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Repulsion of energies of delocalized states in a double-layer system in a strong magnetic field
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A double-layer system in a strong perpendicular magnetic field is considered. Assuming a random potential
in each layer to be smooth, we calculate the positions of the delocalized states within a wide range of the
tunneling strengths. We show that each delocalized state is composed of alternating pieces of equipotentials
from different layers. These combined equipotentials form a percolation network, the nodes of which are the
regions where equipotentials from different layers nearly touch each ¢8@¥63-1827)00631-(

[. INTRODUCTION small as 0.I', wherel is the disorder-induced width of the
Landau level, the positions of delocalized states are very
The origin of the integer quantum Hall effect lies in the close to those with correlated disorder. On the other hand,
peculiar property of the spectrum of a two-dimensiof2d))  the case of a smooth disorder, with correlation radius larger
electron in a perpendicular magnetic field. Namely, there ighan the magnetic length, has an advantage that there is a
only a single delocalized state per a disorder-broadened Latransparent picture of the eigenstates. Namely, they represent
dau level. Comprehensive numerical studiese the review, cyclotron orbits with a guiding center drifting along equipo-
Ref. 1) allowed us to establish how the localization length, tential lines and tunneling through the saddle pofrits.the
£(E), diverges as the energl, approaches the center of the present paper we extend this picture to the case of a double-
Landau level: ¢(E)xE~7, where v~2.35. Currently, the layer system and obtain analytical expressions for the ener-
guestion of interest is to trace the evolution of the localiza-gies of delocalized states.
tion properties of the electronic spectrum as the third dimen-
sion is added* The natural realization of this situation is a
system of 2D layers stacked in parallsuperlattice As a

tunnel coupling between the neighboring layers increases, The crucial difference between the cases of a correlated
the delocalized states in individual layers should smear into @q of an uncorrelated disorder is that in the latter case the
metallic band. The crucial step in understanding of this transaquipotentials from different layers may cross each other af-
formation is the analysis of a double-layer system. Namelyter the projection on the same plane. This is illustrated in Fig.
the question to answer is whether a naive picture of the As a result of such a crossing, there is a finite probability,
tunneling-induced level repulsion applies to delocalizedy) for an electron to change equipotentiahd, correspond-

states in two layers. The related question is about the strugagly, the layey. We will show that this probability is given
ture of the wave functions of delocalized states in the prespy

ence of tunneling.

Both questions become trivial if a disorder is the sdore
strongly correlatedin both layers. Then the tunneling affects
only the size-quantization wave functions in the direction T
perpendicular to the layers. As a result, the change in posi- Yy 3 —
tions of the delocalized states follows the repulsion of the -
size-quantization levels. If, in the absence of tunneling, the -
energies of delocalized states wedtg and E,, then with / ~
tunneling switched on, the new positions are given by a stan- 4 2

dard expression \X
~

~
~ E+E, E,—E,\?
1275 ( > +12, (1 ’ Al z

Il. THE STRUCTURE OF DELOCALIZED STATES

N

wheret is the tunnel integral. However, for further going to 72 1 >
multilayers, correlated disorder in a double-layer system A
gives no insight: even if random potentials are correlated in

the neighboring layers, they will get uncorrelated for two ’
distant layers. Thus the really interesting case is the case of
uncorrelated disorder. By now two grodfseported the nu- FIG. 1. Crossing of equipotentials from the fitdong-dashed
merical study of the structure of electronic states in a doubletines) and the seconddashed lineslayer after projection on the
layer system with uncorrelated disorder. Surprisingly, itsame plane. The inset shows the bypassing of a saddle point due to
appeareli that, with a short-range disorder, even foms  switching of equipotentials at the intersections.

0163-1829/97/5@)/39657)/$10.00 56 3965 © 1997 The American Physical Society



3966 A. GRAMADA AND M. E. RAIKH 56
et p( 2rt? . _ t2 t2|2 ©
=l-exp ——————|, =—i =—i ,
e2|E1X E,12 e?12|E, X &) Vi X V|52
where&,, &, are the values of the local electric field in two o EXE B (204 1)(E—E
layers at the point of intersection. Let us sketch the deriva- ~ X= /M x_ e (& Zy)}_ (10)
tion of Eq.(2). Suppose that two equipotentials, correspond- 2E1yEay 2 ell£,x &,
ing to the energyE, measured from the center of timh Using the asymptotics of thB functions,
Landau level, intersect ap=0. The in-plane potentials
Vi(p), V,(p) behave nearp=0 as V,(p)=E+e&;-p; e (LA 3m 3m
V,(p)=E+e&,-p. Then the two-component amplitude, D,(X)~X"e o X[ | - T<argx<7 '
¥ =(41,,), to find an electron within the first and the sec- (11
ond layer, obeys the Schiimger equationH¥ =#%w(n o )12
+2)W¥, where w is the cyclotron frequency. The matrix D (x)wxve%lﬂbxz_—( ) e imry—v-1g(1/4)X?
S A i v I'(—v) '
Hamiltonian,H, is defined as
e \? [X] 57T< < T 12
R % - -
R 2m +Vi(p) one can see that the right behaviorat- + for the func-
H= 2 , tion F,(X) (no reflected wavke is ensured by the following
" p+-A choice:
om V2P Fa(X)2D,(+ X\2€!™). (13)

@ The asymptotics folF at X—o and X— —« differ by a
where A=B(—y,x,0)/2 is the vector potential. The impor- factor exp{wv). With v given by Eq.(9), the probability
tant step is to separate the cyclotron motion and the motionf changing the equipotential after crossing)y=1
of the guiding center. This is achieved by the following —|F(—o)|?/|F()|?, takes the form of Eq(2).
transformatiorf: The Eq.(2) sets a relevant scale for Indeed, the typical

value of the electric field can be estimatedéas~1'/eR.,

x=1(X—s), y=—il (i + 2 4) whereR > is the correlation radius of the random potential.
' axX ds)’ Then it follows from Eq.(2) that the crossover value bfis
~T'I/R;. For smallert the probability of retaining equipo-
Jd 1[4 d d i tential after crossing is close to 1. Conversely, o'l /R,
ax E(ﬁ - (9_3) ' @ = §(X+S)- (5) practically each intersection results in the change of the equi-

potential. It is important that the crossover valug & much
The motion of the guiding center is described by the coordismaller thanI”, which means that the density of states is
nateX. This suggests to search for the solution of the Schrounaffected by tunneling at su¢hNote also that the applica-
dinger equation in the form bility of Eq. (2) is limited by the conditiont<T'. This is
because Eq(2) was derived assuming th&t, &, are con-
_ ;{ . ﬁl,zy(
V=exg —i——|S

stant. On the other hand, i&-T'I/R;, so thatF; andF, in
Egs. (7), (8) are of the same order, the characterisias
where ¢,, is the eigenfunction of the harmonic oscillator.
Then, the equations fd¥, , take the form

(S_@
2

F1AX), (6)

~t/e&; J. Hence, the characteristic length where the “inter-
action” between the equipotentials occurs~sXl~t/e&; ,.
Since this length must be smaller thRp, we arrive at the
conditiont<I'". The opposite case>T" is transparent, since

( - iﬁlyi + B X |Fi— y1F1=tF,, (7)  therepulsion of the size—q_u_antization levels be_comes a domi-
X nant factor, and the positions of the delocalized states are
given by Eq.(2).
. dJ _ Thus, we have established that within a wide region
( I’BZVW+B2XX>F2 v2F2=tFy, ® I'l/R.<t<T, each crossing of equipotential lines from dif-

ferent layers leads to the change of the layer, in which the
where By x=e&; 5, electron moves. As a result, the saddle points of the random
+ 85y ) fiw. potentialsV;(p) and V,(p) in the layers, which played a

In fact, this system is equivalent to the system, describingrucial role for delocalizatiohat t=0, become irrelevant in
nonadiabatic transitions between the crossing energy levetsis region:a typical saddle point is bypassed due to switch-
in molecules. This problem was first considered more thamng of equipotentialgsee the inset in Fig.)1Thus, the struc-
60 years agd.Up to a phase factor, the solution of the sys-ture of the delocalized states must be completely different
tem (7), (8) can be expressed in terms of parabolic cylinderfrom that att=0, when the wave function was concentrated
functions!* D ,(+X/2e'™¥), with v and X given by the within a magnetic length from a percolating equipotential.
following formulas: To establish this structure, consider first the eneEgydeep

Bry=e€E1pl, 71,2:2(B§x,2x
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saddle point is given in the Appendix. It has the same form
as for a conventional saddle pdint

1

1+ exp{—w( E-Eo)

T= , (14

A

whereE, is approximately the energy at which two trajecto-
ries touch each other and is typically of the order of
I'¥32/tY2R? and is much smaller thafi. The parametef
defines the localization length for energies closeEQE .
Indeed, since the quantum mechanical description of the
transmission through the region of touching becomes impor-
tant when E—E,|<A, the size of a “unit cell” of a network

is ~R.(I'/A)*3 where 4/3 is the critical exponent for the
classical percolation. Then we have

4/3( A ) v 5
[E-Eid/

r

FIG. 2. A cluster formed by equipotentials from different layers &~ RC(Z
after projection on the same plane. Full lines show the resulting
trajectories of the electron motion. The inset depicts an effective
saddle point formed by equipotentials from different layers after
projection on the same plane.

Ill. POSITION OF DELOCALIZED STATES

We turn now to the calculation of the positions of the
in the tail of the Landau leveE<E;<E,. Then the equi- delocalized states. This calculation reduces to the following
potentialsV,(p)=E and V,(p)=E, being projected on the percolation problem. Consider an auxiliary 2D plane. For a
same plane, represent a set of isolated circlesEAmoves fixed energy E, we ascribe black color to a poing, if at
up, the equipotentials, corresponding to different layers, statast one of the valudd/,(p) + E,], [Va(p) + E] is smaller
to overlap and form clusters, as it is shown in Fig. 2. OurthanE. Otherwise, the poinp is white. Then the energ,
main observation is that, due to switching of equipotentialds the critical energy at which the percolation over white
at intersectionsthe motion of an electron within a cluster regions switches to the percolation over black regions. In
occurs either inside the cluster or along its bounddsge  other words, if we define an auxiliary random potential,

Fig. 2. In the_ latter case, the en_velope traj_ectory consists OV(p)zmin{Vl(p)Jr E1,Va(p)+E,}, thenE; represents the
alternating pieces of equipotentials from different layers. As rcolation threshold foW/(p). Since the distribution func-

E further increases, the average size of a cluster grows arfgsns ofV;(p), Vo(p) are Gaussiart(V)=exp(—V3T?), one

so does the envelope trajectory. Finally, at sdweE, criti-  ¢an easily calculate the distribution function and the average
cal clusters merge, so that the envelope trajectories form an &

infinite equipotential, i.e., the classical percolation occurs.

Thus, the energ\E; corresponds to the lower delocalized — 19 V-E,| |V-E,

state. The upper delocalized stak®, emergies in quite a FV)=- Py T |® T ' (16)

similar way, if we first consider the enerdgy>E,>E, and

then gradually move it downwards. It is obvious from sym- e [(Ey-Ep?/2r? E,~E, [E,—E,

metry thatE1+E2:E1+ E2. <V>:El_ — + ’
Despite the fact that for delocalized statesEatE,,E, 2m Vm var 17)

the real saddle points are irrelevant, the localization proper- 5
ties of the states with energies close to eithgror E, are ~ Where®(x)=J;dx e * is the error function. It appears that
described by aingle-channehetwork model, proposed by f is symmetric with respect tQV) with very high accuracy

Chalker and Coddingtdn(see also Ref. 91 In their model (in the “worst” caseE;=E, the asymmetry at half width is
the cells of the network are closed equipotentials, while themaller than one percentThus, we can identify V) with

nodes are the saddle points separating them. It is obvious thgtl_ Note also, that an intuitive criterion that B=E, the

in our case the role of cells is played by the envelope trajec; oaq of the white and black regions are equal, leads to a
tories (like the one shown in Fig.)2 Less obvious is that a

region, where two different envelope trajectories come closgIfferent cond~|t|on, but, numerically, yields the valueskof
and nearly touch each otheacts exactly as a saddle point. VEry close to(V). One can view Eq(17) as an analog of Eq.
Namely, as energgand, thus, the degree of their overlap (1) for the case of smooth potentials in the layers and
swept within a narrow intervalA<T', the result of passing I'>t>T'I/R.. ForE;=E, the splitting of delocalized states
of an electron through this region changes from reflectiorE; ,E, is equal to 0.8. For arbitraryE,—E; it is shown in
(retaining the equipotentigto transmission(switching the Fig. 3. Note that the correlation betwedi(p) and V,(p)
equipotentigl This is illustrated in the inset in Fig. 2. The can be easily incorporated into the above calculation. Cer-
derivation of the transmission coefficient for an effectivetainly it will lead to the reduction of the splitting.
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~ even at relatively weak tunneling. Instead, the tunneling
B, E+E, leads to the formation ofwo independent networksith
r 2 16} nodes being the regions of touching of equipotentials from

different layers.

As t becomes smaller thahl/R., the above picture of
electronic states is not valid anymore. A typical crossing of
equipotentials would not cause the change of the plane for
0F the electron motion. We can present only a plausible argu-
ment about the evolution of the positions of delocalized
states in this limit. Note that, although a typical crossing is
not efficient fort<I'l/R;, the regions of touching of equi-
potentials from different planes still act as saddle points. It is
-1.6r shown in A}opendix that the corresponding conditiontds

T — t>T(I/R)*% Thus, in the domaill/R,;>t>T (I/R.)*?,
E.-F these effective saddle points would couple electronic states

ST belonging to closed equipotentials from different planes. As

a result, the delocalized states would occur at energies

(1) i i i i
FIG. 3. The energies of delocalized states are plotted as func Ec’, at which the size of a closed equipotential,

o
o
o

V43 e i :
tions of the “bare” asymmetry E,— E;) between the layers. Rc(F/E(c )43, is big enO_UQh to have-1 effeCt'Ve _SadC”e
point somewhere on its perimeter. It is obvious that
V. CONCLUSION EW<E.. Then the problem again reduces to a single-

channel network model with the cells of the network being

In conclusion, we have calculated the energies of the deelosed equipotentials, alternatingly, from the first and from
localized states in a double-layer system with a smooth unthe second layer, and the nodes being the effective saddle
correlated disorder, for a wide range of the tunneling parampoints.
eter,I'l/R.<t<I. For the case of two identical layers, these  To estimate the magnitude Efcl) note that the perimeter
energies are shown schematically in Fig. 4 as a function off critical equipotential scales with energy 4s:
tunneling strength. We have shown that for uncorrelated disg(E)~ R (I'/E)"2. The probability that two equipotentials
order the dependence Bf,E, on the tunneling parametér ~ from different layers would come close and form an effective
has a wide plateau. Note that this prediction can, in principlesaddle point with height within the intervaE( A,E+ A)
be tested experimentally onsinglesample, since, as it was can be estimated as\/T'~(I'/t)Y4(1/R.)2. Remember
shown by Hu and MacDonalflf,t can be effectively tuned that A is the energy scale of the transmission coefficient
(suppressedby applying a parallel magnetic field. It follows in Eq. (14). Then the condition to findEgl) can be
from our consideration that the description of a double-layekyritten as(E(Eél))/Rc)(A/F)~1, and it yieIdsEgl)~F(F/
system, based on a two-channel network mbduith tunnel- £)3141/R,) 8.
ing, causing the mixing of the channels, becomes inadequate |n the paper we demonstrate that when the tunnel integral
exceeds the characteristic vallFR,, the critical exponent,
v, of the localization length is the same as fer0. We also
1,2 argue that the description based on a single-channel network
model (and thusy=7/3) is applicable within the interval
T'/R.>t>T (I/R.)*3. Therefore if the doubling of estab-
0.4T — lished in Ref. 6 occurs, this may happen only for
t<T'(I/R.)*3. However, it seems more likely that the de-
scription in terms of a single-channel network model with
neighboring cells belonging to different layers applies even
at very smallt. The reason why we anticipate this is the
following. The solution of the model problem described in
Appendix shows that if two minima of the random potential
FZ/RC r ¢ in different layers are located anomalously close to each
other[y;,y, in Egs.(Al), (A2) are anomalously smd/lthen
the formation of the effective saddle point becomes possible
even at very small.tCertainly, the smallet is, the more
sparse these saddle points aret AD the localization length
-0.4T — increases in each layer @E)=E~"", and each localized
state consists of many cells of the intralayer network, sepa-
rated by saddle points. Then,tifis finite and very small, at
someE=E(02) there will be ~1 effective saddle point per
perimeter of a localized state in each layer. At this enéegy

FIG. 4. Schematic plot of the energy positions of delocalizedWell as atE=— E{?)) the states in two layers would form a
states for two identical layersEq=E,), at different values of in- New network with a much larger unit celt £(E?)). Then
terlayer coupling. the localization length would behave &t E{?) =73 with a

E
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prefactor much bigger than that for a single layer. Certainly, mgg

this scenario is only hypothetical. Vo(x,y)= T[(Y+YZ)2+X2]+V20
Note that there is a significant difference between our

picture and the one outlined by/@msen and MacDonafd. 2

2
[X2+2y,y+y3]+ Voo, (A2)

The line of argument in Ref. 6 is as follows. In the absence ~
of a disorder an electron residing initially, say, in the first

7=2mh/t. When the disorder is present, the electron driftsy, | v/, are the heights, anfd;,Q, are the curvatures. We
that the change of the layers would most probably occur aftey appears to be small. The condition that two equipotentials

an electron ftravels the distancéy=v,7=27fv,1/t  come close to each otherat0, y=0, can be expressed as
~T'I?/tR,. In our picture the possibility for an electron in

the first layer to tunnel depends on the actual topography of mQ2y? mQ2y2

the random potential in the second layer. In contrast to Ref. 5 +VlomT+V20~E. (A3)
6, in our picture the change of the layers occurs locally, at

the intersections of equipotentials with the same energy. Afphen the system of equations for the amplitudes and
the same time in the regime of strong coupling,I'l/R,, W, can be written as

that we considered, the distan@a the vicinity of an inter-

2

section, over which the change of the layers takes place, is ~ 2,02 A\ 2

~tR./T" and it is much larger thahy,. Our picture also Px m(e +Ql)/x_ ® Py v,

differs from that by Laikhtman and Menash&imilarly to 2m 2 |7 w2+02m

Ref. 6, they assume that the process of changing layers, dur-

ing the drift along the equipotential, occurs homogeneously, Q% ~5 2

but they get a different estimate for the characteristic length + mezpy_mﬂlyly vy

of travel within a given layer. Their estimat&il‘/lt, is

larger thantR./T" and, correspondingly, larger thayg. 1 inyi
Experimentally it might be hard to realize both, smooth —|E-fho|nt 2 _T_Vlo vy

disorder within each layer and the absence of correlation

between the layers. However, for our arguments to apply, it =tV,, (A4)

is sufficient that the correlation between the layers is not

absolute. In other words, it should be allowed for two equi- p2 m(w2+Q§)/ . E,y 2

potentials, corresponding to the same energy, to be displaced >m 5 X——— — 2

by more than a magnetic length. Then our picture remains m \ w*+Q; M

valid, but the correlation would lead to the shift of the per- 9

colation threshold to an energy much closer to the center of 2 ~2 2

the Landau level than in the case of uncorrelated disorder. +( mwzpy+m92y2y ¥,

This implies that the “splitting” of the delocalized states in

the regime when the coupling between equipotentials is al- 1 mﬂgyi

ready strong would still remain much smaller tHani.e., the —|E-hw|n+ 2/ 2 ~Vao ¥

plateau shown in Fig. 4 would become lower, and hence,
narrower. =t¥;. (AS5)

We will search for a solution in the following form:
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w2+92

APPENDIX
To derive the transmission coefficient for an effectiveUggrﬁuoasgtttgt]i% rluaqu(rAtﬁ)e f(ﬁr?gt;g;;;ﬁ?j)ém& we geta
saddle point, let us assume for concreteness that the oY q '
equipotentials that nearly touch each other have their origin IA
in two displaced potential minima in each lay&ig. 5 —iinylW+a(k)A(k)=tc(k)B(k), (A8)
m % 2 2
Vi(x,y) = T[(y_Y1) +x°]+ Vo

+ im95y2$ +b(k)B(k) =tc(k)A(K), (A9)
2

L X2—2y1y+y3]+V (A1)
= Y1y +yil+Vie, wherec(k) is the overlap integral
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) fd é %k é %k
c(k)= XPp| X— ———= X————|,
" w2+Q§ " w2+Q§
(A10)
and the coefficienta(k) andb(k) are defined as
mQ214k? mQ2y?
a(k)=T—(E— 5 Vi, (ALD)
mQ2l4k? mQ2y3
b(k)=————|E-—5— Vx| (A12)

It can be easily seen tha{k)=1 for 1,=Q, and the cor-
rection in the case when the two frequencies are different, i
proportional to (22— Q3)?/»*. Since the the random poten-

tial is smooth, we can neglect this correction and set

c(k)=1. The system Eq9A8), (A9) can be reduced to a
single second-order differntial equation, say, &f{K),

(2 b |
dk? \mQ%y; mQy,/ dk
+ ab—t* o dal o (A13)
mzﬂiﬂghyz inYl dk

The term with the first derivative can be eliminated by the
following substitution:

i [k a(k’)  b(k")
A(k)=ex —Ef dk’ >~ > A(k),
— mQiy; mQzy,
(A14)
after which Eq.(A13) takes the form
2 2 2
a4 |1 a b t
dk* |4 inYl mQ%Yz mzﬂiﬂg)’lh
”4k( ! + ! A=0 (A15)
2 \y1 Y2 '

It is convenient to introduce the following notations:

2 1 1 N
oy 0220,0,YY2 (a1e)
Yo Y1 Y2 Yo
QgYo [ inY% 933/0
Ep= > [ - 2 _VlO +—2
2Q7y1 203y,
mQZ 2

Using the definitions o andb, Eq. (A15) becomes

A. GRAMADA AND M. E. RAIKH

[4k? il %k
+_
Yo

t
mQSYo

€0

d?A N
ngyO 2y0

R
(A18)

Equation (A18) has the form of the Schdinger equation
with a complex “potential energy.” However, not all the
terms in the “potential energy” are relevant. This becomes
obvious if we introduce the following rescaling of the argu-
ment

1 mQZ 2\ 1/4
—I—( toYo) z. (A19)
Then Eq.(A18) takes the form
s
dz.A €0 Sg_tz 1
_2%0 T4 2. _
E n e +4z a+iza|A=0,
(A20)

2,,2

where we have introduced the dimensionless parameter
| oYo

-

This parameter can be estimated as follows. The typical
value ofyg is ~R;; the curvature}, can be found from the
condition!* mQ3R3~T'. Then we havex~ (I/R.)(I'/t)%.
But within the domain we are interested inis larger than
I'l/R.. Then we getr<(I/R.)Y*<1. This allows us to drop
the last two terms in the potential energy. It can be also seen
that the effective saddle point correspondgdg+t|<t. In-
deed, under this condition E¢A20) takes the form

d?A

7 +{22—2

which is the equation describing the scattering from the in-
verted parabolic potential. The expression for the transmition
coefficient for this potential is well knowt,

m{)
t

(A21)

a

(ggt1)
2

A

0, (A22)

ta

T(E)=

(A23)

1
2m(ggt+t
1+exr{¥

We see that the characteristic energy scale for the change of
the transmission coefficient is
)

R
Using the above estimates, the conditier€1, which guar-
antees that the region of nearly touching of two equipoten-
tials acts as a saddle point, can be rewritten as
t>T'(I/R.)*3. Note thatA decreasemith increasingt, re-
flecting the fact that the largeris, the closer the equipoten-
tials should approach each other in order to form the effec-
tive saddle point.

ta

1"3/2

A~ta?~—

i (A24)
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