possible. = Fny’OVX E(r). (1.27

Since the total currents at all cross sections are the same
for a two-probe setup, we can average over all cross sectiorlg the presence of a magnetic field, the current is divergence-
to obtain a volume-integral form for the two-probe conduc-less only wherV X E= — dB/dt=0; otherwise there is a time
tance: dependence in the densityp/gt=(e’/h)o;,°9B/ t. To ob-
tain a truly static response, we would have to impose
VXE=0. (There is also an edge-current contribution involv-
ing crl('y, which will be described in the SCBA case in Sec.

) ) II.) This behavior is typical of the quantum Hall effect, in
Here we must be careful to include the off-Fermi-energy,

which o\ e€,,,6(r—r') is the only part of(a(r,r')) that is
. ) . yEuv ;
terms, since they are negded to preserve the “'.“fo”“'t_y of thI"?onzero in the interior of the system on scales larger than the
current across each sectifrom the technical point of view,

. o V=W Jocalization length¢, and o, is quantized to integer values.
sincex andx’ can now coincide, we are no longer justified gthe xy 1S G 9

) . : o It is the local expression of the gauge-invariance
in dropping thec?? termg. Despite this disadvantage the argumenf40 P galg
vo!{un]e-lr}te?r?l fOI’trrT]l ogt;ls ofterf1 mor_etconvle?lent to use ml The measured experimental quantity is the two-probe
actual calculation than the surtace-integral 1orm, SINCe VOlv,,y,\tance. It is straightforward to shésee Sec. )| from

ume averagin.g still eIiminates_ many diagrams which wouldan equation similar to Eq1.25), that the two-probe conduc-
be nonzero in the surface-integral approach. Thus Eq ’

; . . Yance within the SCBAg®, can be written in terms of the
(1.18), (1.23, and(1.24 will serve as the starting points for diffusion propagator as

the evaluation of quantum conductance and conductance

fluctuations. W W
We may gain further insight into the meaning of the cur-  g°= —agxf dy’f dy(dy+ ydy)(dy— y&{,)d(r,r’),

rent conservation conditions, and the relation to the classical 0 0

case, by use of the self-consistent Born approximation (1.28

(SCBA) results for the disorder average of the bilocal con-where x#x’ are arbitrary. We note that although

ductivity tensor. As we will show in Sec. Il, in this approxi- (0,,(r,r")) in the bulk depends 0”!53' the conductance

mation (a,,,(r,r')) (the single angle brackets will always gepends only on the ful},, due to additional edge current

denote the average over the disojder of the following  congributions too which we omitted in Eq(1.25. These
form whenr andr” are more than a mean free path from the ;ontributions are similar to those discussed in Sec. | B.

1
9= dzrf d2r’ oryy(r,r"). (1.29
L) a A

edges: It is in fact possible to show that the mean bilocal con-
ductivity and conductance obtained in SCBA are identical to
(0.1 ) scen= [0t (03 + 03) €, ]8(r =) those o{)tained from the “classical” formulas of Sec. | A, if
O'Qy’o is zero. To obtain the response to an arbitrary electric
- ?—[ngﬁ,ﬁ UL’SewrﬂﬂI] field E, we write the conditions of Sec. | A on the current
XX density, usingf=E+Vule, as

X[O-)?Xé,]’/_ U'L')?EVV/(?;,]d(r,r’), (125) VZ/.L/e: _ 3;,,( E,u,+ ’)’f,wa)a (129)
where o, , a3y, oy°, and o+ 0y,0= oy, are the SCBA
conductivity parameter¥, o,,° comes from theoc** and

o~ " parts of Eq.(1.18), andd is the diffusion propagator (dn—yd) ule=—(E,— yEy) (1.30
discussed in Sec. | Qwith agy appearing in the boundary
conditions. In the zero-field limit,o)= oy,°=0, the above

reduces to

and the boundary conditions

at the reflecting wallsu/e=Eg/e in the leads. These inho-
mogeneous equations far/e are equivalent fory=0 to a
2D electrostatics [:r)?rzoblem with a mixed Dirichlet-Neumann
, _ 0 ey 140¢p boundary condition; and can be solved using a Green'’s-
(@unl1.1"))s08a= 70l 8,81 =17) = 0,9,d(1.1 )] function technique. A slight generalization of the same tech-
(in which d° is the diffusion propagator fonr(x)y= 0). Toour nigue works fory#0. The required Green’s function is pre-
knowledge this basic result first appeared in the mesoscopidsely d(r,r’) as defined in Sec. | C, and one finds
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E. Nonlinear o-model approach

— 201 ’ ’ ’ ’
pir)le= EF/G_J d7r (9, = v€sr 3, )T, I E,(I). The approach of Sec. I D, in which the self-consistent
(1.39 Born approximation is the leading contribution to conductiv-
ity and conductance, can be developed as a diagrammatic
) . . expansion(see Sec. Il A However, this approach becomes
Using Eqgs.(1.1), the bilocal CO”‘HUOC“V'W tensor that results ¢ mpersome in higher orders because all diagrams contain
is exactly of form(1.29, with o,;"=0, and no additional yertices which need to be evaluated in terms of the average
edge contributions. Consequently, the two-probe conducsingle-particle Green’s functions, and are dressed with disor-
tancesy® given by Egs(1.2) and(1.28 are the same, for the der lines in all possible ways. However, when these vertices,
same values of, andzrgy, and since this involves only the which describe interference or “interactions” of diffusing
total g'gy, it remains true even if;Qy'O;éo is included as in modes, are calculated at small wave vectors, they are all
the SCBA. This implies that the bilocal conductivity in found to be related to the same quantitigs ando?y, . These
SCBA has just the form which follows from a local relation complex and often redundant calculations can be avoided by
between current and electromotive field, even though there igsing the nonlineat--model (NLaM) representation of the
no sensible definition of a local chemical potential in theProblem. o
phase-coherent limit. Hence all the conclusions drawn in The NLoM approach starts by considering only Green's
Sec. | A can also be applied within the SCBA. functl_ons at the Fermi energy, Whlgh means tha_lt the non-
In general, there is also an edge-current contribution, wittf €'Mi-energy parts of the conductivity described in Sec. | D
coefficiento;°, to Eq. (1.25, which will be described in cannot necessarily be obtained, though the conductance and
Sec. II. There is no reason why both the bulk and edg its fluctuations can. After introducing 'repllcas, the dlsqrder is
no L . ntegrated out, followed by the variables representing the
oyy contributions should not also appear in the so-calledyqrons propagating at the Fermi energy. After a Hubbard-
classical formulation of Sec. | A, even though they were notsiatonovich decoupling, and neglecting modes that have no

ably still be present even if there were inelastic scattering. wjl| be given in Sec. Il

We may also connect the results of Secs. | A and | D with

the field theory in Sec. | Gagain fora!(');(’:O). In Secs. | B a2,
X . 2
and | C, the external electric field was zero. If we replace S=-5 Ad rtfa,Qd,Q]
9,2, &Mz_by d,z—2iA,, 4,Z2+2iA, in the actionS,, Eq. 0
(1.12 (this A should not be confused witAy or any other Ty [ o
“physical” vector potential and then define 8 Ad rfe,,Qd,Qd.Ql, (1.32

ju(r)=0S[Al/6A,(r) to be the current, we find
j,=i00,(0,z+2iA,)/2, and the conditions for an extre- WhereQ is a 21x2n Hermitian matrix obeyingQ*= 1,
mum of the actionequations of motionared,j,(r)=0in  (I2n is the identity matrix Q hasn eigenvalues equal to
the interior andj,=0 at the reflecting walls. Thus these *1.n €gual to—1. Using a parametrization given explicitly
equations have the same form as the local classical condul® S€¢- lIl, it can be shown that for small fluctuations about
- . T — the maximum action configuration whefg is diagonal,S
tivity equa_tlons, withiz/2, _A“ n plape of (“f Ee)/e, reduces at quadratic order b3 copies of the earlier action
E, . and since, for a quadratic action lilg, the linear re- S, in Eq. (1.1D).
sponsed((j ,))o/ 5A, to the perturbatiorA can be equiva- Before discussing perturbation theory for this action, we
lently obtained either from calculation of the correlation wish to mention some general issues. The second teBnsin
function[similar to that in the definition ofl, Eq.(1.15], or  the so-called topological term. It is the only possible term
using the equations of motion as above, we also obtain ththat can be added to the first term in two dimensions that is
same bilocal conductivity in this approach. This calculationconsistent with the symmetries of the problem and contains
is done in detail in Secs. lll and IV, so we refrain from only two gradientghigher derivatives would be irrelevant at
giving further details here. Section Il C also includes thelong length scalgsOn a compact, oriented manifold without
corresponding “classical” equations for the case whenboundary, such as a sphere or a tdies, periodic boundary
ol 0#0. conditions, this term(with a factor of 2ri agy removed is a

The SCBA for the average conductance is the leadingopological invariant, which takes integral values. This fol-
approximation in an expansion in powers Offil, and itis lows from the fact that the term is a total derivative, and the
not really surprising that this leading approximation behaveg@bsence of boundaries. Consequently, only the valueQpf
identically to the classical case. When evaluating conducmodulo 1 is important. Moreover, because the term is a to-
tance fluctuations, or weak-localization corrections, one muspological invariant, agy does not appear in perturbation
consider higher orders in @f,. In such calculations the theory at all, but only in nonperturbative effects involving
tilted boundary condition is modified further. In the frame- configurationg*instantons”) for which the topological term
work of diagrammatic perturbation theory, this can be alteris nonzero. However, in the integer quantum Hall effect, we
natively viewed as the appearance of additional boundargxpect to obtain plateaus at integeal, and transitions be-
vertices describing interference effects. These vertices afeveen them ato,, half-odd-integral ¢, oy, denote the
more easily obtained and evaluated in the nonlinearenormalized, large-scale, parameters, as opposed to the bare
o-model approach to which we now turn. values o2, and ogy at the cutoff scald). Because of the
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periodicity in agy, the NLoM predicts that all these plateaus fects on renormalization group flows forgx and Ugy, ob-

and transitions will have identical universal properties. But,tained in the interior of the system, should be unchanged.
by the same token, it is also unable to predict the integralhese effects will not be considered further in this paper,
part of o, that would be observed in a measurement; thisvhich emphasizes perturbation theory.
information appears to be lost in going to the . In the one-dimensional case of the &M, no other term

The apparent paradox is resolved on examining the actiof@n be added to the basic gradient-squared term, and there

S for a system with reflecting boundaries. The “topological” @€ of course no sides on which the boundary condition
term is a total derivative that can be rewritten as a boundar ould be modified. Therefore, the conductance fluctuations in

term, just as for the actioS, above. The boundary term is he unitary ensemble should be universal, and must be recov-

not a topological invariant, so it can affect perturbationered in the quasi-1D limit of the 2D system in a magnetic

theory, and, since it takes arbitrary real values, the magnif—Ield which we are con§|der|ng; th|s constitutes a strong
0 .- ST . check on the 2D calculations. We will show that in this limit
tude of oy, is important, and not just its value modulo inte-

. he only effect of¢?, is to modify the 1D conductivity,
gers. 'I"hus when the boundaries of the system are ‘?°r,re°t hich ig known to cgyncel from th:;yconductance fluctuayt/ions
taken into account,_ the value ofxy_(_:an be obtained Wlthln_ to leave a universal number. KY and ML claimed t
the_ NLoM formglaﬂon. Some additional remarks about this 564 affect the quasi-1D limit; the present argument shows
point are made in Sec. V. that their results must be incorrect. In Sec. VI, we will briefly

Since the leading-order part of the action is the same ag,ention the situation for dimensions higher than two.
Sy, the propagator for small fluctuations @ is the same as

the propagatord discussed earlier, and depends oﬁy ,
through the boundary condition. In the work of KY and ML, !l DIAGRAMMATIC EXPANSION FOR (&, (r,r"))

this modified propagator was the only effect included, and |, this section, we evaluate the mean bilocal conductivity
was just inserted into the Xiong-Stone results for conduCiensor for the short-ranged potential model using the dia-
tance fluctuations. However, the MM shows that the grammatic impurity-averaging technigifeWe will first re-
boundary term also contributes at higher order, producingjey the self-consistent Born approximatié®®CBA), which
new vertices for “interactions” between diffusons, which js the eading order of the perturbation expansion, and estab-
are boundary interactions with coefficienf,, and which |ish basic parameters such as the mean free patnd the
contribute to the fluctuations at leading order. These termgg e conductivitiess?, and ¢2,. A gradient expansion is
must be present in order to maintain the full W)2symme-  sed to treat the current vertex. Within the SCBA,
try of the NLo'M, which essentially corresponds to Presenv-(, (r,r')) has a contact term as well as a long-ranged term
ing the continuity equation for the current. We have alsOyhich can be expressed in terms of the diffusion propagator.
obtained them in the diagrammatic approach, but only withy, {he pylk, o0 appears in the long-ranged term. Along the
much additional effort(Pruiskeri® also discussed the rela- reflecting béLymdary the edge currents give rise to

Fion of the topological term to ed.g_e states, but appeared '3 function contributions proportional to!':°. As a result, it
infer an incorrect boundary condition. His boundary condi-._ ¢ | Xy '

_ ,0 11,0 . .
tion is very useful in instanton calculaticis®! but does not Txy=0xy T 0y that appears in the boundary condition

y :
correctly represent the edge effects, unlike the conditions tgnd the two-probe conductance. We will also check that cur-
be discussed in this papgiln this paper, we evaluate the

rent conservation is respected within the SCBA.
effects of these terms to leading order imrd/, and, to sim-
plify the calculations, also to leading nontrivial order in A. Model, edge current, and ideal leads

0,0 - - . . . .
v= 0yl 0%« As well as calculating the mean and variance of  an electron in a system with edges, in a random potential
the two-probe conductance, we show how the expression faind subject to a perpendicular magnetic field, is described by

the mean bilocal conductivity tensor in the SCBA can bethe Hamiltonian(we neglect spin throughout this paper
recovered within the N&M, including the non-Fermi-

energy parts, by modifying the coupling of the &M to the
external field, and we discuss the resulting form of current H=Hy+V(r), Hy=
conservation conditions to all orders in perturbation theory. 2me
One may wonder if the boundary conditions for a system . . . . .
with boundary invalidate the conclusions of the analysis ofvhereV(r) is the random potential and is confined in the
Pruisken and co-workefS 3 who studied effects of instan- r€gion of O=x=<L, andU(y) is the confinement potential
tons in a system without a boundary. Strictly speaking, in 45€€ Fig. 1. The uniform magnetic field is in tredirection,
finite system with boundaries, there are no well-defined toand we choose the gaugg = — Byx. For simplicity, let us
pologically distinct sectors. However, small instantons whichassume the confinemebk(y) to be the hard-wall potential
are well localized inside the system boundary, so @at with U(y)=0 for O<sy<W, and U(y)=% for y<0O and
approaches a constant outside the instanton core and satisfigs W. The infinite potential barrier requires the wave func-
the boundary conditions at the edges, while probably notion to vanish aty=0, W. The system is infinite in the
exactly local minima of the action, are still nearly so whendirection, but the disorder is present only in the region
their size goes to zero compared with the system dimension§=<x=L. For the random potential, we will take the simplest
and in this limit their topological charge will still be an in- among all short-ranged models, which has the statistics of
teger, and they will make the same contribution to the actiothe Gaussian white noise with zero meg@mgle brackets
as they did for the other boundary conditions. Thus the efdenote the disorder average

(—ikD)2+U(y), (2.1
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(V(r)y=0, (V(r)V(r")y=us(r—r’), it becomes three dimensional, thus increasing its conduc-
(220 tance. There is, however, a third way, which most closely
(V(ryV(ra)- - -V(ry))comected 0, N>2, conforms to the perfect leads used in the network m¢sks

. ) Fig. 2 and has some convenient properties. The links of the
whereu describes the degree of disorder. network can be viewed as edge channels, and outside the

In the absence of the random potential, the unperturbed,npie there are many of them, running parallel, alternately
wave functions can be found by separating the variaifles. right and left moving, without backscattering. A similar

The wave functiong/(r) are labeled by the wave vectoin  gayn can be produced in a 2D Hamiltonian model with a
the x direction and byN in th_e transverse directio turns | niform magnetic field, by replacing(y), onlyin the leads,
out to be the Landau-level index. We have by a potentialU,(y), which =+ for y>W or y<0, and
has a sinusoidal form inQy<W. If the Fermi energy lies
between the maxima and minima 0f;, there will be many
“internal” edge channels at the Fermi energy, consisting
- alternately ofN+1 channels moving in one direction and
and ¢y, (y) satisfies N-1 moving in the other. For an infinitely long, translation-
2 Do 21821 —4 ally invariant system there will be no backscattering among
h(=19y)"+ (y=15K) g "1/2me+ U(y)} én(y) these modes. In effect, we have many narrow leads in paral-
=Enxdni(Y), (2.3  lel, all connected to a single rt_aservoirabc and to another
at +o. Then the number of right-moving channels can be
where |5=%/eB. Without the confinement potential, the proportional to the width of the system, or arbitrarily large,
Hamiltonian is simply that of a harmonic oscillator, with the and the current can be injected uniformly across the end of
harmonic potential centering a‘yk=klzB. We havé&® the sample. From now on, it is this model that we will im-
¢N'k(y)=XN(y—Isz) and Eny=EN=(N+1/2)hw. for  plicitly use.
W=y, >0, whereyy is the Nth wave function of the har-
monic oscillator, andN=0,1,2 .... Thewave functions B. Self-consistent Born approximation(SCBA)
spread an exterR,= 2N+ 1l aroundy,. We can see that
for wave functions which center at a distance more tRan
away from the walls, the presence of the walls is hardly felt

but for those which reside within a distanég from the expanded in power series in K4). The SCBA takes into

walls, their eigenenergies are raised ab&yg because the . . .
wave functions are forced to zero at the boundaries and thu%ﬁcoum all the non crossing d.'agfa (ﬂi's.g. 3 agd has been
own to be the leading contribution in &().

made to oscillate more rapidly near the walls. Only the stateg OWN ! : . , .
within R; of the edges have a nonzero group velocity alonglse\g"t:%n 52)? sigg‘fe\s the single-particle Green’s function
the walls, i.e., the expectation value of the velocity operato '
(N,K|vy|N,k)#0. From now on,R; plays the role of the
short length scale of the problem, and we treat the edges as
having zero width. We will later show that, in this sense, theWhere the self-energy in tumn depends 6n(we use the
inhomogeneity at the edges gives rise&dunction contri- overbar to denote the SCBA Green’s funcion
butions to the currentsee also Ref. 54

Although the above description &f, is very convenient o~
for finding an explicit solution for the energy eigenfunctions 2(r,E)=uG(r,r;E).
when the system is infinitely extended in tkedirection, it The apove equation can be solved analytically in the low-
does not provide a convenient description of ideal leads ije|q |imit (w.r,<1) and the high-field limit @ 7o>1)2*
the presence of a nonzero magnetic field. For our purpos@g the intermediate-field range, it can be solved numerically.
ideal leads should be perfect absorbers of all incident currentor our purpose, we do not need the explicit solutions. We
i.e., they should behave as if they have essentially infinitg;se the SCBA Green'’s function to define the effective scat-

conductivity compared to the sample. The problem is that ifering rate 1# and the effective mean free pdtit the Fermi
the leads, wherg<<0 orx>L, the states at the Fermi energy energy:

generically consist of a certain number of edge channels

1 .
Ini(r) = \/—EelkXd’N,k(Y),

In order to calculatgo,,,(r,r")), we first need to evaluate
the disorder-averaged single-particle Green’s function and
‘two-particle Green’s function,G) and(GG), which can be

[E—Ho(N)—2(NIG(r,r;E)=68r—r"), (2.4

moving in each direction, and this number is equal to the 1 St—3 (lUry, wemp<l
number of Landau levels below the Fermi energy in the bulk, P T:{ZfsinG(EF)/h, — (2.9

which is N+1 when the Fermi energy lies above thigh

Landau level. Thus in the relevant sense, the leads have zey _ 2N ; ;
bulk conductivity and only absorb and inject current at theﬂféiﬁ Ie\\//glls(ﬁz(gl)i Coﬁsl/ff(cézoEls) /t2r11£a]wcl)c£h0(()é)b<ro:d:nn§d
corners. There are several ways in which we could modify N U -

our model to remedy this problem. One way would be to let o o
the magnetic field drop to zero at the ends of the sample, so |2:uf d?r 1 (x—x4)2G(r,r{,Ef)G (r1,r;Ef)
the leads are like the usual 2D metallic leads in zero mag-

netic field. Another way, which corresponds roughly to the 12 <1

. . . - 00 ®WcTo
Ohmic metallic contacts used in real experimental systems, _{ ) (2.6)
would be to “thicken” the system outside the sample, so that Rer  oc7o>1.
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Co(r;E,E’)=uJ d%r,G*(r,r{,E)G (ry,r;E)

(@) =1+i(E—-E")7/%,

Cl(r;E,E’)=uf d?ry(r—ry)G*(r,ry;E)G (ry,r;E")

A 4
A 4

= + =0,

/N
N
I\

C2(r;E,E’)=uf d2r(x—x1)2G " (r,r{,E)G(r4,r;E")
() =12

It follows thatS™ ~(r,r’,E—E’) satisfies the diffusion equa-
/ tion

! ! [~ DrV2—i(E—E')A4]S" ~(r,r";E—E')=8(r—r1"),
(Z 2.9

whereD is the diffusion constantD(E)=1?%/(27). One can
see thatS"~ at E=E’'=Eg, which is all that will be re-
© quired in this paper, is proportional to the dimensionless dif-
fusion propagatod(r,r’) we defined in Eq(1.16):
FIG. 3. (@ The SCBA single-particle Green’s function. It sums

up all the noncrossing diagrams. The thin line dend®®s the |2

Green’s function in the absence of disorder. The thick line denotes §S+7(r,r’;0)=d(r,r’).

the SCBA Green’s functiol®. (b) The ladder sum for the SCBA

two-particle Green’s functior(c) The diagrams for the SCBA bilo-

cal conductivity tensor.

We postpone derivation of the boundary conditions cn
until after we have discussed the conductivity tensor. The

Here |- is th ¢ th i ic field ladder sum folST"=uG*G" andS" " =uG~ G~ can also
| e_f;l‘ikoTIS/m € mean free path n zero magnetic Neld, ho carried out in similar fashion. It is easy to see that
0" T FT0! e . , . S™(r,r’) andS™ ~(r,r’) are generally short ranged.

+\1V|th|r’1 ihe +SCB'?" t['e ’two—partlcle Green; function Now we are ready to treat the mean bilocal conductivity
ST (r,r’)=uG"(r,r')G(r',r) amounts to adding up all engor Within the SCBA(,,,(r,r")) has two contributions:
the ladder diagramfFig. 3(b)]. The sum can be written in ¢ simple bubble diagram and the sum of the ladder series

the form of an integral equation [Fig. 30)]:
ST (r,r',E,E")=uG*(r,r' ,E)G(r',1,E") <%(r’f’)>SCBA:%(r’f’)bubbleﬁ%v(r’r')laddezz
2 ~+ - ’
+J d*ruGT(r,r, E)G™(ry.r,E") The bubble diagram has the range of the mean free Ipath

and we treat it as & function:
XSt (rq,r',E,E"). 2.7

I T2 Dbupble= 07, 0(r = 1),
We make use of the fact th&@ ™ (r,r')G(r',r) is short
ranged, and expar@" ~(r,,r’) in the vicinity ofr,=r. For Uf’w are the SCBA conductivity parameters, which are essen-

E, E’ close toEg, we obtain tially constant inside the sample:
=1 — L a® =f dro,(r,r')
deruGT(r,r)G (rq,r)S" (rq,r’) N wA T )bubble
=[Co(r;E,E')+Cy(r;E,E')-V 1 : :
[Colr; )+ Cy(r ) :WVJAerJAer T ouoe (210

+2Cy(r;E,E")V2+...1S" (1) (2.9

It follows from the definitiondcf. Eq. (1.18] (Refs. 42 and
where 55) that
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2
DT [0xG T (Epuy G (Ep)]

ﬁZ

d _
vx<d—EG+>vXG+

ﬁZ

~ 0w Y

Er
Wl dE{ Tr

+Tr

-~ AG(Ep)v,AG(E

Y, (212

where AG=G*™—~G~, v=—iAD/m,, and Tr denotes the

trace of the matrix product, in WhiC@_i(l‘ ,r'") are viewed as

r, r’ matrix elements. Foaxy,

2

0 TNTI’[UXE(EF)U)/G__(EF)];

1.0
Oxy™

Xy 1
f dE'{ Trl v iG+ G*
R X\ dE’ Uy

The above expression f<aar0 can be put in the same Fermi-
energy form as in Ref. 557 « and a'xy have the following
limiting behavior?#2830

10_

— 1.0
Oy to Oxy

11,0_
Xy

+Tr

(2.13

o HD(E £ hne’Tolmea wCTO<1
oxx=NhD(Eg)p(Ep) = (2N+1) 7 ISirPO(Ep),  wemo>1,
0
Oy ®WcTo, WeTog<1
L ¢ (2.14
N+v, w7>1,

where p(E) is the SCBA local density of states, is the
electron density,N is the highest Landau-level index,
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wherea, b=+, —, andD was defined in Sec. | C. We can
carry out the integral by expandir® ~(r,,r’) in the neigh-
borhood ofr:

f d?rd(r,r)ST(ry,ro)
=[Jo(r)+J1(r)-V+---1S"(r,ry). (2.16
The first term is

Ji (= _ia fdzr G (ry,r)DG(r,ry)

0 2me 1 1 ER
__t G*-G~ 2.1
—WWV( )r). (2.17)

In the last step, we used the identiyG' G~
=(G"=G7)/(2"—37). Rewriting

(rlM(GT=G7)|r)y as 2mi Y, 8(Ep—E,)¢a(r)Vyk(r),

it is easy to recognize thal; ~(r) is proportional to the
impurity-averaged equilibrium current density at position
and at the Fermi enerdye . In the bulk, this should be zero
by isotropy; however, at the edges isotropy is broken, and
Js ~ parallel to the boundary is not zero. Hence we can write

. 2m [aldE)|
Joi (V=375 7€ |

o(y—W)
Er

dlo(E)
- E

(2.18

a(y) |,

Er

wherel (Eg) is the total edge current. It has been shown in
Ref. 30 that

11,0

N=0, 1,..., andv=1- 6/ is the filling fraction of the dle oM eoyy

highest Landau level, which is well defined since there is —= == =" , (2.19
>, ! X . JE JE h

vanishing local density of states in the bulk in between the Er Er

Landau levels in the regime.7o>1, within the SCBA. Of-
ten, only the peak value (2+ 1)/ of agx is quoted in the
literature; we emphasize thaf, has oscillations and goes to

zero when the Fermi energy lies in one of the gaps in the

bulk density of states.

Now we treat the ladder diagrams. Singé* andS™
are short rangedy** ando ™~ are also short ranged. One
can further show that the ladder series &5~ ando,, do
not make additional contributions to th&function term.
The long-ranged term af,,(r,r') comes from

U;;(r:rl)ladder:ﬁzuf dzrlf derJ;_(rarl)

X ST T(ry,r0)d, T(r',ry).

The current verteX(r;r,) is short ranged,

3(r 1) = =

GO(ry,r)DGA(r,ry), (2.15

whereM (E) is the total magnetization.
The coefficients for the first-derivative terms are

1
le I_W[Tr[v G* rG 1—="Trlr WEGTGT ]

in_
—_— + -
+5-TIG'G ]%],

1
le I_W[Tr[v Gr G 1="Trlr WEGTGY ]

[ ——
+ ﬁTr[G G+]5,uv] .
Expressing the coefficients in terms of the SCBA conductivi-
ties and the mean free path, we have
Uh2d, o d 1 = ol 212,

uh 2y o Ji = ol 212,
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Putting all the pieces together, for the full bilocal large-
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rent conservation. The results show that the variance of the

scale conductivity tensor within the SCBA, including the two-probe conductance can be calculated within the NL

edge effects, we obtain

<0My(r,r')>scsA:[ng5Mv+(UL’)(/)"‘ ‘TQ)}O)G,W]5(T_V')

1

0 1,0
~ 0 {00t Oy €pud
XX

i 0'23}05;Lx[ S(y—W)— 5(Y)]}{0'2x‘7;
— (T!(’)?EVV’ (?:}! - UQ);O&VX[ 5(y’ - W)

—o(y")1d(r,r"). (2.20

Within the SCBA, the conductivity tensor
(oy,(r,r'))=0, for r at the reflecting edges and suffi-
ciently far fromr’, as an exact relatiotefore the long-

w'

obeys

oM. We then turn to the perturbation expansion itself.

A. Nonlinear o model

In setting up the partition functioor generating function
for average Green’s functionswe will use the replica
method to perform the average over disorder. We define

z=f D[V]P[V]f D[cp,aexpf d?r o(r)

X[E—H+inA]e(r), (3.0
where, as in Sec. IH=Hy+V(r), o= ...¢2... (i=1,
2,...n,a=+, —) is a 2n-component vector of complex

wavelength approximation is made. Together with Eg.Grassmann numberg=0", and

(2.20, this implies the large-scale boundary conditions

(1.16 on the diffusion propagatad; see Appendix A. Be-

cause of the edge current, this is very similar to the discus-

sion of the conservation of thé current at the edge in Sec.

| A (whereoy,” was —1).

C. SCBA for the two-probe conductance

We are finally ready to express the two-probe conduc
tance in terms of the surface integral of the diffusion propa
gator. For the integrated currents at any cross sections, tf{e
two opposite edge currents at the boundaries can be trans-
formed to an additional bulk derivative in the transverse di-2*Y

rection:

w W
fo dy[é(y—W)—ﬁ(y)]d(r,r’)=fO dyayd(r,r');

I, O

o -1,
(I, is the nXn identity matriy. Here we remark that the
choice of Grassmann numb@nticommuting fields, which
leads to the symmetry group being W(2 as will be dis-
cussed below, is not essential. If one uses bos@ummut-
ing) fields, the symmetry is the noncompact groum|sy.

This is usually not used in the Hall effect because there is no
opological term in this case fan>0 integer, and so the
dependence found from nonperturbative instanton effects
is not seeri! However, there is nonetheless a boundary term
of the same structure as in the U(2case, and for a system
with boundaries this has effects even in perturbation theory,
and these will be the same in the-»0 limit for either choice

of symmetry. We will continue to work with the choice that

therefore, the second and third terms in the square brackelgads to the compact symmetry. The random potei{a)

of Eq. (2.20 combine in this case to giuegy. We obtain the
form for the SCBA conductanag’, Eq. (1.29), expressed in

terms of an integral over two cross sections. This can be

further transformed into the following volume-integral form;
0 1 2 2 0
g =—2f d rf dor’ o, [ 8(r—r'")
L) a A

—(dxt ydy) (3 —ydy)d(r,r')]. (2.21)

In Sec. IV, we will see that the above expression for th
conductance can also be obtained using therMLformal-
ism which we develop below.

Ill. FIELD-THEORETICAL APPROACH

In this section, we first set ufin Sec. Il A) a generating

function from which we can obtain any expressions involv-local

€

has the Gaussian distribution
P[V]oce—fdzrvz(r)/Zu

as in Sec. Il. Fom=0, the action has globat (ndependent
U(2n) symmetry, which acts ogp as¢(r)—U¢(r), where

U is an element of U(R). For >0, the symmetry is bro-
ken to U() X U(n). In discussing the conducting properties,
it is useful to introduce a source term that will generate cur-
rent correlations. This is done by introducing the vector po-
tential A(r), whereA is a 2nX2n Hermitian-matrix-valued
vector field (not to be confused with the vector fieldl,
associated with the constant magnetic fiBld VX Ap). It is
introduced intoZ by replacing the covariant derivativie
(viewed as multiplied byl,,) by D—iA. The generating
functional Z[ A] then has gauge invariance, since under a
U(2n) gauge transformation ¢(r)—Ue(r),

ing the Green’s functions at the Fermi energy. As we saw i, —UA,U~*+Ud,U"", the action§[A] is invariant, and
Sec. I#? this allows calculation of the mean and the varianceso is the integration measuBy ¢, ¢]. Performing the func-
of the two-probe conductance. In Sec. lll B, we discuss thgjonal integral overp and ¢, we obtain

coupling to a U(2) vector potential, which can be used to

generate the N&zM conductivity. For a certain form of cou-
pling, we can in fact recover, at lowest order imi{, the

SCBA form of the bilocal conductivity tensor. We discuss
the physical meaning of the various terms in relation to cur-

Z[A]zf DIV]P[V]exptrTr ITE—H—idA

—%2%(A%+iD-A+iA-D)/2m,], (3.2
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where Tr denotes the trace over functions in real space abhese expressions should be independentxgf. . . x;.
before, and tr is the trace over the 2eplicas. This will be discussed in Sec. Il B.

From the above partition function, we cannot obtain the An effective NLoM action can be derived using the
exact bilocal conductivity tensar,,(r,r’) as given in Eq.  Hubbard-Stratonovich transformatiéh®® a mean-field ap-
(1.18, since we cannot generate the below-Fermi-energyroximation then corresponds to the SCBA. The fluctuations
contributions. However, on length scales greater than thebout this mean-field theory produce all of the higher-order
mean free path, the latter simplify and can be reexpressed &ffects. An effective action for the long-range effects can
Fermi-energy terms, as will be shown below, and these cathen be derived; we obtain, retaining only terms with no
be reproduced from our partition function. An exception tomore than two derivatives, and omitting the gauge fiald
this is theo,” term in the bulk, which therefore describes until Sec. Il B,
true non-Fermi-energy physics. We can, however, obtain the
expression for the two-probe conductance, which can be S
written in terms of Fermi-energy quantities aldlie.et us
assume that the source figddis independent oy, then using

= f d?r{—5o0119,Q3,Q] - o tr[€,,Q9,Q4,Q]

o6/ 6A(x) to denote a functional derivative foryaindepen- 7 r[QALL (36
dent variation, we can show that
zzf D[Q]e’. (3.7
. §°Z[A]
_/llTofsA:,ﬁ(X) AL (X)) The fieldQ is a 2nx 2n Hermitian matrix obeyindat each

r) Q?=l,,, of which n eigenvalues are equal t61, n to

) —1. This means that, at eachQ takes values in the coset

=J D[V]P[V]f dYJ dy,[eﬂ”n(E_H_'”m manifold U(2n)/U(n) X U(n). The actionS has the same
symmetry as the original actioQ(r)—UQ(r)U 1, butQ

) GH(r,rY+G (r,r") ) o is invariant under the diagonal(ll) subgroup of U(2). The
x| 2m, S(r—r")—h*G (r',r) remaining SU(2) symmetry is again broken td8(n)x U
_ _ (n)] for nonzerox. The parametersrgX and agy are bare
% —ih o* )( —if 5 )G*(r r,)H 3.3 conductivity parameters, like those resulting from the SCBA
2me X'\ 2mg X ' ' ' (but may differ by finite renormalizations, corresponding to

short-range effects that are not included again by the
The &-function term is related too,, ' (r,r’) and NLoM), and describe the response of the system at the scale
Oy (r,r') (see Sec. I We argued in Sec. ID that of the short-distance cutoff, which is of order the mean free
ai3(r,r’) (a=+,—) in disordered systems are short- pathl. The measur®[Q]=II,dQ is the product over points
ranged, and can be treated as contact tes§fs(r—r’). r inside the sample of the unique SU(R2invariant measures
One can show using the commutation relationsdQ on the space U(2)/U(n)>xU(n) for each point. At the

vx=i[l:|,x]/ﬁ and[v,,x]=7%/im, (Refs. 42, 55, and 32hat endsx=0, L, we imposeQ=A to represent the absorbing
boundary condition.

2 2
oR=— T G*(Er)v G Er)vy]= GA(r,r). B. Gauge invariance, current conservation,
2LW 2m, ¢
and boundary condition
Therefore, the expression in the square bracket in(EQ) In this subsection, we discuss the way in which the gauge

gives an approximate version of the unaveraggdr,r'),  potential A enters the NizM action, and the related ques-
Eq. (1.18, valid on scales greater than the mean free pathions of current conservation, the equation of motion, and the
|. The é-function term drops out for two cross sections fartilted boundary condition. We begin by requiring that the
apart. Taking the limit n—0, in which case action be gauge invariant. In Sec. Il C, we will modify it to
el TrIn(E-H=inA)_, 1, Eq. (3.3 gives the disorder-averaged a non-gauge-invariant form to bring the conductivities into
two-probe conductance line with those discussed in the previous sections.
In view of the gauge invariance of the generating func-
o 5°Z[A] tional Z[A], the action§ A], including A, should also be
(g(x,x"))=—lim lim ——— ——n- 34  invariant(when »=0) under the local gauge transformation
n—0A—00Ax 11(X) 6A 13(X") i el e
Q—U(NQ(rU~*(r), A,—UA, U "—iUg,U"" (itis as-
Similarly, the second moment of the conductance can b&Umed thal respectsQ=A at the ends; the invariance of

obtained by applying four derivatives to the partition func- the functional integration measure implies that invariance of
tion: the action ensures invariance ffA]). The simplest way to

introduce the external source fiefdl into the NLoM is to
replace the partial derivativg,Q by the covariant derivative
D,Q=4,Q+i[A,,Q] everywhere inS. This leads to a
im | 5*Z[A] manh;estly galuége-invariant action, which is given below as
=1lm im ~=—=— YT =T the oy, and o, terms in Eq.(3.8). However, this is not the
n—0A—00Ax11(X1) A 12(X1) HAs 22(X2) O 2(Xz) only way. The second way is less obvious and will follow a
(3.5  brief digression.

<g(X1 lxj,l)g(XZ !Xé)>
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To obtain the other gauge-invariant couplingAolet us Although we have not given a derivation of our gauge-
first point out that the topological term, without ayde- invariant actionS A], Eq. (3.8, from the gauge-invariant
pendence, is a total derivative, which is a function of thegenerating functional(3.2) for averages of products of
values ofQ on the boundary and the homotopy clas€oih ~ Green’s functions at the Fermi energy, it is not very difficult
the interior for given boundary values, but not of the detailedto extend the existing derivatiorisee, e.g., Ref. 30o in-
form of Q in the interior. That is, it is possible to change clude A, and obtain Eq(3.8). It is almost self-evident that
Q in the interior, leaving its boundary values fixed, in such athis will be obtained, by comparin@) the diagrams for the
way that the topological terrmhanges Now any change in response t@ at the Fermi energyhat are obtained from Eq.
Q can be viewed as the result of a gauge transformation, an@®.2) with (ii) those studied in detail for the mean bilocal
a transformationU that leaves the boundary values @f  conductivity tensor within the SCBA in Sec. IlI, andi)
unchanged must reduce at each point on the boundary those obtained in the perturbation theory for theoMi con-
some element in a certairf\®n) X U(n)] subgroup, deter- structed below.
mined by Q at that point. Such a gauge transformation is We now use the gauge invariance®fn the »—0 limit
characterized by an integer-valued winding numbesay, to derive some current-conservation relations for the
which describes the winding of the gauge transformation NLoM; only infinitesimal, topologically trivial gauge trans-
at the edge, and it changes the topological term byormations are needed for this. The tilted boundary condition
2i aqu (for O-Sy equal to an integer, this has no effect on is one consequence of current conservation. We will recover
the exponential of the actidnin particular, there is a con- the expression for the bilocal conductivity in the SCBA as
tinuously connected class of transformations for whichthe leading-order term in an expansion inrl/. We will
g=0, so that there are continuously-connected classes @flso show that the conductance we obtained using(E4)
configurationsQ with given boundary values throughout is independent of the positions of the cross sections so that
which the topological term takes the same value. Furthethe volume-integral form for the conductance can be used.
discussion of the topological issues, related to edge states We begin by considering the equations of motion that
and quantization, is contained in Appendix C. follow from the actionS[A]. As their name implies, these

Now, because the topological term(@part from the to- are the equations of motion that are obtaine§[i\] is used
pological effects just discusseda function of only the as the action of a classical nonlinear field thediry one
boundary values o), this suggests that we can attempt tospace and one imaginary time dimengiofihe canonical
compensate for a gauge transformation by including a couway to obtain these equations is to seek an extremuf®, of
pling to A on only the reflectinghard walls. The form of  such thatdS/ §Q=0, where the variation, which is the usual
this coupling can be easily obtained, and on including botrone that varies both the andy dependence of, respects
forms of coupling with different coefficientsr,0, and the restrictionsQ?=1, Q=Q, and the boundary condition
g!('yvo, whose sum igrg =UL*3+ g'x'yo, in the respective forms Q=A at the open endéve note that this is imposed on all

of the topological term, we obtain the action which is gauge-configurations in the functional integyalThe resulting equa-
invariant wheny=0, tions also serve as operator relations in the quantum field

theory that we take to be defined by the functional integral

S[A]=J d?r[ — §0ir(D,,QD,Q) Z[A]:f D[QJeSAl,

—%UL’;’U (€,,QD,QD,Q) In functional integral language, the equations of motion be-
L g come identities among correlation functions. They are ob-
— 50y 1(€,,Q0,Q0,Q) + 7tr (QA)] tained in general by the following argument: Consider a

i small change i@, Q— Q' =Q+ 5Q, as a change of variable

+ Ea'x'y’of dx{tr Ay (X, W) Q(x,W)] in the functional integral. Sinc® is integrated over, such a

change can have no effect @iA]. On the other hand, it
—t A(X,00Q(x,0)]}. (3.9  changesS, and provided the change is such that the Jacobian
resulting from the change in measure is 1, we obtain the

The justification for identifying this split o2, into two identity

piecesa,y, and oy,,°, with that found in the previous sec- 5S

tions, as implied by the choice of notation, will be given 0=J D[Q]a—es[A],

below. We note that the action is independent of the trace of Q

A. To see this, we may spli into the sum of a traceless part which is the equation of motion.

and the trace multiplied by,./2n. The latter part is the A variation of Q that respects its form can be param-
gauge potential corresponding to the diagonal U(1) subetrized asQ'=UQU™!, where U=exgR and R(r) is a
group generated bl,,, and it does not contribute ©,Q 2nXx2n hermitian matrix function of, and thus is a gauge
(becausél,,,Q]=0), or to thea!(');o edge couplindbecause transformation, which leaves the integration measure un-
trQ=0). Hence§ A] is independent of it, but it may be left changed; however, we va while leavingA fixed. If we

in for convenience. The actio§ A] is easily verified to be view S[A] as a functional ofQ as well as ofA, thus writing
invariant under any gauge transformation, including the to§ A]=S{Q,A} (the curly brackets are used to avoid confu-
pologically nontrivial ones that leav® on the boundary sion of the two arguments of the functional with a commu-
unchanged. tator), then the equations of motion are equivalent to
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5S{Q’,A}/6R=0, evaluated atR=0. This may be re- boundary equations on the reflectifigard wall or edge.
expressed by making use of the gauge invariance oThgse come from"two source$) the boundary terms in the
S{Q,A}. Gauge invariance tells us that @ =UQU™?%,  action §[A], and(ii) the boundary term that appears when

A'=UAU1-iUVU™L then integrating by parts to transfer the derivative froniR to
8S/8A in Eq. (3.9 when taking the functional derivative
S{Q,A}=S{Q’",A"} with respect taR. The boundary part of the equation of mo-
. . tion can be obtained in either of two equivalent ways. One
=S{Q+I[R.QLAIM S{QA+I[RA]-VR} way is to take the functional derivative with respect to the
~S[Q,A} (3.9  full dependence oR on the coordinatex andy, and obtain

a single equation like Eq3.12 but containings-function
to first order inR. It follows that, forr in the interior of the  terms at the edge. Since an equation that sets a sum of a

system, we obtain finite function and ad function to zero implies that each
piece separately vanishes, we obtain the bulk equation of
S -9 S —iA S LiA oS motion (or Ward identity as in Eq.(3.12), together with a
ORg, HOA, pa K9 5, gy HYB SN, e boundary condition that states that the function multiplying
. the 6 function at the edge is zero. The other method is to
=~ (Duip)ap- (3.10 separate the change in the action dudktafter integrating
Here we have used, 3,7, ..., forindices running from 1 DY parts to remove derivatives froR, into a bulk part that
to 2n (the firstn values being,+,i=1, ... ,n, the remain-  Yields the bulk equation above, and a boundary part, then
deri, —, i=1,...p), with a summation convention, and @ke a functional derivative with respect to the single coor-
introduced the definition of the current in the bM, dinatex that describes the position on the boundary, to yield
the boundary conditions. This was the method followed in
_ S A] Sec. | C for the quadratic action there, Et}.11). With either
ap(r)= 5A—ﬁ(r)’ (3.11 method, it is straightforward to obtain the results below.
o, Ba

First, we should record the actual expression for the cur-
which is implicitly a local function ofQ(r) andA(r). The rent density, obtained from definitidi3.11). It is
covariant derivative of” is defined in the same way as that
of Q. Therefore, using the notation jo(n=—i[o9Q(1D,Q(r)—oye,,D,Q(r)]/2

+i03,%8,,Q(N[Sy-W)—d(y)l/2  (3.13

(we used the identitRd,Q= —3d,Q.Q which follows from
where the- - - represent any functional @, and using the Q?=1,,). Here we see explicitly the edge contribution with
fact that the integration measure is invariant under ®)(2 coefficiento),°. It is simply proportional toQ at the edge.
gauge transformations, the equation of motion becomes the The boundary condition at the reflecting wallsssumed
matrix equation parallel to thex axis as always in this papethat is obtained
by either of the methods described above, can be written

(= [ pray-- ezl

D-((j?))=0. 312

0 1,0 11,0, _
This can be read as the statement that the covariant diver- UxeDyQ+‘7xnyQ+‘7xy DxQ=0. 3.14

gence of the current is zero in the interior of the system. As'%S in the case of the bulk equation of motion, in the quantum

such it is known as a Ward identity, and is a consequence g . . .
- X . leld theory of the NloM (defined by the functional inte-
the U(2n) symmetry of the original actio’; the existence gab thisyis valid only (when ins)elrted in the average

of a covariantly-conserved current as a consequence of ). This equation can be interpreted as stating the co-
auge-invariant coupling to a gauge potential is the essential ." *7/* . .
gontgent of Noether’spthe%rem gA fegatupre of thedW is that - on nt conservation Qf the current at the. edge, n a very
: similar way to that discussed in Appendix A within the

the Ward identities are not just consequences of, but ar CBA. Fora'x');ozo, we would have only the first two terms,

equivalent to, the equations of motion. There are also man qit Id state simply that th | t of th

similar Ward identities when the functional average contain na 1t would state simply that the normal component of the

D-j“ times other functionals d@. Particular cases of these (bulk) current in Eq.(3.13 tends to zero at the_ edge. These
'_terms originate from the edge term left after integrating the

including all those that will be of interest in this paper, are i :
those that contain other currerjts These may be obtained bulk part of the action ,b%/ parts in order to taB_b_ﬁR._ln the_
presence of a nonzerd!.°, this boundary condition is modi-

by taking functional derivatives of the basic Ward identit
y 9 y fied to include the last term, which is the covariant derivative

(3.12 with respect toA, since the left-hand side is still a .
functional of A. Functional derivatives of the action yield (@/ong the edgeof the edge part of the current in EG.13.
Thus Eq.(3.14) is equivalent to

currents, howevelj,” containsA, and so does the covariant
derivative D, so there are additiona¥-function terms. The o Y
S-function terms in the response functions that result from Jy,bulc™ Dxx,eagé= 0; (3.19
tsr;)%ﬁd”:oj th\évélé ?r? ergl;ﬁ(rarre(s:ietcc;i:ssf:ontact terms, and corre where Ehe edge contribution is obtained ES.qqdX, W)
The above Ward identity, or equation of motié8,12,is =/ 9-dY j<(x,y), and similarly for the edge at=0, as in
only the bulk part of the system of equations. There are alséppendix A. The edge term originates, of course, from tak-



56 MESOSCOPIC CONDUCTANCE AND ITS FLUCTUATIONS ... 3999

ing 6/ 6R on the edge term in the action itself, E8.8). In  terms containing e.gd(x—x") when further functional de-
the boundary condition, the last two terms can be combinedvatives are taken. However, we have verified that such
to leave terms vanish, to all orders in perturbation theory, for the
0 0 replica components we require to produce the mean and vari-
0 QDyQ+0,,D,Q=0. (3.1 ance of the conductance, as in E(&4) and(3.5). Thus we

This is the analog of the tilted boundary condition discussed'@ve performed all the steps in a derivation showing that the
in Secs. | and I, generalized to the futionlinear field calculation of the two-probe conductance and its variance, in

theory, and includingA: as in those discussions, only the the r_ectangular geometry, can be carried ogt within the NL
total agy enters the boundary condition. We will show, in oM, including the independence of the locations of the cross_
Sec. IIIC below, that, in leading order in perturbation sections, which allows the use of an average over these lo
theory, this bounaary (:,ondition reduces to exactly the Oné:at|ons. The explicit expressions for the mean and. variance
used i}] earlier sections are given in Secs. IV and V, and evaluated to leading order
To close this subsection, we obtain Ward identities thaf" the perturbation expansion.
apply to moments of the two-probe conductance, in which
the currents are integrated across sections parallel ty the
axis. We have already seen that these should be calculable
using only Green'’s functions at the Fermi energy, which can ) ) ) o
be obtained using our generating function or thesWL As The approach given in Sec. lllCis sufﬂmgnt for the two-
in Sec. IIl A, we will therefore here specialiZeto be in the probe conductapce, provided the cross sectlons_ used are par-
x direction and to be independent gf Functional deriva- allel to they axis. For more general cross sections, and to
tives of Z[A] of the form &/ 5A,(x) then produce the desired Consider the non-Fermi-energy effects and the bilocal con-
mean and variance of the two-probe conductance. If we Spéi_uctlwty, a deeper analy5|s is req_wred, which is c_:ontalned in
cialize to suchA in the NLoM action S/A] [noting that (he Present subsection, but which may be skippegart

A (W) =A,(x,0)=A(x,y) for all x, y], then we see that from the first part introducing the perturbation expangion

the a(x’ terms can be combined, using an integration by partsr,eaders mteresteq only in the two-probe conductance. .
y Our goal here is to compare the consequences of the defi-

leav - X i :
to leave nition of the current and the Ward identities with the prop-

C. Perturbation expansion, current conservation,
and bilocal conductivity

erties of the currents in our model of the original electron

S[Ax]:f d?r[~ §otr(D,.QD,Q) system. To provide motivation, we will compare results in
the NLoM formulation with those in the SCBA in Sec. I,

- %agytr( €,,QD,QD, Q)+ 7 tr(QA)], and for this purpose we will now introduce the perturbation

(3.17 expansion of the model. We then show how to modify the
' coupling ofA to the NLoM so as to reproduce the properties

in which we emphasize thak takes the specialized form found in Sec. II.

A(r)=[A4(x),0], independent of. This action is gauge in- The matrixQ, which obeysQ'=Q, Q?=1,,, can be pa-

variant, andA, remainsy independent, for gauge transfor- rametrized in the following way:

mationsU that are independent gf Using such a transfor-

mation, we can obtain, similarly to the above derivation, the

identity _(\/1—22 z (3.20
S\ —1=Z2) '
o, [ ay(igxy =o. (318

wherez is annXn complex matrix. Expanding the NtM

in which jy and the actior§[A,] to be used in calculating action in terms of the matrix. we obtain

the average still contaiA, . We note that, infdyj; , using
Eq.(3.13, 0}y anday,,° terms can be combined into a single
term, as implied by the actioB[ A,], in which the same is S A]=S[A]+S[A], (3.21
true. Thus from this point on, only the totaﬁjy enters the
calculations for the conductance and its moments.

On taking further functional derivative& 5A,(x) of Eq.
(3.18, we can obtain identities involving the mean and vari-
ance(or alternatively, second momenif the conductance.
From the discussion in earlier sections, we should have

dx{(g(x,x"))=0, (3.19

0 A"™
for all x andx’ inside the sample, including=x’, which AZ(A‘* 0>, (3.22
expresses the independence of the conductance on the loca-

tion of the cross sections, and similar statements should hold

for the higher moments and for the dependence on the othevhere A™~ is a complexn X n-matrix-valued vector field,
variablesx’, ... . One may be concerned tliaf appearsin andA~ " is its adjoint(these are the only components Af
Eg. (3.18, not d,, and that this might lead to additional that will be used belo)y we have

whereSy[A] is the part quadratic iz, z', andA, which is
the same as in Eq1.11), except that there are naw¢ copies
of z, and we include the gauge potential For A of the
restricted form
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ng L o The expressions can be evaluated by contracting pairs of
SolAl=——~ d?r tr[ (9,2 2iA; 7)(d,2"+2iA )] andz', which gives the diffusion propagator
Ty q2 At tooipa—+ U—SX«zT—(r)z (r')))o= & oy d(r,r’) (3.27
- Tf re  trl(d,z—2iA, )(9,2'+2iA, )] 4 ij kI 0™ Cil GjkEA T
U!(,ylo which opeys the same conditio(_iEl@ asin earlier septions.
_ _f d?re, tr(9,20,2") The basic perturbgtlor_m expansion is now a series in powers
4 e of 1/02,, though it will also be convenient to expand in

i 10 powers ofy= oy, /o, to obtain a double expansion.
- 2Xy 35 dIMtr(A;_zT—zA;+)_ (3.23 ~We now return to the physical meaning of the Ward iden-

tities (3.12 and (3.16), that resulted from the gauge invari-

The line integraldl, is taken in the counterclockwise di- 2NC€ of the actiol§{ A]. We wish to compare these with our

rection around the edge of the sample. Here and below wihysical expectation that the current is divergenceless inside

use the symbol tr for a trace on thedimensional space a,s the sample, and that no current flows in or out of the sample

well as for that on the &-dimensional one: it should be clear &t the reflecting wallgas we have shown in Sec. II, and

from the context which is mears, describes the interaction diScussed in Sec. 1, the current response obtained in the

between the diffusion modes caused by quantum interferenceCBA is not divergenceless, because of the hfff° term, ,
effects. We give it here only foA=0, and to the order but that is a non-Fermi-energy effect that will not be consid-

O[(zZ")?] required for our later calculations, ered ?n the; present formalism unti] later 'in this subseg)tion
The first difficulty that seems to ari$as with Eq.(3.18] is
o° that the Ward identity stateB-j=0, notV-j=0, as we
Sl[0]=f dzr[ - %tr[aﬂ(zz*)a#(zir)wtaﬂ(z*z)aﬂ(z’rz)] might have expected. The vector potenthalpresent inD
will generate 5-function terms when further functional de-
Ugy rivatives are taken to obtain Ward identities, as must be done
- 5ot €,,0,(2220,2") — €,,0,(2'22'9,2)] for the bilocal conductivity tensor and analogous correlators
of more than two currents. However, as we mentioned in
o®, connection with the conductance in Sec. Il B, in practice,
- atr[aﬂ(zz’r)au(zz*zz*)+aﬂ(sz)aM(szz"z)] for the particular components @f that yield the physically
relevant conductivities, this does not seem to occur. For ex-
Ugy R ample, in addition to the results cited in Sec. Ill B, we can
- Htr[ €,,0,(22'22'29,2") show that the Ward identity implies
3,0 ,,(r,r"))=0 (3.28
—€.,0,(2'22'279,2)]+ O[(22")*]. (324 for the mean bilocal conductivity tensor calculated in the

NLoM using the actior§[ A], and this is valid for alk and
Notice that terms proportional togy can all be written as r’ inside the sample, including=r’, to all orders in pertur-
total derivatives; therefore, they can be expressed as bounation theory.
ary terms. To calculate the ensemble average of any quantity The boundary conditiori3.14) also involves the tangen-
X[z,2'], we perform the following expansion: tial covariant derivative of the edge current, not the usual
partial derivative as one would want in the electronic system.
In this case, we do find a clash between the theory as formu-
lated and our intuition. Eq.3.15 is more explicitly

j)l/f,bulk_ N )tz,edge: - %O'Q)}O[Ax ,Ql. (3.29

The left-hand side is the combination one might have ex-
pected to be zero. However, it is nonzero whignis non-
Herel[z,z"] is the Jacobian needed to make the measure igero, implying that conservation is violated yfunction

the z, z' space invariant under @(2n) rotation at each.  terms on the edge in the bilocal conductivity and its mo-
The explicit form of this Jacobian will not be needed. Its ments. Note that similar commutatdra, ,Q] and [Ay!Q]
only role is to cancel quadratically divergent diagrams thagppear inj 7 pui bUL are not a problem.

arise in perturbation theory, in a manner that is standard for T¢ jjluminate the point further, we can use the perturba-
all NLoM's (see, e.g., Ref. 57The terms in the expansion tjon expansion and compute the mean bilocal conductivity
can be written in terms of averages calculated using the quagithin the NLoM as formulated so far. Fron,[A], the

(<X>>=Iimj D[z,2"I[z,2' X[z 2 ]e%zZ"%

n—0

Sl
><mE:O HST[Z,ZT]. (3.29

dratic action withA=0, defined by equation of motion foz" (formulas forz are similay is, in
the bulk
oV = 1. .. e%lA=0]
(- No J D[zz']---e 1Z,[0], (3.26 o0 V2zt= —2i (ngauA;+ + U!(’)E)eﬂvaﬂA;+)’ (3.30

in which the functional integral in the denominator is the (as in Sec. | A, where, howevery, = o, ando,°=0), and
same as the numerator but with the insertion omitted. at the edge is the tilted boundary condition
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ng(ayzu 2iAy_+) - a;’y(axz*+ 2iA,)=0. (3.30) within the SCBA. If we introduce a corresponding change in

] ) o ~_the bulk current here, so that
These equations give the generalization of the “classical”
theory”og Sec. I.A to mgludg _the'edge _curr(_ants with coeffi- j;,-'r—nod:j;+_o'l<|)}OEMVA;+ , (3.39
ciento,,", on using the identifications given in Sec. I D. The _ -
currents are given, in the present approximation, by then the tilted boundary conditio8.33 becomes

550 / 5A; B Ej ; - j;,l;rulk,mod_ é’xj ;,;rdge,mod_’ 0 (3'39)

=5i{on(d,2 +2IA )+ o€, (9,2 in the presence oA. Thus the modified current is conserved
o : (not covariantly at the edgeand so isj 5“®*); the current in
+2iA, ) + o Ty —W) = 8(y)]8,,2"}. the edge channel comes from the bulk. Physically, there are
(3.32  two modes of conduction response to an electric field in the
system. One is the “sliding” of the total charge density,
which gives the bulk Hall conductivity,,°. This is a non-
Fermi-energy effect, and is a locad function) response to

The bulk equation of motion can therefore be written
d,j, =0, while at the edge we have

Jo g = — Ot 333 an electric field. The other is the Fermi-energy response,
ybulk = Exdxedge - Fxy Tx ' which is diffusive in the bulkincluding the Hall effect with
which can also be written coefficienta!go) and is chiral along the edge. As discussed in
o ,, Sec. |, theal:° bulk effect impliesV-j=0, meaning that
jy.buk— Dxix edge=0 (3.34 xy J
y.bulk = xIx,edge - dpldt#0. At the edge, there is no charge accumulated. A

where the covariant derivative is the linearized version of@ngential electric field at the edge can produce a bulk cur-
that in the full NLoM, namelyD ,z'=9,z"+2iA-*, while ~ rent normal to the edge, and also a Fermi-energy edge cur-
D D zt=¢ D z'. Thus. for culFrentj £ as defined here. Tentthat increases along the edge. These effects involve the

u=v ) 1 ’ . 11,0 . .
current conservation in the naive form is violated bySame coefficentr, /", and the result is that no current is
s-function terms at the edge. This can be rectified, but, becreated, so no charge accumulates at the edge. This occurs
fore doing so, we calculate the bilocal conductivity of the Pecause of a version of the Laughlin-Halperin gauge-
present model in the same approximation. invariance argumerit-“°A change in the potentiaivhich is

The mean bilocal conductivity in the present approxima_essentially_ what is) wogld accumulate a charge density of
tion is obtained afcompare Eq(3.4); we leave implicit the order_ the inverse vqucny of the edge state;, but t_he same
choice of all replica components equal to 1, and tthe 0 velocity also appears in the edge current, which carries away

limit ] the charge.
We now propose a maodification of the MM action
) ) 1) - which incorporates this non-Fermi-energy effect so as to re-
(0 (1,1"))o=— I'mm<<]“ (Mo cover the SCBA bilocal conductivity tensor in full, and
AZOTY maintain current conservation at the edg®ugh not in the
:(ngguﬁgl(&w) S(r—r’) bulk), to all orders in perturbation theory. Our proposed ac-

tion (in which we reinstate the full 2x2n matrix A) is

(i, T Mj (" No- (3.39

On evaluating this using E¢3.32 (with A=0), the similar SmOC[A]=j d2r{- %ogxtr(DMQ D.Q)
formula forj ™ ~, and the definitior{3.27) of d, we obtain the

same result as in EG2.20, except that the bulky,” term is ~$03%r(€,,QD,QD,Q)
not present. This result obeys (o ,,(r,r')),=0 for allr, Lo
r’ in the bulk, and Eq(3.33 implies that —§ny’0tf(6,wQ(9MQ(?VQ)

wio* . +505tr(€,,QLA, . QI[A, QD)+ 7 tr (QA)}
<Uyy(r,f')>o_5xfwio+ dy( o, (F.1"))o= 0y 8, 8(r" =) i

(3.36 + Ea'x'y'o f dx{trf Ay (X, W) Q(x,W)]

for r at the upper edgg=W (and similarly for the lower In
effect, in the edge channel, © simply creates current, so —t{AX0Q(x,0)]; (3.40
the naive conservation law is violated. The addedy);° term maintains SU(@) global, but not local

l,n the S_CBA’ we did not directly address this issue, bUtgauge, symmetry, corresponding to the nonconservation of
derived d,jSCBA—jSCBA=0 for r#r’ only. On the other - e - : -
d Ox)x,edge "y bulk y. On the corresponding modified current which contains an addi-
hand, in the SCBA we also found a non-Fermi-energy consional term in the bulk:
11,0 .

tribution oy "€,,,6(r —r") in the bulk, which means that, in

the presence of E, there is an additional part _ 8Smod . 1 6

(e?/h) oy, ,E, in the bulk current ]Z,modzéTM:]Z_ 50y €wlAy,Ql (34D
jScea_ jscea +9_20||,06 E (3.37) The modified equation of motion must be obtained from
u mE=Eg T Xy Fury ' 8Smod Q' A} SR=0 (as in Sec. lll B without using gauge
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invariance. It can be written in terms of the modified current,ing the case in which they intersect. When they intersect

to give the modified Ward identity in the bulk, transversally, the bulkr!('y'0 contact term will contribute at
Yy L o . the intersection point, even within the SCBA. Our prelimi-
D i mod= — 2%y €t du([A,, QD +i[A, [A,,QI]} nary investigations of this, which will not be included here,

(3.42 show that these contributions are needed to cancel effects of
The modified current is not covariantly conserved, becausthe o,y terms at the edge, so as to maintain conservation of
the modified action is not gauge invariant. However, thethe total current, and that the conductance obtained is the
boundary condition Eq(3.16 is unchanged, because the same as for the straight sections, for any shape and position.
added term irB,,q contains no derivatives, so does not give We believe this to be true in general, to all orders in pertur-
rise to any boundary terms. Nonetheless, ititerpretation ~ bation theory. This shows that the use of the modified action
of the boundary condition changes, because the current hig obligatory for such general calculations. Note that, for
been modified. In terms of the modified current, the boundmore general geometries, such as four probes, such intersect-

ary condition states that at the edge ing sections will be common.

j;,mod_ Ix] ;{,edge,mod_— 0, (3.43 D. Further details of perturbative calculations
which is “current conservation.” Strictly, our arguments im- 1. Boundary perturbation expansion
ply that this modification of the action applies only for the for the diffusion propagator

+— and — + components ofA; for the other components,
the correct form may depend on what is assumed in the une
derlying model the NrM is supposed to represent.

For the quadratic parS; g Of the modified action
Smod: the corresponding formulas are the following: for the
action,

It is difficult to calculate the diffusion propagator as de-
ed by Eq.(1.16 explicitly (however, see Ref. 39al-
though propagators for simpler geometry such as a
half-plane?® an infinite stri#®®* or an annul/® can be
found (the results for the infinite strip can be obtained by
conformal mapping from the half-plaff. We can perform a
boundary perturbation expanst8rin powers ofy using the
So.mod= SO—O'!(I)}OJ d’re, tr(A; A7), (3.449  propagator aty=0, which we define ag’(r,r"). d°(r,r’)
can be constructed out of the solutions for the following
for the current, eigenvalue problem:
oo in T onen AT (3.49 —V2¢0=A¢°, (3.47

xy €uv
as in Eq.(3.38 above; for the modified equation of motion, with the boundary conditionsay¢°(x,\/\/)=ay¢°(x,0)
. o . =0 and ¢°(0y)=¢°L,y)=0. The eigenfunctions are
Oyl p,mod= ~ Oxy €I, (349 ¢ (x,y)=(2/JLW)cosmy/W)sin(mmx/L) with  corre-
which corresponds to the earlier £4.27): and in the bilocal ~ SPonding eigenvaluesi = (nr/W)?+(mm/L)?, where
conductivity tensor, the bulk contact terad,%,,,5(r —r) n=012...,m=12,.... Wehave
appears as in the full SCBA result, E§.20. The boundary

o o 0 0 [N
conditions onz andz' are, however, unmodified. do(r,r')= 2 2 ¢nm(x'y)‘€nm(x Y ). (3.48
When using the modified action for calculations of con- ’ n=0 m=1 Anm
ductance, there is no change to the results, as long as one. e : , ,
uses cross sections that are parallel toythexis, and there- VLE'Z%:;(; bulk diffusion equations fat’(r,r") andd(r,r’),

fore the expressions contain the integrals of theompo-
nents of the currents, as we did earlier. For those calcula-

tions, we already showed at the end of Sec. Il B that the d(rz,r1)=d°(rl,rz)+f dS-[do(r,r,)Vd(r,ry)
conductance is independent of the positions of the sections. c

Since the vector potentials used there haveomponents _ 0

only, the extra term irS,4 is zero. In addition to the use- d(rr) Vai(r.ro)1, (3.49
fulness of the generd,,,4 for reproducing the bilocal con- whereC is a closed surface enclosing the disordered region
ductivity tensor and maintaining the current-conservationincluding the edgessee Fig. 1 Let us divide the surfac€
properties at the edge to all orders in perturbation theory, it isnto four partsC,, C,, C3, andC,. Applying the boundary
also crucial for the conductance if one calculates the flux otonditions for the propagators for different sections, we have
current through more general cross sections than those spetie following:

fied above. In general, a cross section could be any curve that

intersects the edges of the sample just twice, once on each of d(ry.r)=do(r .1 )+f
the reflecting walls. Two such sections may intersect at iso- 21 SR P
lated points(instead of along their whole lengthand the

intersections are then said to transversal that is, the nor-  Plugging in the boundary conditiofyd= yd;d, we have
mals to the curves at the point of intersection are not parallel

(nor anhparallel. The question arises qf whether the_cond_uc'— d(ry,ry)=d(ry,ry)+ yf dS,do(r,r,)a,d(r,ry).
tance and its moments calculated using such sections is in- 1+C3

dependent of the position and shape of the sections, includ- (3.50

dS,do(r,r,)a,d(r,r).
Cs
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0

The above equation generates an expansion in ternat® of 5S w i gy ; ;
= j dyl T(alejﬂ' yayzll)
A=0 0

and in powers ofy. Using 5 to denote the operation F(x)
Jc,+c,dSyyd:, we can write schematically X 1121

0
lo
d=dO+d°Bd°+ d°Bd°Bd+ - - -. (3.51) + 4 (Z'0,22)1,+0(2°)

2. 1D propagator

The above expansion is not valid for extremely narrow 52S W
samples withw<L, where Eq.(3.51) needs to be summed AT A —f dylagxé(xl—xi)
exactly. However, the propagator itself approaches the 1D x12(X1) 6Ay 12(X) 0
diffusion propagator with conductivitng(1+ ¥y?)W. Such X[1—2(zZ) 11— 2(z2) 4
limiting behavior can be demonstrated by rewriting the qua-
dratic action in the following way: — (2227 - &(Z'27'2) 4
0 +3(22h)19(2"2)1,+ 0(25)].
o _ Ixx| 2 2 t
So(z.2") == 7| dr{(1+y)to,20.2"] 4.2

+tl(dyz+ yﬁxz)(asz— ydz")]}. (3.52  To leading order in lfffx, we obtain

In the limit W<L, the main contribution t¢(z'z)), comes

from the low-lying eigenmodes of-V? which satisfy 1

(ay+ ydy) $-(r)=0, (9y— ydy) $R(r)=0 in the entire strip. goz_zf d2rf d?r' o2,
The eigenvalues of these modes are separated from those of L=Ja A

the other modes by a gap of orde?/W?2.23 In other words,

the term [ d?r tr[ (d,z+ yaxz_)(QyZT— y3,z")] in the action X (9.~ 75§)<<211(f)211(f'))>o}
can be ignored in the 1D limit:

T
8(r—r") =23y + ydy)

1
:FJ dzrfdzr’ogx[ﬁ(r—r')

= (dx+ydy)(dy—ydy)d(r,r")]. (4.3

; 1,1
lim fD[z,z 12};zq€™
W/L—0

=f D[z,zT]z?sze’("g%“)(lJr yz)Wf dxtr[ dyzd,z']

0
=485y d™l oW, (353 Therefore the following results apply to any of these ap-
where proaches.
The long-ranged term in the above expression comes from
" the ladder diagraméi.e., diffusion) and in the absence of
Y. sinimax/L)sin(max’/L) magnetic field, it does not contribute to the two-probe
d™(x,x") = (1+ )/2)|_m§=:1 (m/L)? ) conductancé® In the presence of magnetic field, this is no

We have thus recovered the result from the diagrammatic
expansion, and the other approaches described in Sec. |I.

(3.54 longer the case. One can show that the local term gives the

Ohmic conductance %, W/L. The long-ranged term, which
More generally, by symmetry, we obtain the &M in one  involves volume integrals of total derivatives, gives the dif-

dimension (where no topological term is possiblavith  ference of boundary values of the diffusion propagator. Since

o= 00 (1+92)W=W/p%, as the coefficient in the ac- the diffusion propagator goes to zero in the leads #hand
tion. dy, terms vanish upon volume integral. We are left with the

boundary difference at the upper and lower edges,
IV. TWO-PROBE CONDUCTANCE

A. Boundary contribution

W 1 (L L
_ 0 0 ’ !
From the nonlinear model, the average conductance is go—axxfﬂ’xx?’zﬁfo dxfo dx’[d(x,W;x", W)
1 L L << 5S 5S +d(x,0:x",0) —d(x,0;x", W) —d(x,W;x",0)].
=—— lim fdxfdx’ = ——
(@ LA on_oJo Yo T SAT (x0) SAL (X)) (4.4
i &S @.1) The agy-dependent part is expressed as a boundary term and
SAL 11(X1) SAL 1(x)) [ [ ' vanishes when the magnetic field is zerp=0), or if the

system is subject to periodic boundary condition in the trans-

where verse direction.
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At the one-loop level, which is the next order inof/, 2 - | 1
we have verified that the interference correctioqgd van- f1(LIW)= WE, A _;dd ) 2
ishes in the limin— 0. Therefore the presence of edges does m=toddn=210 M2+ ——>n?
not change the conclusion of the previous perturbative W

. 5-27 . . . .

calculation$ _ that there (|)s no weak localization correction 14(3)LI73W, WL
to oy Of relative order 1#,,. In general, we do not expect
the presence of edges to have any effect on the renormaliza- —{ 12, W=L
tion flow of o, in the perturbative regime, since it is domi- 1, W<L.

nated by short distance effects in the bulk. Whetbgy is
ever renormalized perturbatively when the system has edg
is less clear to us.

éyereg(s) S m—1m~%is the Riemann zeta function, and we
note that/(3)=1.202] Thus, for an extremely wide sample,
W=>L, the effect of the edges can be ignored. In the 1D limit
(W/L—0), we obtaing®— (1+ y?) a9, W/L, which is con-
sistent with our result that in the NiM,
o2P=(1+y?) o2 W. This is also consistent with other re-
sults, as noted in Sec. | A, valid for arbitragy which show
For small y, we can make use of the propagad?r at  that the mean conductance in the 1D limit can be obtained

y=0 to obtain the leading correction tg°. Plugging from this one-dimensional conductivity%,:°=W/p?, .
d°(r,r’) in the boundary term of the two-probe conductance,

B. Small-y correction for the two-probe conductance

we obtain
V. VARIANCE OF THE CONDUCTANCE
g% y)= O-SXW/L[1+ Y (LIW)]+0(»%, (4.5 In. this sectiqn, We0 evaluate the varia_nce of conductance to
leading order in f,,. From the nonlineaw model, we
where obtain

(@) -(@2=(a tm [ ax [ [ o jd<< oS oS
=— lim X X X X = — = —
G e o) ) ] O | O\ AT () SA A (XG) SAY 2Xg) OA A XE)

5°S 5°S 5°S
+ +— —+ ! + + —+ ! -+ !
OA 11(X1) 6A; 2o(X3) OA; 2x(X2) AL 11(X1) OA 11(X1) SAL x22(X2) 6A; 11(X1) 6A, 2(X3)
5°S 5S 5S 5°S 5S 5S
+ —5 o Tle2+ + 7
5Ax 11(Xq) 0A 11(X7) 5Ax 22(X2) AL 7o(X3) OA 11(X1) OA 22(X3) 5Ax 22(X2) OA 11(X7)
+1-2
5°S 5S 5S 5S 5S
+(+e—)+

5A+11(X1)5A 22(X2) OAL 22(X2) oA 11(X1) 5A+11(X1) oA 11(X1)

oS 5S > > o
5A+22(X2) 5AX 22(X2) connected, .
where
= f d ) ( '2)1:(22") 1+ O(2%),
—X5)—=(2'2)14(22 G
5Ax 11(X1) 6A, 22(X2) y19( 2 12 21
58S fwd 8 )a'gx .t 52
X1—Xo)—2Z , .
5A+11(X1) 5AX (X)) Jo Y10(X1 = Xa) 5" 212221
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FIG. 5. The equivalence between the diagrammatic approach
and the NIloM approach. One vertex from the NiIM,
825/ 6A 110A 11, is equal to the sum of four diagrams in the dia-
grammatic approach.

the same reason as the ladder series vanish in the case of the
average conductance, when written in the area-averaged
form. However, in the presence of the magnetic field the
additional diagrams give rise to Hall-ratio-dependent contri-
butions. The work of KY and ML discussed the effect of the
tilted boundary condition on the diffusion propagator, but did
not consider the additional diagrams.

: +
| §
From Figs. 4a) and 4b) alone, we obtain
1
h :@ <5gz>a,b:F{4 Tr(dd")+2 Tr(dd)}. (5.3

Using the classical network model of Sec. | B, we calculated
the diffusion propagatod for a range of values ofy and
W/L. Using this propagator, we find that Td) and
Tr(dd") are smooth functions of and L/W. The peaks
reported by ML in the variance of the conductafas given

by Eq.(5.3)] are not observed in our exact numerical calcu-
lation. The argument advanced by ML for the existence of
“resonant” peaks due to the tilted boundary condition ef-
fects is not supported by this calculation. We emphasize
again that, in any case, E(.3) is not the full expression for
the variance of the conductance, because there are other dia-
grams that were omitted by KY and ML.

FIG. 4. The diagrams for the variance of conductance to leading

order in 1b2x and to ordery?. The shaded polygons are vertices. A. Recovery of UCF result in the 1D limit
The lines connecting the vertices are the diffusion propagators.

i: -

1:

J

The importance of the additional diagrams can be best

and the other functional derivatives are all evaluated aflémonstrated in the quasi-1D “mW<|—)althereng and
A=0. The leading diagrams are shown in Fig. 4. VariousTy, COmbine to form a single parameter,;,°. This limit is
vertices are denoted by polygons with the wavy tail indicat-Well described by the random-matrix theory of the unitary
ing &/ 5A, while the lines linking the vertices are the diffu- ensemble. For general reasons given earlier, we expect the
sion propagators. The diamond-shaped vertex with no wavyariance of the conductance to approach the well-known 1D
tails comes from the four-point interaction term $3. We  UCF result, independent of the value pf

have also obtained the same set of diagrams using the dia- Plugging in the 1D diffusion propagator of E@.54), we
grammatic approach. The diagrammatic approach is compliobtain
cated because various vertices need to be evaluated separat-

edly. In the presence of magnetic field, the vertices are 502 :E D 1 —1(1_242
dressed with nonvanishing™G* and G- G~ ladders, al- (99%ap.10 & mt (1+°)? a )
though in the end they can all be expressed in termsSQf 4

and agy. For the NLoM, the vertices can be obtained from +0(»), 5.4

the action. Figure 5 shows that one particular vertex fromyhere we used
8°SI5A; 116A 11 is equal to the sum of four diagrams in the
diagrammatic approach. ”
Figures 4a) and 4b) are the only diagrams considered in 2
previous UCF theories. The rest of the diagrams were con-
sidered by Kane, Serota, and L¥eand it is known that, for  This is essentially the argument used by KY and ML, except
vy=0, they give rise to the long-ranged correlation in localthat they gave versions applicable at finite temperature.
current response but do not contribute to the variance oflowever, this result of these authors, that the variance of the
conductance in the absence of magnetic fiélOne can conductance depends eneven in the 1D limit, is incorrect.
show that these additional diagrams can all be written as Among the additional diagrams, Figs(c#and 4d) and
boundary contributions, and that they vanish whenO for ~ the sum of Figs. @) and 4i’) vanish to ordery? for all
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WI/L; Figs. 4g), 4h), 4(i), 4(i"), 4(), and 4j’) vanish as Eq. (5.7). However, in the quasi-1D limit of a long sample,
W/L—0. The dominant contributions come from Figge)4 the usual universal result is recovered.
and 4f): The reflecting boundary condition at the “hard” wabr
“edge”) is crucial for the dependence of the conductance on
the Hall ratioy that we find. If this is replaced by a periodic
transverse boundary conditidhe., a system on the surface
(5.5 of a cylindey, the results of the usual unitary ensemble in
two dimensions are obtained; the results of Xiong and
Stoné? are easily modified for this case, for which they are
correct. While a cylinder may seem hard to realize experi-
(ST o= (5.6 menta}lly, it can be mapped to an annulus by a conformal
-0 1 ' mapping. The annulus is sometimes known as the Corbino
Thus, in 1D the UCF result of Refs. 4, 7, and 12 is recov-disk, in which there are no edges, and a radial voltage drop is
ered, at least to ordey’. We remind the reader that the 1D applied to induce a current flow. Thus, for the disk, the con-
UCEF result holds only when the lengthis less than the 1D ductance fluctuations should be a universal function of the
localization length, £;p, and that &;p is of order ratio of the inner and outer radii, with no dependenceyon
Ug’xlD:W/Pgw which is much larger than the lower limit The gxperimentallobservatipn of the effects we find de-
(W) onL in the diffusive regimep®,<1. pends first on being in the regintg,>L, W, so the system
is phase coherent, and on having an elastic mean free path
| due to impurities such that, W>1. Our calculations only
address the metallic regime of conductance fluctuations at
For a wide sample withV/L arbitrary, the variance of the |arge diagonal conductivity2, , where perturbation theory is
conductance depends on the Hall ratio. We will calculate the/alid. In principle, this approach is valid for any value of the
correction to the usual result for.tm?:.O unita}ry ensemple, Hall ratio yzggy/ogw or of the Hall angles,; =tan™1y. For
to ordery*. In the 2D limit, the individual diagrams, Figs. simplicity, we expanded most of our results also to first non-
4(e)—4(h), 4(j), and 4j '), all have logarithmically-divergent tvial order in y2. The terms in (1#°)2 that are left out
parts, however, their logarithmic contributions cancel out..5nnot be neglected if the system slzeor W exceeds the
(The cancellation is guaranteed by the fact t8ats not gy of épen, the crossover scale at which the renormalized
renormalized at one-loop levelThere can be even more o ctivity becomes of order 1 or less.LIf W are greater
divergent diagrams containing(0), butthese dlagramsT A€ than £y, the system crosses over either to the localized
canceled by diagrams generated by the measlze'].  rggime wherer,, becomes quantized, or, for Fermi energies
(Since they are at least of ordef’, tgey are not explicitly  hoar the critical values that lie near the centers of the Landau
calculated in this paperThe total y* correction is finite.  panqs o the critical transition region between the plateaus:
Summing up the contributions from Figs(a#-4( '), for a oy theory does not apply to either of these. Therefore, one
square sample we obtain must use mesoscopic systems that are not too large. Fortu-
1 256 nately, sincegpert~le("3x)2, this is not difficult if o2, >1.
(89)7_w=|9.06— +2.40y°—5|+0O(y*). (5.7  According to the SCBA results reviewed in Sec. I &2,
T an . . .
will be large unless either the Landau-level indgxof the
The expression for the variance for arbitra4/L is given in  highest partially occupied Landau level is of order 1, or the
Appendix D. Fermi energy lies in the tail of the density of states of the
disorder-broadened Landau bands, whepr, is large
enough that these are well developed. Thus the magnetic
field B must be large enough to suppress the Cooperons, so
In this paper, we considered the mesoscopic conductandle system is in the unitarproken time-reversal symmejry
and its fluctuations in the presence of a magnetic field for aegime, but not too largelWe do not generally require
realistic two-probe geometry. Our perturbation theory has aw.7¢>1, though this would ensure that=0(1).] In effect,
different structure from previous theorfés’? because of the for the observation of the effects found in our theory, ideal
presence of two conductivity parameters, and cr(x’y. We  conditions would be that the system should exhibit
found thato?y, not only enters the boundary condition for Shubnikhov—de Haag{SdH) oscillations, but not well-
diffusion, as was noted in Refs. 33—35, but also appears ifeveloped quantized Hall plateaus, even for asymptotically
the current vertex and other vertices which govern the interlow temperatures. As the Fermi energy or magnetic field
ference processes. As a result the two-probe conductance a#aries through a Landau band, yielding such an oscillation in
its variance in the perturbative regime depend on the Haltrgx and ogy varies monotonically, which implies that the
ratio y=o%,/o%,. Our calculations differ from the previous ratio y=oy/of, varies. There is therefore a great deal of
results®>3* since we have not only modified the boundary scope for varyingy by varying either the field from low
condition but also considered additional diagrams whichvalues (y=0) to larger, or as the field sweeps through a
vanish in the zero-field limit or in an edgeless system. Oussingle SdH oscillation. However, since the amplitude of the
main result is that UCF’s are modified in the presence ofluctuations depend o, it will be necessary to collect sta-
edges; the variance of the two-probe conductance, althoudfstically independent values of the conductance without
it is still of order 1, increases with the Hall ratio, as shown inchanging vy too much. Thus the simplest experimental

77_4

6/« 1
(592>e,f,1D= _( mE:l W) 27%f (%)= 15(297).

Figures 4e) and 4f) thus cancel the/? correction from Fig.
4(a) and 4b). We obtain in total, to ordey?,

B. Variance of the conductance in two dimensions

VI. CONCLUSION
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method, which uses the magnetic field as the ergodic paranis that the critical conductance properties, in a given geom-
eter, will not work, and some other technique must be useeétry that possesses edges, may depend on the fixed-point
to vary the sample conductance at fixBd Finally, as the value ofa,,, i.e., on which transition is being studied. While
quantized Hall plateas are reached, localization effects wilthe structure of the critical field theofyncluding o, (mod
suppress fluctuations strongly between the centers of thé), oy, and the critical exponenttshould be universal, this
LLs, and our theory is not applicabl@lthough such mea- Mmay not be true for the conductance, because the edge brings
surements would be interesting in a dependence on the integer partogf,. A first example

While the calculations in this paper have addressed onlipf this is the simple fact that the mean of the Hall conduc-
the weak-coupling regime ai,,>1, it is interesting to tance, that can be defined in a multiprobe geoméirith

speculate about the effects @f, on the conductance and its e_d?e§;, depgnds (I)'n Wh'ﬁ.h tranS|t|o_|r_1h|s being studb|ed, thu?
fluctuations in the critical regime of the integer quantum HallVi0'ating universality o this extent. The same may be true o

e : e critical conductance fluctuations in geometries with
EgﬁﬁtégvgsThtgiiﬁiﬁﬁg}ngi;idgvis'aTnZeLC;::g?/l\/rEg'wmvgecr?n t}e‘t’ldges. On the other hand, for a Corbino disk, which has no
1 il il

£ and¢, whereg=¢.,, is the localization length, which edges, there should be full universality among the integer
per ' = Sper '

; " guantum Hall transitions. Clearly, it would be of interest to
diverges astr approaches any of the critical valuBsn,  gydy this numerically or experimentally. One way to do so

N=0,1, .... Weexpect that the renormalized local conduc- numerically would be using the Chalker-Coddington
tivity parametersr,,, oy, ando, are still meaningful, and  model*? with additional comoving edge channels coupling
that oy, and oyy=oy,+oy, take on universal values to the edges by hopping terms to obtéirf,|>1.

[=1/2(mod 1), in the case afy,] at the critical points. This Returning to the perturbative, metallic regime,,>1,
raises the question of the renormalization of the two piecege expect that similar phenomena to those studied here in
oy, and oy, and whether the values of these are universatwo dimensions should occur also in higher dimensions, for
separately at the critical point. We note that at the localize&xample in three dimensions. No isotropic topological term
fixed point, the behavior may be described by sayingcontaining only two gradients is possible in higher dimen-
o!(yzo, a!('yEO (mod 1), so that these parameters do ap-sions. However, the Hall conductivity should make an ap-
proach universal values in this regime. F#y,, there is a pearance in the NkcM effective action, since it is a part of
widespread belief that it takes the universal vafuat the  the measurable conductivity. It appears in a generalization of
critical fixed point, though it is not always clear if the calcu- the 2D action to three dimensiorfs,

lations done to support this are describing the local conduc-

tivity parametera,,, rather than a mean conductance in a
- : : : S=—3%0"| d% t19,Q4,Q]
particular geometry. The relation of these is not known in the 8 w<%u
critical regime at the present time, and, as we have seen, is
not simple even in the perturbative regime, if the system has 1 oj 3
edges. We expect that for a two-probe system with a periodic sop | d°re,,,mt[Qd4,Q4,Q]. (6.1

transverse boundary conditioar,, should not contribute to

the conductance in the critical regime, just as it does not if{eren is a unit vector in the direction of the magnetic field
the perturbative theory in this paper. Even then, the meaR, and o~ and oy, are the diagonaldissipative and Hall
conductance is not in general given by,W/L, since non- conductivities, respectively. Thus the action is anisotropic,
Ohmic behavior is expected at least fo-W where the because th® field specifies a directior(However, for sim-
system approaches a localized quasi-1D limit. Thus, even iRlicity we neglected the possible anisotropy in the diagonal
the case of a square sample with=L and periodic trans- conductivity a°) The_ action can be viewed as pesultmg di-
verse boundary condition, it is not clear tiah = o,,. The  rectly from considering layers stacked perpendicular to the
effect of the edges in the critical region is nicely shown in amagnetic field, each of which has a Hall conductivity and is
recent papef? which examined the mean, variance, and dis-descibed by the 2D N&M action, plus a transition ampli-
tribution of the conductance in a two-probe geometry liketude for electrons hopping between the layers. Such models
ours, withWw=L, and for both reflecting and periodic trans- have recently been studied numericaflyFor systems with
verse boundary conditions, i.e. with and without edges. Th&oundaries, the-y, term in the action now leads in perturba-
results show that the boundary conditions do make a differtion theory to phenomena similar to those in two dimensions,
ence (however, finite-size effects are significant, as showrsuch as a tilted boundary condition, a dependencgpaind

for the periodic transverse boundary condition case in Refthe conductance fluctuations e,/ o°, and so on. Thus, in
22). The authors tentatively attribute this to “edge currents,” three dimensions, and also in still higher dimensions, the
but as we have seen in the perturbative regime, there a@nductance fluctuations in general depend on the Hall ratio
edge effectgdescribed byo,,), that are not solely due to (or anglg. However, for the localization transition in three
edge currents carried by edge statsbich are described by dimensions, which would be expected to be in the unitary
O'!(ly). The boundary effects make themselves felt throughouglass since time-reversal symmetry is broken by the mag-
the system, due to long-range correlations in the critical renetic field, we suspect that the), term is irrelevant at the
gime. They are relatively unimportant only whevis>L. In  critical fixed point, so that the properties of the transition are
fact, dependence on the boundary conditions, say on whetheniversal, independent of the bare Hall ratio, at least to the
they are periodic or reflecting, would occur even in the ab-same extent as in two dimensions, as discussed above. Simi-
sence ofoy,, as it does in the weak coupling regingee, larly to the 2D case, the’, term contributes to the action of
e.g., Ref. 32 A further implication, suggested by our results, configurations in which each layer has a nonzero instanton
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number(insofar as this number is well defined, if the system Forr at the reflecting boundary, the normal component of
has boundarigs In three dimensions, there also exist topo-j outsidethe sample is zero. In the presence of a boundary
logically stable point-singular configurations of tefield  current, which, from a coarse-grained, large-scale point of
(known as “hedgehogs” in the literaturewhich may be view, can be treated a8 functions s(y—W), §(y) in the
viewed as points at which the instanton number changesomponents tangential to the edge, the surface integral of the
from one layer to the next. Theﬂ term counts the number current emerging from a small box centered on the top edge
of layers with each value of the instanton number, and thus iseduces to

sensitive to the presence and location of the hedgehogs.

However, in the case of NEM's studied in connection with W0+ , , B
antiferromagnets, it appears that the hedgehogs are irrelevantjw,w dy d{(r.r))scea= (yul 1)) scedy=w=0

as far as the critical properties are concerned, even though (A4)
they may affect the behavior in the phases on either side of ) , o

the transition(see, e.g., Ref. 0Therefore, we suspect that, fOF '#r'’. Thus any normal currenfust inside the edge
while theo?, term plays a role in the metallic phase, and alsoMUSt be converted to &-function tangential current at the
(after renormalizationin the 3D quantized Hall phase of ©dg€: This condition was discussed for the curjémt Sec.
layered system® it may have no effect on the critical prop- | A~ Within the SCBA, |toleagls[usmg I%q.gz.zc»].to the
erties, except perhaps for the conductance when edges dr@nclusion that it isy=ay/oyy, Not ayy/ay,, which ap-

present. Clearly, these are questions that may repay furth®@ars in the boundary conditiofL.16 on the diffusion
study. propagatord. A similar argument holds for the’ depen-

dence. The extension of this discussion to include the situa-

: A .
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with the o~ term. We can write the ladder diagrams in the
APPENDIX A: BOUNDARY CONDITION AT THE following fashion:

HARD WALLS FOR THE WHITE-NOISE MODEL
4

In this_ app_endix we briefly Qe_rive the boundary cpndition Ol Tar) = zuf d2rt(r,r)d (1, ry).
on the diffusion propagator within the SCBA, by using cur- 4mg
rent conservation at the reflecting walls. Using the SCBA (BY)
equation [E—Ho=37(r)]G™(r,r')=5(r—r’), we can Using the recursive relatiofA2) for v-(, and denoting
show that STMJ=* asvR M we obtain another recursive relation:
VI (r r’)zv-[G_(r’ r)(_i S)G_+(r r’)} 2m,
’ y 2me ’ V-a*f'(n)(r,r')= ﬁ2 (2*—2’)[VR’(“71)(r,r’)
:i_ NS\ S — YR
ﬁ(E S)—=6(r=r")u v W(ir r)].
_ _ Summing up all the ladder diagrams, we obtain
+GH(r,r")G (r',n]. (A1)
Let us define theG* G~ ladder diagram withn impurity V.ot (rr')= 2_m GH(r D/ Par(r'
lines asS™ (M and the ladder diagram with one current (r.r) ﬁzz 2 {Gn(rrDiP ()

vertex attached to the left as -
—Pn(r,r)D' Gy, (1,1},

VL’(n)(r,r')ZUf d2r J*(r,r) ST M (ry,r). wherePy(r,r') is the projection operator onto tiéth Lan-

_ . _ _ dau level. The right-hand side is a short-ranged function of
Using the above property of " ~, we obtain the following |r—r’|, which we can treat as & function. We can write
recursive relation:

P "N —pt— _ !
Vb= gt (g (D). (A2) Voo (r,r")=c" " o(r—r’), (B2

h
Summing up all ladder diagrams, we obtain where

Vvl (rr)y=—r8(r—r"), (A3) cr—:—iﬁ; E (Gpv), —vl G,
wherevt(r,r’) represents thd® ~S* 7 (r,r’). This shows "
that, on the finest length-scale resolutidw,,,(r,r'))scen ~ Wherev,, is the matrix elements of the velocity operator,
obeysV-a(r,r')=0, forr sufficently far fromr’. and



=0
+0

B=0
B+#0.

for
for

4
|

To evaluates™ *(r,r’) ando™ ~(r,r'), we use the follow-
ing trick:

E
a**(r,r’)zf dE'f(E’) Iim

E1:E2—>E’&E1
XotT(r,r";Eq,Ey),
o ( 1,E2) (B3)
[ E .
o (r,r)—fﬁdef(E) lim ,z9_Ez
E;=E,—E
Xo~ " (r,r’";Eq,Ey),
where 2% E,,E,) involves the ladder sum $?2

(a=+,—). Define vRaa(M =g j3a we can show that
for the nth ladder diagram,

Voot (rr"Eq L Eyp)

2m,
T3 (B~ 3T (B VR0 V(i)

2m
ﬁZ

S[SHEY -3 (E) VR (M(r,r)

2m
+ 7 [Er—E V10 (r ), (B4)
One can see that there is cancellation betweemthdadder
diagram and thern(+1)th ladder diagram. Similar relations
can be derived foF- o~ ™ (r,r";E;,E,). Summing up all
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VR M )
= zﬁrze[d"’(”’“(r,r’)—d"‘”*”(r,r’)]:O,
we obtain
V(o (r.r"))scea V' =0. (B7)

Using Egs(B6) and(B7) and the asymptotic property of the
Green’s functiof?

fdS’|,/:wGi(r,r’)S’Gi(r’,r)zo,

we can show finally that

Vf <O'(r,r,)>SCBA'dS’:0. (88)

APPENDIX C: REMARKS ON EDGE STATES
AND QUANTIZATION

Here we return to the topological considerations of Sec.
Ill B, and relate them to edge states and the quantization of
the Hall conductance in the localized regime. The topologi-
cal considerations of Sec. Il B are closely related to the
problem of setting up a path integral for a quantum spin, by
which we mean an irreducible representation of the symme-
try group, which is SU(R) here(for a review, see e.g., Ref.
60), and this connection is also utilized in the mapping from
the Chalker-Coddington modétepresenting a network of
edge statgsto a quantum spin chain or the M (Ref. 49
(the connection between the latter two problems, and the
relation to the quantum Hall effect, was discussed e&tier
In the quantum spin problem, we would take imaginary time,

the ladder diagrams, taking the derivative over energy andith a periodic boundary condition in the time direction, and

then the limitE;=E,—E’, we can show that

Vot (r,r")+o (r,r")]

=—c"o(r—r")—

h2

Zmef dE'f(E")

X[vT R e’ ENY—v R(r,r' ,E")].
(B5)

We can see tha¥-o™ ~(r,r’) is canceled by contributions
fromV-o**(r,r’) andV-o~ " (r,r'),

V~<r(r,r’)=—2r;e idE’f(E’)[v***R(r,r’,E’)
v R(rr’ E"N]. (B6)
Since
VR M)
2me B B
=37 [STHM=D(r r)—s" =D ry]=0

and

the action would contain only the},° terms fromS[A], Eq.

(3.8); the system would be taken to be a disk, with the single
edge corresponding to the world line of the quantum spin
with its periodic boundary condition. For the two-probe ge-
ometry, this corresponds to regardirgas imaginary time,
and the two edge channels are then a pair of quantum spins,
with the spins fixed aQ= A at the initial and final “times”
x=0, L. In the absence of the rest of the action, quantum-
mechanical consistency requires in either geometry that the
coefficientoﬂyo be quantized to integer values, for reasons
closely related to the properties of “large(topologically
nontrivial) gauge transformations; for the case of(3)Jthis
corresponds to 8= integer, as usual. Essentially, the argu-
ment says that, since the only degree of freedom in the prob-
lem is the value of) on the edge, then its continuation into
the interior, needed to write the topological term, is arbitrary,
and the path integral should be invariant under a change in
Q in the interior that does not affect the edge; such changes
are the “large” gauge transformations. Since the change in
the action under such a change isiz-l('y'oq for some integer

q, this implies thato} ;% is an integer. This is related to ar-
guments for quantization of the Hall conductivity, once lo-
calization sets in Refs. 29 and 30. In this case, we may imag-
ine that the localized system is described by thesNLbut

with a;’x replaced by a renormalized valug,, equal to zero
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because of localization. Then a similar argument requirestr(dd)=Tr (d°d®) + Tr(d°d°Bd°) + Tr(d°Bd°d°)

that the renormallzed” is quantized to integer values. Thus 010 1910110 01210101910 3

quantization of the Hall conductance and quantization of +2Tr(d"d"Bd"Bd") + Tr(d"Bd"d"5d") + O(»°),

spin are closely connectéd. This argument is also (D1)

connectet with the gauge-invariance argument for

quantizatiorf®® The edge states, that are the only degrees of Tr(dd")=Tr(d°d®) + Tr(d°d°B7d%) + Tr(d°B7d°d°)

freedom able to transport current over large distances in the 040 13T A0 0T 10 05T 010 19T 0

localized regime, correspond to the quantum sfim the +2Tr(d°d"B'd"B'd") + Tr(d"B'd"d"5d")

n— 0 limit). We note that from this point of view of the edge +0(¥°) (D2)

states, in whictx plays the role of imaginary timéy, plays '

the role of an external magnetic field, in the sense of thevhere the matrix3 has the following elements in the basis of

familiar Zeeman coupling in the SP) case. It is coupled to  ¢2,:

Q, which corresponds to the spin operator, or the current

operator for the edge stat®. corresponds for SU(®) to the

three-component unit vectd® that describes an SP) spin,

which can be obtained explicitly by writing, fon=1,

Q=Q- 7, whereris the vector of Pauli matrices. For &),

the corresponding operators in the quantum theory, after r

scaling to absorb the coefficient analogous to aLk;o, are

the familiar operators, which generate S(@2) rotations and (5g)a b=

are conserved when the Hamiltonian is (8Uinvariant. In

the presence of the vector potenti&) which enters multi-  where

plied by the magnitude of the spif, to give the Zeeman

coupling, just as in our action, the equation of moti@n L} 2 1

Ward identity for a single quantum spin describes the famil- f2 &L = (mPH LYW

iar precessional dynamics, which can therefore also be

viewed as the covariant conservation of the spin. ( L)
W

v  8mm
<n m |B|nm>:_m(mr)z—_mZ(strm’,oddanJrn',even-

The linear term iny is zero, because the matri is anti-
Symmetric. We obtain

1 64
—36f2— 7 (12f5-21y) (D3)

(D4)

1 1
2 2

3
m2+n2W> m/2+n/2W

>

By contrast, for the full action in the weak coupling re- f3
n=0m=1pn'=gm’'=1

gime o,,>1, where the rest of the action depends on the

form of Q in the interior, there is no reason why eithe&
II O

should be quantized, in accordance with our physrcal (mm')2
expectatrons The same applies to derivation§[&f] start- X—zz5m+m ,0ddOn+n’ evens (DY)
ing from the network modé?® which also represents only the [(m")*—m?]
Fermi energy response, except that in this case the splitting L 1
of oy, into o) anda,,’ is a matter of an arbitrary definition, f4(v—v) = > >y
as we discussed for the linearized model in Sec. | B. In the n=0m=1 pn'—om’=1 m2+n2L—)
network model, the links of the lattice can be viewed as w2
guantized edge channels, and these are the only degrees of 1 (mm)2
freedom, so the coupling &k to these links is of the edge % RiE: 7
form discussed above, but wit,° replaced by the quan- 24’2 ) [(m")“—m?]
trzed value 1. Of course, the coarse grained valuesf W2
oy, andoy,° are determined by the parameters of the ver- %8 5 (D6)
tices in the network model, and by the definition of the m+m’,odd"n+n’,even
coarse-grained currert§so they are not quantized. The upper bounds far andm in all sums aren,,,,~W/I| and
M~ L/l. For a square sample with=W, we have
APPENDIX D: COMPUTATION OF f,=1.51,
THE VARIANCE DIAGRAMS L
The conventional diagrams Figgaf#and 4b) depend on (59)§,b,L:W=?[9-06— 2.357°]+0(y*). (D7)
v through the diffusion propagator. Using the boundary per-
turbation expansion, we obtain Figures 4e) and 4f) give
, 256 L2 11 1 1 )
(99)er =78 Wznl,n%odd g odd ng=0ma=1 My My Mi+nIL%W? m5+n3L%/W? (m3+ n§L2/W2)2{3(m3D3D2
+n2L%/W?D ;D )+ 3(m;m,DsD,+ nyn,L2/W?D D) + 10(m;mgD D5+ n;ngL2/W?D 4 Dg)}, (D8)

where
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— _1 _1 1
Dl(mlam21m31m3) - 5m1,m2 2 5ml,2m3+m2 2 5ml,—2m3+m2+ 2 5ml,2m3—m21

_ 1 1 1
D2(”11n21n31n3)_5nl,n2+§5n1,2n3+n2+§5nl,—2n3+n2+55n1,2n3—n21
D3(my,m,,ms,mg) =24, +15 -15 -15
3 1,112,113, 113 my,m, " 2¢m; . 2mg+m, 2 9my,—2ma+m, 2 “m,2m;—m,»

_ 1 1 1
D4(n1-n2-n3vn3)_5n1,n2_§5n1,2n3+n2+§5n1,72n3+n2_§5nl,2n37n2-
Ds(myg,m,,ms,mg) =24, -15 -15 —15
5 1,112,113, 113 my,m,  29m;,2mg+m,  29m;,—2ma+m, 2 Ymy,2m;—m,»
Dg(Ny,Ny,N3,N3)=6, . +38 +15 -1
e\!l1,112,113,113 nyny m 290,2na+n, T 29, -2n3+n,  2%1,2n3—n,

_ 1 1 1
D7(m1!m21m3am3) -T2 5m1,2m3+m2+ §5m1,72m3+m2+ 2 5m1,2m37m21

_1 1 1
D8(nl=n27n31n3) - §5n1,2n3+n2_ 2 5n1,72n3+n2+ 2 5n1,2n37n2- (D9)

This term has a logarithmic pdfit diverges with system size as Iofl) ]. It comes from the first term in the curly brackets,
when the two derivatives of the four-point interaction are applied to the closed loop of two diffusion propagators. The second
term results from applying the two derivatives to the two external propagators. The third term arises when one of the derivative
is applied to the closed loop, one is applied to the external propagator.

Figures 4g) and 4h) are both logarithmic. They are of opposite signs, but the amplitude of Fay.which is positive, is
twice that of Fig. 4h). We obtain

(50)2 256 , L7 » 11 1 1 D.D,. (D10
g g'h ?’y Wnl’ml:odd nzymzzodd n3:0'm3:1 ml m2 mi"’ niLZ/W2 m§+ ngLZ/W2 m§+ ngLZ/W2 =e:
Figures 4j) and 4j’) also have logarithmic divergence. We obtain from Fig),4ve obtain
256 L2 11 1
50)°=—x Y2 —> e —
( g)l 8 Y Wznl,%odd n,,mMy=odd ng=0mz=1 n,=0m,=1 M1 My mi-i— niLZ/WZ
1 mgz my
% m5+n5L2/W? m3+n3L2/W? m3+ niLZ/WZ[aml'mFm; Oy mg=m, 1L Omy =y = Oy s
X[gnl,n4tn3+ 5n1,n3—n4][5n2,n4tn3+ 5n2,n3—n4]- (Dll)
From Fig. 4j")
256 L2 11 1
850)% =—" 02— -
( g)] s Y Wznl_rn§1:=odd n,,my=odd ng=0mg=1 n,=0m,=1 Mg My mf+ niLZ/WZ
1 m3
% m5+ n5L%/W? m3+ n3L%/W? m3+ n3L2/W? [ Omy myzemg = Oy mg—m, 1L Oy gy = Oy g~
X[ﬁnl,n4tn3+ 5n1,n37n4][5n2,n4in3+ 5n2,n37n4]- (D12)

Both Figs. 4j) and 4j ') are negative. Their logarithmic parts combine to cancel those from Rigls44), 4(g), and 4h). The
variance, which is the sum of Figs(ad—4( '), is finite.
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