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Mesoscopic conductance and its fluctuations at a nonzero Hall angle
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~Received 16 December 1996!

We consider the bilocal conductivity tensor and the two-probe conductance and its fluctuations for a disor-
dered phase-coherent two-dimensional system of noninteracting electrons in the presence of a magnetic field,
including correctly the edge effects. Analytical results are obtained by perturbation theory in the limitsxx@1.
For mesoscopic systems the conduction process is dominated by diffusion, but we show that, due to the lack
of time-reversal symmetry, the boundary condition for diffusion is altered at the reflecting edges. Instead of the
usual condition that the derivative along the direction normal to the wall of the diffusing variable vanishes, the
derivative at the Hall angle to the normal vanishes. We demonstrate the origin of this boundary condition in
several approaches. Within the standard diagrammatic perturbation expansion, we evaluate the bilocal conduc-
tivity tensor to leading order in 1/sxx , exhibiting the edge currents and the boundary condition. We show how
to calculate conductivity and conductance using the nonlinears model with the topological term, to all orders
in 1/sxx . Edge effects are related to the topological term, and there are higher-order corrections to the
boundary condition. We discuss the general form of the current-conservation conditions. We evaluate explicitly
the mean and variance of the conductance, to leading order in 1/sxx and to order (sxy /sxx)

2, and find that the
variance of the conductance increases with the Hall ratio. Thus the conductance fluctuations are no longer
simply described by the unitary universality class of thesxy50 case, but instead there is a one-parameter
family of probability distributions. Our results differ from previous calculations, which neglected
sxy-dependent effects other than the leading-order boundary condition. In the quasi-one-dimensional limit, the
usual universal result for the conductance fluctuations of the unitary ensemble is recovered, in contrast to
results of previous authors.@S0163-1829~97!08128-9#
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I. INTRODUCTION

In the past decade much attention has been given to
statistical properties of quantum conductors with compl
phase coherence~with sizeL smaller than the phase cohe
ence lengthL in). A notable feature of such systems is t
lack of self-averaging in their transport properties. In me
scopic systems for whichL is less than the localization
lengthj, the conductance fluctuation amplitude~the standard
deviation of the conductance!, is found, at low magnetic
field, to be of order 1, and to be independent of system
and the degree of disorder~but dependent on the dimensio
ality, shape, and overall symmetry properties of t
system!.1–7 ~Note that, in the present paper, all conductiviti
s and conductancesg have the factore2/h removed, so they
are dimensionless in two dimensions; their dimensionful a
logs are recovered by multiplying bye2/h.! These universa
conductance fluctuations~UCF’s! have been well understoo
within the framework of perturbation theory3,4,7 and the one-
parameter scaling theory of quantum conductance.8,9 The
physics underlying the UCF is the long-ranged spatial co
lation among the wave functions of the conduction electr
in the diffusive regime. The universality of the phenomen
has also stimulated the formulation of a random-ma
theory description of quasi-one-dimensional~quasi-1D!
Refs. 10–13 and quasi-zero-dimensional~quasi-0D!
conductors,14,15 which reproduce quantitatively the results
diagrammatic perturbation theory. In earlier perturbat
work the effect of a magnetic field was only include
through the introduction of an appropriate Aharonov-Boh
560163-1829/97/56~7!/3982~31!/$10.00
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phase in the zero-field propagator. This leads to the elim
tion of Cooperon contributions to conductance fluctuatio
causing a crossover from the so-called orthogonal to the
tary ensemble, and a consequent reduction of the varianc
a factor of two.4,7 In the quasi-1D case, this result is als
recovered by the random-matrix approaches.12,13

In two dimensions, the interplay of quantum interferen
effects and magnetic field leads to the quantum Hall effec
high magnetic fieldB.16 In mesoscopic samples, conductan
fluctuations persist in fairly high magnetic fieldvct0.1,
wherevc is the cyclotron frequency,t0 is the elastic scat-
tering time in zero magnetic field, and the fluctuation amp
tude remains comparable to the low-field limit.17–23 For B
fields sufficiently high that quantization of the Hall condu
tance sets in, the fluctuations are strongly suppressed in
plateau regions, but reappear in both longitudinal and H
resistance in the transition regions between plateaus.
therefore of theoretical interest to generalize the theory
conductance fluctuations to all fields. Atvct0.1, the trajec-
tories of the electrons are significantly influenced by the L
entz force between successive scattering events, and the
namical effect of the magnetic field must be treated. T
diffusion at high field occurs by a different mechanism fro
the low-field regime. For the short-ranged random poten
model, the center of the cyclotron orbit hops a length
order the cyclotron radiusRc whenever it encounters a sca
tering center; thereforeRc plays the role of the mean
free path l . The bare conductivitysxx

0 in the middle of
the Nth Landau level is of order (2N11)/p ~Ref. 24!
(N50, 1, . . .!. Despite the altered nature of the micr
3982 © 1997 The American Physical Society
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56 3983MESOSCOPIC CONDUCTANCE AND ITS FLUCTUATIONS . . .
scopic diffusion, a unified treatment of mesoscopic cond
tance fluctuations in relatively high fields is possible b
cause, even atvct0.1, there exists a perturbative regim
where the transport process is dominated by diffusion.
long as there are many Landau levels occupied, 1/sxx

0 or
1/kFl serves as a small parameter, and perturbation theo
still useful. Previous perturbation theories have shown t
the weak localization correction tosxx for the unitary class is
of order 2(sxx

0 )21ln(L/ l ).25–27 The localization correction
is relatively small for systems withL less than the crossove

length jpert5 le(sxx
0 )2

~for sxx
0 large!. For l ,L,jpert, the

conductance fluctuations are expected to be similar to
UCF. At L.jpert, the renormalization-group flows for th
system, driven by nonperturbative effects,28–31carry it either
to one of the localization fixed points wheresxx→0 and
sxy becomes quantized, or to one of the nontrivial fix
points wheresxy is a half-integer andsxx approaches a uni
versal value. Numerical work finds that the conductan
fluctuations in the critical regimes20–23 have a different dis-
tribution from the UCF, and one would expect this distrib
tion to be beyond the scope of a perturbative treatment.
comment further on the critical regime in the conclusio
Sec. VI.

In this paper we study the conductance and its varia
for a two-probe geometry in two dimensions in the prese
of disorder and magnetic field, and in the perturbative reg
( l !L!jpert). As shown in Fig. 1, the edges of the samp
are defined by a hard-wall confinement potential and the
ends of the sample are connected to highly conducting le
The first analytic work on this problem was by two of th
authors~Xiong and Stone32!, in which they generalized the
previous diagrammatic perturbative techniques27 to treat the
conductance fluctuations. At the level of the self-consist
Born approximation, the only effect they found of the ma
netic field B was a field-dependent diffusion consta
D(B). Since the value of the diffusion constant cancels fr
the conductance fluctuations, they found no effect of
magnetic field on the amplitude of the two-probe cond
tance fluctuations~other than the well-known factor of two
reduction associated with the crossover to the unitary
semble!, although the correlation fieldBc , which determines
the spacing of the fluctuations in magnetic field, was fou
to increase with increasing field in a manner consistent w
experiment.18 The reason for the increase is that for syste
with L.L in , Bc;f0 /L in

2 , where L in
2 5D(B)t in (f05h/e,

and t in is the inelastic scattering time!. Since the diffusion
constantD(B) decreases with increasing magnetic field~a
result reviewed in Sec. II!, Bc increases. Although this con

FIG. 1. The two-probe geometry.
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clusion about the correlation field is basically correct, t
conclusion concerning the fluctuation amplitude is now u
derstood to be correct only for a periodic boundary condit
in the transverse direction and must be revised for the cas
a system with reflecting edges. As discovered independe
by Khmel’nitskii and Yosefin~KY !, Maslov and Loss~ML !,
and one of the present authors~Read!,33–35 the boundary
condition is modified from the vanishing of the normal d
rivative of the diffusing variable to the vanishing of the d
rivative at an angle to the normal. KY and Read furth
showed that this angle is the Hall angleuH5tan21sxy

0 /sxx
0 ,

where sxy
0 is the bare Hall conductivity. These autho

pointed out the possibility that the mesoscopic conducta
fluctuations may depend on magnetic field due to the bou
ary condition. KY and ML attempted to evaluate this depe
dence both numerically and analytically. Simulations p
formed for the two-probe conductance of small systems
the nonquantized regime34 show that the maximum fluctua
tion amplitude appears toward the bottom of the Landau l
els where the Hall ratio is large, indicating some depende
on the Hall ratio. However, the analytic calculations by K
and ML ~Refs. 33 and 34! do not agree with our presen
results since these authors merely modified the diffus
propagator in previous expressions for UCF diagrams. L
KY, we find thatsxy

0 enters not only the boundary conditio
but also the current vertex. Moreover the altered bound
condition permits new diagrams to occur which, rough
speaking, describe interference effects associated wit
sxy

0 -dependent ‘‘interaction’’ of the diffusion modes. Thes
diagrams, which were not considered by ML and KY, mu
be included when edges are present. We evaluate the
probe conductance and its variance to leading order in 1/sxx

0

and to orderg2, whereg5sxy
0 /sxx

0 . For wide samples with
W;L, whereL andW are now the length and width of th
sample, we find that the variance does not depend onsxx

0 and
sxy

0 individually, but does depend ong. The variance in-
creases asg2 for small g, and hence is no longer indepen
dent of magnetic field~although it is still independent of siz
in this order in 1/sxx

0 , and has no direct dependence on t
mean free path!. Interestingly, however, in the quasi-1D lim
(W!L), the Hall ratio is absorbed into an effective 1D co
ductivity which cancels in all diagrams. Therefore in th
limit the UCF result of the unitary class is recovered~in
contrast to the claims by KY and ML that this is modified f
gÞ0). The implication is that quasi-1D conductance fluctu
tions are still described by the standard random-ma
theory of disordered conductors, but that the 2D fluctuatio
even in perturbation theory, define a family of random
matrix ensembles parametrized by the Hall ratiog.

In this paper, we use the disorder-averaged diagramm
approach and the field-theoretical approach in a complem
tary way. To study transport properties of a system w
phase coherence, the appropriate starting point is the bil
conductivity tensorsmn(r ,r 8). In Sec. II, we evaluate the
meansmn(r ,r 8) to leading order in 1/sxx

0 using the diagram-
matic approach, and demonstrate the microscopic origin
the edge contributions. In Sec. III, we set up the fie
theoretical formalism for the evaluation of linear-respon
functions. We discuss the connection between the til
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3984 56SHANHUI XIONG, N. READ, AND A. DOUGLAS STONE
boundary condition and the nonlinears-model action with a
topological term proportional tosxy

0 .28,30 Previously it was
known that this topological term is crucial to the critic
transition of the quantum Hall effect at large length sc
(L@jpert).

29,30 For a system with reflecting edges, this ter
is a nonvanishing surface term, whichdoesinfluence trans-
port properties in perturbation theory, valid whenL!jpert,
through varioussxy

0 -dependent boundary contributions. W
show how to incorporate an external source field so that
moments of the bilocal conductivity and conductance can
calculated, and show the extent to which current conse
tion is maintained in this system. In Secs. IV and V, t
conductance and its variance are calculated by expandin
power series in 1/sxx

0 and g. In the remainder of Sec. I we
begin the discussion of the main ideas and summarize
results. The details of the calculations, and further disc
sions, are given in later sections.

A. Local conductivity parameters, two-probe conductance,
and edge states

In this paper we focus on calculations of the two-pro
conductance in a magnetic field. It is, however, possible
generalize our calculations to treat the conductance matri
a multiprobe conductor, as has been done previously for z
~or weak! field.36,37Two-probe conductance describes an e
perimental setup in which voltage measurements are m
only between the current source and sink and not betw
distinct voltage probes as in a typical Hall measurem
~two-probe measurements are not uncommon for mesosc
conductors, because of the difficulty of making multiple co
tacts!. Therefore such a measurement cannot separately
termine sxx(B) and sxy(B). In this subsection, we show
how the assumption of a local form for the conductivity in
system with edges leads to the result that the two-probe
ductance is approximately proportional tosxx when
sxx@usxyu, and to usxyu when usxyu@sxx . Interestingly,
such an argument already indicates the appearance o
tilted boundary condition which affects the conductance fl
tuations as well.

We wish to find the current produced in linear response
an applied electric field. We will consider the two-probe co
ductance which results from assuming a local form for
conductivity,

j m~r !5
e2

h
smn

0 En~r !, ~1.1!

where, due to the macroscopic homogeneity of the sam
and Onsager relations, the conductivity parameters o
sxx

0 5syy
0 and sxy

0 52syx
0 . It is a common misconception

thatE in this formula is the same as the applied electric fi
E. In fact, in general,E in this formula should be interpete
as theelectromotivefield, that is, as minus the gradient of th
electrochemical potentialV5f2m/e, wheref is the elec-
tric potential, andm the chemical potential~more generally,
E5E1¹m/e). In this paper, we will neglect electron
electron interactions of all kinds, sof can be viewed as the
externally applied electric potential.~If it is desired to in-
clude Coulomb interactions through a self-consistent po
tial, then f is the total electric potential, the sum of th
e
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externally applied potential and the potential produced by
electrons in the system; the latter potential is determined
the change in the expectation value of the density, in
sponse to the external field, through the 3D Poisson equa
This is distinct from similar-looking equations below, whic
have the form of the 2D Laplace equation. Other short-ra
interaction effects would contribute tom.! The chemical po-
tential in the above expressions is defined in terms of a lo
quasiequilibrium~in the presence of a nonzero response c
rent!, which must be established by inelastic effects. Hen
this formulation is only valid on scales greater than the
elastic lengthL in ~this of course requires that there be som
interaction between the electrons!. It is only in this sense,
which implies the absence of effects due to single-part
phase coherence, that Equation~1.1! is a classical formula; it
does not require that all effects of quantum mechanics
neglected. Eq.~1.1! ~when valid! is the most convenien
form for expressing the linear response, since a voltage m
surement determines electrochemical potential difference
does not imply that a local relation exists between the e
tromotive and electric fields. As the chemical potential
determined by the local conditions, in particular by the loc
density, and that density is affected by the transport, wh
in our case will be diffusive, this relation is not local. Thu
the current response to theelectricfield is actually nonlocal,
as in Ref. 38, even in this ‘‘classical’’ case. We will return
this in Sec. I D.

We will now calculate the two-probe conductance of
rectangular sample with insulating edges connected
conducting leads at each end. The potential in the le
is assumed to be held at constant valuesV1 and V2.
At every point on the insulating edges the normal curr
must vanish. Using Eq.~1.1! andE52¹V, it follows that
(]y2g]x)V(r )50, i.e., the electromotive field at the Ha
angle to the normal must vanish. Thus in this case the
pearance of a tilted boundary condition on the electroche
cal potential follows simply from the fact that the field
tilted from the current by the Hall angle. From the continu
equation,¹• j50, and one finds that¹2V50 in bulk. Solv-
ing the Laplace equation forV(r ) with fixed voltages at the
two ends and the tilted boundary conditions at the edge
not a simple exercise, but has been done for this 2D rec
gular geometry by conformal mapping39 ~we give a solution
in another form in Sec. I D!. From this solution one can
obtain the two-probe conductance for an arbitrary Hall ra
however, here we analyze only its limiting behavior. T
conductanceg0 can be found by integrating the current ov
a cross section perpendicular to the current flow:

g052sxx
0 E

0

W

dy~]x1g]y!V~r !/~V22V1!. ~1.2!

First consider the caseg→0; it is then convenient to inte
grate over all transverse cross sections in the sample
divide by the sample lengthL. The integral then just evalu
ates the voltage at the two ends where it is fixed, yielding
familiar Ohmic result

lim
g→0

g05sxx
0 W/L. ~1.3!
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56 3985MESOSCOPIC CONDUCTANCE AND ITS FLUCTUATIONS . . .
In the opposite limitsxx
0 →0, ugu→`, the boundary condi-

tion implies that everywhere along the edgeEx50, i.e., there
is no voltage drop along the edge, and the voltage mus
main equal toV1 along one edge andV2 at the other edge
except at singularities at diagonally opposite corners~where
it jumps betweenV1 andV2). The transverse potential dro
is equal to (V12V2)sgng, therefore

lim
ugu→`

g052 lim
ugu→`

sxx
0 E

0

W

dy g]yV~r !/~V22V1!5usxy
0 u.

~1.4!

So, using the classical local conductivity, the two-probe c
ductance changes from being dominated by the longitud
conductance at smallg to being dominated by the Hall con
ductance at largeg. We can also solve the limitL/W→`
with g fixed; for a fixed current, the voltage drop is dom
nated by the part of the geometry a distance greater thaW
from the ends, in which the current distribution is essentia
independent of y, and one finds thatg0→@$(sxx

0 )2

1(sxy
0 )2%/sxx

0 #W/L[(1/rxx
0 )W/L. Note that the crossove

to this behavior occurs at a value ofL/W that depends on
g. In contrast to the above results for a rectangular sam
with edges, for periodic boundary conditions in the tran
verse direction, which is equivalent to transport along a c
inder, the conductance is alwayssxx

0 W/L, for any value of
g. We note that this geometry is equivalent, through a c
formal mapping, to the Corbino disk geometry, in which t
voltage drop is radial, and, since the equations are con
mally invariant, results for the cylinder also apply to th
disk. Although the local formulation cannot be used in t
fully phase-coherent~‘‘quantum’’! case whereL in@L, we
expect that the physics illustrated by this argument will
relevant to the average quantum conductance.

Indeed, in thequantizedHall regimeL@j, previous ar-
guments based on the Landauer formula for two-probe c
ductance in terms of transmission coefficients have noted
relation between two-probe conductance and Hall cond
tance. These approaches assume that the incident and o
ing channels areN-edge states.40,41 These edge states a
analogous to classical skipping orbits advancing in one se
along each edge and occasionally being scattered into
bulk. Any actual calculation of these transmission coe
cients will be equivalent to evaluating the bilocal conduct
ity between the two ends;42 however, physical arguments a
made that in high field the backscattering of edge states
be suppressed giving perfect edge transmission
g5N5usxyu; i.e., the two-probe conductance is equal to t
Hall conductance which takes its quantized value.~Since
sxx50 this is consistent with the classical result abov!.
Although physically appealing, such arguments assume
the interaction of bulk and edge states can be ignored. H
ever, in a bulk 2D sample it is known that it is only loca
ization effects which prevent edge states from backscatte
through the bulk states; they thus require thatW@j, the
localization length. We note that away from the critical va
uesEcN (N50, 1, . . .! of the Fermi energy, which lie nea
the center of theNth Landau level,j.jpert, while j→` as
EF→EcN for eachN. We cannot analytically calculate th
conductance in this nonperturbative regimeL, W.jpert;
however, our results below do describe samples for wh
e-
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L, W!jpert, and localization effects have not inhibited bac
scattering of edge states. The key ingredient to describe
edge-bulk coupling in the perturbative regime is the tilt
boundary condition for diffusion which we derive in the ne
subsections. In the fully phase-coherent case, the boun
condition is, however, modified further.

B. Classical network model, edge states,
and tilted boundary condition on diffusion

Khmel’nitskii and Yosefin33 ~KY !, Maslov and Loss34

~ML !, and Read35 have previously obtained the bounda
condition on the diffusion process in high magnetic fie
KY’s argument appears to be related in part to the class
conductivity formulas reviewed in Sec. I A. ML considere
the effect of the edge in high field on the microscopic diff
sion process using a Boltzmann equation approach. T
found that the tendency to skip in only one direction wh
colliding with the edge does lead to the tilted boundary co
dition on the diffusion equation. They expressed the
angle in terms of the ratio of the mean free path along
edge and the bulk mean free path. Read35 used the nonlinear
sigma model approach, which will be described later in t
paper. KY and Read were able to identify the tilt angle as
Hall angle. In this subsection we rederive the boundary c
dition in a particularly transparent manner using a class
version of the network model for high-field transport intr
duced by Chalker and Coddington.43 In this case one can
also see immediately that the tilt angle is the Hall angle.

The original Chalker-Coddington model43,44 describes the
quantum tunneling between the semiclassical orbits along
equipotential contours of the smooth random potential~see
Fig. 2!. To derive the diffusive behavior of the probabilit
density in this model we will neglect interference effects a
describe each node by the probability that a walker
proaching it makes a step to the right (R) or left (T);
T1R51. ~This simplified model has been considered
several earlier authors;45–47 it is essentially classical, and
could serve as a lattice realization of the classical beha

FIG. 2. The Chalker-Coddington network model. Each unit c
contains four distinct links,A, B, C, and D. The tilted boundary
condition arises from the fact that along each link, the random w
is along only one direction.
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3986 56SHANHUI XIONG, N. READ, AND A. DOUGLAS STONE
discussed in Sec. I A.! The links of the lattice can be divide
into four sublatticesa5A, B, C, and D ~see Fig. 2!, and
each unit cell of the lattice contains one of each of the f
classes of links. The nearest-neighbor separation isa. We
usera( i , j ,t) to denote the probability of being at linka, site
i , j at time t. Assuming that it takes timet for a particle to
move from one link to the next, one can define a rando
walk problem on the network and write down probabili
evolution equations:

rB~ i , j ,t1t!5rD~ i , j ,t !T1rA~ i , j ,t !R,

rC~ i , j ,t1t!5rA~ i , j ,t !T1rD~ i , j ,t !R,

rA~ i , j ,t1t!5rB~ i , j 21,t !T1rC~ i 11,j ,t !R,

rD~ i , j ,t1t!5rC~ i , j 11,t !T1rB~ i 21,j ,t !R. ~1.5!

This problem differs from the usual random walk in the r
spect that on each link the walk is in only one directio
hence breaking time-reversal symmetry.

The above equation can be diagonalized in Fourier sp
One can show that the long-time large-distance modes ha
diffusive spectrum

2 ivk5Dk2

for v!1/t and k!1/a, whereD, the diffusion constant, is
given byD5 1

4a
2RT/(R21T2)t. The associated eigenmode

are of the following form in Fourier space:

S rA~k!

rB~k!

rC~k!

rD~k!

D 5S 11sxx
0 ikxa1sxy

0 ikya

1

11~sxx
0 2sxy

0 21!ikxa1~sxx
0 1sxy

0 !ikya

11~2sxy
0 21!ikxa1sxx

0 ikya

D ,

where, in anticipation of our discussion below, we ident
the two constantssxx

0 5RT/(R21T2) and sxy
0 52T2/

(T21R2) as the the bare longitudinal and Hall conductiviti
of this model. Note that these conductivities satisfy t
‘‘semicircle relation’’

sxx
2 1~sxy1N11/2!25 1

4 , ~1.6!

with N50 here in the case of the lowest Landau level, wh
has been claimed to be a general, exact result in the quan
Hall effect.47 In real space, all four components of the pro
ability distribution satisfy the same coarse-grained equat

2D¹2 r̄ ~r ,t !52] t r̄ ~r ,t !. ~1.7!

At the absorbing ends, the particle moves away from
tunneling region with constant velocity. The fact that t
re-entry probability is zero gives the boundary condition
the leads,

r̄ 50 in the lead. ~1.8!

Since the particles always move in the direction of the arr
on a link, the density on a link can also be considered as
current. The differences among the four components de
the diffusion current densities, which are suitable for coa
graining. For instance, we can definej y5@rB( i , j )
r

-

-
,

e.
e a

e

h
um
-
n:

e

t

ts
e
e

2rD(i11,j )#/a and j x5@rD( i , j )2rC( i , j )#/a. For the low-
frequency and long-wavelength modes, we can show
j y52(sxx

0 ]y2sxy
0 ]x) r̄ (r ,t). Along the reflecting walls, at

zero frequency, the normal current is zero, e.
rB( i , j )2rD( i 11,j )50 at top edge, which gives the bound
ary condition

~]n2g] t! r̄ 50, ~1.9!

where n̂ is the outward normal,t̂5n̂3 ẑ is the tangential
direction of the boundary, andg52T/R5sxy

0 /sxx
0 with our

above identification of the bare conductivities in the mod
These expressions for the current density are of the fo
used by KY and in Sec. I A.

It is interesting to note that, in the network model, t
definition for the local diffusion current density is no
unique. One can also define, e.g.,j x85@rD( i , j )2rC( i , j
11)#/a, j y85@rB( i , j )2rD( i , j )#/a. j y8 and j y differ by a to-

tal derivative term]x r̄ , and the correspondingx components
differ by 2]y r̄ and by a d-function boundary term
r̄ (x,W)d(y2W)2 r̄ (x,0)d(y). In the presence of such a
edge current, the boundary condition that ensures ‘‘curr
conservation,’’ which in the interior is the requireme
¹• j 850, becomes

]xE
W201

W101

dy8 j x8~x,y8!2 j y8~x,W!50 ~1.10!

at the top edge, which is still equivalent to Eq.~1.9!. These
forms for the current density are similar to those of ML. T
edge contribution ensures that the total current throug
cross section transverse to thex direction is the same, which
ever definition of current is used.

One can see that in the long-time, large-distance limit
lack of time-reversal symmetry affects the diffusion proce
only through the tilted boundary condition, which is prese
only because of the edges. As we will show explicitly belo
these boundary conditions, although derived from a latt
here for convenience, are quite general for conduction w
broken time-reversal symmetry. As one might hope, in
long-time, large-distance limit the microscopic details of d
ferent models cease to matter.

As noted just above, the boundary condition derived
Eq. ~1.7! applies forg52T/R, the single-node transmissio
and reflection coefficients of the classical network mod
We now must further justify identifying this ratio as the ba
Hall ratio. There are two approaches to this. There is
applied electric field or electric potential in this problem
far, so one may simply define the chemical potential on e
link as proportional to the current~or density! there~in anal-
ogy to the Landauer approach for the entire sample!. This
was done by Kucera and Streˇda,45 and leads to the formula
for sxx

0 andsxy
0 given above. In our view a somewhat mo

satisfactory method is to calculate the steady-state curren
the network under periodic transverse boundary conditi
~i.e., a cylindrical system!, when current is injected at only
one end of the network, with unit current on each incomi
link at that end. This is just the appropriate time-independ
solution of Eq.~1.5!; in the absence of edges the solution
the lineark50 mode:
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rB~x,y!5b1x1b0 ,

whereb151/(L/a1sxx
0 ), b0512@sxx

0 /(L/a1sxx
0 )#, and

S rA~x,y!2rB~x,y!

rC~k!2rB~x,y!

rD~x,y!2rB~x,y!
D 5S sxx

0 b1

~sxx
0 2sxy

0 21!b1

~2sxy
0 21!b1

D ,

where the constantssxx
0 and sxy

0 are as defined above Eq
~1.6!. The above solution has a uniform current distributi
with a total longitudinal current, forL@a,

I x5g5
W

L

sxx
0

11~sxx
0 a/L !

.
W

L
sxx

0 ,

and a total transverse current, circulating around the cy
der,

I y.2sxy
0 ,

justifying the interpretation we have assumed.
To solve for the current in the presence of edges is m

more difficult, even in this classical model. We will se
however, that on large scales the problem is equivalen
that solved by Rendell and Girvin39 and discussed in Sec
I A. The reason for the similarity is already clear; in th
classical network model, we assumed that the chemical
tential was proportional to the density, and, when the ex
nal electric field is zero, the coarse-grained current den
was related to this potential in the same way in both cas

C. Continuum action and propagator

The diffusive behavior generated by the classical netw
model of Sec. I B can be reproduced in a simple continu
field theory. Consider the action

S052
sxx

0

4 E d2r ]mz]m z̄2
sxy

0

4 E d2r emn]mz]n z̄ .

~1.11!

Herez(x) is a complex scalar field,z̄ is its complex conju-
gate, and the geometry is the same as in Sec. I B. The se
term is clearly a total derivative. To obtain the equations
motion and boundary conditions in this model, we first
write S0 as

sxx
0

4 E d2r @z¹2 z̄ #2
sxx

0

4 E d2r @]m$z~]m1gemn]n! z̄%#.

~1.12!

Then one can see that the second term is again a tota
rivative, and that it can be written as a boundary term. T
ing the functional derivative with respect toz, we obtain the
equation of motion forz̄ :

2
sxx

0

4
¹2 z̄~r !50 in the bulk,

~1.13!

~]n2g] t! z̄~r !50 at the reflecting walls.

Similarly for z, we obtain
-

h

to
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2
sxx

0

4
¹2z~r !50 in the bulk,

~1.14!

~]n1g] t!z~r !50at the reflecting walls.

At the absorbing boundaries, we simply imposez5 z̄50.
These equations are equivalent to the zero-frequency lim
those in Sec. I B. We observe that the boundary conditi
on z and on z̄ are not consistent, which means we cann
find any nonzero configurationsz(r ) that satisfy both these
conditions simultaneously. This is due to the fact that
differential operator, that appears in Eq.~1.12! betweenz

and z̄ , is not self-adjoint. As noted by KY and ML, equa
tions similar to Eqs.~1.13! and ~1.14! define the right and
left eigenfunctions of this operator; these eigenfunctions
not complex conjugates of each other. The eigenfuncti
are not simple to obtain in our geometry, because thex andy
dependence does not separate, whengÞ0. The analysis of
the eigenfunctions in KY and ML ignores the boundary co
ditions atx50, L, and is appropriate only forL/W→`.

To obtain a~zero-frequency! diffusion propagator, we use
S0 as the action in a functional integral, and defined(r ,r 8)
by

d~r ,r 8![
sxx

0

4
^^ z̄~r !z~r 8!&&0

[
sxx

0

4 E D@z, z̄ # z̄~r !z~r 8!eS0~z, z̄ !/Z0 . ~1.15!

@Here Z0 is the same functional integral withoutz(r ) and
z̄ (r ) inserted.# Thend(r ,r 8) satisfies

2¹2d~r ,r 8!52¹82d~r ,r 8!5d~r2r 8! in the bulk,

~]n2g] t!d~r ,r 8!50, r at the reflecting walls, ~1.16!

~]n81g] t8!d~r ,r 8!50, r 8 at the reflecting walls.

The propagator exists, and can be shown to satisfy the st
conditions. One notices that the propagator is not symme
with respect tor andr 8, since the boundary conditions forr
and r 8 at the edges differ by a sign. In principle, the prop
gator can be evaluated by expanding in the right and
eigenfunctions, as in KY and ML; however, as these are
readily available for our geometry, we will just define it b
Eqs.~1.16! ~see also Sec. III D below!.

The actionS0 has also appeared in the literature in co
nection with an open string with opposite electric charg
attached to the ends, in a uniform magnetic field.48 The
boundary conditions have also appeared there, along
explicit results for the diffusion propagatord in some geom-
etries simpler than ours. We will see later~in Sec. I E and in
Sec. III! that Eq.~1.11! also arises as the lowest-order part
the nonlinear sigma model action. In fact, the full Chalke
Coddington model with phase coherence43 is related to the
nonlinear sigma model49 in a manner closely analogous t
the relation between the models discussed in Sec. I B
here, which are just the linearized versions. In Sec. III,
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will also discuss the expressions for the currents, like th
in Sec. I B, from the point of view of the nonlinear sigm
model action.

D. Bilocal conductivity tensor and conductance

In Sec. I A above we used a classical formulation of t
conductivity, and worked out some of the consequences
the two-probe conductance in a high magnetic field. In t
subsection we introduce a full quantum formulation for t
bilocal conductivity tensor and the conductance in a dis
dered phase-coherent system in order to treat both the a
age quantum conductance and its variance.

For a quantum conductor with phase coherence, tha
when L in is larger than the sample size, the electron wa
function is sensitive to the external field in the entire spa
Equation~1.1! cannot be used, as there is no definition of t
chemical potential within the sample. We apply stand
linear-response theory to a finite disordered region~denoted
by A) with Fermi energyEF , connected to perfect leads he
at fixed voltages, which induce a local electric field in t
disordered region the detailed form of which is not releva
~For the two-probe case, the sample occupies the re
0<x<L, 0<y<W; see Fig. 1.! Following the treatment of
Baranger and Stone,42 one finds that there is a nonlocal rel
tion between the current response and the applied ele
field,

j m~r !5
e2

h EA
d2r 8smn~r ,r 8!En~r 8!, ~1.17!

where the bilocal conductivity tensors(r ,r 8) ~which has di-
mensions of inverse length squared! at T50 can be ex-
pressed in terms of a pair of Green’s functions:42

smn~r ,r 8!5
\4

4me
2 @G1~r ,r 8;EF!DJ m* DJ n8G

2~r 8,r ;EF!#

2
\4

4me
2E

2`

EF
dE8F d

dE8
G1~r ,r 8,E8!DJ m* DJ n8G

1

3~r 8,r ,E8!1G2~r ,r 8,E8!DJ m* DJ n8

3
d

dE8
G2~r 8,r ,E8!G , ~1.18!

where

G6~E!5
1

E2H6 ih

and

G~r 8,r !D
↔

G~r ,r 8!5G~r 8,r !@¹2 i ~e/\!A0~r !#G~r ,r 8!

2G~r ,r 8!@¹1 i ~e/\!A0~r !#G~r 8,r !.

HereH is the Hamiltonian, discussed further in Sec. II,A0 is
the vector potential representing the background magn
field, and we will also use2 i\D52 i\¹2eA0. In the pres-
ence of the magnetic field, the bilocal conductivity tensor
not entirely a Fermi-energy quantity. Even atT50, the com-
plete current response function, in the presence of magn
e
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field, contains not only terms involvingG1G2 at the Fermi
energy, but also terms involvingG1G1 and G2G2 inte-
grated over all energiesE up to the Fermi energy. We denot
the G1G2, G1G1 and G2G2 terms assmn

12 , smn
11 , and

smn
22 . In disordered systems, products of Green’s functio

that are both retarded or both advanced are generally s
ranged because of the amplitude cancellations among di
ent wave fronts~they typically only extend over the range o
the mean free path!, so we can treats11 ands22 as contact
terms:

saa~r ,r 8!5saad~r2r 8!, ~1.19!

wherea51,2, saa5*Ad2rsaa(r ,r 8).
In the presence of a magnetic fieldB, the current given by

Eq. ~1.17! does not necessarily satisfy¹• j50 even when
E is time-independent, unless we also require¹3E50 ~i.e.,
that the componentB of the magnetic field perpendicular t
the 2D layer is also time independent!. As shown by
Baranger and Stone,42 under this condition ‘‘current conser
vation’’ ¹• j50 is satisfied, and from it we can derive co
ditions on the bilocal conductivity. Writing E(r 8)
52¹8f(r 8) ~wheref is the electric potential!, we have

j ~r !5
e2

h E d2r 8s~r ,r 8!•¹Q 8f~r 8!

2
e2

h (
n

f iE
Ci

s~r ,r 8!•dS8, ~1.20!

wheref i is the ~constant! potential in thei th lead,Ci is a
surface across thei th lead, and the boundary terms at th
reflecting walls vanish because the normal compon
snn(r ,r 8) vanishes forr at the wall ~and similarly for
n5n, r 8 at the wall!. Thus¹• j50 implies that the following
conditions are satisfied:

¹W •s~r ,r 8!•¹Q 850,
~1.21!

¹•E
Ci

s~r ,r 8!•dS850 for alli .

The above identities have been verified in Ref. 42 for
exact bilocal conductivity tensor.

Using the second identity in Eq.~1.21!, one can transform
the linear response equation~1.17! into a different form. As-
suming, without loss of generality, thatm5EF in all the
leads ~we always viewEF as a position-independent con
stant!, the electric potentials there differ from the voltag
~electrochemical potentials! only by a constant, and the tota
current in thei th lead can be written as a function of only th
voltages in the leads:

I i5
e2

h (
j

gi j Vj , ~1.22!

where gi j ’s are conductance coefficients. Thegi j ’s are re-
lated to the bilocal conductivity tensor by

gi j 52E E dSi•s~r ,r 8!•dSj8 . ~1.23!
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whereSi and Sj are cross sections in thei th and j th leads,
and dSi and dSj are differentials of outward-pointing nor
mals. @In Eq. ~1.22!, we used the relation( jgi j 50, which
follows from Eq.~1.23!, and the second of Eqs.~1.21!, and
implies that a constantV produces no current in any lead#
For cross sectionsSi not intersectingSj , for iÞ j , the off-
Fermi-energy termss11(r ,r 8) and s22(r ,r 8) can be
shown to make zero contribution,42 and thereforegi j can be
expressed as a Fermi-energy quantity. It has been shown
gi j is proportional to the total transmission coefficient of t
scattering states at the Fermi energy from thei th lead to the
j th lead.41,50,42In this paper we will consider only the simpl
case of the two-probe conductance, in which certain furt
simplifications are possible.

Since the total currents at all cross sections are the s
for a two-probe setup, we can average over all cross sect
to obtain a volume-integral form for the two-probe condu
tance:

g5
1

L2E
A
d2r E

A
d2r 8sxx~r ,r 8!. ~1.24!

Here we must be careful to include the off-Fermi-ener
terms, since they are needed to preserve the uniformity o
current across each section~from the technical point of view,
sincex andx8 can now coincide, we are no longer justifie
in dropping thesaa terms!. Despite this disadvantage th
volume-integral form ofg is often more convenient to use i
actual calculation than the surface-integral form, since v
ume averaging still eliminates many diagrams which wo
be nonzero in the surface-integral approach. Thus E
~1.18!, ~1.23!, and~1.24! will serve as the starting points fo
the evaluation of quantum conductance and conducta
fluctuations.

We may gain further insight into the meaning of the cu
rent conservation conditions, and the relation to the class
case, by use of the self-consistent Born approximat
~SCBA! results for the disorder average of the bilocal co
ductivity tensor. As we will show in Sec. II, in this approx
mation ^smn(r ,r 8)& ~the single angle brackets will alway
denote the average over the disorder! is of the following
form whenr andr 8 are more than a mean free path from t
edges:

^smn~r ,r 8!&SCBA5@sxx
0 dmn1~sxy

I ,01sxy
II ,0!emn#d~r2r 8!

2
1

sxx
0 @sxx

0 ]m1sxy
I ,0emm8]m8#

3@sxx
0 ]n82sxy

I ,0enn8]n8
8 #d~r ,r 8!, ~1.25!

wheresxx
0 , sxy

I ,0 , sxy
II ,0 , and sxy

I ,01sxy
II ,05sxy

0 are the SCBA
conductivity parameters,28 sxy

II ,0 comes from thes11 and
s22 parts of Eq.~1.18!, and d is the diffusion propagato
discussed in Sec. I C~with sxy

0 appearing in the boundar
conditions!. In the zero-field limit,sxy

I ,05sxy
II ,050, the above

reduces to

^smn~r ,r 8!&SCBA5sxx
0 @dmnd~r2r 8!2]m]n8d

0~r ,r 8!#

~in which d0 is the diffusion propagator forsxy
0 50). To our

knowledge this basic result first appeared in the mesosc
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physics literature in Ref. 38, although it may well have bee
known earlier. It or Eq.~1.25! shows that the current re-
sponse to an electric field has a nonlocal part, the term c
tainingd0 or d in the formulas, due to diffusion. For nonzero
magnetic field, one finds from Eq.~1.25! that

]m^smn~r ,r 8!&SCBA5emnsxy
II ,0]md~r2r 8!. ~1.26!

The divergence of the response current is therefore

¹•^ j ~r !&5
e2

h E d2r 8¹•^s~r ,r 8!&SCBA•E~r 8!

5
e2

h
sxy

II ,0¹3E~r !. ~1.27!

In the presence of a magnetic field, the current is divergen
less only when¹3E52]B/]t50; otherwise there is a time
dependence in the density,]r/]t5(e2/h)sxy

II ,0]B/]t. To ob-
tain a truly static response, we would have to impo
¹3E50. ~There is also an edge-current contribution involv
ing sxy

II , which will be described in the SCBA case in Sec
II.! This behavior is typical of the quantum Hall effect, in
which sxy

II emnd(r2r 8) is the only part of̂ s(r ,r 8)& that is
nonzero in the interior of the system on scales larger than
localization lengthj, andsxy

II is quantized to integer values
It is the local expression of the gauge-invarianc
argument.51,40

The measured experimental quantity is the two-pro
conductance. It is straightforward to show~see Sec. II!, from
an equation similar to Eq.~1.25!, that the two-probe conduc-
tance within the SCBA,g0, can be written in terms of the
diffusion propagator as

g052sxx
0 E

0

W

dy8E
0

W

dy~]x1g]y!~]x82g]y8!d~r ,r 8!,

~1.28!

where xÞx8 are arbitrary. We note that although
^smn(r ,r 8)& in the bulk depends onsxy

I ,0 , the conductance
depends only on the fullsxy

0 , due to additional edge curren
contributions tos which we omitted in Eq.~1.25!. These
contributions are similar to those discussed in Sec. I B.

It is in fact possible to show that the mean bilocal con
ductivity and conductance obtained in SCBA are identical
those obtained from the ‘‘classical’’ formulas of Sec. I A, i
sxy

II ,0 is zero. To obtain the response to an arbitrary elect
field E, we write the conditions of Sec. I A on the curren
density, usingE5E1¹m/e, as

¹2m/e52]m~Em1gemnEn!, ~1.29!

and the boundary conditions

~]n2g] t!m/e52~En2gEt! ~1.30!

at the reflecting walls,m/e5EF /e in the leads. These inho-
mogeneous equations form/e are equivalent forg50 to a
2D electrostatics problem with a mixed Dirichlet-Neuman
boundary condition,52 and can be solved using a Green’s
function technique. A slight generalization of the same tec
nique works forgÞ0. The required Green’s function is pre
cisely d(r ,r 8) as defined in Sec. I C, and one finds
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m~r !/e5EF /e2E d2r 8@~]n82genn8]n8
8 !d~r ,r 8!#En~r 8!.

~1.31!

Using Eqs.~1.1!, the bilocal conductivity tensor that result
is exactly of form~1.25!, with sxy

II ,050, and no additional
edge contributions. Consequently, the two-probe cond
tancesg0 given by Eqs.~1.2! and~1.28! are the same, for the
same values ofsxx

0 andsxy
0 , and since this involves only the

total sxy
0 , it remains true even ifsxy

II ,0Þ0 is included as in
the SCBA. This implies that the bilocal conductivity i
SCBA has just the form which follows from a local relatio
between current and electromotive field, even though ther
no sensible definition of a local chemical potential in t
phase-coherent limit. Hence all the conclusions drawn
Sec. I A can also be applied within the SCBA.

In general, there is also an edge-current contribution, w
coefficient sxy

II ,0 , to Eq. ~1.25!, which will be described in
Sec. II. There is no reason why both the bulk and ed
sxy

II ,0 contributions should not also appear in the so-cal
classical formulation of Sec. I A, even though they were n
included in Ref. 39, since terms of this form would presu
ably still be present even if there were inelastic scatterin

We may also connect the results of Secs. I A and I D w
the field theory in Sec. I C~again forsxy

II ,050). In Secs. I B
and I C, the external electric field was zero. If we repla

]mz, ]m z̄ by ]mz22iAm , ]m z̄12i Ām in the actionS0, Eq.
~1.11! ~this A should not be confused withA0 or any other
‘‘physical’’ vector potential! and then define
j m(r )5dS0@A#/dAm(r ) to be the current, we find

j m5 ismn
0 (]n z̄12i Ā n)/2, and the conditions for an extre

mum of the action~equations of motion! are]m j m(r )50 in
the interior andj n50 at the reflecting walls. Thus thes
equations have the same form as the local classical con

tivity equations, withi z̄ /2, 2 Ām in place of (m2EF)/e,
Em , and since, for a quadratic action likeS0, the linear re-

sponsed^^ j m&&0 /d Ān to the perturbationA can be equiva-
lently obtained either from calculation of the correlatio
function @similar to that in the definition ofd, Eq. ~1.15!#, or
using the equations of motion as above, we also obtain
same bilocal conductivity in this approach. This calculati
is done in detail in Secs. III and IV, so we refrain from
giving further details here. Section III C also includes t
corresponding ‘‘classical’’ equations for the case wh
sxy

II ,0Þ0.
The SCBA for the average conductance is the lead

approximation in an expansion in powers of 1/sxx
0 , and it is

not really surprising that this leading approximation behav
identically to the classical case. When evaluating cond
tance fluctuations, or weak-localization corrections, one m
consider higher orders in 1/sxx

0 . In such calculations the
tilted boundary condition is modified further. In the fram
work of diagrammatic perturbation theory, this can be alt
natively viewed as the appearance of additional bound
vertices describing interference effects. These vertices
more easily obtained and evaluated in the nonlin
s-model approach to which we now turn.
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E. Nonlinear s-model approach

The approach of Sec. I D, in which the self-consiste
Born approximation is the leading contribution to conduct
ity and conductance, can be developed as a diagramm
expansion~see Sec. II A!. However, this approach become
cumbersome in higher orders because all diagrams con
vertices which need to be evaluated in terms of the aver
single-particle Green’s functions, and are dressed with dis
der lines in all possible ways. However, when these vertic
which describe interference or ‘‘interactions’’ of diffusin
modes, are calculated at small wave vectors, they are
found to be related to the same quantitiessxx

0 andsxy
0 . These

complex and often redundant calculations can be avoided
using the nonlinears-model ~NLsM! representation of the
problem.

The NLsM approach starts by considering only Green
functions at the Fermi energy, which means that the n
Fermi-energy parts of the conductivity described in Sec.
cannot necessarily be obtained, though the conductance
its fluctuations can. After introducing replicas, the disorde
integrated out, followed by the variables representing
electrons propagating at the Fermi energy. After a Hubba
Stratonovich decoupling, and neglecting modes that have
long-range effects, one is led to the action28,30 ~more details
will be given in Sec. III!

S52
sxx

0

8 E
A
d2r tr@]mQ]mQ#

2
sxy

0

8 E
A
d2r tr@emnQ]mQ]nQ#, ~1.32!

whereQ is a 2n32n Hermitian matrix obeyingQ25I 2n ,
(I 2n is the identity matrix!; Q has n eigenvalues equal to
11, n equal to21. Using a parametrization given explicitl
in Sec. III, it can be shown that for small fluctuations abo
the maximum action configuration whereQ is diagonal,S
reduces at quadratic order ton2 copies of the earlier action
S0 in Eq. ~1.11!.

Before discussing perturbation theory for this action,
wish to mention some general issues. The second term inS is
the so-called topological term. It is the only possible te
that can be added to the first term in two dimensions tha
consistent with the symmetries of the problem and conta
only two gradients~higher derivatives would be irrelevant a
long length scales!. On a compact, oriented manifold withou
boundary, such as a sphere or a torus~i.e., periodic boundary
conditions!, this term~with a factor of 2p isxy

0 removed! is a
topological invariant, which takes integral values. This fo
lows from the fact that the term is a total derivative, and t
absence of boundaries. Consequently, only the value ofsxy

0

modulo 1 is important. Moreover, because the term is a
pological invariant,sxy

0 does not appear in perturbatio
theory at all, but only in nonperturbative effects involvin
configurations~‘‘instantons’’! for which the topological term
is nonzero. However, in the integer quantum Hall effect,
expect to obtain plateaus at integralsxy and transitions be-
tween them atsxy half-odd-integral (sxx , sxy denote the
renormalized, large-scale, parameters, as opposed to the
valuessxx

0 and sxy
0 at the cutoff scalel ). Because of the
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periodicity insxy
0 , the NLsM predicts that all these plateau

and transitions will have identical universal properties. B
by the same token, it is also unable to predict the integ
part of sxy that would be observed in a measurement; t
information appears to be lost in going to the NLsM.

The apparent paradox is resolved on examining the ac
S for a system with reflecting boundaries. The ‘‘topologica
term is a total derivative that can be rewritten as a bound
term, just as for the actionS0 above. The boundary term i
not a topological invariant, so it can affect perturbati
theory, and, since it takes arbitrary real values, the ma
tude ofsxy

0 is important, and not just its value modulo int
gers. Thus when the boundaries of the system are corre
taken into account, the value ofsxy can be obtained within
the NLsM formulation. Some additional remarks about th
point are made in Sec. VI.

Since the leading-order part of the action is the same
S0, the propagator for small fluctuations inQ is the same as
the propagatord discussed earlier, and depends onsxy

0

through the boundary condition. In the work of KY and M
this modified propagator was the only effect included, a
was just inserted into the Xiong-Stone results for cond
tance fluctuations. However, the NLsM shows that the
boundary term also contributes at higher order, produc
new vertices for ‘‘interactions’’ between diffusons, whic
are boundary interactions with coefficientsxy

0 , and which
contribute to the fluctuations at leading order. These te
must be present in order to maintain the full U(2n) symme-
try of the NLsM, which essentially corresponds to preser
ing the continuity equation for the current. We have a
obtained them in the diagrammatic approach, but only w
much additional effort.~Pruisken30 also discussed the rela
tion of the topological term to edge states, but appeare
infer an incorrect boundary condition. His boundary con
tion is very useful in instanton calculations29–31but does not
correctly represent the edge effects, unlike the condition
be discussed in this paper.! In this paper, we evaluate th
effects of these terms to leading order in 1/sxx

0 , and, to sim-
plify the calculations, also to leading nontrivial order
g5sxy

0 /sxx
0 . As well as calculating the mean and variance

the two-probe conductance, we show how the expression
the mean bilocal conductivity tensor in the SCBA can
recovered within the NLsM, including the non-Fermi-
energy parts, by modifying the coupling of the NLsM to the
external field, and we discuss the resulting form of curr
conservation conditions to all orders in perturbation theo

One may wonder if the boundary conditions for a syst
with boundary invalidate the conclusions of the analysis
Pruisken and co-workers,29–31 who studied effects of instan
tons in a system without a boundary. Strictly speaking, i
finite system with boundaries, there are no well-defined
pologically distinct sectors. However, small instantons wh
are well localized inside the system boundary, so thatQ
approaches a constant outside the instanton core and sa
the boundary conditions at the edges, while probably
exactly local minima of the action, are still nearly so wh
their size goes to zero compared with the system dimensi
and in this limit their topological charge will still be an in
teger, and they will make the same contribution to the act
as they did for the other boundary conditions. Thus the
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fects on renormalization group flows forsxx
0 and sxy

0 , ob-
tained in the interior of the system, should be unchang
These effects will not be considered further in this pap
which emphasizes perturbation theory.

In the one-dimensional case of the NLsM, no other term
can be added to the basic gradient-squared term, and t
are of course no sides on which the boundary condit
could be modified. Therefore, the conductance fluctuation
the unitary ensemble should be universal, and must be re
ered in the quasi-1D limit of the 2D system in a magne
field which we are considering; this constitutes a stro
check on the 2D calculations. We will show that in this lim
the only effect ofsxy

0 is to modify the 1D conductivity,
which is known to cancel from the conductance fluctuatio
to leave a universal number. KY and ML claimed thatsxy

0

does affect the quasi-1D limit; the present argument sho
that their results must be incorrect. In Sec. VI, we will briefl
mention the situation for dimensions higher than two.

II. DIAGRAMMATIC EXPANSION FOR Šsµn„r,r 8…‹

In this section, we evaluate the mean bilocal conductiv
tensor for the short-ranged potential model using the d
grammatic impurity-averaging technique.53 We will first re-
view the self-consistent Born approximation~SCBA!, which
is the leading order of the perturbation expansion, and es
lish basic parameters such as the mean free pathl , and the
bare conductivitiessxx

0 and sxy
0 . A gradient expansion is

used to treat the current vertex. Within the SCB
^smn(r ,r 8)& has a contact term as well as a long-ranged te
which can be expressed in terms of the diffusion propaga
In the bulk,sxy

I ,0 appears in the long-ranged term. Along th
reflecting boundary, the edge currents give rise
d-function contributions proportional tosxy

II ,0 . As a result, it
is sxy

0 5sxy
I ,01sxy

II ,0 that appears in the boundary conditio
and the two-probe conductance. We will also check that c
rent conservation is respected within the SCBA.

A. Model, edge current, and ideal leads

An electron in a system with edges, in a random poten
and subject to a perpendicular magnetic field, is described
the Hamiltonian~we neglect spin throughout this paper!

H5H01V~r !, H05
1

2me
~2 i\D!21U~y!, ~2.1!

where V(r ) is the random potential and is confined in th
region of 0<x<L, and U(y) is the confinement potentia
~see Fig. 1!. The uniform magnetic field is in thez direction,
and we choose the gaugeA052Byx̂. For simplicity, let us
assume the confinementU(y) to be the hard-wall potentia
with U(y)50 for 0<y<W, and U(y)5` for y,0 and
y.W. The infinite potential barrier requires the wave fun
tion to vanish aty50, W. The system is infinite in thex
direction, but the disorder is present only in the regi
0<x<L. For the random potential, we will take the simple
among all short-ranged models, which has the statistics
the Gaussian white noise with zero mean~angle brackets
denote the disorder average!,
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^V~r !&50, ^V~r !V~r 8!&5ud~r2r 8!,
~2.2!

^V~r1!V~r2!•••V~rn!&connected50, n.2,

whereu describes the degree of disorder.
In the absence of the random potential, the unpertur

wave functions can be found by separating the variable40

The wave functionsc(r ) are labeled by the wave vectork in
the x direction and byN in the transverse direction;N turns
out to be the Landau-level index. We have

cNk~r !5
1

AL
eikxfN,k~y!,

andfN,k(y) satisfies

$\2@~2 i ]y!21~y2 l B
2k!2l B

24#/2me1U~y!%fN,k~y!

5EN,kfN,k~y!, ~2.3!

where l B
25\/eB. Without the confinement potential, th

Hamiltonian is simply that of a harmonic oscillator, with th
harmonic potential centering atyk5klB

2 . We have40

fN,k(y)5xN(y2 l B
2k) and EN,k5EN5(N11/2)\vc for

W@yk@0, wherexN is the Nth wave function of the har-
monic oscillator, andN50,1,2, . . . . The wave functions
spread an extentRc5A2N11l B aroundyk . We can see tha
for wave functions which center at a distance more thanRc
away from the walls, the presence of the walls is hardly f
but for those which reside within a distanceRc from the
walls, their eigenenergies are raised aboveEN , because the
wave functions are forced to zero at the boundaries and
made to oscillate more rapidly near the walls. Only the sta
within Rc of the edges have a nonzero group velocity alo
the walls, i.e., the expectation value of the velocity opera
^N,kuvxuN,k&Þ0. From now on,Rc plays the role of the
short length scale of the problem, and we treat the edge
having zero width. We will later show that, in this sense, t
inhomogeneity at the edges gives rise tod-function contri-
butions to the current~see also Ref. 54!.

Although the above description ofH0 is very convenient
for finding an explicit solution for the energy eigenfunctio
when the system is infinitely extended in thex direction, it
does not provide a convenient description of ideal leads
the presence of a nonzero magnetic field. For our purpo
ideal leads should be perfect absorbers of all incident curr
i.e., they should behave as if they have essentially infin
conductivity compared to the sample. The problem is tha
the leads, wherex,0 or x.L, the states at the Fermi energ
generically consist of a certain number of edge chann
moving in each direction, and this number is equal to
number of Landau levels below the Fermi energy in the bu
which is N11 when the Fermi energy lies above theNth
Landau level. Thus in the relevant sense, the leads have
bulk conductivity and only absorb and inject current at t
corners. There are several ways in which we could mod
our model to remedy this problem. One way would be to
the magnetic field drop to zero at the ends of the sample
the leads are like the usual 2D metallic leads in zero m
netic field. Another way, which corresponds roughly to t
Ohmic metallic contacts used in real experimental syste
would be to ‘‘thicken’’ the system outside the sample, so t
d
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it becomes three dimensional, thus increasing its cond
tance. There is, however, a third way, which most clos
conforms to the perfect leads used in the network model~see
Fig. 2! and has some convenient properties. The links of
network can be viewed as edge channels, and outside
sample there are many of them, running parallel, alterna
right and left moving, without backscattering. A simila
setup can be produced in a 2D Hamiltonian model with
uniform magnetic field, by replacingU(y), only in the leads,
by a potentialU1(y), which 51` for y.W or y,0, and
has a sinusoidal form in 0,y,W. If the Fermi energy lies
between the maxima and minima ofU1, there will be many
‘‘internal’’ edge channels at the Fermi energy, consisti
alternately ofN11 channels moving in one direction an
N11 moving in the other. For an infinitely long, translatio
ally invariant system there will be no backscattering amo
these modes. In effect, we have many narrow leads in pa
lel, all connected to a single reservoir at2` and to another
at 1`. Then the number of right-moving channels can
proportional to the width of the system, or arbitrarily larg
and the current can be injected uniformly across the end
the sample. From now on, it is this model that we will im
plicitly use.

B. Self-consistent Born approximation„SCBA…

In order to calculatêsmn(r ,r 8)&, we first need to evaluate
the disorder-averaged single-particle Green’s function
two-particle Green’s function,̂G& and^GG&, which can be
expanded in power series in 1/(kFl ). The SCBA takes into
account all the non-crossing diagrams~Fig. 3! and has been
shown to be the leading contribution in 1/(kFl ).27

Within the SCBA, the single-particle Green’s functio
@see Fig. 3~a!# satisfies

@E2H0~r !2S~r !#Ḡ~r ,r 8;E!5d~r2r 8!, ~2.4!

where the self-energy in turn depends onḠ ~we use the
overbar to denote the SCBA Green’s function!:

S~r ,E!5uḠ~r ,r ;E!.

The above equation can be solved analytically in the lo
field limit (vct0!1) and the high-field limit (vct0@1).24

In the intermediate-field range, it can be solved numerica
For our purpose, we do not need the explicit solutions.
use the SCBA Green’s function to define the effective sc
tering rate 1/t and the effective mean free pathl at the Fermi
energy:

1

t
5

S12S2

i\
5H 1/t0 , vct0!1

2Gsinu~EF!/\, vct0@1,
~2.5!

whereG5Au/(2p l B
2);\Avc /t0 is the width of broadened

Landau levels,u(E)5cos21@(E2EN)/2G#, 0<u(E)<p, and

l 25uE d2r 1~x2x1!2Ḡ1~r ,r1 ,EF!Ḡ2~r1 ,r ;EF!

5H l 0
2 , vct0!1

Rc
2 , vct0@1.

~2.6!
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Here l 0 is the mean free path in zero magnetic fie
l 05\kFt0 /me .

Within the SCBA, the two-particle Green’s functio
S12(r ,r 8)5uG1(r ,r 8)G2(r 8,r ) amounts to adding up al
the ladder diagrams@Fig. 3~b!#. The sum can be written in
the form of an integral equation

S12~r ,r 8,E,E8!5uḠ1~r ,r 8,E!Ḡ2~r 8,r ,E8!

1E d2r 1uḠ1~r ,r1 ,E!Ḡ2~r1 ,r ,E8!

3S12~r1 ,r 8,E,E8!. ~2.7!

We make use of the fact thatḠ1(r ,r 8)Ḡ2(r 8,r ) is short
ranged, and expandS12(r1 ,r 8) in the vicinity of r15r . For
E, E8 close toEF , we obtain

E d2r 1uḠ1~r ,r1!Ḡ2~r1 ,r !S12~r1 ,r 8!

5@C0~r ;E,E8!1C1~r ;E,E8!•¹

1 1
2 C2~r ;E,E8!¹21•••#S12~r ,r 8! ~2.8!

where

FIG. 3. ~a! The SCBA single-particle Green’s function. It sum
up all the noncrossing diagrams. The thin line denotesG0, the
Green’s function in the absence of disorder. The thick line den

the SCBA Green’s functionḠ. ~b! The ladder sum for the SCBA
two-particle Green’s function.~c! The diagrams for the SCBA bilo
cal conductivity tensor.
,

C0~r ;E,E8!5uE d2r 1Ḡ1~r ,r1 ,E!Ḡ2~r1 ,r ;E8!

.11 i ~E2E8!t/\,

C1~r ;E,E8!5uE d2r 1~r2r1!Ḡ1~r ,r1 ;E!Ḡ2~r1 ,r ;E8!

.0,

C2~r ;E,E8!5uE d2r 1~x2x1!2Ḡ1~r ,r1 ,E!Ḡ2~r1 ,r ;E8!

5 l 2.

It follows thatS12(r ,r 8,E2E8) satisfies the diffusion equa
tion

@2Dt¹22 i ~E2E8!t/\#S12~r ,r 8;E2E8!.d~r2r 8!,
~2.9!

whereD is the diffusion constant:D(E)5 l 2/(2t). One can
see thatS12 at E5E85EF , which is all that will be re-
quired in this paper, is proportional to the dimensionless d
fusion propagatord(r ,r 8) we defined in Eq.~1.16!:

l 2

2
S12~r ,r 8;0!5d~r ,r 8!.

We postpone derivation of the boundary conditions ond
until after we have discussed the conductivity tensor. T
ladder sum forS115uG1G1 andS225uG2G2 can also
be carried out in similar fashion. It is easy to see th
S11(r ,r 8) andS22(r ,r 8) are generally short ranged.

Now we are ready to treat the mean bilocal conductiv
tensor. Within the SCBA,̂smn(r ,r 8)& has two contributions:
the simple bubble diagram and the sum of the ladder se
@Fig. 3~c!#:

^smn~r ,r 8!&SCBA5smn~r ,r 8!bubble1smn~r ,r 8! ladder.
~2.10!

The bubble diagram has the range of the mean free pal
and we treat it as ad function:

smn~r ,r 8!bubble5smn
0 d~r2r 8!.

smn
0 are the SCBA conductivity parameters, which are ess

tially constant inside the sample:

smn
0 5E

A
d2rsmn~r ,r 8!bubble

5
1

LWE
A
d2r E

A
d2r 8smn~r ,r 8!bubble. ~2.11!

It follows from the definitions@cf. Eq. ~1.18!# ~Refs. 42 and
55! that

s
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sxx
0 5

\2

LW
Tr @vxḠ

1~EF!vxḠ
2~EF!#

2
\2

LWÈEF
dEH TrFvxS d

dE
G1D vxḠ

1G
1TrFvxḠ

2vxS d

dE
G2D G J

52
\2

2LW
Tr$vxDḠ~EF!vxDḠ~EF!%, ~2.12!

where DḠ5Ḡ12Ḡ2, v52 i\D/me , and Tr denotes the
trace of the matrix product, in whichḠ6(r ,r 8) are viewed as
r , r 8 matrix elements. Forsxy

0 ,

sxy
0 5sxy

I ,01sxy
II ,0 , sxy

I ,05
\2

LW
Tr@vxḠ

1~EF!vyḠ
2~EF!#,

sxy
II ,052

\2

LWÈEF
dE8H TrFvxS d

dE8
G1D vyḠ

1G
1TrFvxḠ

2vyS d

dE8
G2D G J . ~2.13!

The above expression forsxy
0 can be put in the same Ferm

energy form as in Ref. 55.sxx
0 and sxy

0 have the following
limiting behavior:24,28,30

sxx
0 5hD~EF!r~EF!5H hnet0 /me , vct0!1

~2N11!p21sin2u~EF!, vct0@1,

sxy
0 5H sxx

0 vct0 , vct0!1

N1n, vct0@1,
~2.14!

wherer(E) is the SCBA local density of states,ne is the
electron density,N is the highest Landau-level index
N50, 1, . . . , andn512u/p is the filling fraction of the
highest Landau level, which is well defined since there
vanishing local density of states in the bulk in between
Landau levels in the regimevct0@1, within the SCBA. Of-
ten, only the peak value (2N11)/p of sxx

0 is quoted in the
literature; we emphasize thatsxx

0 has oscillations and goes t
zero when the Fermi energy lies in one of the gaps in
bulk density of states.

Now we treat the ladder diagrams. SinceS11 and S22

are short ranged,s11 ands22 are also short ranged. On
can further show that the ladder series forsxx

11 andsxx
22 do

not make additional contributions to thed-function term.
The long-ranged term ofsmn(r ,r 8) comes from

smn
12~r ,r 8! ladder5\2uE d2r 1E d2r 2Jm

12~r ,r1!

3S12~r1 ,r2!Jn
21~r 8,r2!.

The current vertexJ„r ;r1) is short ranged,

Jab~r ,r1!5
2 i\

2me
Ḡb~r1 ,r !DIḠa~r ,r1!, ~2.15!
s
e

e

wherea, b51, 2, andDI was defined in Sec. I C. We ca
carry out the integral by expandingS12(r1 ,r 8) in the neigh-
borhood ofr :

E d2r 1J~r ,r1!S12~r1 ,r2!

5@J0„r !1J1~r !•¹1•••]S12~r ,r2!. ~2.16!

The first term is

J0
12~r !5S 2 i\

2me
D E d2r 1Ḡ2~r1 ,r !DIḠ1~r ,r1!

.
1

S12S2 ^r uv~Ḡ12Ḡ2!ur &. ~2.17!

In the last step, we used the identityḠ1Ḡ2

5(Ḡ12Ḡ2)/(S12S2). Rewriting

^r uv~Ḡ12Ḡ2!ur & as 2p i(
a

d~EF2Ea!ca~r !vca* ~r ! ,

it is easy to recognize thatJ0
12(r ) is proportional to the

impurity-averaged equilibrium current density at positionr
and at the Fermi energyEF . In the bulk, this should be zero
by isotropy; however, at the edges isotropy is broken, a
J0

12 parallel to the boundary is not zero. Hence we can w

J0,x
1,2~r !5

2p i

e~S12S2!F]I e~E!

]E U
EF

d~y2W!

2
]I e~E!

]E U
EF

d~y!G , ~2.18!

whereI e(EF) is the total edge current. It has been shown
Ref. 30 that

]I e

]EU
EF

5
]M

]E U
EF

52
esxy

II ,0

h
, ~2.19!

whereM (E) is the total magnetization.
The coefficients for the first-derivative terms are

J1,mn
12 5

1

LWH Tr@vmḠ1r nḠ2#2Tr@r nvmḠ1Ḡ2#

1
i\

2m
Tr@Ḡ1Ḡ2#dmnJ ,

J1,mn
21 5

1

LWH Tr@vmḠ2r nḠ1#2Tr@r nvmḠ2Ḡ1#

1
i\

2m
Tr@Ḡ2Ḡ1#dmnJ .

Expressing the coefficients in terms of the SCBA conduct
ties and the mean free path, we have

u\2J1,xx
12J1,xx

125sxx
0 l 2/2, u\2J1,xx

12J1,xy
125sxy

I ,0l 2/2.



e-
e

s

q
ns

u
.

uc
pa
, t
a
di

k

b
:

th

lv
i

c
th
to
-

ss
ur

the
NL

no

cts
rm

ry,

t

s,
ur-
o-

r a

56 3995MESOSCOPIC CONDUCTANCE AND ITS FLUCTUATIONS . . .
Putting all the pieces together, for the full bilocal larg
scale conductivity tensor within the SCBA, including th
edge effects, we obtain

^smn~r ,r 8!&SCBA5@sxx
0 dmn1~sxy

I ,01sxy
II ,0!emn#d~r2r 8!

2
1

sxx
0 $sxx

0 ]m1sxy
I ,0emm8]m8

1sxy
II ,0dmx@d~y2W!2d~y!#%$sxx

0 ]n8

2sxy
I ,0enn8]n8

8 2sxy
II ,0dnx@d~y82W!

2d~y8!#%d~r ,r 8!. ~2.20!

Within the SCBA, the conductivity tensor obey
^syn(r ,r 8)&50, for r at the reflecting edges andr suffi-
ciently far from r 8, as an exact relationbefore the long-
wavelength approximation is made. Together with E
~2.20!, this implies the large-scale boundary conditio
~1.16! on the diffusion propagatord; see Appendix A. Be-
cause of the edge current, this is very similar to the disc
sion of the conservation of thej 8 current at the edge in Sec
I A ~wheresxy

II ,0 was21).

C. SCBA for the two-probe conductance

We are finally ready to express the two-probe cond
tance in terms of the surface integral of the diffusion pro
gator. For the integrated currents at any cross sections
two opposite edge currents at the boundaries can be tr
formed to an additional bulk derivative in the transverse
rection:

E
0

W

dy@d~y2W!2d~y!#d~r ,r 8!5E
0

W

dy]yd~r ,r 8!;

therefore, the second and third terms in the square brac
of Eq. ~2.20! combine in this case to givesxy

0 . We obtain the
form for the SCBA conductanceg0, Eq. ~1.28!, expressed in
terms of an integral over two cross sections. This can
further transformed into the following volume-integral form

g05
1

L2E
A
d2r E

A
d2r 8sxx

0 @d~r2r 8!

2~]x1g]y!~]x82g]y8!d~r ,r 8!#. ~2.21!

In Sec. IV, we will see that the above expression for
conductance can also be obtained using the NLsM formal-
ism which we develop below.

III. FIELD-THEORETICAL APPROACH

In this section, we first set up~in Sec. III A! a generating
function from which we can obtain any expressions invo
ing the Green’s functions at the Fermi energy. As we saw
Sec. I,42 this allows calculation of the mean and the varian
of the two-probe conductance. In Sec. III B, we discuss
coupling to a U(2n) vector potential, which can be used
generate the NLsM conductivity. For a certain form of cou
pling, we can in fact recover, at lowest order in 1/sxx

0 , the
SCBA form of the bilocal conductivity tensor. We discu
the physical meaning of the various terms in relation to c
.
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rent conservation. The results show that the variance of
two-probe conductance can be calculated within the
sM. We then turn to the perturbation expansion itself.

A. Nonlinear s model

In setting up the partition function~or generating function
for average Green’s functions!, we will use the replica
method to perform the average over disorder. We define

Z5E D@V#P@V#E D@w,w̄ #expE d2r w̄ ~r !

3@E2H1 ihL#w~r !, ~3.1!

where, as in Sec. II,H5H01V(r ), w5 . . . w i
a . . . (i 51,

2, . . . ,n, a51, 2) is a 2n-component vector of complex
Grassmann numbers,h501, and

L5S I n 0

0 2I n
D

(I n is the n3n identity matrix!. Here we remark that the
choice of Grassmann number~anticommuting! fields, which
leads to the symmetry group being U(2n), as will be dis-
cussed below, is not essential. If one uses bosonic~commut-
ing! fields, the symmetry is the noncompact group U(n,n).
This is usually not used in the Hall effect because there is
topological term in this case forn.0 integer, and so the
sxy dependence found from nonperturbative instanton effe
is not seen.31 However, there is nonetheless a boundary te
of the same structure as in the U(2n) case, and for a system
with boundaries this has effects even in perturbation theo
and these will be the same in then→0 limit for either choice
of symmetry. We will continue to work with the choice tha
leads to the compact symmetry. The random potentialV(r )
has the Gaussian distribution

P@V#}e2*d2r V2~r !/2u,

as in Sec. II. Forh50, the action has global (r independent!
U(2n) symmetry, which acts onw asw(r )→Uw(r ), where
U is an element of U(2n). For h.0, the symmetry is bro-
ken to U(n)3U(n). In discussing the conducting propertie
it is useful to introduce a source term that will generate c
rent correlations. This is done by introducing the vector p
tential A(r ), whereA is a 2n32n Hermitian-matrix-valued
vector field ~not to be confused with the vector fieldA0
associated with the constant magnetic fieldB5¹3A0). It is
introduced intoZ by replacing the covariant derivativeD
~viewed as multiplied byI 2n) by D2 iA. The generating
functional Z@A# then has gauge invariance, since unde
local U(2n) gauge transformation w(r )→Uw(r ),
Am→UAmU211U]mU21, the actionS@A# is invariant, and
so is the integration measureD@w,w̄ #. Performing the func-
tional integral overw and w̄ , we obtain

Z@A#5E D@V#P@V#exp tr Tr ln@E2H2 idL

2\2~A21 iD•A1 iA•D!/2me#, ~3.2!
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where Tr denotes the trace over functions in real space
before, and tr is the trace over the 2n replicas.

From the above partition function, we cannot obtain t
exact bilocal conductivity tensorsmn(r ,r 8) as given in Eq.
~1.18!, since we cannot generate the below-Fermi-ene
contributions. However, on length scales greater than
mean free path, the latter simplify and can be reexpresse
Fermi-energy terms, as will be shown below, and these
be reproduced from our partition function. An exception
this is thesxy

II ,0 term in the bulk, which therefore describe
true non-Fermi-energy physics. We can, however, obtain
expression for the two-probe conductance, which can
written in terms of Fermi-energy quantities alone.42 Let us
assume that the source fieldA is independent ofy, then using
d/dA(x) to denote a functional derivative for ay-indepen-
dent variation, we can show that

2 lim
A→0

d2Z@A#

dAx,11
12~x!dAx,11

21~x8!

5E D@V#P@V#E dyE dy8H etr Tr ln~E2H2 ihL!

3F\2
G1~r ,r 8!1G2~r ,r 8!

2me
d~r2r 8!2\2G2~r 8,r !

3S 2 i\

2me
DJ x8

* D S 2 i\

2me
DJ xDG1~r ,r 8!G J . ~3.3!

The d-function term is related to sxx
11(r ,r 8) and

sxx
22(r ,r 8) ~see Sec. I D!. We argued in Sec. I D tha

sxx
aa(r ,r 8) (a51,2) in disordered systems are sho

ranged, and can be treated as contact termssxx
aad(r2r 8).

One can show using the commutation relatio

vx5 i @Ĥ,x#/\ and@vx ,x#5\/ ime ~Refs. 42, 55, and 32! that

sxx
aa52

\2

2LW
Tr@Ga~EF!vxG

a~EF!vx#5
\2

2me
Ga~r ,r !.

Therefore, the expression in the square bracket in Eq.~3.3!
gives an approximate version of the unaveragedsxx(r ,r 8),
Eq. ~1.18!, valid on scales greater than the mean free p
l . The d-function term drops out for two cross sections f
apart. Taking the limit n→0, in which case
etr Tr ln(E2H2 ihL)→1, Eq. ~3.3! gives the disorder-average
two-probe conductance

^g~x,x8!&52 lim
n→0

lim
A→0

d2Z@A#

dAx,11
12~x!dAx,11

21~x8!
. ~3.4!

Similarly, the second moment of the conductance can
obtained by applying four derivatives to the partition fun
tion:

^g~x1 ,x18!g~x2 ,x28!&

5 lim
n→0

lim
A→0

d4Z@A#

dAx,11
12~x1!dAx,11

21~x18!dAx,22
12~x2!dAx,22

21~x28!
.

~3.5!
as

e
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e
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n

e
e

s

th

e

These expressions should be independent ofx1, . . . ,x28 .
This will be discussed in Sec. III B.

An effective NLsM action can be derived using th
Hubbard-Stratonovich transformation;28,30 a mean-field ap-
proximation then corresponds to the SCBA. The fluctuatio
about this mean-field theory produce all of the higher-or
effects. An effective action for the long-range effects c
then be derived; we obtain, retaining only terms with
more than two derivatives, and omitting the gauge fieldA
until Sec. III B,

S5E d2r $2 1
8 sxx

0 tr@]mQ]mQ#2 1
8 sxy

0 tr @emnQ]mQ]nQ#

1h tr @QL#%, ~3.6!

Z5E D@Q#eS. ~3.7!

The fieldQ is a 2n32n Hermitian matrix obeying~at each
r ) Q25I 2n , of which n eigenvalues are equal to11, n to
21. This means that, at eachr , Q takes values in the cose
manifold U(2n)/U(n)3U(n). The actionS has the same
symmetry as the original action,Q(r )→UQ(r )U21, but Q
is invariant under the diagonal U~1! subgroup of U(2n). The
remaining SU(2n) symmetry is again broken to S@U(n)3U
(n)# for nonzeroh. The parameterssxx

0 and sxy
0 are bare

conductivity parameters, like those resulting from the SCB
~but may differ by finite renormalizations, corresponding
short-range effects that are not included again by
NLsM!, and describe the response of the system at the s
of the short-distance cutoff, which is of order the mean fr
pathl . The measureD@Q#5) rdQ is the product over points
r inside the sample of the unique SU(2n)-invariant measures
dQ on the space U(2n)/U(n)3U(n) for each pointr . At the
endsx50, L, we imposeQ5L to represent the absorbin
boundary condition.

B. Gauge invariance, current conservation,
and boundary condition

In this subsection, we discuss the way in which the gau
potentialA enters the NLsM action, and the related ques
tions of current conservation, the equation of motion, and
tilted boundary condition. We begin by requiring that th
action be gauge invariant. In Sec. III C, we will modify it t
a non-gauge-invariant form to bring the conductivities in
line with those discussed in the previous sections.

In view of the gauge invariance of the generating fun
tional Z@A#, the actionS@A#, including A, should also be
invariant~whenh50) under the local gauge transformatio
Q→U(r )Q(r )U21(r ), Am→UAmU212 iU ]mU21 ~it is as-
sumed thatU respectsQ5L at the ends; the invariance o
the functional integration measure implies that invariance
the action ensures invariance ofZ@A#). The simplest way to
introduce the external source fieldA into the NLsM is to
replace the partial derivative]mQ by the covariant derivative
DmQ5]mQ1 i @Am ,Q# everywhere inS. This leads to a
manifestly gauge-invariant action, which is given below
the sxx

0 andsxy
I ,0 terms in Eq.~3.8!. However, this is not the

only way. The second way is less obvious and will follow
brief digression.
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To obtain the other gauge-invariant coupling toA, let us
first point out that the topological term, without anyA de-
pendence, is a total derivative, which is a function of t
values ofQ on the boundary and the homotopy class ofQ in
the interior for given boundary values, but not of the detai
form of Q in the interior. That is, it is possible to chang
Q in the interior, leaving its boundary values fixed, in such
way that the topological termchanges. Now any change in
Q can be viewed as the result of a gauge transformation,
a transformationU that leaves the boundary values ofQ
unchanged must reduce at each point on the boundar
some element in a certain S@U(n)3U(n)# subgroup, deter-
mined by Q at that point. Such a gauge transformation
characterized by an integer-valued winding numberq, say,
which describes the winding of the gauge transformationU
at the edge, and it changes the topological term
2p isxy

0 q ~for sxy
0 equal to an integer, this has no effect o

the exponential of the action!. In particular, there is a con
tinuously connected class of transformations for wh
q50, so that there are continuously-connected classe
configurationsQ with given boundary values throughou
which the topological term takes the same value. Furt
discussion of the topological issues, related to edge st
and quantization, is contained in Appendix C.

Now, because the topological term is~apart from the to-
pological effects just discussed! a function of only the
boundary values ofQ, this suggests that we can attempt
compensate for a gauge transformation by including a c
pling to A on only the reflecting~hard! walls. The form of
this coupling can be easily obtained, and on including b
forms of coupling with different coefficientssxy

I ,0 , and
sxy

II ,0 , whose sum issxy
0 5sxy

I ,01sxy
II ,0 , in the respective forms

of the topological term, we obtain the action which is gaug
invariant whenh50,

S@A#5E d2r @2 1
8 sxx

0 tr~DmQDmQ!

2 1
8 sxy

I ,0tr ~emnQDmQDnQ!

2 1
8 sxy

II ,0tr~emnQ]mQ]nQ!1htr ~QL!#

1
i

2
sxy

II ,0E dx$tr@Ax~x,W!Q~x,W!#

2tr@Ax~x,0!Q~x,0!#%. ~3.8!

The justification for identifying this split ofsxy
0 into two

piecessxy
I ,0 , andsxy

II ,0 , with that found in the previous sec
tions, as implied by the choice of notation, will be give
below. We note that the action is independent of the trac
A. To see this, we may splitA into the sum of a traceless pa
and the trace multiplied byI 2n/2n. The latter part is the
gauge potential corresponding to the diagonal U(1) s
group generated byI 2n , and it does not contribute toDmQ
~because@ I 2n ,Q#50), or to thesxy

II ,0 edge coupling~because
trQ50). HenceS@A# is independent of it, but it may be lef
in for convenience. The actionS@A# is easily verified to be
invariant under any gauge transformation, including the
pologically nontrivial ones that leaveQ on the boundary
unchanged.
d

nd

to
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Although we have not given a derivation of our gaug
invariant actionS@A#, Eq. ~3.8!, from the gauge-invarian
generating functional~3.2! for averages of products o
Green’s functions at the Fermi energy, it is not very difficu
to extend the existing derivations~see, e.g., Ref. 30! to in-
clude A, and obtain Eq.~3.8!. It is almost self-evident tha
this will be obtained, by comparing~i! the diagrams for the
response toA at the Fermi energythat are obtained from Eq
~3.2! with ~ii ! those studied in detail for the mean biloc
conductivity tensor within the SCBA in Sec. II, and~iii !
those obtained in the perturbation theory for the NLsM con-
structed below.

We now use the gauge invariance ofS in the h→0 limit
to derive some current-conservation relations for
NLsM; only infinitesimal, topologically trivial gauge trans
formations are needed for this. The tilted boundary condit
is one consequence of current conservation. We will reco
the expression for the bilocal conductivity in the SCBA
the leading-order term in an expansion in 1/sxx

0 . We will
also show that the conductance we obtained using Eq.~3.4!
is independent of the positions of the cross sections so
the volume-integral form for the conductance can be use

We begin by considering the equations of motion th
follow from the actionS@A#. As their name implies, thes
are the equations of motion that are obtained ifS@A# is used
as the action of a classical nonlinear field theory~in one
space and one imaginary time dimension!. The canonical
way to obtain these equations is to seek an extremum oS,
such thatdS/dQ50, where the variation, which is the usu
one that varies both thex and y dependence ofQ, respects
the restrictionsQ25I , Q5Q†, and the boundary condition
Q5L at the open ends~we note that this is imposed on a
configurations in the functional integral!. The resulting equa-
tions also serve as operator relations in the quantum fi
theory that we take to be defined by the functional integr

Z@A#5E D@Q#eS[A] .

In functional integral language, the equations of motion b
come identities among correlation functions. They are
tained in general by the following argument: Consider
small change inQ, Q→Q85Q1dQ, as a change of variable
in the functional integral. SinceQ is integrated over, such a
change can have no effect onZ@A#. On the other hand, it
changesS, and provided the change is such that the Jacob
resulting from the change in measure is 1, we obtain
identity

05E D@Q#
dS

dQ
eS[A] ,

which is the equation of motion.
A variation of Q that respects its form can be param

etrized asQ85UQU21, where U5expiR and R(r ) is a
2n32n hermitian matrix function ofr , and thus is a gauge
transformation, which leaves the integration measure
changed; however, we varyQ while leavingA fixed. If we
view S@A# as a functional ofQ as well as ofA, thus writing
S@A#[S$Q,A% ~the curly brackets are used to avoid conf
sion of the two arguments of the functional with a comm
tator!, then the equations of motion are equivalent
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dS$Q8,A%/dR50, evaluated atR50. This may be re-
expressed by making use of the gauge invariance
S$Q,A%. Gauge invariance tells us that ifQ85UQU21,
A85UAU212 iU¹U21, then

S$Q,A%5S$Q8,A8%

5S$Q1 i @R,Q#,A%1S$Q,A1 i @R,A#2¹R%

2S$Q,A% ~3.9!

to first order inR. It follows that, forr in the interior of the
system, we obtain

dS

dRba
52]m

dS

dAm,ba
2 iAm,ag

dS

dAm,bg
1 iAm,gb

dS

dAm,ga

52~Dm j m
s !ab . ~3.10!

Here we have useda,b,g, . . . , for indices running from 1
to 2n ~the firstn values beingi ,1,i 51, . . . ,n, the remain-
der i , 2, i 51, . . . ,n), with a summation convention, an
introduced the definition of the current in the NLsM,

j m,ab
s ~r !5

dS@A#

dAm,ba~r !
, ~3.11!

which is implicitly a local function ofQ(r ) and A(r ). The
covariant derivative ofjs is defined in the same way as th
of Q. Therefore, using the notation

^^•••&&5E D@Q#•••eS[A] /Z@A#,

where the••• represent any functional ofQ, and using the
fact that the integration measure is invariant under U(2n)
gauge transformations, the equation of motion becomes
matrix equation

D•^^ js&&50. ~3.12!

This can be read as the statement that the covariant d
gence of the current is zero in the interior of the system.
such it is known as a Ward identity, and is a consequenc
the U(2n) symmetry of the original actionS; the existence
of a covariantly-conserved current as a consequence
gauge-invariant coupling to a gauge potential is the esse
content of Noether’s theorem. A feature of the NLsM is that
the Ward identities are not just consequences of, but
equivalent to, the equations of motion. There are also m
similar Ward identities when the functional average conta
D• js times other functionals ofQ. Particular cases of these
including all those that will be of interest in this paper, a
those that contain other currentsjs. These may be obtaine
by taking functional derivatives of the basic Ward ident
~3.12! with respect toA, since the left-hand side is still
functional of A. Functional derivatives of the action yiel
currents, however,js containsA, and so does the covarian
derivativeD, so there are additionald-function terms. The
d-function terms in the response functions that result fr
the A in js will be referred to as contact terms, and corr
spond to those in earlier sections.

The above Ward identity, or equation of motion,~3.12!, is
only the bulk part of the system of equations. There are a
of
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o

boundary equations on the reflecting~hard! wall or edge.
These come from two sources:~i! the boundary terms in the
action S@A#, and ~ii ! the boundary term that appears wh
integrating by parts to transfer the derivative from¹R to
dS/dA in Eq. ~3.9! when taking the functional derivative
with respect toR. The boundary part of the equation of mo
tion can be obtained in either of two equivalent ways. O
way is to take the functional derivative with respect to t
full dependence ofR on the coordinatesx andy, and obtain
a single equation like Eq.~3.12! but containingd-function
terms at the edge. Since an equation that sets a sum
finite function and ad function to zero implies that eac
piece separately vanishes, we obtain the bulk equation
motion ~or Ward identity! as in Eq.~3.12!, together with a
boundary condition that states that the function multiplyi
the d function at the edge is zero. The other method is
separate the change in the action due toR, after integrating
by parts to remove derivatives fromR, into a bulk part that
yields the bulk equation above, and a boundary part, t
take a functional derivative with respect to the single co
dinatex that describes the position on the boundary, to yi
the boundary conditions. This was the method followed
Sec. I C for the quadratic action there, Eq.~1.11!. With either
method, it is straightforward to obtain the results below.

First, we should record the actual expression for the c
rent density, obtained from definition~3.11!. It is

j m
s~r !52 i @sxx

0 Q~r !DmQ~r !2sxy
I ,0emnDnQ~r !#/2

1 isxy
II ,0dmxQ~r !@d~y2W!2d~y!#/2 ~3.13!

~we used the identityQ]mQ52]mQ.Q which follows from
Q25I 2n). Here we see explicitly the edge contribution wi
coefficientsxy

II ,0 . It is simply proportional toQ at the edge.
The boundary condition at the reflecting walls~assumed

parallel to thex axis as always in this paper!, that is obtained
by either of the methods described above, can be written

sxx
0 QDyQ1sxy

I ,0DxQ1sxy
II ,0DxQ50. ~3.14!

As in the case of the bulk equation of motion, in the quant
field theory of the NLsM ~defined by the functional inte
gral!, this is valid only when inserted in the averag
^^ . . . &&. This equation can be interpreted as stating the
variant conservation of the current at the edge, in a v
similar way to that discussed in Appendix A within th
SCBA. Forsxy

II ,050, we would have only the first two terms
and it would state simply that the normal component of
~bulk! current in Eq.~3.13! tends to zero at the edge. The
terms originate from the edge term left after integrating
bulk part of the action by parts in order to taked/dR. In the
presence of a nonzerosxy

II ,0 , this boundary condition is modi
fied to include the last term, which is the covariant derivat
~along the edge! of the edge part of the current in Eq.~3.13!.
Thus Eq.~3.14! is equivalent to

j y,bulk
s 2Dxj x,edge

s 50, ~3.15!

where the edge contribution is obtained asj x,edge
s (x,W)

5*W201
W101

dy jx
s(x,y), and similarly for the edge aty50, as in

Appendix A. The edge term originates, of course, from ta
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ing d/dR on the edge term in the action itself, Eq.~3.8!. In
the boundary condition, the last two terms can be combi
to leave

sxx
0 QDyQ1sxy

0 DxQ50. ~3.16!

This is the analog of the tilted boundary condition discus
in Secs. I and II, generalized to the fullnonlinear field
theory, and includingA; as in those discussions, only th
total sxy

0 enters the boundary condition. We will show,
Sec. III C below, that, in leading order in perturbatio
theory, this boundary condition reduces to exactly the o
used in earlier sections.

To close this subsection, we obtain Ward identities t
apply to moments of the two-probe conductance, in wh
the currents are integrated across sections parallel to ty
axis. We have already seen that these should be calcu
using only Green’s functions at the Fermi energy, which c
be obtained using our generating function or the NLsM. As
in Sec. III A, we will therefore here specializeA to be in the
x direction and to be independent ofy. Functional deriva-
tives ofZ@A# of the formd/dAx(x) then produce the desire
mean and variance of the two-probe conductance. If we s
cialize to suchA in the NLsM action S@A# @noting that
Ax(x,W)5Ax(x,0)5Ax(x,y) for all x, y#, then we see tha
thesxy

0 terms can be combined, using an integration by pa
to leave

S@Ax#5E d2r @2 1
8 sxx

0 tr~DmQDmQ!

2 1
8 sxy

0 tr~emnQDmQDnQ!1h tr~QL!#,

~3.17!

in which we emphasize thatA takes the specialized form
A(r )5@Ax(x),0#, independent ofy. This action is gauge in-
variant, andAx remainsy independent, for gauge transfo
mationsU that are independent ofy. Using such a transfor
mation, we can obtain, similarly to the above derivation,
identity

DxE dy^^ j x
s~x,y!&&50, ~3.18!

in which j x
s and the actionS@Ax# to be used in calculating

the average still containAx . We note that, in*dy jx
s , using

Eq. ~3.13!, sxy
I ,0 andsxy

II ,0 terms can be combined into a sing
term, as implied by the actionS@Ax#, in which the same is
true. Thus from this point on, only the totalsxy

0 enters the
calculations for the conductance and its moments.

On taking further functional derivativesd/dAx(x) of Eq.
~3.18!, we can obtain identities involving the mean and va
ance~or alternatively, second moment! of the conductance
From the discussion in earlier sections, we should have

]x^g~x,x8!&50, ~3.19!

for all x and x8 inside the sample, includingx5x8, which
expresses the independence of the conductance on the
tion of the cross sections, and similar statements should
for the higher moments and for the dependence on the o
variablesx8, . . . . One may be concerned thatDx appears in
Eq. ~3.18!, not ]x , and that this might lead to additiona
d
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terms containing e.g.,d(x2x8) when further functional de-
rivatives are taken. However, we have verified that su
terms vanish, to all orders in perturbation theory, for t
replica components we require to produce the mean and v
ance of the conductance, as in Eqs.~3.4! and~3.5!. Thus we
have performed all the steps in a derivation showing that
calculation of the two-probe conductance and its variance
the rectangular geometry, can be carried out within the
sM, including the independence of the locations of the cro
sections, which allows the use of an average over these
cations. The explicit expressions for the mean and varia
are given in Secs. IV and V, and evaluated to leading or
in the perturbation expansion.

C. Perturbation expansion, current conservation,
and bilocal conductivity

The approach given in Sec. III C is sufficient for the tw
probe conductance, provided the cross sections used are
allel to they axis. For more general cross sections, and
consider the non-Fermi-energy effects and the bilocal c
ductivity, a deeper analysis is required, which is contained
the present subsection, but which may be skipped~apart
from the first part introducing the perturbation expansion! by
readers interested only in the two-probe conductance.

Our goal here is to compare the consequences of the
nition of the current and the Ward identities with the pro
erties of the currents in our model of the original electr
system. To provide motivation, we will compare results
the NLsM formulation with those in the SCBA in Sec. II
and for this purpose we will now introduce the perturbati
expansion of the model. We then show how to modify t
coupling ofA to the NLsM so as to reproduce the propertie
found in Sec. II.

The matrixQ, which obeysQ†5Q, Q25I 2n , can be pa-
rametrized in the following way:

Q5S A12zz† z

z† 2A12z†z
D , ~3.20!

wherez is ann3n complex matrix. Expanding the NLsM
action in terms of thez matrix, we obtain

S@A#5S0@A#1S1@A#, ~3.21!

whereS0@A# is the part quadratic inz, z†, andA, which is
the same as in Eq.~1.11!, except that there are nown2 copies
of z, and we include the gauge potentialA. For A of the
restricted form

A5S 0 A12

A21 0D , ~3.22!

where A12 is a complexn3n-matrix-valued vector field,
andA21 is its adjoint~these are the only components ofA
that will be used below!, we have
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S0@A#52
sxx

0

4 E d2r tr@~]mz22iAm
12!~]mz†12iAm

21!#

2
sxy

I ,0

4 E d2r emntr@~]mz22iAm
12!~]nz†12iAn

21!#

2
sxy

II ,0

4 E d2r emntr~]mz]nz†!

2
isxy

II ,0

2 R dlmtr~Am
12z†2zAm

21!. ~3.23!

The line integralrdlm is taken in the counterclockwise d
rection around the edge of the sample. Here and below
use the symbol tr for a trace on then-dimensional space, a
well as for that on the 2n-dimensional one; it should be clea
from the context which is meant.S1 describes the interactio
between the diffusion modes caused by quantum interfere
effects. We give it here only forA50, and to the order
O@(zz†)3# required for our later calculations,

S1@0#5E d2r H 2
sxx

0

32
tr@]m~zz†!]m~zz†!1]m~z†z!]m~z†z!#

2
sxy

0

32
tr@emn]m~zz†z]nz†!2emn]m~z†zz†]nz!#

2
sxx

0

64
tr@]m~zz†!]m~zz†zz†!1]m~z†z!]m~z†zz†z!#

2
sxy

0

64
tr@emn]m~zz†zz†z]nz†!

2emn]m~z†zz†zz†]nz!#1O@~zz†!4#J . ~3.24!

Notice that terms proportional tosxy
0 can all be written as

total derivatives; therefore, they can be expressed as bo
ary terms. To calculate the ensemble average of any qua
X@z,z†#, we perform the following expansion:

^^X&&5 lim
n→0

E D@z,z†#I @z,z†#X@z,z†#eS0$z,z†,0%

3 (
m50

`
1

m!
S1

m@z,z†#. ~3.25!

Here I @z,z†# is the Jacobian needed to make the measur
the z, z† space invariant under aU(2n) rotation at eachr .
The explicit form of this Jacobian will not be needed.
only role is to cancel quadratically divergent diagrams t
arise in perturbation theory, in a manner that is standard
all NLsM’s ~see, e.g., Ref. 57!. The terms in the expansio
can be written in terms of averages calculated using the q
dratic action withA50, defined by

^^•••&&05E D@z,z†#•••eS0[A50]/Z0@0#, ~3.26!

in which the functional integral in the denominator is t
same as the numerator but with the insertion••• omitted.
e

ce

d-
ity

in

t
or

a-

The expressions can be evaluated by contracting pairsz
andz†, which gives the diffusion propagator

sxx
0

4
^^zi j

† ~r !zkl~r 8!&&05d i l d jkd~r ,r 8!, ~3.27!

which obeys the same conditions~1.16! as in earlier sections
The basic perturbation expansion is now a series in pow
of 1/sxx

0 , though it will also be convenient to expand
powers ofg5sxy

0 /sxx
0 to obtain a double expansion.

We now return to the physical meaning of the Ward ide
tities ~3.12! and ~3.16!, that resulted from the gauge invar
ance of the actionS@A#. We wish to compare these with ou
physical expectation that the current is divergenceless in
the sample, and that no current flows in or out of the sam
at the reflecting walls~as we have shown in Sec. II, an
discussed in Sec. I, the current response obtained in
SCBA is not divergenceless, because of the bulksxy

II ,0 term,
but that is a non-Fermi-energy effect that will not be cons
ered in the present formalism until later in this subsectio!.
The first difficulty that seems to arise@as with Eq.~3.18!# is
that the Ward identity statesD• js50, not ¹• j50, as we
might have expected. The vector potentialA present inD
will generated-function terms when further functional de
rivatives are taken to obtain Ward identities, as must be d
for the bilocal conductivity tensor and analogous correlat
of more than two currents. However, as we mentioned
connection with the conductance in Sec. III B, in practic
for the particular components ofA that yield the physically
relevant conductivities, this does not seem to occur. For
ample, in addition to the results cited in Sec. III B, we c
show that the Ward identity implies

]m^smn~r ,r 8!&50 ~3.28!

for the mean bilocal conductivity tensor calculated in t
NLsM using the actionS@A#, and this is valid for allr and
r 8 inside the sample, includingr5r 8, to all orders in pertur-
bation theory.

The boundary condition~3.14! also involves the tangen
tial covariant derivative of the edge current, not the us
partial derivative as one would want in the electronic syste
In this case, we do find a clash between the theory as for
lated and our intuition. Eq.~3.15! is more explicitly

j y,bulk
s 2]xj x,edge

s 52 1
2 sxy

II ,0@Ax ,Q#. ~3.29!

The left-hand side is the combination one might have
pected to be zero. However, it is nonzero whenAx is non-
zero, implying that conservation is violated byd-function
terms on the edge in the bilocal conductivity and its m
ments. Note that similar commutators@Ax ,Q# and @Ay ,Q#
appear inj y,bulk

s but are not a problem.
To illuminate the point further, we can use the perturb

tion expansion and compute the mean bilocal conductiv
within the NLsM as formulated so far. FromS0@A#, the
equation of motion forz† ~formulas forz are similar! is, in
the bulk

sxx
0 ¹2z†522i ~sxx

0 ]mAm
211sxy

I ,0emn]mAn
21!, ~3.30!

~as in Sec. I A, where, however,sxy
0 5sxy

I ,0 andsxy
II ,050), and

at the edge is the tilted boundary condition
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sxx
0 ~]yz

†12iAy
21!2sxy

0 ~]xz
†12iAx

21!50. ~3.31!

These equations give the generalization of the ‘‘classic
theory of Sec. I A to include the edge currents with coe
cientsxy

II ,0 , on using the identifications given in Sec. I D. Th
currents are given, in the present approximation, by

dS0 /dAm
12[ j m

21

5 1
2 i $sxx

0 ~]mz†12iAm
21!1sxy

I ,0emn~]nz†

12iAn
21!1sxy

II ,0@d~y2W!2d~y!#dmxz
†%.

~3.32!

The bulk equation of motion can therefore be writt
]m j m

2150, while at the edge we have

j y,bulk
21 2]xj x,edge

21 52sxy
II ,0Ax

21 , ~3.33!

which can also be written

j y,bulk
21 2Dxj x,edge

21 50, ~3.34!

where the covariant derivative is the linearized version
that in the full NLsM, namelyDmz†[]mz†12iAm

21 , while
DmDnz†[]mDnz†. Thus, for currentj 21 as defined here
current conservation in the naive form is violated
d-function terms at the edge. This can be rectified, but,
fore doing so, we calculate the bilocal conductivity of t
present model in the same approximation.

The mean bilocal conductivity in the present approxim
tion is obtained as@compare Eq.~3.4!; we leave implicit the
choice of all replica components equal to 1, and then→0
limit #

^smn~r ,r 8!&0[2 lim
A→0

d

dAn
21~r 8!

^^ j m
21~r !&&0

5~sxx
0 dmn1sxy

I ,0emn!d~r2r 8!

2^^ j m
21~r ! j n

12~r 8!&&0 . ~3.35!

On evaluating this using Eq.~3.32! ~with A50), the similar
formula for j 12, and the definition~3.27! of d, we obtain the
same result as in Eq.~2.20!, except that the bulksxy

II ,0 term is
not present. This result obeys]m^smn(r ,r 8)&050 for all r ,
r 8 in the bulk, and Eq.~3.33! implies that

^syn~r ,r 8!&02]xE
W201

W101

dy^sxn~r ,r 8!&05sxy
II ,0dnxd~r 82r !

~3.36!

for r at the upper edgey5W ~and similarly for the lower!. In
effect, in the edge channel,Ax

21 simply creates current, s
the naive conservation law is violated.

In the SCBA, we did not directly address this issue, b
derived ]xj x,edge

SCBA2 j y,bulk
SCBA50 for rÞr 8 only. On the other

hand, in the SCBA we also found a non-Fermi-energy c
tribution sxy

II ,0emnd(r2r 8) in the bulk, which means that, in
the presence of E, there is an additional par
(e2/h)sxy

II ,0emnEn in the bulk current

j m
SCBA5 j m,E5EF

SCBA 1
e2

h
sxy

II ,0emnEn ~3.37!
’’
-

f

-

-

t

-

within the SCBA. If we introduce a corresponding change i
the bulk current here, so that

j m,mod
21 5 j m

212sxy
II ,0emnAn

21 , ~3.38!

then the tilted boundary condition~3.33! becomes

j y,bulk,mod
21 2]xj x,edge,mod

21 50 ~3.39!

in the presence ofA. Thus the modified current is conserved
~not covariantly! at the edge~and so isj m

SCBA); the current in
the edge channel comes from the bulk. Physically, there a
two modes of conduction response to an electric field in th
system. One is the ‘‘sliding’’ of the total charge density
which gives the bulk Hall conductivitysxy

II ,0 . This is a non-
Fermi-energy effect, and is a local (d function! response to
an electric field. The other is the Fermi-energy respons
which is diffusive in the bulk~including the Hall effect with
coefficientsxy

I ,0) and is chiral along the edge. As discussed i
Sec. I, thesxy

II ,0 bulk effect implies¹• j50, meaning that
]r/]tÞ0. At the edge, there is no charge accumulated.
tangential electric field at the edge can produce a bulk cu
rent normal to the edge, and also a Fermi-energy edge c
rent that increases along the edge. These effects involve
same coefficentsxy

II ,0 , and the result is that no current is
created, so no charge accumulates at the edge. This occ
because of a version of the Laughlin-Halperin gauge
invariance argument.51,40A change in the potential~which is
essentially whatz is! would accumulate a charge density o
order the inverse velocity of the edge states, but the sam
velocity also appears in the edge current, which carries aw
the charge.

We now propose a modification of the NLsM action
which incorporates this non-Fermi-energy effect so as to r
cover the SCBA bilocal conductivity tensor in full, and
maintain current conservation at the edge~though not in the
bulk!, to all orders in perturbation theory. Our proposed ac
tion ~in which we reinstate the full 2n32n matrix A) is

Smod@A#5E d2r $2 1
8 sxx

0 tr~DmQDmQ!

2 1
8 sxy

I ,0tr~emnQDmQDnQ!

2 1
8 sxy

II ,0tr~emnQ]mQ]nQ!

1 1
8 sxy

II ,0tr~emnQ@Am ,Q#@An ,Q# !1h tr ~QL!%

1
i

2
sxy

II ,0E dx$tr@Ax~x,W!Q~x,W!#

2tr@Ax~x,0!Q~x,0!#%. ~3.40!

The addedsxy
II ,0 term maintains SU(2n) global, but not local

gauge, symmetry, corresponding to the nonconservation
the corresponding modified current which contains an add
tional term in the bulk:

j m,mod
s 5

dSmod

dAm
5 j m

s2
1

2
sxy

II ,0emn@An ,Q#. ~3.41!

The modified equation of motion must be obtained from
dSmod$Q8,A%/dR50 ~as in Sec. III B! without using gauge
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invariance. It can be written in terms of the modified curre
to give the modified Ward identity in the bulk,

Dm j m,mod
s 52 1

2 sxy
II ,0emn$]m~@An ,Q# !1 i @Am ,@An ,Q##%.

~3.42!

The modified current is not covariantly conserved, beca
the modified action is not gauge invariant. However,
boundary condition Eq.~3.16! is unchanged, because th
added term inSmod contains no derivatives, so does not gi
rise to any boundary terms. Nonetheless, theinterpretation
of the boundary condition changes, because the current
been modified. In terms of the modified current, the bou
ary condition states that at the edge

j y,mod
s 2]xj x,edge,mod

s 50, ~3.43!

which is ‘‘current conservation.’’ Strictly, our arguments im
ply that this modification of the action applies only for th
12 and 21 components ofA; for the other components
the correct form may depend on what is assumed in the
derlying model the NLsM is supposed to represent.

For the quadratic partS0,mod of the modified action
Smod, the corresponding formulas are the following: for t
action,

S0,mod5S02sxy
II ,0E d2r emntr~Am

12An
21!; ~3.44!

for the current,

j m,mod
21 5 j m

212sxy
II ,0emnAn

21 , ~3.45!

as in Eq.~3.38! above; for the modified equation of motion

]m j m,mod
21 52sxy

II ,0emn]mAn
21 , ~3.46!

which corresponds to the earlier Eq.~1.27!; and in the bilocal
conductivity tensor, the bulk contact termsxy

II ,0emnd(r2r 8)
appears as in the full SCBA result, Eq.~2.20!. The boundary
conditions onz andz† are, however, unmodified.

When using the modified action for calculations of co
ductance, there is no change to the results, as long as
uses cross sections that are parallel to they axis, and there-
fore the expressions contain the integrals of thex compo-
nents of the currents, as we did earlier. For those calc
tions, we already showed at the end of Sec. III B that
conductance is independent of the positions of the secti
Since the vector potentials used there havex components
only, the extra term inSmod is zero. In addition to the use
fulness of the generalSmod for reproducing the bilocal con
ductivity tensor and maintaining the current-conservat
properties at the edge to all orders in perturbation theory,
also crucial for the conductance if one calculates the flux
current through more general cross sections than those s
fied above. In general, a cross section could be any curve
intersects the edges of the sample just twice, once on eac
the reflecting walls. Two such sections may intersect at
lated points~instead of along their whole length!, and the
intersections are then said to betransversal, that is, the nor-
mals to the curves at the point of intersection are not para
~nor antiparallel!. The question arises of whether the condu
tance and its moments calculated using such sections i
dependent of the position and shape of the sections, inc
,
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ing the case in which they intersect. When they inters
transversally, the bulksxy

II ,0 contact term will contribute at
the intersection point, even within the SCBA. Our prelim
nary investigations of this, which will not be included her
show that these contributions are needed to cancel effec
thesxy

II ,0 terms at the edge, so as to maintain conservation
the total current, and that the conductance obtained is
same as for the straight sections, for any shape and posi
We believe this to be true in general, to all orders in pert
bation theory. This shows that the use of the modified act
is obligatory for such general calculations. Note that,
more general geometries, such as four probes, such inter
ing sections will be common.

D. Further details of perturbative calculations

1. Boundary perturbation expansion
for the diffusion propagator

It is difficult to calculate the diffusion propagator as d
fined by Eq. ~1.16! explicitly ~however, see Ref. 39!, al-
though propagators for simpler geometry such as
half-plane,48 an infinite strip48,33 or an annulus48 can be
found ~the results for the infinite strip can be obtained
conformal mapping from the half-plane48!. We can perform a
boundary perturbation expansion56 in powers ofg using the
propagator atg50, which we define asd0(r ,r 8). d0(r ,r 8)
can be constructed out of the solutions for the followi
eigenvalue problem:

2¹2f05Lf0, ~3.47!

with the boundary conditions]yf
0(x,W)5]yf

0(x,0)
50 and f0(0,y)5f0(L,y)50. The eigenfunctions are
fnm

0 (x,y)5(2/ALW)cos(npy/W)sin(mpx/L) with corre-
sponding eigenvaluesLnm

0 5(np/W)21(mp/L)2, where
n50,1,2, . . . , m51,2, . . . . Wehave

d0~r ,r 8!5 (
n50

`

(
m51

` fnm
0 ~x,y!fnm

0 ~x8,y8!

Lnm
0 . ~3.48!

Using the bulk diffusion equations ford0(r ,r 8) andd(r ,r 8),
we obtain

d~r2 ,r1!5d0~r1 ,r2!1E
C
dS•@d0~r ,r2!¹d~r ,r1!

2d~r ,r1!¹d0~r ,r2!#, ~3.49!

whereC is a closed surface enclosing the disordered reg
including the edges~see Fig. 1!. Let us divide the surfaceC
into four partsC1, C2, C3, andC4. Applying the boundary
conditions for the propagators for different sections, we ha
the following:

d~r2 ,r1!5d0~r1 ,r2!1E
C11C3

dSnd0~r ,r2!]nd~r ,r1!.

Plugging in the boundary condition]nd5g] td, we have

d~r2 ,r1!5d0~r1 ,r2!1gE
C11C3

dSnd0~r ,r2!] td~r ,r1!.

~3.50!
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The above equation generates an expansion in terms od0

and in powers ofg. Using B to denote the operation
*C11C3

dSng] t , we can write schematically

d5d01d0Bd01d0Bd0Bd01•••. ~3.51!

2. 1D propagator

The above expansion is not valid for extremely narr
samples withW!L, where Eq.~3.51! needs to be summe
exactly. However, the propagator itself approaches the
diffusion propagator with conductivitysxx

0 (11g2)W. Such
limiting behavior can be demonstrated by rewriting the q
dratic action in the following way:

S0~z,z†!52
sxx

0

4 E d2r $~11g2!tr@]xz]xz
†#

1tr@~]yz1g]xz!~]yz
†2g]xz

†!#%. ~3.52!

In the limit W!L, the main contribution tô^z†z&&0 comes
from the low-lying eigenmodes of2¹2 which satisfy
(]y1g]x)f

L(r )50, (]y2g]x)f
R(r )50 in the entire strip.

The eigenvalues of these modes are separated from tho
the other modes by a gap of orderL2/W2.33 In other words,
the term *d2r tr@(]yz1g]xz)(]yz

†2g]xz
†)# in the action

can be ignored in the 1D limit:

lim
W/L→0

E D@z,z†#zi j
† zkle

S0

5E D@z,z†#zi j
† zkle

2~sxx
0 /4!~11g2!WE dx tr[ ]xz]xz

†]

54d i l d jkd1D/sxx
0 W, ~3.53!

where

d1D~x,x8!5
4

~11g2!L (
m51

`
sin~mpx/L !sin~mpx8/L !

~mp/L !2 .

~3.54!

More generally, by symmetry, we obtain the NLsM in one
dimension ~where no topological term is possible! with
sxx

0,1D5sxx
0 (11g2)W5W/rxx

0 as the coefficient in the ac
tion.

IV. TWO-PROBE CONDUCTANCE

A. Boundary contribution

From the nonlinears model, the average conductance

^g&52
1

L2 lim
A→0,n→0

E
0

L

dx1E
0

L

dx18K K dS

dAx,11
12~x1!

dS

dAx,11
21~x18!

1
d2S

dAx,11
12~x1!dAx,11

21~x18!L L , ~4.1!

where
D

-

of

dS

dAx,11
12~x1!

U
A50

5E
0

W

dy1F isxx
0

2
~]xz11

† 1g]yz11
† !

1
isxx

0

4
~z†]xzz†!111O~z5!G ,

d2S

dAx,11
12~x1!dAx,11

21~x18!
52E

0

W

dy1sxx
0 d~x12x18!

3@12 1
4 ~zz†!112

1
4 ~z†z!11

2 1
16 ~zz†zz†!112

1
16 ~z†zz†z!11

1 1
8 ~zz†!11~z†z!111O~z6!#.

~4.2!

To leading order in 1/sxx
0 , we obtain

g05
1

L2E
A
d2r E

A
d2r 8sxx

0 Fd~r2r 8!2
sxx

0

4
~]x1g]y!

3~]x82g]y8!^^z11
† ~r !z11~r 8!&&0G

5
1

L2E d2r E d2r 8sxx
0 @d~r2r 8!

2~]x1g]y!~]x82g]y8!d~r ,r 8!#. ~4.3!

We have thus recovered the result from the diagramm
expansion, and the other approaches described in Se
Therefore the following results apply to any of these a
proaches.

The long-ranged term in the above expression comes f
the ladder diagrams~i.e., diffusion! and in the absence o
magnetic field, it does not contribute to the two-pro
conductance.38 In the presence of magnetic field, this is n
longer the case. One can show that the local term gives
Ohmic conductancesxx

0 W/L. The long-ranged term, which
involves volume integrals of total derivatives, gives the d
ference of boundary values of the diffusion propagator. Si
the diffusion propagator goes to zero in the leads, the]x and
]x8 terms vanish upon volume integral. We are left with t
boundary difference at the upper and lower edges,

g05sxx
0 W

L
1sxx

0 g2
1

L2E
0

L

dxE
0

L

dx8@d~x,W;x8,W!

1d~x,0;x8,0!2d~x,0;x8,W!2d~x,W;x8,0!#.

~4.4!

Thesxy
0 -dependent part is expressed as a boundary term

vanishes when the magnetic field is zero (g50), or if the
system is subject to periodic boundary condition in the tra
verse direction.
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At the one-loop level, which is the next order in 1/sxx
0 ,

we have verified that the interference correction to^g& van-
ishes in the limitn→0. Therefore the presence of edges do
not change the conclusion of the previous perturba
calculations25–27that there is no weak localization correctio
to sxx of relative order 1/sxx

0 . In general, we do not expec
the presence of edges to have any effect on the renorma
tion flow of sxx in the perturbative regime, since it is dom
nated by short distance effects in the bulk. Whethersxy is
ever renormalized perturbatively when the system has ed
is less clear to us.

B. Small-g correction for the two-probe conductance

For small g, we can make use of the propagatord0 at
g50 to obtain the leading correction tog0. Plugging
d0(r ,r 8) in the boundary term of the two-probe conductan
we obtain

g0~g!5sxx
0 W/L@11g2f 1~L/W!#1O~g4!, ~4.5!

where
s
e

a-

es

,

f 1~L/W!5
64

p4

L2

W2 (
m51,odd

`

(
n51,odd

`
1

m2

1

m21
L2

W2 n2

→H 14z~3!L/p3W, W@L

1/2, W5L

1, W!L.

@Herez(s)5(m51
` m2s is the Riemann zeta function, and w

note thatz(3).1.202.# Thus, for an extremely wide sample
W@L, the effect of the edges can be ignored. In the 1D lim
(W/L→0), we obtaing0→(11g2)sxx

0 W/L, which is con-
sistent with our result that in the NLsM,
sxx

0,1D5(11g2)sxx
0 W. This is also consistent with other re

sults, as noted in Sec. I A, valid for arbitraryg, which show
that the mean conductance in the 1D limit can be obtai
from this one-dimensional conductivitysxx

0,1D5W/rxx
0 .

V. VARIANCE OF THE CONDUCTANCE

In this section, we evaluate the variance of conductanc
leading order in 1/sxx

0 . From the nonlinears model, we
obtain
^g2&2^g&25
1

L4 lim
A→0,n→0

E dx1E dx18E dx2E dx28K K d2S

dAx,11
12~x1!dAx,11

21~x18!

d2S

dAx,22
12~x2!dAx,22

21~x28!

1
d2S

dAx,11
12~x1!dAx,22

21~x28!

d2S

dAx,22
12~x2!dAx,11

21~x18!
1

d2S

dAx,11
12~x1!dAx,22

12~x2!

d2S

dAx,11
21~x18!dAx,22

21~x28!

1
d2S

dAx,11
12~x1!dAx,11

21~x18!

dS

dAx,22
12~x2!

dS

dAx,22
21~x28!

11↔21
d2S

dAx,11
12~x1!dAx,22

21~x28!

dS

dAx,22
12~x2!

dS

dAx,11
21~x18!

11↔2

1
d2S

dAx,11
12~x1!dAx,22

12~x2!

dS

dAx,22
21~x28!

dS

dAx,11
21~x18!

1~1↔2 !1
dS

dAx,11
12~x1!

dS

dAx,11
21~x18!

3
dS

dAx,22
12~x2!

dS

dAx,22
21~x28!L L

connected

, ~5.1!

where

d2S

dAx,11
12~x1!dAx,22

21~x28!
52E dy1d~x12x28!

sxx
0

8
~z†z!12~zz†!211O~z6!,

d2S

dAx,11
12~x1!dAx,22

12~x2!
5E

0

W

dy1d~x12x2!
sxx

0

2
z12

† z21
† , ~5.2!



a
u
at
-
av

d
p

pa
ar

om
e

in
o

a

a

of the
ged

the
tri-
e
id

ted

u-
of
f-
ize

r dia-

est

ry
t the
1D

ept
re.
the

ach

a-

in
s.
.

56 4005MESOSCOPIC CONDUCTANCE AND ITS FLUCTUATIONS . . .
and the other functional derivatives are all evaluated
A50. The leading diagrams are shown in Fig. 4. Vario
vertices are denoted by polygons with the wavy tail indic
ing d/dA, while the lines linking the vertices are the diffu
sion propagators. The diamond-shaped vertex with no w
tails comes from the four-point interaction term inS1. We
have also obtained the same set of diagrams using the
grammatic approach. The diagrammatic approach is com
cated because various vertices need to be evaluated se
edly. In the presence of magnetic field, the vertices
dressed with nonvanishingG1G1 and G2G2 ladders, al-
though in the end they can all be expressed in terms ofsxx

0

andsxy
0 . For the NLsM, the vertices can be obtained from

the action. Figure 5 shows that one particular vertex fr
d2S/dAx,11

12dAx,11
21 is equal to the sum of four diagrams in th

diagrammatic approach.
Figures 4~a! and 4~b! are the only diagrams considered

previous UCF theories. The rest of the diagrams were c
sidered by Kane, Serota, and Lee,38 and it is known that, for
g50, they give rise to the long-ranged correlation in loc
current response but do not contribute to the variance
conductance in the absence of magnetic field.38 One can
show that these additional diagrams can all be written
boundary contributions, and that they vanish wheng50 for

FIG. 4. The diagrams for the variance of conductance to lead
order in 1/sxx

0 and to orderg2. The shaded polygons are vertice
The lines connecting the vertices are the diffusion propagators
t
s
-

y

ia-
li-
rat-
e

n-

l
of

s

the same reason as the ladder series vanish in the case
average conductance, when written in the area-avera
form. However, in the presence of the magnetic field
additional diagrams give rise to Hall-ratio-dependent con
butions. The work of KY and ML discussed the effect of th
tilted boundary condition on the diffusion propagator, but d
not consider the additional diagrams.

From Figs. 4~a! and 4~b! alone, we obtain

^dg2&a,b5
1

L4 $4 Tr~ddT!12 Tr~dd!%. ~5.3!

Using the classical network model of Sec. I B, we calcula
the diffusion propagatord for a range of values ofg and
W/L. Using this propagator, we find that Tr(dd) and
Tr(ddT) are smooth functions ofg and L/W. The peaks
reported by ML in the variance of the conductance@as given
by Eq. ~5.3!# are not observed in our exact numerical calc
lation. The argument advanced by ML for the existence
‘‘resonant’’ peaks due to the tilted boundary condition e
fects is not supported by this calculation. We emphas
again that, in any case, Eq.~5.3! is not the full expression for
the variance of the conductance, because there are othe
grams that were omitted by KY and ML.

A. Recovery of UCF result in the 1D limit

The importance of the additional diagrams can be b
demonstrated in the quasi-1D limit (W!L), wheresxx

0 and
sxy

0 combine to form a single parameter,sxx
0,1D. This limit is

well described by the random-matrix theory of the unita
ensemble. For general reasons given earlier, we expec
variance of the conductance to approach the well-known
UCF result, independent of the value ofg.

Plugging in the 1D diffusion propagator of Eq.~3.54!, we
obtain

^dg2&a,b,1D5
6

p4S (
m51

`
1

m4D 1

~11g2!2 5 1
15 ~122g2!

1O~g4!, ~5.4!

where we used

(
m51

`
1

m4 5
p4

90
.

This is essentially the argument used by KY and ML, exc
that they gave versions applicable at finite temperatu
However, this result of these authors, that the variance of
conductance depends ong, even in the 1D limit, is incorrect.

Among the additional diagrams, Figs. 4~c! and 4~d! and
the sum of Figs. 4~i! and 4~i 8) vanish to orderg2 for all

FIG. 5. The equivalence between the diagrammatic appro
and the NLsM approach. One vertex from the NLsM,
d2S/dAx,11

12dAx,11
21 , is equal to the sum of four diagrams in the di

grammatic approach.

g
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W/L; Figs. 4~g!, 4~h!, 4~i!, 4~i 8), 4~j!, and 4~j 8) vanish as
W/L→0. The dominant contributions come from Figs. 4~e!
and 4~f!:

^dg2&e, f ,1D.
6

p4S (
m51

`
1

m4D 2g2f 1~`!5 1
15 ~2g2!.

~5.5!

Figures 4~e! and 4~f! thus cancel theg2 correction from Fig.
4~a! and 4~b!. We obtain in total, to orderg2,

^dg2&W/L→05 1
15 . ~5.6!

Thus, in 1D the UCF result of Refs. 4, 7, and 12 is reco
ered, at least to orderg2. We remind the reader that the 1
UCF result holds only when the lengthL is less than the 1D
localization length, j1D , and that j1D is of order
sxx

0,1D5W/rxx
0 , which is much larger than the lower lim

(W) on L in the diffusive regimerxx
0 !1.

B. Variance of the conductance in two dimensions

For a wide sample withW/L arbitrary, the variance of the
conductance depends on the Hall ratio. We will calculate
correction to the usual result for theg50 unitary ensemble
to orderg2. In the 2D limit, the individual diagrams, Figs
4~e!–4~h!, 4~j!, and 4~j 8), all have logarithmically-divergen
parts, however, their logarithmic contributions cancel o
~The cancellation is guaranteed by the fact thatS is not
renormalized at one-loop level.! There can be even mor
divergent diagrams containingd(0), but these diagrams ar
canceled by diagrams generated by the measureI @z,z†#.
~Since they are at least of orderg4, they are not explicitly
calculated in this paper.! The total g2 correction is finite.
Summing up the contributions from Figs. 4~a!–4~j 8), for a
square sample we obtain

~dg!L5W
2 5F9.06

1

p4 12.40g2
256

p8 G1O~g4!. ~5.7!

The expression for the variance for arbitraryW/L is given in
Appendix D.

VI. CONCLUSION

In this paper, we considered the mesoscopic conducta
and its fluctuations in the presence of a magnetic field fo
realistic two-probe geometry. Our perturbation theory ha
different structure from previous theories4,7,32because of the
presence of two conductivity parameterssxx

0 and sxy
0 . We

found thatsxy
0 not only enters the boundary condition fo

diffusion, as was noted in Refs. 33–35, but also appear
the current vertex and other vertices which govern the in
ference processes. As a result the two-probe conductance
its variance in the perturbative regime depend on the H
ratio g5sxy

0 /sxx
0 . Our calculations differ from the previou

results,33,34 since we have not only modified the bounda
condition but also considered additional diagrams wh
vanish in the zero-field limit or in an edgeless system. O
main result is that UCF’s are modified in the presence
edges; the variance of the two-probe conductance, altho
it is still of order 1, increases with the Hall ratio, as shown
-

e

t.

ce
a
a

in
r-
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h
r
f
gh

Eq. ~5.7!. However, in the quasi-1D limit of a long sample
the usual universal result is recovered.

The reflecting boundary condition at the ‘‘hard’’ wall~or
‘‘edge’’ ! is crucial for the dependence of the conductance
the Hall ratiog that we find. If this is replaced by a periodi
transverse boundary condition~i.e., a system on the surfac
of a cylinder!, the results of the usual unitary ensemble
two dimensions are obtained; the results of Xiong a
Stone32 are easily modified for this case, for which they a
correct. While a cylinder may seem hard to realize expe
mentally, it can be mapped to an annulus by a conform
mapping. The annulus is sometimes known as the Corb
disk, in which there are no edges, and a radial voltage dro
applied to induce a current flow. Thus, for the disk, the co
ductance fluctuations should be a universal function of
ratio of the inner and outer radii, with no dependence ong.

The experimental observation of the effects we find d
pends first on being in the regimeLin@L, W, so the system
is phase coherent, and on having an elastic mean free
l due to impurities such thatL, W@ l . Our calculations only
address the metallic regime of conductance fluctuation
large diagonal conductivitysxx

0 , where perturbation theory is
valid. In principle, this approach is valid for any value of th
Hall ratio g5sxy

0 /sxx
0 , or of the Hall angleuH5tan21g. For

simplicity, we expanded most of our results also to first no
trivial order in g2. The terms in (1/sxx

0 )2 that are left out
cannot be neglected if the system sizeL or W exceeds the
order ofjpert, the crossover scale at which the renormaliz
conductivity becomes of order 1 or less. IfL, W are greater
than jpert, the system crosses over either to the localiz
regime wheresxy becomes quantized, or, for Fermi energi
near the critical values that lie near the centers of the Lan
bands, to the critical transition region between the platea
our theory does not apply to either of these. Therefore,
must use mesoscopic systems that are not too large. F

nately, sincejpert; le(sxx
0 )2

, this is not difficult if sxx
0 @1.

According to the SCBA results reviewed in Sec. II B,sxx
0

will be large unless either the Landau-level indexN of the
highest partially occupied Landau level is of order 1, or t
Fermi energy lies in the tail of the density of states of t
disorder-broadened Landau bands, whenvct0 is large
enough that these are well developed. Thus the magn
field B must be large enough to suppress the Cooperons
the system is in the unitary~broken time-reversal symmetry!
regime, but not too large.@We do not generally require
vct0.1, though this would ensure thatg>O(1).# In effect,
for the observation of the effects found in our theory, ide
conditions would be that the system should exhi
Shubnikhov–de Haas~SdH! oscillations, but not well-
developed quantized Hall plateaus, even for asymptotic
low temperatures. As the Fermi energy or magnetic fi
varies through a Landau band, yielding such an oscillation
sxx

0 and sxy
0 varies monotonically, which implies that th

ratio g5sxy
0 /sxx

0 varies. There is therefore a great deal
scope for varyingg by varying either the fieldB from low
values (g.0) to larger, or as the field sweeps through
single SdH oscillation. However, since the amplitude of t
fluctuations depend ong, it will be necessary to collect sta
tistically independent values of the conductance with
changing g too much. Thus the simplest experiment
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method, which uses the magnetic field as the ergodic par
eter, will not work, and some other technique must be u
to vary the sample conductance at fixedB. Finally, as the
quantized Hall plateas are reached, localization effects
suppress fluctuations strongly between the centers of
LLs, and our theory is not applicable~although such mea
surements would be interesting!.

While the calculations in this paper have addressed o
the weak-coupling regime atsxx@1, it is interesting to
speculate about the effects ofsxy on the conductance and it
fluctuations in the critical regime of the integer quantum H
effect, when the system has edges. The critical regime ca
defined by the conditionsL in@L, W, andL andW between
jpert and j, wherej>jpert is the localization length, which
diverges asEF approaches any of the critical valuesEcN ,
N50,1, . . . . Weexpect that the renormalized local condu
tivity parameterssxx , sxy

I , andsxy
II are still meaningful, and

that sxx and sxy5sxy
I 1sxy

II take on universal value
@[1/2 ~mod 1), in the case ofsxy# at the critical points. This
raises the question of the renormalization of the two pie
sxy

I and sxy
II , and whether the values of these are univer

separately at the critical point. We note that at the localiz
fixed point, the behavior may be described by say
sxy

I 50, sxy
II [0 ~mod 1), so that these parameters do a

proach universal values in this regime. Forsxx , there is a
widespread belief that it takes the universal value1

2 at the
critical fixed point, though it is not always clear if the calc
lations done to support this are describing the local cond
tivity parametersxx , rather than a mean conductance in
particular geometry. The relation of these is not known in
critical regime at the present time, and, as we have see
not simple even in the perturbative regime, if the system
edges. We expect that for a two-probe system with a perio
transverse boundary condition,sxy should not contribute to
the conductance in the critical regime, just as it does no
the perturbative theory in this paper. Even then, the m
conductance is not in general given bysxxW/L, since non-
Ohmic behavior is expected at least forL@W where the
system approaches a localized quasi-1D limit. Thus, eve
the case of a square sample withW5L and periodic trans-
verse boundary condition, it is not clear that^g&5sxx . The
effect of the edges in the critical region is nicely shown in
recent paper,23 which examined the mean, variance, and d
tribution of the conductance in a two-probe geometry l
ours, withW5L, and for both reflecting and periodic tran
verse boundary conditions, i.e. with and without edges. T
results show that the boundary conditions do make a dif
ence~however, finite-size effects are significant, as sho
for the periodic transverse boundary condition case in R
22!. The authors tentatively attribute this to ‘‘edge currents
but as we have seen in the perturbative regime, there
edge effects~described bysxy), that are not solely due to
edge currents carried by edge states~which are described by
sxy

II ). The boundary effects make themselves felt through
the system, due to long-range correlations in the critical
gime. They are relatively unimportant only whenW@L. In
fact, dependence on the boundary conditions, say on whe
they are periodic or reflecting, would occur even in the a
sence ofsxy , as it does in the weak coupling regime~see,
e.g., Ref. 32! A further implication, suggested by our result
m-
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is that the critical conductance properties, in a given geo
etry that possesses edges, may depend on the fixed-
value ofsxy , i.e., on which transition is being studied. Whi
the structure of the critical field theory@including sxy ~mod
1), sxx , and the critical exponents# should be universal, this
may not be true for the conductance, because the edge b
in a dependence on the integer part ofsxy . A first example
of this is the simple fact that the mean of the Hall condu
tance, that can be defined in a multiprobe geometry~with
edges!, depends on which transition is being studied, th
violating universality to this extent. The same may be true
the critical conductance fluctuations in geometries w
edges. On the other hand, for a Corbino disk, which has
edges, there should be full universality among the inte
quantum Hall transitions. Clearly, it would be of interest
study this numerically or experimentally. One way to do
numerically would be using the Chalker-Coddingto
model,43 with additional comoving edge channels couplin
to the edges by hopping terms to obtainusxy

0 u.1.
Returning to the perturbative, metallic regime,sxx@1,

we expect that similar phenomena to those studied her
two dimensions should occur also in higher dimensions,
example in three dimensions. No isotropic topological te
containing only two gradients is possible in higher dime
sions. However, the Hall conductivity should make an a
pearance in the NLsM effective action, since it is a part o
the measurable conductivity. It appears in a generalizatio
the 2D action to three dimensions,58

S52 1
8 s0E d3r tr@]mQ]mQ#

2 1
8 sH

0 E d3r elmnnltr@Q]mQ]nQ#. ~6.1!

Heren is a unit vector in the direction of the magnetic fie
B, and s0 and sH

0 are the diagonal~dissipative! and Hall
conductivities, respectively. Thus the action is anisotrop
because theB field specifies a direction.~However, for sim-
plicity we neglected the possible anisotropy in the diago
conductivitys0.! The action can be viewed as resulting d
rectly from considering layers stacked perpendicular to
magnetic field, each of which has a Hall conductivity and
descibed by the 2D NLsM action, plus a transition ampli-
tude for electrons hopping between the layers. Such mo
have recently been studied numerically.59 For systems with
boundaries, thesH

0 term in the action now leads in perturba
tion theory to phenomena similar to those in two dimensio
such as a tilted boundary condition, a dependence of^g& and
the conductance fluctuations onsH

0 /s0, and so on. Thus, in
three dimensions, and also in still higher dimensions,
conductance fluctuations in general depend on the Hall r
~or angle!. However, for the localization transition in thre
dimensions, which would be expected to be in the unit
class since time-reversal symmetry is broken by the m
netic field, we suspect that thesH

0 term is irrelevant at the
critical fixed point, so that the properties of the transition a
universal, independent of the bare Hall ratio, at least to
same extent as in two dimensions, as discussed above. S
larly to the 2D case, thesH

0 term contributes to the action o
configurations in which each layer has a nonzero instan
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number~insofar as this number is well defined, if the syste
has boundaries!. In three dimensions, there also exist top
logically stable point-singular configurations of theQ field
~known as ‘‘hedgehogs’’ in the literature!, which may be
viewed as points at which the instanton number chan
from one layer to the next. ThesH

0 term counts the numbe
of layers with each value of the instanton number, and thu
sensitive to the presence and location of the hedgeh
However, in the case of NLsM’s studied in connection with
antiferromagnets, it appears that the hedgehogs are irrele
as far as the critical properties are concerned, even tho
they may affect the behavior in the phases on either sid
the transition~see, e.g., Ref. 60!. Therefore, we suspect tha
while thesH

0 term plays a role in the metallic phase, and a
~after renormalization! in the 3D quantized Hall phase o
layered systems,59 it may have no effect on the critical prop
erties, except perhaps for the conductance when edge
present. Clearly, these are questions that may repay fu
study.
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APPENDIX A: BOUNDARY CONDITION AT THE
HARD WALLS FOR THE WHITE-NOISE MODEL

In this appendix we briefly derive the boundary conditi
on the diffusion propagator within the SCBA, by using cu
rent conservation at the reflecting walls. Using the SC
equation @E2H02S6(r )#Ḡ6(r ,r 8)5d(r2r 8), we can
show that

¹–J12~r ,r 8!5¹•F Ḡ2~r 8,r !S 2 i\

2me
DJ D Ḡ1~r ,r 8!G

5
i

\
~S12S2!@2d~r2r 8!/u

1Ḡ1~r ,r 8!Ḡ2~r 8,r !#. ~A1!

Let us define theG1G2 ladder diagram withn impurity
lines asS1,2,(n) and the ladder diagram with one curre
vertex attached to the left as

vL,~n!~r ,r 8!5uE d2r 1J12~r ,r1!S1,2,~n!~r1 ,r 8!.

Using the above property ofJ12, we obtain the following
recursive relation:

¹•vL,~n!5t@S1,2,~n!2S1,2,~n11!#. ~A2!

Summing up all ladder diagrams, we obtain

¹•vL~r ,r 8!52td~r2r 8!, ~A3!

where vL(r ,r 8) represents theJ12S1,2(r ,r 8). This shows
that, on the finest length-scale resolution,^smn(r ,r 8)&SCBA
obeys¹•s(r ,r 8)50, for r sufficently far fromr 8.
-

s

is
s.
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-
d
-

For r at the reflecting boundary, the normal component
j outsidethe sample is zero. In the presence of a bound
current, which, from a coarse-grained, large-scale point
view, can be treated asd functions d(y2W), d(y) in the
components tangential to the edge, the surface integral o
current emerging from a small box centered on the top e
reduces to

E
W201

W101

dy]x^sxn~r ,r 8!&SCBA2^syn~r ,r 8!&SCBAuy5W50

~A4!

for rÞr 8. Thus any normal current~just inside the edge!
must be converted to ad-function tangential current at th
edge. This condition was discussed for the currentj 8 in Sec.
I A. Within the SCBA, it leads@using Eq. ~2.20!# to the
conclusion that it isg5sxy

0 /sxx
0 , not sxy

I ,0/sxx
0 , which ap-

pears in the boundary condition~1.16! on the diffusion
propagatord. A similar argument holds for ther 8 depen-
dence. The extension of this discussion to include the si
tion r5r 8 is given in Sec. III C.

APPENDIX B: PROOF OF THE CURRENT
CONSERVATION IDENTITIES WITHIN SCBA

We will show that, within the SCBA,smn(r ,r 8) satisfies
the constraints imposed by current conservation. We s
with thes12 term. We can write the ladder diagrams in th
following fashion:

s ladder
12 ~r ,r 8!5

\4

4me
2 uE d2r 2vL~r ,r2!J2,1~r 8,r2!.

~B1!

Using the recursive relation~A2! for vL,(n), and denoting
S12,(n)J21 asvR,(n), we obtain another recursive relation

¹•s12,~n!~r ,r 8!5
2me

\2 ~S12S2!@vR,~n21!~r ,r 8!

2vR,~n!~r ,r 8!#.

Summing up all the ladder diagrams, we obtain

¹•s12~r ,r 8!5
2m

\2 (
N

(
N8

$ḠN
1~r ,r 8!DJ j8PN8~r 8,r !

2PN~r ,r 8!DJ 8ḠN8
2

~r 8,r !%,

wherePN(r ,r 8) is the projection operator onto theNth Lan-
dau level. The right-hand side is a short-ranged function
ur2r 8u, which we can treat as ad function. We can write

¹•s12~r ,r 8!5c12d~r2r 8!, ~B2!

where

cj
1252 i\(

n
(
n8

~Ḡn
1vnn8

j
2vnn8

j Ḡn8
2

!,

wherevnn8 is the matrix elements of the velocity operato
and
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cj
12H 50 for B50

5” 0 for B5” 0.

To evaluates11(r ,r 8) and s22(r ,r 8), we use the follow-
ing trick:

s11~r ,r 8!5E
2`

E

dE8 f ~E8! lim
E15E2→E8

]

]E1

3s11~r ,r 8;E1 ,E2!,
~B3!

s22~r ,r 8!5E
2`

E

dE8 f ~E8! lim
E15E2→E8

]

]E2

3s22~r ,r 8;E1 ,E2!,

where saa(E1 ,E2) involves the ladder sum Saa

(a51,2). Define vR,aa,(n)5Saa,(n)Jaa, we can show that
for the nth ladder diagram,

¹•s11,~n!~r ,r 8;E1 ,E2!

5
2me

\2 @S1~E1!2S1~E2!#vR,11,~n21!~r ,r 8!

2
2me

\2 @S1~E1!2S1~E2!#vR,11,~n!~r ,r 8!

1
2me

\2 @E12E2#vR,11,~n!~r ,r 8!. ~B4!

One can see that there is cancellation between thenth ladder
diagram and the (n11)th ladder diagram. Similar relation
can be derived for¹•s22,(n)(r ,r 8;E1 ,E2). Summing up all
the ladder diagrams, taking the derivative over energy
then the limitE15E2→E8, we can show that

¹•@s11~r ,r 8!1s22~r ,r 8!#

52c12d~r2r 8!2
\2

2me
E dE8 f ~E8!

3@v11,R~r ,r 8,E8!2v22,R~r ,r 8,E8!#.

~B5!

We can see that¹•s12(r ,r 8) is canceled by contribution
from ¹•s11(r ,r 8) and¹•s22(r ,r 8),

¹•s~r ,r 8!52
\2

2me
E

2`

E

dE8 f ~E8!@v11,R~r ,r 8,E8!

2v22,R~r ,r 8,E8!#. ~B6!

Since

¹8•vR,11,~n!~r ,r 8!

5
2me

\2 @S11,~n21!~r ,r 8!2S11,~n21!~r ,r 8!#50

and
d

¹8•vR,22,~n!~r ,r 8!

5
2me

\2 @d22,~n21!~r ,r 8!2d22,~n21!~r ,r 8!#50,

we obtain

¹W •^s~r ,r 8!&SCBA•¹
Q 850. ~B7!

Using Eqs.~B6! and~B7! and the asymptotic property of th
Green’s function42

E dS8ur85`G6~r ,r 8!DJ 8G6~r 8,r !50,

we can show finally that

¹•E ^s~r ,r 8!&SCBA•dS850. ~B8!

APPENDIX C: REMARKS ON EDGE STATES
AND QUANTIZATION

Here we return to the topological considerations of S
III B, and relate them to edge states and the quantization
the Hall conductance in the localized regime. The topolo
cal considerations of Sec. III B are closely related to t
problem of setting up a path integral for a quantum spin,
which we mean an irreducible representation of the symm
try group, which is SU(2n) here~for a review, see e.g., Ref
60!, and this connection is also utilized in the mapping fro
the Chalker-Coddington model~representing a network o
edge states! to a quantum spin chain or the NLsM ~Ref. 49!
~the connection between the latter two problems, and
relation to the quantum Hall effect, was discussed earlier61!.
In the quantum spin problem, we would take imaginary tim
with a periodic boundary condition in the time direction, a
the action would contain only thesxy

II ,0 terms fromS@A#, Eq.
~3.8!; the system would be taken to be a disk, with the sin
edge corresponding to the world line of the quantum s
with its periodic boundary condition. For the two-probe g
ometry, this corresponds to regardingx as imaginary time,
and the two edge channels are then a pair of quantum sp
with the spins fixed atQ5L at the initial and final ‘‘times’’
x50, L. In the absence of the rest of the action, quantu
mechanical consistency requires in either geometry that
coefficientsxy

II ,0 be quantized to integer values, for reaso
closely related to the properties of ‘‘large’’~topologically
nontrivial! gauge transformations; for the case of SU~2!, this
corresponds to 2S5 integer, as usual. Essentially, the arg
ment says that, since the only degree of freedom in the p
lem is the value ofQ on the edge, then its continuation int
the interior, needed to write the topological term, is arbitra
and the path integral should be invariant under a chang
Q in the interior that does not affect the edge; such chan
are the ‘‘large’’ gauge transformations. Since the change
the action under such a change is 2p isxy

II ,0q for some integer
q, this implies thatsxy

II ,0 is an integer. This is related to ar
guments for quantization of the Hall conductivity, once l
calization sets in Refs. 29 and 30. In this case, we may im
ine that the localized system is described by the NLsM but
with sxx

0 replaced by a renormalized valuesxx , equal to zero
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because of localization. Then a similar argument requ
that the renormalizedsxy

II is quantized to integer values. Thu
quantization of the Hall conductance and quantization
spin are closely connected.62 This argument is also
connected30 with the gauge-invariance argument f
quantization.40 The edge states, that are the only degrees
freedom able to transport current over large distances in
localized regime, correspond to the quantum spin~in the
n→0 limit!. We note that from this point of view of the edg
states, in whichx plays the role of imaginary time,Ax plays
the role of an external magnetic field, in the sense of
familiar Zeeman coupling in the SU~2! case. It is coupled to
Q, which corresponds to the spin operator, or the curr
operator for the edge state.Q corresponds for SU(2n) to the
three-component unit vectorV that describes an SU~2! spin,
which can be obtained explicitly by writing, forn51,
Q5V•t, wheret is the vector of Pauli matrices. For SU~2!,
the corresponding operators in the quantum theory, after
scaling to absorb the coefficient analogous to oursxy

II ,0 , are
the familiar operatorsS, which generate SU~2! rotations and
are conserved when the Hamiltonian is SU~2! invariant. In
the presence of the vector potentialA, which enters multi-
plied by the magnitude of the spinS, to give the Zeeman
coupling, just as in our action, the equation of motion~or
Ward identity! for a single quantum spin describes the fam
iar precessional dynamics, which can therefore also
viewed as the covariant conservation of the spin.

By contrast, for the full action in the weak coupling r
gime sxx@1, where the rest of the action depends on
form of Q in the interior, there is no reason why eithersxy

0 or
sxy

II ,0 should be quantized, in accordance with our physi
expectations. The same applies to derivations ofS@A# start-
ing from the network model,49 which also represents only th
Fermi energy response, except that in this case the spli
of sxy

0 into sxy
I ,0 andsxy

II ,0 is a matter of an arbitrary definition
as we discussed for the linearized model in Sec. I B. In
network model, the links of the lattice can be viewed
quantized edge channels, and these are the only degre
freedom, so the coupling ofA to these links is of the edg
form discussed above, but withsxy

II ,0 replaced by the quan
tized value 1. Of course, the coarse-grained values ofsxx

0 ,
sxy

I ,0 , andsxy
II ,0 are determined by the parameters of the v

tices in the network model, and by the definition of t
coarse-grained currents,47 so they are not quantized.

APPENDIX D: COMPUTATION OF
THE VARIANCE DIAGRAMS

The conventional diagrams Figs. 4~a! and 4~b! depend on
g through the diffusion propagator. Using the boundary p
turbation expansion, we obtain
s

f

of
e

e

t

e-

e

e

l

ng

e
s

of

-

r-

Tr~dd!5Tr ~d0d0!1Tr~d0d0Bd0!1Tr~d0Bd0d0!

12Tr~d0d0Bd0Bd0!1Tr~d0Bd0d0Bd0!1O~g3!,

~D1!

Tr~ddT!5Tr~d0d0!1Tr~d0d0BTd0!1Tr~d0BTd0d0!

12Tr~d0d0BTd0BTd0!1Tr~d0BTd0d0BTd0!

1O~g3!, ~D2!

where the matrixB has the following elements in the basis
fnm

0 :

^n8m8uBunm&52
g

WL

8mm8

~m8!22m2 dm1m8,odddn1n8,even.

The linear term ing is zero, because the matrixB is anti-
symmetric. We obtain

~dg!a,b
2 5

1

p4F6 f 22g2
64

p4 ~12f 322 f 4!G , ~D3!

where

f 2S L

WD5 (
n50

(
m51

1

~m21n2L2/W2!2 , ~D4!

f 3S L

WD5 (
n50,m51

(
n850,m851

1

S m21n2
L2

W2D 3

1

m821n82
L2

W2

3
~mm8!2

@~m8!22m2#2 dm1m8,odddn1n8,even, ~D5!

f 4S L

WD5 (
n50,m51

(
n850,m851

1

S m21n2
L2

W2D 2

3
1

S m821n82
L2

W2D 2

~mm8!2

@~m8!22m2#2

3dm1m8,odddn1n8,even. ~D6!

The upper bounds forn andm in all sums arenmax;W/ l and
mmax;L/ l . For a square sample withL5W, we have
f 2.1.51,

~dg!a,b,L5W
2 5

1

p4 @9.0622.35g2#1O~g3!. ~D7!

Figures 4~e! and 4~f! give
~dg!e, f
2 5

256

p8 g2
L2

W2 (
n1 ,m15odd

(
n2 ,m25odd

(
n350,m351

1

m1

1

m2

1

m1
21n1

2L2/W2

1

m2
21n2

2L2/W2

1

~m3
21n3

2L2/W2!2 $3~m3
2D3D2

1n3
2L2/W2D1D4!13~m1m2D5D21n1n2L2/W2D1D6!110~m1m3D7D21n1n3L2/W2D1D8!%, ~D8!

where
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D1~m1 ,m2 ,m3 ,m3!5dm1 ,m2
2 1

2 dm1 ,2m31m2
2 1

2 dm1 ,22m31m2
1 1

2 dm1 ,2m32m2
,

D2~n1 ,n2 ,n3 ,n3!5dn1 ,n2
1 1

2 dn1 ,2n31n2
1 1

2 dn1 ,22n31n2
1 1

2 dn1 ,2n32n2
,

D3~m1 ,m2 ,m3 ,m3!5dm1 ,m2
1 1

2 dm1 ,2m31m2
2 1

2 dm1 ,22m31m2
2 1

2 dm1 ,2m32m2
,

D4~n1 ,n2 ,n3 ,n3!5dn1 ,n2
2 1

2 dn1 ,2n31n2
1 1

2 dn1 ,22n31n2
2 1

2 dn1 ,2n32n2
,

D5~m1 ,m2 ,m3 ,m3!5dm1 ,m2
2 1

2 dm1 ,2m31m2
2 1

2 dm1 ,22m31m2
2 1

2 dm1 ,2m32m2
,

D6~n1 ,n2 ,n3 ,n3!5dn1 ,n2
1 1

2 dn1 ,2n31n2
1 1

2 dn1 ,22n31n2
2 1

2 dn1 ,2n32n2
,

D7~m1 ,m2 ,m3 ,m3!52 1
2 dm1 ,2m31m2

1 1
2 dm1 ,22m31m2

1 1
2 dm1 ,2m32m2

,

D8~n1 ,n2 ,n3 ,n3!5 1
2 dn1 ,2n31n2

2 1
2 dn1 ,22n31n2

1 1
2 dn1 ,2n32n2

. ~D9!

This term has a logarithmic part@it diverges with system size as ln(L/ l )#. It comes from the first term in the curly bracket
when the two derivatives of the four-point interaction are applied to the closed loop of two diffusion propagators. The
term results from applying the two derivatives to the two external propagators. The third term arises when one of the d
is applied to the closed loop, one is applied to the external propagator.

Figures 4~g! and 4~h! are both logarithmic. They are of opposite signs, but the amplitude of Fig. 4~g!, which is positive, is
twice that of Fig. 4~h!. We obtain

~dg!g,h
2 5

256

p8 g2
L2

W2 (
n1 ,m15odd

(
n2 ,m25odd

(
n350,m351

1

m1

1

m2

1

m1
21n1

2L2/W2

1

m2
21n2

2L2/W2

1

m3
21n3

2L2/W2 D1D2 . ~D10!

Figures 4~j! and 4~j 8) also have logarithmic divergence. We obtain from Fig. 4~j!, we obtain

~dg! j
25

256

p8 g2
L2

W2 (
n1 ,m15odd

(
n2 ,m25odd

(
n350,m351

(
n450,m451

1

m1

1

m2

1

m1
21n1

2L2/W2

3
1

m2
21n2

2L2/W2

m3

m3
21n3

2L2/W2

m4

m4
21n4

2L2/W2 @dm1 ,m46m3
2dm1 ,m32m4

#@dm2 ,m36m4
2dm2 ,m42m3

#

3@dn1 ,n46n3
1dn1 ,n32n4

#@dn2 ,n46n3
1dn2 ,n32n4

#. ~D11!

From Fig. 4~j 8)

~dg! j 8
2

52
256

p8 g2
L2

W2 (
n1 ,m15odd

(
n2 ,m25odd

(
n350,m351

(
n450,m451

1

m1

1

m2

1

m1
21n1

2L2/W2

3
1

m2
21n2

2L2/W2

m3
2

m3
21n3

2L2/W2

1

m4
21n4

2L2/W2 @dm1 ,m46m3
2dm1 ,m32m4

#@dm2 ,m46m3
2dm2 ,m32m4

#

3@dn1 ,n46n3
1dn1 ,n32n4

#@dn2 ,n46n3
1dn2 ,n32n4

#. ~D12!

Both Figs. 4~j! and 4~j 8) are negative. Their logarithmic parts combine to cancel those from Figs. 4~e!, 4~f!, 4~g!, and 4~h!. The
variance, which is the sum of Figs. 4~a!–4~j 8), is finite.
sic

D.
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