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Repulsion of energies of delocalized states in a double-layer system in a strong magnetic field

A. Gramada* and M. E. Raikh
Department of Physics, University of Utah, Salt Lake City, Utah 84112

~Received 18 April 1997!

A double-layer system in a strong perpendicular magnetic field is considered. Assuming a random potential
in each layer to be smooth, we calculate the positions of the delocalized states within a wide range of the
tunneling strengths. We show that each delocalized state is composed of alternating pieces of equipotentials
from different layers. These combined equipotentials form a percolation network, the nodes of which are the
regions where equipotentials from different layers nearly touch each other.@S0163-1829~97!00631-0#
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I. INTRODUCTION

The origin of the integer quantum Hall effect lies in th
peculiar property of the spectrum of a two-dimensional~2D!
electron in a perpendicular magnetic field. Namely, there
only a single delocalized state per a disorder-broadened
dau level. Comprehensive numerical studies~see the review,
Ref. 1! allowed us to establish how the localization leng
j(E), diverges as the energy,E, approaches the center of th
Landau level:j(E)}E2n, where n'2.35. Currently, the
question of interest is to trace the evolution of the locali
tion properties of the electronic spectrum as the third dim
sion is added.2–4 The natural realization of this situation is
system of 2D layers stacked in parallel~superlattice!. As a
tunnel coupling between the neighboring layers increa
the delocalized states in individual layers should smear in
metallic band. The crucial step in understanding of this tra
formation is the analysis of a double-layer system. Nam
the question to answer is whether a naive picture of
tunneling-induced level repulsion applies to delocaliz
states in two layers. The related question is about the st
ture of the wave functions of delocalized states in the pr
ence of tunneling.

Both questions become trivial if a disorder is the same~or
strongly correlated! in both layers. Then the tunneling affec
only the size-quantization wave functions in the directi
perpendicular to the layers. As a result, the change in p
tions of the delocalized states follows the repulsion of
size-quantization levels. If, in the absence of tunneling,
energies of delocalized states wereE1 and E2, then with
tunneling switched on, the new positions are given by a s
dard expression

Ẽ1,25
E11E2

2
7AS E12E2

2 D 2

1t2, ~1!

wheret is the tunnel integral. However, for further going
multilayers, correlated disorder in a double-layer syst
gives no insight: even if random potentials are correlated
the neighboring layers, they will get uncorrelated for tw
distant layers. Thus the really interesting case is the cas
uncorrelated disorder. By now two groups5,6 reported the nu-
merical study of the structure of electronic states in a dou
layer system with uncorrelated disorder. Surprisingly,
appeared6 that, with a short-range disorder, even fort as
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small as 0.1G, whereG is the disorder-induced width of th
Landau level, the positions of delocalized states are v
close to those with correlated disorder. On the other ha
the case of a smooth disorder, with correlation radius lar
than the magnetic length,l , has an advantage that there is
transparent picture of the eigenstates. Namely, they repre
cyclotron orbits with a guiding center drifting along equip
tential lines and tunneling through the saddle points.7 In the
present paper we extend this picture to the case of a dou
layer system and obtain analytical expressions for the e
gies of delocalized states.

II. THE STRUCTURE OF DELOCALIZED STATES

The crucial difference between the cases of a correla
and of an uncorrelated disorder is that in the latter case
equipotentials from different layers may cross each other
ter the projection on the same plane. This is illustrated in F
1. As a result of such a crossing, there is a finite probabil
W, for an electron to change equipotential~and, correspond-
ingly, the layer!. We will show that this probability is given
by

FIG. 1. Crossing of equipotentials from the first~long-dashed
lines! and the second~dashed lines! layer after projection on the
same plane. The inset shows the bypassing of a saddle point d
switching of equipotentials at the intersections.
3965 © 1997 The American Physical Society
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W512expS 2
2pt2

e2uE13E2u l 2D , ~2!

whereE1, E2 are the values of the local electric field in tw
layers at the point of intersection. Let us sketch the deri
tion of Eq. ~2!. Suppose that two equipotentials, correspo
ing to the energyE, measured from the center of thenth
Landau level, intersect atr50. The in-plane potentials
V1(r), V2(r) behave nearr50 as V1(r)5E1eE1•r;
V2(r)5E1eE2•r. Then the two-component amplitud
C5(c1 ,c2), to find an electron within the first and the se
ond layer, obeys the Schro¨dinger equationĤC5\v(n

1 1
2 )C, where v is the cyclotron frequency. The matri

Hamiltonian,Ĥ, is defined as

Ĥ5S S p̂1
e

c
AD 2

2m
1V1~r!

2t

2t S p̂1
e

c
AD 2

2m
1V2~r!

D ,

~3!

whereA5B(2y,x,0)/2 is the vector potential. The impo
tant step is to separate the cyclotron motion and the mo
of the guiding center. This is achieved by the followin
transformation:8

x5 l ~X2s!, y52 i l S ]

]X
1

]

]sD , ~4!

]

]x
5

1

2l S ]

]X
2

]

]sD ,
]

]y
52

i

2l
~X1s!. ~5!

The motion of the guiding center is described by the coo
nateX. This suggests to search for the solution of the Sch¨-
dinger equation in the form

C5expF2 i
b1,2y

2 S s2
b1,2x

2 D GfnS s2
b1,2x

2 DF1,2~X!, ~6!

where fn is the eigenfunction of the harmonic oscillato
Then, the equations forF1,2 take the form

S 2 ib1y

]

]X
1b1xXDF12g1F15tF2 , ~7!

S 2 ib2y

]

]X
1b2xXDF22g2F25tF1 , ~8!

where b1,2x5eE1,2xl , b1,2y5eE1,2yl , g1,252(b1x,2x
2

1b1y,2y
2 )/\v.

In fact, this system is equivalent to the system, describ
nonadiabatic transitions between the crossing energy le
in molecules. This problem was first considered more th
60 years ago.9 Up to a phase factor, the solution of the sy
tem ~7!, ~8! can be expressed in terms of parabolic cylind
functions,11 Dn(6 X̄A2eip/4), with n and X̄ given by the
following formulas:
-
-

n

i-

g
ls
n

-
r

n52 i
t2

e2l 2uE13E2u
52 i

t2l 2

uv13v2u\2
, ~9!

X̄5AuE13E2u
2E1yE2y

FX2
\v

2

~2n11!~E1y2E2y!

eluE13E2u G . ~10!

Using the asymptotics of theD functions,

Dn~X!;Xne2~1/4!X2
, uXu→`, S 2

3p

4
,argX,

3p

4 D ,

~11!

Dn~X!;Xne2~1/4!X2
2

~2p!1/2

G~2n!
e2 ipnX2n21e~1/4!X2

,

uXu→`, S 2
5p

4
,argX,2

p

4 D , ~12!

one can see that the right behavior atX→1` for the func-
tion Fn(X) ~no reflected wave!, is ensured by the following
choice:

Fn~X!}Dn~6 X̄A2eip/4!. ~13!

The asymptotics forF at X̄→` and X̄→2` differ by a
factor exp(ipn). With n given by Eq. ~9!, the probability
of changing the equipotential after crossing,W51
2uF(2`)u2/uF(`)u2, takes the form of Eq.~2!.

The Eq.~2! sets a relevant scale fort. Indeed, the typical
value of the electric field can be estimated asE1,2;G/eRc ,
whereRc@ l is the correlation radius of the random potenti
Then it follows from Eq.~2! that the crossover value oft is
;G l /Rc . For smallert the probability of retaining equipo
tential after crossing is close to 1. Conversely, fort.G l /Rc
practically each intersection results in the change of the e
potential. It is important that the crossover value oft is much
smaller thanG, which means that the density of states
unaffected by tunneling at sucht. Note also that the applica
bility of Eq. ~2! is limited by the conditiont,G. This is
because Eq.~2! was derived assuming thatE1, E2 are con-
stant. On the other hand, ift.G l /Rc , so thatF1 andF2 in
Eqs. ~7!, ~8! are of the same order, the characteristicX is
;t/eE1,2l . Hence, the characteristic length where the ‘‘inte
action’’ between the equipotentials occurs is;Xl;t/eE1,2.
Since this length must be smaller thanRc , we arrive at the
condition t,G. The opposite caset.G is transparent, since
the repulsion of the size-quantization levels becomes a do
nant factor, and the positions of the delocalized states
given by Eq.~1!.

Thus, we have established that within a wide regi
G l /Rc,t,G, each crossing of equipotential lines from di
ferent layers leads to the change of the layer, in which
electron moves. As a result, the saddle points of the rand
potentialsV1(r) and V2(r) in the layers, which played a
crucial role for delocalization7 at t50, become irrelevant in
this region:a typical saddle point is bypassed due to switc
ing of equipotentials~see the inset in Fig. 1!. Thus, the struc-
ture of the delocalized states must be completely differ
from that att50, when the wave function was concentrat
within a magnetic length from a percolating equipotentia7

To establish this structure, consider first the energy,E, deep
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56 3967REPULSION OF ENERGIES OF DELOCALIZED STATES . . .
in the tail of the Landau level:E,E1,E2. Then the equi-
potentialsV1(r)5E and V2(r)5E, being projected on the
same plane, represent a set of isolated circles. AsE moves
up, the equipotentials, corresponding to different layers, s
to overlap and form clusters, as it is shown in Fig. 2. O
main observation is that, due to switching of equipotenti
at intersections,the motion of an electron within a cluste
occurs either inside the cluster or along its boundary~see
Fig. 2!. In the latter case, the envelope trajectory consists
alternating pieces of equipotentials from different layers.
E further increases, the average size of a cluster grows
so does the envelope trajectory. Finally, at someE5Ẽ1 criti-
cal clusters merge, so that the envelope trajectories form
infinite equipotential, i.e., the classical percolation occu
Thus, the energyẼ1 corresponds to the lower delocalize
state. The upper delocalized state,Ẽ2, emergies in quite a
similar way, if we first consider the energyE.E2.E1, and
then gradually move it downwards. It is obvious from sym
metry thatẼ11Ẽ25E11E2.

Despite the fact that for delocalized states atE5Ẽ1 ,Ẽ2
the real saddle points are irrelevant, the localization prop
ties of the states with energies close to eitherẼ1 or Ẽ2 are
described by asingle-channelnetwork model, proposed b
Chalker and Coddington7 ~see also Ref. 11!. In their model
the cells of the network are closed equipotentials, while
nodes are the saddle points separating them. It is obvious
in our case the role of cells is played by the envelope tra
tories ~like the one shown in Fig. 2!. Less obvious is that a
region, where two different envelope trajectories come cl
and nearly touch each otheracts exactly as a saddle poin
Namely, as energy~and, thus, the degree of their overlap! is
swept within a narrow interval,D!G, the result of passing
of an electron through this region changes from reflect
~retaining the equipotential! to transmission~switching the
equipotential!. This is illustrated in the inset in Fig. 2. Th
derivation of the transmission coefficient for an effecti

FIG. 2. A cluster formed by equipotentials from different laye
after projection on the same plane. Full lines show the resul
trajectories of the electron motion. The inset depicts an effec
saddle point formed by equipotentials from different layers a
projection on the same plane.
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saddle point is given in the Appendix. It has the same fo
as for a conventional saddle point8

T5
1

11expFp~E2E0!

D G , ~14!

whereE0 is approximately the energy at which two traject
ries touch each other andD is typically of the order of
G3/2l 2/t1/2Rc

2 and is much smaller thanG. The parameterD

defines the localization length for energies close toẼ1,Ẽ2.
Indeed, since the quantum mechanical description of
transmission through the region of touching becomes imp
tant whenuE2Ẽ1u,D, the size of a ‘‘unit cell’’ of a network
is ;Rc(G/D)4/3, where 4/3 is the critical exponent for th
classical percolation. Then we have

j;RcS G

D D 4/3S D

uE2Ẽ1,2u
D n

. ~15!

III. POSITION OF DELOCALIZED STATES

We turn now to the calculation of the positions of th
delocalized states. This calculation reduces to the follow
percolation problem. Consider an auxiliary 2D plane. Fo
fixed energy,E, we ascribe black color to a point,r, if at
least one of the values@V1(r)1E1#, @V2(r)1E2# is smaller
thanE. Otherwise, the pointr is white. Then the energyẼ1
is the critical energy at which the percolation over wh
regions switches to the percolation over black regions.
other words, if we define an auxiliary random potenti
Ṽ(r)5min$V1(r)1E1 ,V2(r)1E2%, then Ẽ1 represents the
percolation threshold forṼ(r). Since the distribution func-
tions ofV1(r), V2(r) are Gaussian,f (V)}exp(2V2/G2), one
can easily calculate the distribution function and the aver
of Ṽ,

f̃ ~ Ṽ!52
1

p

]

]Ṽ
H FF Ṽ2E1

G
GFF Ṽ2E2

G
G J , ~16!

^Ṽ&5E12
Ge2[ ~E12E2!2/2G2]

A2p
1

E22E1

Ap
FFE22E1

A2G
G ,

~17!

whereF(x)5*x
`dx e2x2

is the error function. It appears tha

f̃ is symmetric with respect tôṼ& with very high accuracy
~in the ‘‘worst’’ caseE15E2 the asymmetry at half width is
smaller than one percent!. Thus, we can identifŷ Ṽ& with
Ẽ1. Note also, that an intuitive criterion that atE5Ẽ1 the
areas of the white and black regions are equal, leads
different condition, but, numerically, yields the values ofẼ1

very close tô Ṽ&. One can view Eq.~17! as an analog of Eq
~1! for the case of smooth potentials in the layers a
G.t.G l /Rc . For E15E2 the splitting of delocalized state
Ẽ1 ,Ẽ2 is equal to 0.8G. For arbitraryE22E1 it is shown in
Fig. 3. Note that the correlation betweenV1(r) and V2(r)
can be easily incorporated into the above calculation. C
tainly it will lead to the reduction of the splitting.
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IV. CONCLUSION

In conclusion, we have calculated the energies of the
localized states in a double-layer system with a smooth
correlated disorder, for a wide range of the tunneling para
eter,G l /Rc,t,G. For the case of two identical layers, the
energies are shown schematically in Fig. 4 as a function
tunneling strength. We have shown that for uncorrelated
order the dependence ofE1̃,E2̃ on the tunneling parametert
has a wide plateau. Note that this prediction can, in princip
be tested experimentally on asinglesample, since, as it wa
shown by Hu and MacDonald,12 t can be effectively tuned
~suppressed! by applying a parallel magnetic field. It follow
from our consideration that the description of a double-la
system, based on a two-channel network model6 with tunnel-
ing, causing the mixing of the channels, becomes inadeq

FIG. 3. The energies of delocalized states are plotted as f
tions of the ‘‘bare’’ asymmetry (E22E1) between the layers.

FIG. 4. Schematic plot of the energy positions of delocaliz
states for two identical layers (E15E2), at different values of in-
terlayer coupling.
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even at relatively weak tunneling. Instead, the tunnel
leads to the formation oftwo independent networkswith
nodes being the regions of touching of equipotentials fr
different layers.

As t becomes smaller thanG l /Rc , the above picture of
electronic states is not valid anymore. A typical crossing
equipotentials would not cause the change of the plane
the electron motion. We can present only a plausible ar
ment about the evolution of the positions of delocaliz
states in this limit. Note that, although a typical crossing
not efficient fort,G l /Rc , the regions of touching of equi
potentials from different planes still act as saddle points. I
shown in Appendix that the corresponding condition ont is
t.G( l /Rc)

4/3. Thus, in the domainG l /Rc.t.G( l /Rc)
4/3,

these effective saddle points would couple electronic sta
belonging to closed equipotentials from different planes.
a result, the delocalized states would occur at energ
6Ec

(1) , at which the size of a closed equipotentia
Rc(G/Ec

(1))4/3, is big enough to have;1 effective saddle
point somewhere on its perimeter. It is obvious th
Ec

(1)!Ec . Then the problem again reduces to a sing
channel network model with the cells of the network bei
closed equipotentials, alternatingly, from the first and fro
the second layer, and the nodes being the effective sa
points.

To estimate the magnitude ofEc
(1) note that the perimete

of critical equipotential scales with energy as:13

L(E);Rc(G/E)7/3. The probability that two equipotential
from different layers would come close and form an effect
saddle point with height within the interval (E2D,E1D)
can be estimated asD/G;(G/t)1/2( l /Rc)

2. Remember
that D is the energy scale of the transmission coefficie
in Eq. ~14!. Then the condition to findEc

(1) can be
written as„L(Ec

(1))/Rc…(D/G);1, and it yieldsEc
(1);G(G/

t)3/14( l /Rc)
6/7.

In the paper we demonstrate that when the tunnel inte
exceeds the characteristic valueG l /Rc , the critical exponent,
n, of the localization length is the same as fort50. We also
argue that the description based on a single-channel netw
model ~and thusn57/3) is applicable within the interva
G l /Rc.t.G( l /Rc)

4/3. Therefore if the doubling ofn estab-
lished in Ref. 6 occurs, this may happen only f
t,G( l /Rc)

4/3. However, it seems more likely that the d
scription in terms of a single-channel network model w
neighboring cells belonging to different layers applies ev
at very smallt. The reason why we anticipate this is th
following. The solution of the model problem described
Appendix shows that if two minima of the random potent
in different layers are located anomalously close to e
other@y1 ,y2 in Eqs.~A1!, ~A2! are anomalously small#, then
the formation of the effective saddle point becomes poss
even at very small t. Certainly, the smallert is, the more
sparse these saddle points are. Att50 the localization length
increases in each layer asj(E)}E27/3, and each localized
state consists of many cells of the intralayer network, se
rated by saddle points. Then, ift is finite and very small, at
someE5Ec

(2) there will be ;1 effective saddle point pe
perimeter of a localized state in each layer. At this energy~as
well as atE52Ec

(2)) the states in two layers would form
new network with a much larger unit cell;j(Ec

(2)). Then
the localization length would behave as (E2Ec

(2))27/3 with a

c-

d
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56 3969REPULSION OF ENERGIES OF DELOCALIZED STATES . . .
prefactor much bigger than that for a single layer. Certain
this scenario is only hypothetical.

Note that there is a significant difference between
picture and the one outlined by So”rensen and MacDonald.6

The line of argument in Ref. 6 is as follows. In the absen
of a disorder an electron residing initially, say, in the fi
layer, would oscillate between the layers with a peri
t52p\/t. When the disorder is present, the electron dr
within the layer with velocityv1. It was assumed in Ref. 6
that the change of the layers would most probably occur a
an electron travels the distancel dr5v1t52p\v1 /t
;G l 2/tRc . In our picture the possibility for an electron i
the first layer to tunnel depends on the actual topograph
the random potential in the second layer. In contrast to R
6, in our picture the change of the layers occurs locally
the intersections of equipotentials with the same energy
the same time in the regime of strong coupling,t.G l /Rc ,
that we considered, the distance~in the vicinity of an inter-
section!, over which the change of the layers takes place
;tRc /G and it is much larger thanl dr . Our picture also
differs from that by Laikhtman and Menashe.4 Similarly to
Ref. 6, they assume that the process of changing layers,
ing the drift along the equipotential, occurs homogeneou
but they get a different estimate for the characteristic len
of travel within a given layer. Their estimate,Rc

2G/ l t , is
larger thantRc /G and, correspondingly, larger thanl dr .

Experimentally it might be hard to realize both, smoo
disorder within each layer and the absence of correla
between the layers. However, for our arguments to apply
is sufficient that the correlation between the layers is
absolute. In other words, it should be allowed for two eq
potentials, corresponding to the same energy, to be displ
by more than a magnetic length. Then our picture rema
valid, but the correlation would lead to the shift of the pe
colation threshold to an energy much closer to the cente
the Landau level than in the case of uncorrelated disor
This implies that the ‘‘splitting’’ of the delocalized states
the regime when the coupling between equipotentials is
ready strong would still remain much smaller thanG, i.e., the
plateau shown in Fig. 4 would become lower, and hen
narrower.
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APPENDIX

To derive the transmission coefficient for an effecti
saddle point, let us assume for concreteness that the
equipotentials that nearly touch each other have their or
in two displaced potential minima in each layer~Fig. 5!

V1~x,y!5
mV1

2

2
@~y2y1!21x2#1V10

'
mV1

2

2
@x222y1y1y1

2#1V10, ~A1!
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V2~x,y!5
mV2

2

2
@~y1y2!21x2#1V20

'
mV2

2

2
@x212y2y1y2

2#1V20, ~A2!

where (y1,0) and (2y2,0) are the positions of the minima
V10,V20 are the heights, andV1 ,V1 are the curvatures. We
neglect the terms;y2 in Eqs.~A1!, ~A2! since the relevant
y appears to be small. The condition that two equipotent
come close to each other atx50, y50, can be expressed a

mV1
2y1

2

2
1V10'

mV2
2y2

2

2
1V20'E. ~A3!

Then the system of equations for the amplitudesC1 and
C2, can be written as

F p̂x
2

2m
1

m~v21V1
2!

2 S x2
v

v21V1
2

p̂y

mD 2GC1

1S V1
2

2mv2
p̂y

22mV1
2y1yD C1

2FE2\vS n1
1

2D2
mV1

2y1
2

2
2V10GC1

5tC2 , ~A4!

F p̂x
2

2m
1

m~v21V2
2!

2 S x2
v

v21V2
2

p̂y

mD 2GC2

1S V2
2

2mv2
p̂y

21mV2
2y2yD C2

2FE2\vS n1
1

2D2
mV2

2y1
2

2
2V20GC2

5tC1 . ~A5!

We will search for a solution in the following form:

C15E dk A~k!eikyfnS x2
v2

v21V1
2

l 2kD , ~A6!

C25E dk B~k!eikyfnS x2
v2

v21V2
2

l 2kD . ~A7!

Upon substituting Eqs.~A6!, ~A7! into ~A4!, ~A5!, we get a
system of equation for the functionsA andB,

2 imV1
2y1

]A

]k
1a~k!A~k!5tc~k!B~k!, ~A8!

1 imV2
2y2

]B

]k
1b~k!B~k!5tc~k!A~k!, ~A9!

wherec(k) is the overlap integral
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c~k!5E dxfnS x2
v2ł 2k

v21V1
2D fnS x2

v2ł 2k

v21V2
2D ,

~A10!

and the coefficientsa(k) andb(k) are defined as

a~k!5
mV1

2l 4k2

2
2S E2

mV1
2y1

2

2
2V10D , ~A11!

b~k!5
mV2

2l 4k2

2
2S E2

mV2
2y2

2

2
2V20D . ~A12!

It can be easily seen thatc(k)51 for V15V2 and the cor-
rection in the case when the two frequencies are differen
proportional to (V1

22V2
2)2/v4. Since the the random poten

tial is smooth, we can neglect this correction and
c(k)51. The system Eqs.~A8!, ~A9! can be reduced to a
single second-order differntial equation, say, forA(k),

d2A

dk2
1 i S a

mV1
2y1

2
b

mV2
2y2

D dA

dk

1F ab2t2

m2V1
2V2

2y1y2

1
i

mV1
2y1

da

dkGA50. ~A13!

The term with the first derivative can be eliminated by t
following substitution:

A~k!5expF2
i

2E2`

k

dk8S a~k8!

mV1
2y1

2
b~k8!

mV2
2y2

D GA~k!,

~A14!

after which Eq.~A13! takes the form

d2A
dk2

1F1

4S a

mV1
2y1

1
b

mV2
2y2

D 2

2
t2

m2V1
2V2

2y1y2

1
i l 4k

2 S 1

y1
1

1

y2
D GA50. ~A15!

It is convenient to introduce the following notations:

2

y0
5

1

y1
1

1

y2
, V0

25V1V2

Ay1y2

y0
, ~A16!

«05
V0

2y0

2V1
2y1

FE2
mV1

2y1
2

2
2V10G1

V0
2y0

2V2
2y2

3FE2
mV2

2y2
2

2
2V20G . ~A17!

Using the definitions ofa andb, Eq. ~A15! becomes
is

t

d2A
dk2

1F S «0

mV0
2y0

2
l 4k2

2y0
D 2

2S t

mV0
2y0

D 2

1
i l 4k

y0
GA50.

~A18!

Equation ~A18! has the form of the Schro¨dinger equation
with a complex ‘‘potential energy.’’ However, not all th
terms in the ‘‘potential energy’’ are relevant. This becom
obvious if we introduce the following rescaling of the arg
ment

k5
1

l S mV0
2y0

2

t D 1/4

z. ~A19!

Then Eq.~A18! takes the form

d2A
dz2

1F2z2
«0

t
1

«0
22t2

t2a2
1

1

4
z4a21 izaGA50,

~A20!

where we have introduced the dimensionless parameter

a5
l

y0
S mV0

2y0
2

t D 3/4

. ~A21!

This parameter can be estimated as follows. The typ
value ofy0 is ;Rc ; the curvatureV0 can be found from the
condition:14 mV0

2Rc
2;G. Then we havea;( l /Rc)(G/t)3/4.

But within the domain we are interested in,t is larger than
G l /Rc . Then we geta,( l /Rc)

1/4!1. This allows us to drop
the last two terms in the potential energy. It can be also s
that the effective saddle point corresponds tou«01tu!t. In-
deed, under this condition Eq.~A20! takes the form

d2A
dz2

1Fz222
~«01t !

ta2 GA50, ~A22!

which is the equation describing the scattering from the
verted parabolic potential. The expression for the transmit
coefficient for this potential is well known,15

T~E!5
1

11expF2p~«01t !

ta2 G . ~A23!

We see that the characteristic energy scale for the chang
the transmission coefficient is

D;ta2;
G3/2

t1/2 S l

Rc
D 2

. ~A24!

Using the above estimates, the conditiona!1, which guar-
antees that the region of nearly touching of two equipot
tials acts as a saddle point, can be rewritten
t@G( l /Rc)

4/3. Note thatD decreaseswith increasingt, re-
flecting the fact that the largert is, the closer the equipoten
tials should approach each other in order to form the eff
tive saddle point.
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