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Level broadening effects in quantum kinetic equations: Hot luminescence from a quantum wire
near the optical-phonon-emission threshold
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We consider the quantum kinetic equations in a spatially homogeneous situation for cases in which only
level shift and broadening are of importance, while coherence phenomena can be neglected. In this case we can
formulate the quantum kinetic equations in a form similar to semiclassical Boltzmann rate equations. We also
consider a specific problem: Hot luminescence from a quantum wire near the threshold for optical-phonon
emission. The problem is first discussed within the framework of the Boltzmann equation. After pointing out
the failure of this description, the Boltzmann equations are generalized to a set of quantum kinetic equations,
which in turn are solved in order to describe the luminescence spgs6463-18207)07331-1

I. INTRODUCTION there are small energy scales in the problem that are nar-
rower than the quantum width of the state. A simple example
The simplest way to describe kinetic phenomena is by th@f such a case, that has one small energy scale, is that of an
Boltzmann equatiorfBE). There are, however, cases when €lectron distribution, excited by a narrow-band-width laser.
the BE cannot be used, and one has to use quantum kinetidie problem becomes more complex when another small
equationgQKE'’s) that are in the simplest case equations forénergy scale is added; for example, the electrons are excited
the one-particle Green functions. If the Keldysh technigiie 0 the close vicinity of some threshold. A problem of this
is used, the one-particle Green functions that participate ifiature will be dealt with in this paper.

the description of kinetic processes are the retarded Green N the time domain, Igvelhshift and Pfoade”i”ggggég to
function (and its complex conjugateand the “statistical”  Non-Markovian effects in the scattering processes:

Green function, which is simply the field correlator. For freeThIeSSeilf_fI?Cts are important in the case of short excitation

particles, these Green functions are diagonal in the basis
the free-particle states, and are described by the free-particgeu

energies, , and their occupation numbens . T_hese are the and broadening effects are considered, the QKE’s can be
guantltles th_at appear in the BE for th@eracting particles presented in a form similar to the BE's. We will give a
in external fields o _ general recipe for writing such equations, and will use this
The description of kinetic phenomena by QKE's insteadrecine when considering the following problem: Hot lumi-
of BE's results in two effects. The first effect is state nescence from a quantum wif®@WR) due to electrons that
mixing—due to interactions and external fields, the Greergre excited by a narrow band and noncoherent laser to the
functions are nondiagonal in the basis of the free particleslose vicinity of the threshold for optical LO-phonon emis-
states. This effect is responsible for coherence phenomension.
of which a well-known example is interband polarization  Optical and transport phenomena in QWR’s have been of
described by semiconductor Bloch equatiérfs. great interest lately. The great interest in transport
The second effect is level shift and broadening—thephenomen¥-2!is due to the possibility that a 1DEG in a
Green functions are nonzero off the energy shell, withinQWR will have the properties of a Luttinger liquid. The
some width defined by the interactions and the externaFermi-edge singularity and the possibility of stimulated
fields. Level broadening effects in QKE’s for phonons haveemissiod® have enlarged interest in the optics of QWR’s.
been studied in Refs. 7 and 8. The important role played by LO phonons in the trapping of
The effects of level broadening are of importance in twoelectroné* from three-dimensional extended states, into one-
cases. The first case is that in which level broadening allowdimensional localized states, has been reported in Ref. 25.
scattering processes that are forbidden by energy and mo- Theoretical studies of QWR’s were concentrated around
mentum conservation. An example of such a case is that aflementary excitations of a 1DE®&?’ Fermi-edge
electron-electron scattering in a two-dimensional electrorsingularity?® excitonic effect€’-3! electron-phonon scatter-
gas,(2DEG), in the presence of a quantizing magnetic fiéld. ing rates? and interactions>3 relaxation of photoexcited
If one tries to calculate the Auger transition rates responsiblearriers® calculation of envelope staté%and conductance
for anti-Stokes luminescence, that was observed in Ref. 1&f QWR'’s with self-consistent broadening effetfs.
using Fermi’'s golden rule, one encountérfunctions with
an argument equal to zero, due to singularities in the density IIl. QUANTUM KINETIC EQUATIONS
of states; see Ref. 11.
The second case in which level-broadening effects should The retarded Green function and the “statistical” Green
be considered is that of narrow energy distributions: Wherfunction which appear in the kinetic equations are defined as

In a spatially homogeneous situation, if state mixing in-
ced by coherent excitation can be neglected, and only shift
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G'(ry,00,t1;r5,05,15) onal in &, but the energy levels are broadened and shifted.
Let us first look at the time invariant caggystems under dc

=—i6(t,—t)([V(ry,00,t), V1 (rp,05,t012), (D) conditions. The level shiftA and the level broadeninig are

s defined as
G(rq,01,t1;r2,05,t5)

Im2;,(e), (8)

E_i<[\i’(rlia-lvtl)1\if‘r(r21027t2)]1>1 (2) Aa(E)ERGEL(G), FQ(G)E—Z[

where ‘if(r,a,t) are the field operators in the Heisenberg . ) .

representation. The square brackets with a fiisiug sign where?,, is the retarded self—engrgy of .partlcles in state

signify an anticommutatofcommutatoy. The upper signs | N€ column has the same meaning as in expresipn

refer to fermions, and the lower signs refer to boséhis Th(_a retarded Greerj function is an outcome of the Dyson

convention is used throughout the papde spin degrees €duation(3), that is written as

of freedomo will be suppressed from now on, and one can roy_ ~r(0) r(0) r r

think of them as included in the space coordinates. Cal€)=Ga(€)+ G, (€)2(€)Gole) )
In case of interacting particles the Green functions obeyin the representation of the states. Using definition&) we

sgr(e)

the Dyson equation obtain, from Eq.(9) (for positive frequencies
G(rytiira ty) Gu(e)=TIT (€)|e—€,—AL(€)]
=§<°)(r1,tl;r2,t2)+f dr3dr4f dtadt, Timdla(e)]e=eamAale)], (0
where
XGO(ry,tyir3,t5) 3 (3,4, ta)B(ra taila, 1), e—e,—A(e)

@ Al e A R T o2

whereG is a matrix of Green functions, arl is a matrix of (11)
self energy functioné: is the “smeared” and “shifted” principal value, and
. (0 G¥ . (3% 3
G: r s| E: a ) (4) _ _ _ Fa(e)/Zﬂ'
G G 320 O[T (€)]e—e,—Ay(€)]

[e—ex—Au(€)]*+[T ,(€)/2]

The superscript (0) indicates free-particle Green functions. (12
The advanced Green functids®=G"™* . .

In the case of free particles we can use the free-particléS
eigenstateg,(r), and the corresponding annihilation opera-
tors a,(t), to write W(r,t)=3_,4,(r)a,(t). In this case
G'O(ry,ty:r,,t,) depends only on the time difference
t,—t;, and can be Fourier transformed in time into
G'O)(r,,r,;€) (the index| stands forr, a, or s). For an
orthonormal set of states, we can defing'(”)(e) such that

the “smeared” and “shifted”§ function.

Comparing expressiofil0) with expression(6), we see
thatG' () is in fact a generalization d&'(®)(¢€), where the
level shift and level width have been introduced into the
principal value and functions. We therefore writ€®(¢€) as

a generalization of39(e), thus defining the occupation
functionsn,(€)

GS(e)=—2mi[172n,(€)]8[T o(€)| e~ ea— A (€)].
G'O(ry,ry0=2 v (r)vi(r)G%e). (5 (13)

o . . ] Expressiong10) and (13) were written for the case of
From definitions(1) and(2) we obtain(near the singulari-  positive frequencies, which will be assumed from now on. In

ties) case of negative Boson frequencies one has to multiply the
O Ple—e,)—imdle—e,) lr:)e;/ta_rclled Green function arg,+ A ,(€) in these expressions
€)= . , :
“ sgr(e){Ple—sgr(e)e,]—im e—sgne)e,]} The definitions above agree with the relation between the
(6) statistical Green function and the retarded Green function at
and thermal equilibrium,
0o —27i(1-2n,)d(e—€,) @ G5 (e)=2i[1F2n1(€e)]IMG! (€), 14
a €)= 1 1 . ™ . . . . . .
—2mi(1+2n,) [ e—sgre)e,] wheren;(e) is the equilibrium distribution functioiFermi

wheree,, is the energy of state, andP is the principal part O Bose-Einstein The smeared function obeys the normal-
function. The uppetlower) term in the column corresponds !zation
to fermions (boson$. The occupation number of state,
n,=(a'a,), is not necessarily the equilibrium occupation J de O[T (€)|e—e,— A (e)]=1, (15)
number.

In the case of interacting particles in external fields, if oneand the occupation numbers are obtained from the occupa-
neglects coherence effects, the Green functions are still diagion functions in the following manner:
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n dependent. It is important to stress that the occupation
Ne= j de O[T (€)|e—€,—Au(€)In,(€). (16  function depends on time explicitly, while the dependence of
I' and A on time is only through their dependence pn

Relations(14) — (16) can be obtained from the Lehmann Therefore in order to finagh one has to write a kinetic equa-
representation of the Green functions. These relations aréon that will include time evolution through time deriva-
valid only if the one-particle Green functions can be consid-ives. The equations for the level shift and width will include
ered as diagonal i, in other words, in the absence of their dependence on time only through the appearancg of
coherence effects. and will not include time derivatives.

As a result of definition$8) and(13), the three unknown If one uses the self-consistent Born approximation for the
functions R&', ImG', and iG® have been replaced by a self-energy functions, one finds that the equations obtained
different set of three unknown functiors;(e), A,(e),and forn,(t,e), T',(t,€), andA(t,€) could have been obtained
n,(e). easily by applying a few generalizations to the BEHiQr. In

If the system is not under dc conditions, one can define &he transfer from the BE to the QKE, the number of un-
new pair of time variables: the relative timg=t,—t,, and  knowns increases from oney; to three 6,I" andA); there-

the “center of mass” timet_12= (t;+1,)/2. Only slow pro- fore apart from the kinetic equation we require two more

cesses will be considered so that all quantities var?imith equations for the unknown functiors,(t,e) and A(t,€)

. . : that appear in the equation far,(t,e).
some time scale that is large compared to the inverse char- Here we present a recipe which allows one to go from the

acteristic energy of the particles. In such a case one can S“F’E for n,(t) to the QKE forn,(t,e), and from the decay

use the formalism given above for the Green functions, buf, 4, the Boltzmann equatiomwhich is defined belowto
with t as a parameter of the problem, in additionet¢see, g, equation forl",(t,€). An equation forA (t,e) can be

Y-

for example, Ref. P obtained from the equation foF ,(t,€) using Kramers-
For slow processes, Kronig relations.
_ 0, — 0, — — _ The BE, in a spatially homogeneous situation, can be
G(t,e)=GV(t,e)+GV(t,e)3"(1,6)G"(t,e). written as
17

Again G'(t,e) can be written as a generalization of J _ _

?(O) a( ) g . . Ena: 2 |Ma,B,y...|2[(1+na)n,8(1+ny)'"
G, ’(e), in the same manner as above, but nbws a pa By

rameter which appears in all functions. Thus expressions
(10) and (13) for G!, and G$, can be used with the three

unknown functionsl',(t,e), A (t,e), andn,(t,e) that (19
depend ont as well as ore.
The known procedure for obtaining a kinetic equation for i ; : | -
tion number of particles in state, due to interactions with

TN S—1x _ A-1
No(t.€) is to apply the operatdB,;™ —G,; to the Dyson particles in stateg, y . . ., with matrix elementM , 4 ,,

equation forG3( t ,t;;),° where the operatd,;* is equal to  Different states can also mean different particles. The right-

i0/ati—e, for electrons, ands?/dt?+ €5 for photons and hand side of the equation includ@sfunctions that are re-

phonons(we use the conventioh=1 throughout the paper  sponsible for energy conservation.

The slow variation int should be considered and then the There are many cases in which it is convenient to think of

equation should be Fourier transformed in the time differ-the collision integralS as composed of “scattering in”

ence coordinates. This procedure leads to the QKE events and ‘“scattering out” eventS=S,— S,;. The first
term on the right-hand side of Eq19) is the scattering-in

N (1l¥ng)n, - 1275(e,— €zt €, *)=S.

This equation describes the evolution in time of the occupa-

J _— < — L — term: It describes processes in which particles enter state
&—I—Ga( t,e)=—23,(t,e)iImG,(t,e¢) due to the interaction with other particles. This term can be
written asS;,=(1+n,)G,, whereg, includes all the terms
42 ImEL(t_,e)Gz(t_,e). (19) on the right-hand side of the equation that do not multiply

n,. We refer toG, as the “generation” term. The second

From now on the “bar” overt will be dropped, with the term is the scattering-out term: It describes processes in
understanding that all time variables are in fact center-ofwhich particles leave state. This term is usually written as
mass time variables. Equatioh8) for photons and phonons Sy—=n./7,, Wherer, is the scatteringut time from state
includes a factor ok/e, that multiplies the time derivative «.
on the left-hand side. Since we are interested in off-shell In the context of the generalization of the BE to a QKE, it
energies that are close to the on-shell energy, this factor cda more convenient to think of the collision integrélas
be taken to be 1. made up of “generation” and “decay” terms:

In order to obtain equations fdt,(t,e) andA (t,e) one S=G,—TI',n,, where the decay term-I"n, includes all
has to substitute an expression for the retarded self-enerdghe terms containing,. ThusI' ,= *G,+1/7, is the total
function, in terms of the one-particle Green functions, intodecay rate of particles in state It is the total decay rate,
the definitions ofl" and A, Eq. (8). These equations are in and not only the scatteringdt rate, that is related to the
fact the imaginary and the real parts of Ef7). This yields retarded self-energl. The general form for the decay rate
coupled, self-consistent equations forand A, that are also I',, as it is deduced from Eq19), is



r

a

ﬁ)’z |Ma,ﬁ,y...|2[inﬁ(11n7)' o

+(AFngn, - 12m(e,—€gt e, ). (20

In a dc situation, for the occupation numbers one obtains

n,=g,IT,. (21
In order to transform the BE into a QKE, one should
apply the following rules. To the left hand side of E49),
apply na(t)ﬁ[na(t! 6) + %] 5[Fa(t! 6) | €€y Aa(t! 6)]!
wheree is the off-shell energy of particles in staie To the
right-hand side of the equation apply the following steps.
(i) The occupation numbers for particles in stadeg . . .

are replaced with the occupation functions, that depend on

the off-shell energieg, e’ ... corresponding to the on-shell

energies €,,€5..., respectively: n,(t)—n,(t,e),
(ii) The summand under the sum over all st@@eg . . . is

multiplied by the product of the smearedl functions for
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FIG. 1. Hot luminescence from a QWR: Electrons are excited

particles in these states with the corresponding off-shell enfrom the highest valence subbaagdto the lowest conduction sub-

ergiese’,€” . .., andintegrated over the off-shell energies:

> -2
By...

de'de”- - 8[T 4(t,€")| e’ —€g
By...
—Ag(t,e")]O[T (t,€)]e"—e,—A (t,€)]X--.

(i) The energy conservatiod function of the on-shell
energiese, ,€g . . .
¢ function of their corresponding off-shell energieg’ . . . :
6(€y...)—0(e...).

(iv) Multiply the entire
5[Fa(t16)|6_ Ga_Aa(t,E)].

In order to obtain an equation fdr,(t,e), one should

right-hand side by

bande,, via photonsyv. These electrons relax to the bottom of the
band emitting LO phonons,. The hot luminescence’ is due to
recombination of electrons from the vicinity of the threshold for
phonon emissioridotted ling with holes in an impurity level-¢
(large dashed line

functions, since one can clearly see all physical processes,
and use the physical intuition that one gained from the BE in

is replaced with an energy conservation order to simplify the QKE.

I1l. LUMINESCENCE FROM A QUANTUM WIRE

We now use the formalism given in Sec. Il in order to
deal with the specific problem of hot luminescence from a

apply the first three steps of the generalization rules for thewR. The case in which electrons are excited from the high-

right-hand side of the equation to the expressionlTpr Eq.
(20).
The QKE can be written generally in the form

b 1
E (na(t,e)+§) O[T (t,€)|e—e,—A,(t,€)]

={Ga(t,€) =T o(t,€)Nn,(t,€)}
X O[T, (t,€)|e—€,—A(t,€)]. (22

The functiong,(t,€) contains all the terms on the right-hand
side of the QKE that do not multiplg(t,€). It is the gen-

est valence subband to the lowest conduction subband via
photons, and then relax via LO-phonon emisdieee Fig. ],

is considered. All other conduction and valence subbands are
neglected(in contrast to Refs. 35 and R8We consider a
situation in which electrons are excited by a narrow-band
noncoherent laser, just above the threshold for optical-
phonon emissior,= w,, and describe the hot luminescence
due to the recombination of electrons with holes in an impu-
rity level. The laser spot along the QWR is taken to be large,
and electron diffusion along the wire is neglected, so that the
excitation can be considered homogeneous along the QWR.
It is assumed that there is some mechanism due to which the

erating term—the term in the kinetic equation that is responelectrons leave the bottom of the conduction subband, so that

sible for the particle generation rate. Equati@®) shows
clearly that the particle level width ,(t,€) is in fact the total
particle decay rate. Note that due to Efj5) the integration
of Eq. (22) over € results in the disappearance of thel/2

there is no electron accumulation there, but this recombina-
tion can be neglected in the balance equations near the
threshold. The spin degree of freedom will be completely

disregarded.

factor from the left-hand side. The occupation function in the Unless specified otherwise we will assume that the elec-

time-independent case is given by
N, (€)=G, ()T ,(€). (23)

The representation of the QKE in termsrgfI’, andA is

trons are excited above the threshold, since we are mainly
interested in luminescence due to these electrons. Below the
threshold the electrons relax to the bottom of the band by
emitting acoustical phonons. The relaxation rate due to

acoustical phononss,.t, is much smaller than that due to

more convenient than the representation in terms of Greeoptical phonons, and can be neglected above the threshold.
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The QWR runs along the direction, so that the electron to 1. Due to the weak excitation the luminescence is sponta-
wave functions are localized in they plane, and free waves neous, and the occupation numbers for the luminescence
in the z direction. The wave function in the conduction band photons are also small.
can be written ag'*?¢°(r)/L*?, whereL is the wire normal- In the derivation of the BE’s, terms that are nonlinear in
ization length, and is a vector in thexy plane. The electron the electron occupation numbers will be neglected. We will
energy ise,=k?/2m,. All energies are measured from the also neglect nonequilibrium contributions to the phonon and
bottom of the conduction band. The holes in the valencédiole (both in the valence band and in the impurity lgvel
band have wave functions of the fore¥?¢"(r)/LY? and  occupation numbers.
energysg+ep,, With ep= p2/2m;,. The interaction of the electrons with the luminescence

The exc|t|ng photons are taken to be plane waves, and thiéeld is neglected in the balance equation for the electrons, in
photon frequency is'= v;=clf| (f is the photon momentum comparison with their interaction with the excitation field,
andc is the light velocity. The LO phonons are three di- due to the weakness of the excitation. In the case of cw

mensional and have a flat dispersion lay=w, . excitation the balance equation for the electrons is
The impurities are distributed randomly in the bulk. The
wave function of a hole in impurityi is of the form
pun 0=2 X M |2m8(vi— e—eq—2p)

Y(r—r;,z—z), wherer; and z; are the coordinates of the
impurity position.

In order to analyze the hot luminescence, we neglect light X[1=n(k)IN(f)
polarization effects for simplicity, and assume that the wire
and the crystal are cylindrically symmetrian assumption —2 E |Mﬁt,o 1227 5(&— € — wo)N(K), (25)

that would not fitV-grooved wires nor the assumption of

Ref. 36. Thus the wave functions of the emitted photons are Where M®€ s the matrix element for the electron-exciting-

112 photon interaction, anM®° is the matrix element of the
Yimn(FZ)= 1 eifzeime] (k1) electron—LO-phonon interaction.
fmn TR2L| Iy 1(kmnR)|? e Let us first look at the electron-exciting-photon matrix

(24) element. In this interaction one photon of wave vedtis
absorbed, and a hole of momentymand an electron of

where R is the normalizing radius antl the normalizing momentumk are created. The interaction, in second quan-
length of the crystal, and, ¢, andr are the cylindrical polar tized form, is given by
coordinatesJ,, are the Bessel functions, ang | ,R) is the
nth zero ofJ,,. The luminescence photon frequency is given ePo ~ o A ex S ot
by v —vfmn—c(f2+;< Y2 (where the prime signifies f drf dz_—V=H(r.2A r.2¥"(rz). (26
this frequency is of luminescence, and not of excitatidie °
neglect all excitonic effect@hese are treated for the case of The massn, is the bare electron mass, and the congpgris
optical absorption in one-dimensional semiconductors irthe “bare” electron momentum operat@n the direction of
Refs. 29-31 the photon polarization, assumed linear for simpligisand-

We begin by writing down BE'’s for the electrons in the wiched between the valence-band top and the conduction-
conduction band, and for the luminescence photons. It i®and bottom Bloch wave functiond?é(r,z) and ¥"(r,z)
shown why this description fails, and one has to turn toare the electron and hole field operators, respectively. The
QKE'’s. We will then employ the generalization rules in or- photon field operator is given by
der to obtain QKE’s from the BE’s, and use these QKE’s in

the analysis of the luminescence. 27c?

VVf

Aex"(r,z):Z (

12 _ o .
) elfi<r+|f2(af+a1:f), (27)

A. Semiclassical description
wheref, andf are the components &fin the xy plane, and
level. At equilibrium, when there is no excitation, all the in the z direction, respectlvelyaf is the annihilation opera-
electrons are in the valence band, and there are no phonof'%l'_ ﬁnﬂv is the normalization volume of the crystal in
[N(w,)=0], due to the low temperature. In other words, WN'C the quan';um wge is embedded. L .
there are no electrons in the conduction banfk) = 0], no In order to find M®*¢, one should sandwich interaction
holes in the valence barja(p) =01, and the impurity level (26) between the state:{n(k)_zl,n(sp)zl,Nfzol and
is fully occupied by holegn(g)=1]. In(k)=0,n(2p)=0N¢=1). This is equal to

The excitation creates electrons in the conduction band 2\ U2
and holes in the valence band. Most of the excited electrons M — epO(ZWC ) lf drf dz
relax to the bottom of the conduction band, emitting LO kP macl Vi
phonons, but a small fraction of them recombine with holes ik p)z pex hae /s it T 4ifz
in the impurity level, producing hot luminescence. By the xe P ()™ (r)el . (29
assumption of weak excitation we mean thw,), n(k),  The photon momentum is small and sa jsince it is limited
and n(p) are small. The luminescence would be evenpy the wire cross section; therefomds "=1. Integrating
weaker than the excitation, and therefores) remains close  over thez coordinates, the square of the matrix element is

We assume a low temperature and a weak excitation
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2 Since the matrix element84) and(35) are smooth func-
dtkrp- (29  tions of their arguments, and we are interested only in pro-
cesses which involve electrons that were excited close to the
In the e|ectron_|_o-ph0non interaction, one phonon Ofthreshold, we may take them_at the threshold values. The

momentumy is emitted, an electrok is annihilated, and an threshold value of vy is v=g4+(1+7)w, Where
electronk’ is created. The interaction of the electrons with =m./my,. This is the frequency that will excite electrons
the polarization created by the LO phonons is given by  from the valence band to the threshold in the conduction
A band. The threshold value §t—k’| is g,= (2Mew,) 2
TEY ~ ot ~ o The electron wave functions that appearadnlimit the
J er dz o] ¥E(r2)B(r,2)¥H(r,2), (30 spatial integration to <a, wherea is the wire width; there-

. . . fore we can estimate that(q,)|In(g,a)| for g,a<1 and
wherey is some interaction constatgee, for example, Refs.
38 andySQ and the phonon field ogierator is P 0(qg) <1/(qoa)* for goa>1. For GaAs, go=2.5¢10°

cm 1, thus for most wire widths we are in the regime of
1/2 goa>1, in which o is expected to decrease with increasing

B(r,z)=2, ) ea-rieza +a’ ). (31)  wire cross section. The constanir(q,)=a* is the effective
g |2Vpa, Frohlich constant in the one-dimensional case. According

The components off are defined in the same manner asto Ref. 32,a*~0.1 (which is of the same order as the

those off, éq is the annihilation operator, angd is the re- %I(')(x 1Forg1lll&c2h (;]anstar)t fgf at WF';ef gf fri)zsozsfectlon
duced mass per unit cell in the lattice. » while, according to Ref. 35¢™ ~0. ora

- - 2
The matrix elemenM®° can be found by sandwiching wire of cross section 30@.100 A . : :
interaction (30) between the states(n(k)=0,n(k’) We now perform the integrations which appear in Eqg.

_ _ _ N - 33). We begin with the generating teréi{e,), the free term

—1N(wg)=1| and |n(k)=1,n(k')=0N(w,)=0). Carry- . . ;

ing out the integration over the coordinates, the square of [one that does not mcluc_hz(k)] in the bala_mce equat'O@B.)

: ; for the electron occupation number. This term is physically

the matrix element is : . . .

the generation rate of electrons in the conduction band. Since
2 f<k, we can approximate e;_y~e_,. Using

f dr|¢%(r)[2e 9| S_kr g, df=v2dvdQ/c3~ v2dwvdQ;/c, wheredQ; stands for the

solid angle increment, we obtain

ep, ZZWCZU
exc |2_ e h
| k,p,fl —(moc) Vo, dr ¢°(r)¢"(r)

32
|Me'LO , 1 4maw;

Kk’, I*=—5
T Jal? v(2m,) 2

(32

where we exchangeg for the known Fralich constanta, oxe—12
using the relationy?=(pw2/4m)(2w,/me)Y% ale?) (see J (277)3|M W)|*2mo(vi—e—eg—e_1IN(f)
Ref. 39.

Substituting|M®*92 and |[M®1°|2 into Eq. (25), we can =2a|M(1) PD(V)(N(e+eg+e_1))=G(ey),
sum overp andg. Taking the normalizing volumes to infin-
ity and thus exchanging the sums with integrals, we obtain (37)

df where D (v)= v2/(2m2c3), is the photon density of states,
O=j M) 227 8(vi— €x—eq— 1) and
(277)3| (vl (vi—e—eg—er—x
dQ;
X[1—=n(k)IN(f) (N(ek+sg+s,k)>=JEN(f) (38

vg= ek+ sg+ € g

_j Z|M€_Lo(k_k’)|22775(fk_ e —wo)N(k), (B3 s the angular average dfi(f), for photons of frequency
e+ egte_ that create electrons with energy.

where We consider a narrow-band photon excitation field such
that the angular average of the occupation number is given
hat th [ f th i ber is gi
2me?p? 2 by
M= [ g gt (@9
mgyf 3
<N<v>>—l(% R LB (39)
1 4rawy’ - — )2+ Av2/4’
||\/|e-LO(k_k/)|2:z (2 )f/z O'(k—k/), (35) 14 (V Vo) Vo
me

where| is the excitation field energy densitjv, is the
and spectral width, and, is the central frequency. We are inter-
ested in a narrow-band excitation close to the threshold;
therefore Av,<w,, and the detuningthe difference be-
!y — ' e G A4 o] 07
o(k=k") f drj dr'[ ¢5(n)[* ¢%(r")] tween the central excitation frequency and the threshold fre-
e quency is small: 7,= v,— r<w,.
XKo(lk=K'|[r=r"]). (36) The integrations that appear in the expression for the de-
The zeroth-order Bessel functidfy is a result of the inte- cay rateI'(e,), the term that includes all coefficients of
gration overq, . —n(k) in the kinetic equatiori33), will now be carried out.
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equal to the generating tert@7). The second contribution to

The first contribution td" (¢, ) is that of the photons, and is f e
er dz
I'(¢,) is due to LO phonons,

Ve(r,2) Avm(r 2)TN(r 2), (45

where

!

dk
I'o(e)= J ﬁ| MeLO(q,)|227 8 ex— ek — o)

2\ 1/2
Alum(r,z): 2 (V"TC ) [Xf,m,n(r’z)étm,n

f,m,n f,m,n

(40 X mn(12)A] o] (46)

The photon contribution to the decay rate is negligibleis the field operator of the Iumingscencg photons.
compared to the phonon contribution, since radiative pro- 1€ matrix element of the interaction above between
cesses are slow compared to nonradiative processes. Thefge stategN(f,mn)=1n(e)=0,n(s)=0| and |N(f,m,n)

fore I'(¢,) can be written as =0,n(e)=1 n(s) 1) for holes in impurityi is
ré \12 / 22 12
I'(e)=T (ek)=( ) : (41) MU ()=
- €™ Wo kfmn( = m C\ mR2L2 menl\]m+1(KmnR)|

where

ikz 1€ —r. —
XJerdzé dS(r)p(r—r;,z—z)

X e T2mimegx (iernl). (47

I'.=(2a*)?Pw,. (42)

The meaning of the energy scdlg will be explained at the
end of this section. Fora*=0.023 one obtains
I'.=4 meV, thusl'.<w,=36 meV.

Below the threshold, wherd'| ,=0, the acoustical-

We now sum the matrix element squared over all impuri-
ties and average over all impurity configurations. This yields

phonon contribution td” is important. Since the latter is a 2 2
epo 2mc
smooth function near the threshold, a good approxmatlorpM 'umm 2= (
for I' is I'(€,) = 7, = const ate;< w, . MoC/ RZL?w mnlIme 1(KmnR)|?

The occupation number of the electrons that were excited 1
above the threshold is given by expressigh), whereg and X _f drif dzif drf dz 2ge(r)
I' are given by expressior(87) and (41) respectively. It is Y
clear from the expressions above thgk) depends ork

throughe only. Xp(r—r;,z—z)e 1Z7IMe gk (4 r) (48)
We now turn our attention to the kinetic equation for the
luminescence photons, Carrying out the integrations over tlzecoordinates, we ob-
5 tain
— |
SN mm =3 [MET, 276(v1 = 6 ) e oo c?
- |Mk,f,m,n| = m_C R2L2 |J R)|2
X{[1+N(f,m,n)In(e)n(e) ot vt mnlIm+1(Kmn
— 1
NG M- n(e) 1= n(s)]), @3 <3 o[ an [ ar etorpr—r -
I
which for n(g)=1 and in case of spontaneous luminescence 2
IS X e M3t (K al ) (49
d — —ikz
ZN(f,m,n) = Mlum 120 s, —e—g&)n . where (r,k)=fdz e "“*y(r,z). The second argument of
¢ ) Ek Mol “2m0(vemn = €k e)n( ) ¥, f—k, was replaced by-k because <k.
(44) Since the impurities are randomly distributed in the bulk,

MM s th trix el t for the lumi hot the average over all impurity configurations of the product of
IS the matrix €lement for the luminescence pholon-y, o pgje wave functions that appear in E49) can depend
electron interaction. The time derivative in the equation

: . ; . . only on the difference between their coordinates. Thus we
above is kept in order to clarify what is the Iumlnescencedef?/ne
source.

Let us first look at the matrix element that describes the
recombination of an electron with a hole from a specific L’(r—r’,—k)Ef dry ¢(r—ri,—kK)yg*(r'—r; k).
impurity. We will then have to sum over all impurities and
average over all impurity configurations. In this process arhe summation over impurities divided by the normalizing
photon of quantum numbefs m, andn is emitted, and an volume renders a factor of;,,,—the impurity spatial den-
electronk and a hole in impurity are destroyed. The inter- sity. The averaged matrix element squared can then be writ-
action is given by ten as



2arc?

WRZLVf,m,n|Jm+1(Km,nR)

lum
k,f,m,n

M

2
€Po
m,C

x

XJ’drfdr’¢e(r)¢>e*(r’)£(r—r’,—k)

|2nimp

Xe_im((P_‘P,)‘]:cn(Km,nr)‘]m(Km,nr,)- (50

The matrix element squared is much largerror 0 than
for other values ofm, sincer andr’ are constrained to a
small region in thexy plane(due to the electron wave func-
tions), andJ, is the only Bessel function which is finite at
r—0,Jo(r)|;_o=1. Thus the matrix element squared is pro-
portional to 6, 0. From now on the indexn is omitted with
the understanding that we are dealing only witk-0.

The matrix element squared is a smooth functiornpf
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0

FIG. 2. The behavior of¢(v') as a function of v’ for
Vo>Av, (7=3% and v,=8Aw,), where v.,=7,/(1+7) and
Avi=Av,/(1+ 7). An enlargement of its behavior for
v — v’ <} is shown in the inset.

andk, therefore these can be substituted with their threshold

values. The threshold values of , andk are7=s+w0
and k,= (2mew,) % respectively. The kinetic equation for
the luminescence photons can then be written as

J _ dk lum 2
5N<f,n>—f§|Mn (ko) |22 8(v1,0— ex—e)n( ),
(51)

where the matrix element squared is

)2

xjdrf dr’ ¢(r)®* (r')L(r—r’,—k,).
(52)

2mc?

mR2L v]J1(k,R)

€Po
meC

IME™(ko)| 2=

|2 nimpL

Substitutingn(e,) into Eq. (51), and integrating ovek,
we obtain

Y2G(vin—e)
I(vin—e)’

iNf =M™k 2( 2Me ) 53
o (f.n)=[M;"(ko)| — (53

the matrix elementto infinity, the sums ovef andn are
transformed into integrals. Performing the integration, we
obtain the final result

E(v')=Cv'D(v")&(v"), (55
where
€ 2277(:2 T ek (1
= moc) Tnimpf drj dr’ ¢®(r) % (r')
XLr—r',—Kkg) (56)

is a constant, and
1/2g(yr _8) B

ety

X(NL(L+7)(v' = )+ 4]), (57)

is essentially the product of the electron generation rate and
the electron lifetime at the corresponding energy.
Sincev'D(»') is a smooth function of’, the spectral
distribution of the luminescence is given lyv’). Let us
first consider a narrow-band excitation that does not overlap

1/221T||\/|exc(1/—)|2D(1/—)
I'(v' —e)

2mg

Wo

2mg

§v')=

Wq

The luminescence source can be characterized by th@e threshold, i.e,>Av,. In this cases(v’) is a peaked

spectral dependence &{v')dv’, the energy of the emitted
field of all spectral modes within the intervelb' per unit
length of the wire per unit time. Multiplying the generating
term of the luminescence photoftke right hand side of Eq.
(53)] by &6(v' — v¢ p) v'dv'/L and summing ovef andn, we
obtain

T2 3 MMk, 2
n f

The variablev; , in the square root can be replaced with
its threshold values + w,, due to the smoothness of this
function. Taking the normalization volumghat appears in

E(v')dv'

l/2g( Vf,n_s)
1—‘(Vf,n_s)

2mg

X

o(v' — v p)dr'.

Vf‘n_S

(59

function of »’, reproducing the shape of the excitation. It is
of a Lorentzian shape of widthv =Av,/(1+ 7), centered

atv'+ 7., wherev.=7,/(1+7) (see Fig. 2

o]

> 1/2
(1+ n)SFE)

Avl/(2m)
(v = v =)+ (Av}2)%
(59

§(V’)°<<

The rescaling ok’ compared ta follows from the obvious
relations(see Fig. 1 exc+e=v—ggandv'=e+e¢.

Only close to the threshold, wherl — v' <7, /(1+ 7),
the spectral behavior of the luminescence differs from that of
the excitation and is given bisee the inset of Fig.)2

v N
é(V’)mﬁz;w(V’ — )12 (59)
o~ C
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(') B. Quantum description

As we saw in Sec. Il A, the Boltzmann description may
fail for electrons excited to the vicinity of the threshold and
hence for luminescence photons emitted by these electrons.
Therefore, close to the threshold, the electrons and the lumi-
nescence photons have to be treated using QKE's. These
QKE's will be written by applying the generalization rules to
Egs. (33) and (51). It is assumed that the energies of the
holes, the phonons, and the excitation photons are not broad-
ened.

In the generalization to the QKE’s only those terms that
were kept in the Boltzmann description will be retained.

FIG. 3. The behavior o£(v') as a function ofv’ for Av,>7v,  Threshold values of the arguments of the matrix elements
(7=3% andAvy=87,), whereAv,=Av,/(1+ 7). will be substituted as was done in the Boltzmann description,
due to the smoothness of the matrix elements.

When the narrow-band excitation overlaps the threshold, The QKE for the electrons is
i.e., 7,<Av,, the spectral distribution of the luminescence

0 A2

is very different from that of the excitatiofsee Fig. ¥ _
OZJ | Mg v)|22775(1/f—e—sg—s,k)N(f)
(2m)*
2 — — Ay}
§(v’)oc—3/2(v’—v')1/2 when v' —p’'< , dk’ ) L )
mAv I 2 — | 5| de’alT(K e )€ — e —Ae(k’ €]
(60)
X|M&LO(q,)|227m8(e— €' — wo)n(kK,€), (62)
and
where € is the electron off-shell energy) is the electron
v, _ occupation function, anfl andA e are the electron-energy-
Ev' o (=) level width and shift, respectively.
2m(1+ )T The coefficients of—n(k,€) in Eq. (62) can be recog-
nized as the electron level width due to LO phonons,
— Ay
when V/_V,>T. (61) dk’
FLo(k,e)=f 27TJ de' ST (k' €")| e —€ev—Ae(k',€")]
If one is interested in luminescence due to electrons that X|MeLO(qy) |27 8(e— €' — wy), (63)

were excited close to buielowthe threshold, via an excita-
tion that is centeredbovethe threshold, i.e’ — v’ <0 and

1,>0, thenl'(v' —¢) in expressior(57) should be replaced
by 7-;61. In this casef(v') has the same Lorentzian form as

and the total electron width is given by

— I'(k,e)=T| g+ 1/74. (64)
Eq. (58 with the amplitude] 7, /((1+ 7)3'3)]Y2 replaced ( Lo T A
by 7,/(1+ 7). The T .
. . photon contribution to the level width was neglectasl
One can expect that the luminescence distribuior’), it \yas neglected in the Boltzmann description of the decay

derived from the BE, is not correct for frequencigsclose term).

to the thresholdv’. Luminescence of such frequencies is due  One can see that the generating term in &) is equal

to electrons with energies, near the threshold, that have a to expressior(37), the generating term of the electrons’ BE,

large widthI'(e,) [see Eq(41)], while the BE assumes that with the on-shell energy, replaced by the off-shell energy

the width of the states is small compared to other energyin the exciting photon occupation number

scales of the problem. In our case one of these energy scales

is €,—w,. Equating the width with this energy scale, exe— (2 —

ex—w,=I'(¢), one finds an additional energy scale of the G(k,€)=2m|M=(»)|*D(v)(N(e+2gt+e_y)). (65

problem(and a critical decay ratethat is given byl'; that

has been defined before Ed2). The occupation function(k, €) is found by substituting;
Whene— w,=<T'¢, we havel'(€,) = e,— w,, and the as-  andT into Eq.(23). The generating terrg(k, ¢) depends on

sumption of the BE breaks down. One would therefore exk throughe _ = 7e, only; thereforeG(k, €) = G( e, €). It fol-

pect that fore,—w,=<I'; in the description of the excited |ows from Eq.(63) thatT is independent ok (and so is the

electrons, and fow’ — v’ <T; in the description of the hot level shif). Thereforen(k,e)=n(e,e€).

luminescence, the results predicted by the Boltzmann equa- Equation(63) is a self-consistent equation for the level

tion would fail. We will learn from the QKE's that in fact the width. Integrating the right-hand side of the equation, we

situation is more complicated. find that
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T'ro(e) low the threshold as well. Whew,—e>1", the electron
width due to optical phonons decays like- .|~ much
faster than the decay above the thresh@lee Fig. 4 The
contribution of the acoustic phonons to the electron width
below the thresholdr,!, will be negligible compared to
o for we—e<(Tymad? /2. Since Tyre<l and
I'.7,>1, the right-hand side of the inequality above is much
smaller thanl’., and much larger thah, [see the crossing
point of ' o(€) and 7. in Fig. 4].

- - - = I The QKE that is obtained by applying the generalization
T _1’,0 F :Fc €T We rules to the BE for the luminescence photons, &), is

FIG. 4. The behavior of the electron level width due to optical i
phonons, at the vicinity of the threshold for LO-phonon emission, gt
when the electron level width at the bottom of the subband is con-
sidered. =8l y(f,n,v")|v' —vin—Av(f,n,v")]

{[%"‘N(f:n,V/)]5[7(f:an')|V'_ Vf,n_AV(frniV,)]}

dk
. szj de ST (e)|e— ex—Ae()]IMEM(ky) |2

T'io(e)=a* wg’Z[ €= wo—Ae(e—wo) +5T (€~ wo)

X2mw8(v' —e—¢€)n(ey,€), (69
i -2 where v’ is the photon off-shell energy\l is the photon
+e-wo—Ae(e—wo) 5T (e~ o) occupation function, and’ and Av are the photon energy

level width and shift, respectively. All the photon functions
(66)  are written form=0.
When e—w,<w, the arguments of '(e—w,) and By applying the generalization rules to the right-hand side
Ae(e—w,) are close to the bottom of the band. In this case®f the full BE, Eq.(43), one can find the photon level width
the .Ievel shift can be neglected since it is just a small renor- dk
malization. The level width close to the bottom of the band i /)= - f _f de S[T(€)|e—ex—Ae(e)]
I',, is due to scattering with acoustic phonons and due to 2
thermal recombination. The latter contributionltg can be ,
neglected, while the acoustic-phonon contribugtion can be X|M|#m(k°)|22775(y —eme)n(ece). (70
considered as a constafthough not the same as the width Note thaty<0 corresponds to photon generation. It is evi-

due to acoustic phonons at the thresholWe assume that dent from expressiofi70) that y does not depend ofy and
I', is small compared to all other energy scales of the probtherefore neither does v.

lem. Thus, close to the threshold, Using Eq.(70), Eq. (69) can be written as
i -1/2 Jd .
L=t ol ot 5Ty AN )T 0,0 = 10— Av(n, ') ]}
~1/2 =—y(n, ") y(n,v")|v' — v n—Av(n,v")]. (71
+le—wo—=T ] (67) . . . .
2 The right-hand side of Eq(71) is the photon-generating

term, the term from which the luminescence spectral distri-
The behavior of’| o(€) whene is close tow, is shown in  bution will be obtained.

Fig. 4. As in the classical case, the luminescence source can be
From expressioli67), we see that above the threshold for characterized by the spectral dependenc&(f')d»’, that
e—w,>T,/2,T(€) can be written as is obtained by multiplying the right-hand side of E@1) by

v'dv’'/L and summing ovef andn
3

w, 1/2 3 1/2 ,
F(E)ero(E)zza*wo<e_wo) 2(6_(1)0) . (68 E(v’)dv’=—VT; Z y(n,v")

Comparing expressiof68) to expression(41), it is evident XL y(n,v")|[v' —vi = Av(n,v)]dy'. (72
that above the thresholﬁ(e) Is equal toI'(e,) when the The main contribution td&E(v') comes fromf andn, such
on-shell energye, is replaced by the off-shell energy. that v, . is close tov’
Sincel’, is the smallest energy scale in the problem, expres- Iti " ; - "o

. ) ti nvenient to writey(n in the form
sion (68) can be used for the electron level width above the S convenient fo ey(n,»’) in the fo
threshold.

Contrary to the Boltzmann description, the electron—LO- y(n,v')=—

phonon scattering contributes to the electron level width be- wR?|J1(k,R)|?

&v'), (73
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where(C is given by Eq.(56), and

dk
é)= [ 5= de or (el - aee

X2mwo(v' —e—e)n(€,€). (74)

When the electrons’ energy is taken to be on shell—that is,

when the electron-smearétfunction is reduced to a singu-
lar § function—¢(v') is reduced to expressidb7). In writ-

MICHAL ROKNI AND Y. LEVINSON

2mg
b =2

Wo

Xf dEk(

Av, 27
[(v' —e+ necteg)— v0]2+Av§/4 .

1/22,”.|M6XC(V_)|2D(V_)I (%3
I'(v'—¢) v
I'(v'—¢)27w )

(v —e—e)?+T(v' —¢)?4

(77

The region of validity of the BE is evident from E{/7).

ing y in the form (73), the normalization volume has been In order to obtain the result of the BE, EG7), one has to

separated from the rest of the function—that is, independeriéplace the first Lorentzian with & function. This can be
of the indexn—and can therefore be taken out of the sum-done only when its width is smaller than that of the second

mation inE(v").

Lorentzian, i.e.I'(v' —&)<<Av,/ 5. It follows from this in-

Taking the normalization volume to infinity the sums over €quality that the Boltzmann description of the luminescence

f andn are transformed into integrals. From EG3) it is
evident thaty|g_...—0. This is due to the fact that the pho-
tons are emitted into an “infinite” space, while their inter-

spectra is correct only far from the threshold, when
v' — y'>n2r2m ve=v.. The quantum intervab, differs
from the naive estimat€, (see the discussion at the end of

action with the electrons is confined to the finite volume ofSec. Il A): It is larger for ‘“narrow”-band excitation

the wire. In this casey and Av are negligible compared to
the other widths, and the smeared phot®runction that
appears in the expression f&(»’) becomes a singulad
function, giving

Kk dk
2

o df o
e =cre) [ 5| S s

=Cv'D(v")&('). (75

Sincev'D(v’') is a smooth function it is clear at this point
that in order to understand the dependenc&@f’) on v’,
the behavior of(»') should be analyzed.

Performing the integration overin Eq. (74), and substi-
tuting the expression we obtained fiofe, ,€), we obtain

27|M®(v)|?D(v)
I'(v'—¢)

E(v')=(2m)Y?

1/2

°°dEk
Xf — 0T (v —¢&)|v' —e—¢€)

X(N(v' —e+erteg)). (76)

Since e,— w,<w,, We substitutew, for ¢, in the one-

dimensional density of states. This integral contains in fac

two Lorentzians. The first is of widtl'(»' —¢): The elec-
tron level width at energg=»'—¢. The second Lorentzian
is of width Av,/#%: A width that is proportional to the spec-

(Avy,<T;), and smaller for “wide”-band excitation
(Av,>T ).

For an excitation that is mostly of frequencies above
v+ v¢, the spectral dependence of the energy of the emitted
photons will behave according to the predictions of the BE
(see Figs. 2 and)3 However, as long as the excitation is
above the threshold, very close to the threshgld’) will
increase linearly withv’, and not as a square root; see Eq.
(59).

Non-Boltzmann behavior is obtained whdn(v'—¢)
>Av,/np—that is, whenv'—v’'<y.—and the second
Lorentzian can be treated asdafunction. In this case one

obtains

_n
2m(1+ 7)?

E(v')ex

7 rs
4(1+ 7;)2 v —v'

(78)

Here we bring two specific examples of an extreme non-
Boltzmann behavior o(v'). In both examples the excita-
tion is centered within the quantum interval, i.@,<uv,,
and “narrow” band, i.e.,Av,<I'.. Due to the latter in-
equalityv.>T..

In the first case the detuning is large,>T; therefore
the energy width of an electron excited by the central exci-
jation frequencye,= w,+ vo/(1+ )—that is, of the order
of (I'3/v4)*2—is small compared to its distance from the
threshold. This is true for most of the electrons. In such a
case the electron states are “well defined,” but the predic-

tral width of the exciting photon source. Since the excitationtion of the BE for the electron distribution is wrong, since its
is such thate, is close tow,, and all the energy scales that Width Av,/(1+ %) is much smaller than the width of the

can characterize the level width are much smaller thagn
the integrand goes to zero wheR approaches zero from

states. As a result, it follows from E78) that the lumines-
cence spectra is symmetric and centered at the classical po-

above. Thus the lower boundary of the integral can be takesition v’ + 7., with v, ="v,/(1+ ), but its width is given
to minus infinity. As a result the spectral distribution of the by the quantum-mechanical width of the electron stésee

luminescence is given by the function

Fig. 5,



56 LEVEL BROADENING EFFECTS IN QUANTUM KINETIC ... 3963

(') &) (V)
0 v -
Av),
R /ol
0 i}:’ e 0 I:c ! Y
FIG. 5. The behavior of¢(v') as a function ofv’ for FIG. 6. The behavior ofé(v') as a function ofv’ for

ve>V>T>Avy (7=3,7,=15Av,, and T.=5Av,), where  p>T>7, Av, (7=3,7,=2Av,, andl.=15Ap,).
vi=v,/(1+7) and Av.= (T3 V)3 (1+ ). An enlargement

of its behavior fory’ — v’ <(7%4)T'3v2 is shown in the inset. QKE obtained by employing this recipe is the same as that
. 12 obtained by the Keldysh-Green function technique in the
, 7 [ I'; self-consistent Born approximation. The advantage of this

Ave=17 Nogl(1t 7] method for writing the QKE is that it provides a physical

understanding of the terms in the QKE, and it allows one to

In the second case the detuning is smay}<I, and the neglect those terms that were negligible in the Boltzmann
electrons are excited to “badly defined” states, since thedescription. This is due to the fact that the equations are
broadening of these states is larger than their distance fronyritten for quantities that are similar to the quantities de-
the threshold. As a result the luminescence spectral distribiscribed by the Boltzmann equation.
tion differs greatly from that predicted by the BE. One finds  Spatially homogeneous situations are realized in many
from Eq. (78) that (see Fig. & optical experiments in which the samples are thin and only
weakly absorbing. In this case it can be assumed that the
incident optical fields are not attenuated within the sample,
and that the density of excited carriers is homogeneous, and
so is the luminescence source.
and We considered the specific example of hot luminescence

from a QWR. The recipe described above was used in order

7  when v.>v' —p'ST to generalize the set of BE’s that describe the problem to a

2m(1+ )% (v —v')? ¢ ¢ set of QKE’s. Solving these equations, we were able to de-
scribe the luminescence spectral distribution.

In conclusion, let us note that the hole dispersion plays an \ye have shown that there is a domain of luminescence
ess_ential role in determining_ the quantum behavior Of thﬁfrequencies that correspond to a domain of photoexcited
luminescence spectra. The width of the second Lorentzian igjeciron energies, for which the quantum description of the
Eq. (77), Av,/7, is not equal to the width of the classical | ninescence spectral distribution leads to a different behav-
luminescence linedvo/(1+7), and the integral is not @ i, than that given by the Boltzmann description. This quan-
simple convolunor_l of the classical luminescence profile W|th,[um domain could not be easily guessed from level width
té‘qe (s7p{e)cttr:zglt ;g?glggtcr)fo?en ;;izt:g]os)tﬁae' Soeréincgrl]_osriittm@onsiderations. Two other nontrivial conclusions were ob-
zian does not depend on the integration variable, and the firé m.e.d.' The first is the role played by the hole mass in '.[he
Lorentzian is integrated to 1, unexpectedly restoring the B eflr!ltloq of the quantum domam._Wher_1 the hole dispersion

relation is flat the quantum domain shrinks to zero, and the

result. I~ )
The luminescence due to electrons that were exdied 'esults of the Boltzmann description are retrieved. The sec-

low the threshold é<w,) by an excitation centeredbove ond nontrivial conclusion is that there is an energy domain
the threshold T,>0) is not obtained by the simple ex- below the threshold for LO-phonon emission, in which the

29 . . LO-phonon contribution to the electron level width is domi-
change ofl' o by 7., as in the classical case. As long as nant

v — ' <(T o720 %I ¢/2, one should tak& =T from ex-
pression(67) since ' o(v’ —s)>7-;cl; therefore, although
the electrons are below the threshold, it is the optical-phonon
contribution to the electron width that is dominant.

2 _ _
Ev')x F3(V,_Vl) when v' — v’ <,
7] s

&(v')e
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