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Level broadening effects in quantum kinetic equations: Hot luminescence from a quantum wire
near the optical-phonon-emission threshold

Michal Rokni and Y. Levinson
Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 12 February 1997!

We consider the quantum kinetic equations in a spatially homogeneous situation for cases in which only
level shift and broadening are of importance, while coherence phenomena can be neglected. In this case we can
formulate the quantum kinetic equations in a form similar to semiclassical Boltzmann rate equations. We also
consider a specific problem: Hot luminescence from a quantum wire near the threshold for optical-phonon
emission. The problem is first discussed within the framework of the Boltzmann equation. After pointing out
the failure of this description, the Boltzmann equations are generalized to a set of quantum kinetic equations,
which in turn are solved in order to describe the luminescence spectra.@S0163-1829~97!07331-1#
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I. INTRODUCTION

The simplest way to describe kinetic phenomena is by
Boltzmann equation~BE!. There are, however, cases wh
the BE cannot be used, and one has to use quantum ki
equations~QKE’s! that are in the simplest case equations
the one-particle Green functions. If the Keldysh technique1–3

is used, the one-particle Green functions that participate
the description of kinetic processes are the retarded G
function ~and its complex conjugate!, and the ‘‘statistical’’
Green function, which is simply the field correlator. For fr
particles, these Green functions are diagonal in the bas
the free-particle states, and are described by the free-par
energiesea , and their occupation numbersna . These are the
quantities that appear in the BE for theinteractingparticles
in external fields.

The description of kinetic phenomena by QKE’s inste
of BE’s results in two effects. The first effect is sta
mixing—due to interactions and external fields, the Gre
functions are nondiagonal in the basis of the free part
states. This effect is responsible for coherence phenom
of which a well-known example is interband polarizatio
described by semiconductor Bloch equations.4–6

The second effect is level shift and broadening—
Green functions are nonzero off the energy shell, wit
some width defined by the interactions and the exter
fields. Level broadening effects in QKE’s for phonons ha
been studied in Refs. 7 and 8.

The effects of level broadening are of importance in t
cases. The first case is that in which level broadening allo
scattering processes that are forbidden by energy and
mentum conservation. An example of such a case is tha
electron-electron scattering in a two-dimensional elect
gas,~2DEG!, in the presence of a quantizing magnetic fiel9

If one tries to calculate the Auger transition rates respons
for anti-Stokes luminescence, that was observed in Ref.
using Fermi’s golden rule, one encountersd functions with
an argument equal to zero, due to singularities in the den
of states; see Ref. 11.

The second case in which level-broadening effects sho
be considered is that of narrow energy distributions: Wh
560163-1829/97/56~7!/3952~13!/$10.00
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there are small energy scales in the problem that are
rower than the quantum width of the state. A simple exam
of such a case, that has one small energy scale, is that o
electron distribution, excited by a narrow-band-width las
The problem becomes more complex when another sm
energy scale is added; for example, the electrons are exc
to the close vicinity of some threshold. A problem of th
nature will be dealt with in this paper.

In the time domain, level shift and broadening lead
non-Markovian effects in the scattering processes.12,13,6

These effects are important in the case of short excita
pulses.14–17

In a spatially homogeneous situation, if state mixing
duced by coherent excitation can be neglected, and only s
and broadening effects are considered, the QKE’s can
presented in a form similar to the BE’s. We will give
general recipe for writing such equations, and will use t
recipe when considering the following problem: Hot lum
nescence from a quantum wire~QWR! due to electrons tha
are excited by a narrow band and noncoherent laser to
close vicinity of the threshold for optical LO-phonon emi
sion.

Optical and transport phenomena in QWR’s have been
great interest lately. The great interest in transp
phenomena18–21 is due to the possibility that a 1DEG in
QWR will have the properties of a Luttinger liquid. Th
Fermi-edge singularity22 and the possibility of stimulated
emission23 have enlarged interest in the optics of QWR
The important role played by LO phonons in the trapping
electrons24 from three-dimensional extended states, into o
dimensional localized states, has been reported in Ref. 2

Theoretical studies of QWR’s were concentrated arou
elementary excitations of a 1DEG,26,27 Fermi-edge
singularity,28 excitonic effects,29–31 electron-phonon scatter
ing rates32 and interactions,33,34 relaxation of photoexcited
carriers,35 calculation of envelope states,36 and conductance
of QWR’s with self-consistent broadening effects.37

II. QUANTUM KINETIC EQUATIONS

The retarded Green function and the ‘‘statistical’’ Gre
function which appear in the kinetic equations are defined
3952 © 1997 The American Physical Society
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Gr~r1 ,s1 ,t1 ;r2 ,s2 ,t2!

[2 iu~ t12t2!^@Ĉ~r1 ,s1 ,t1!,Ĉ†~r2 ,s2 ,t2!#6&, ~1!

Gs~r1 ,s1 ,t1 ;r2 ,s2 ,t2!

[2 i ^@Ĉ~r1 ,s1 ,t1!,Ĉ†~r2 ,s2 ,t2!#7&, ~2!

where Ĉ(r ,s,t) are the field operators in the Heisenbe
representation. The square brackets with a plus~minus! sign
signify an anticommutator~commutator!. The upper signs
refer to fermions, and the lower signs refer to bosons~this
convention is used throughout the paper!. The spin degrees
of freedoms will be suppressed from now on, and one c
think of them as included in the space coordinates.

In case of interacting particles the Green functions ob
the Dyson equation

G̃~r1 ,t1 ;r2 ,t2!

5G̃~0!~r1 ,t1 ;r2 ,t2!1E dr3dr4E dt3dt4

3G̃~0!~r1 ,t1 ;r3 ,t3!S̃~r3 ,t3 ;r4 ,t4!G̃~r4 ,t4 ;r2 ,t2!,

~3!

whereG̃ is a matrix of Green functions, andS̃ is a matrix of
self energy functions:2

G̃5S 0 Ga

Gr GsD , S̃5S Ss S r

Sa 0 D . ~4!

The superscript (0) indicates free-particle Green functio
The advanced Green functionGa5Gr* .

In the case of free particles we can use the free-part
eigenstatesca(r ), and the corresponding annihilation oper
tors âa(t), to write Ĉ(r ,t)5(aca(r )âa(t). In this case
Gl (0)(r1 ,t1 ;r2 ,t2) depends only on the time differenc
t22t1, and can be Fourier transformed in time in
Gl (0)(r1 ,r2 ;e) ~the index l stands forr , a, or s). For an
orthonormal set of statesa, we can defineGa

l (0)(e) such that

Gl ~0!~r1 ,r2 ;e!5(
a

ca~r1!ca* ~r2!Ga
l ~0!~e !. ~5!

From definitions~1! and~2! we obtain~near the singulari-
ties!

Ga
r ~0!~e !5F P~e2ea!2 ipd~e2ea!

sgn~e!$P@e2sgn~e!ea#2 ipd@e2sgn~e!ea#%
G ,

~6!

and

Ga
s~0!~e !5F 22p i ~122na!d~e2ea!

22p i ~112na!d@e2sgn~e!ea#
G , ~7!

whereea is the energy of statea, andP is the principal part
function. The upper~lower! term in the column correspond
to fermions ~bosons!. The occupation number of statea,
na5^âa

† âa&, is not necessarily the equilibrium occupatio
number.

In the case of interacting particles in external fields, if o
neglects coherence effects, the Green functions are still d
y

s.

le
-

e
g-

onal in a, but the energy levels are broadened and shift
Let us first look at the time invariant case~systems under dc
conditions!. The level shiftD and the level broadeningG are
defined as

Da~e![ReSa
r ~e!, Ga~e![22F 1

sgn~e!
G ImSa

r ~e!, ~8!

whereSa
r is the retarded self-energy of particles in statea.

The column has the same meaning as in expression~6!.
The retarded Green function is an outcome of the Dys

equation~3!, that is written as

Ga
r ~e!5Ga

r ~0!~e !1Ga
r ~0!~e !Sa

r ~e!Ga
r ~e! ~9!

in the representation of thea states. Using definitions~8! we
obtain, from Eq.~9! ~for positive frequencies!,

Ga
r ~e!5P@Ga~e!ue2ea2Da~e!#

2 ipd@Ga~e!ue2ea2Da~e!#, ~10!

where

P@Ga~e!ue2ea2Da~e!#5
e2ea2Da~e!

@e2ea2Da~e!#21@Ga~e!/2#2
,

~11!

is the ‘‘smeared’’ and ‘‘shifted’’ principal value, and

d@Ga~e!ue2ea2Da~e!#5
Ga~e!/2p

@e2ea2Da~e!#21@Ga~e!/2#2

~12!

is the ‘‘smeared’’ and ‘‘shifted’’d function.
Comparing expression~10! with expression~6!, we see

that Ga
r (e) is in fact a generalization ofGa

r (0)(e), where the
level shift and level width have been introduced into t
principal value andd functions. We therefore writeGa

s (e) as
a generalization ofGa

s(0)(e), thus defining the occupation
functionsna(e)

Ga
s ~e!522p i @172na~e!#d@Ga~e!ue2ea2Da~e!#.

~13!

Expressions~10! and ~13! were written for the case o
positive frequencies, which will be assumed from now on.
case of negative Boson frequencies one has to multiply
retarded Green function andea1Da(e) in these expression
by 21.

The definitions above agree with the relation between
statistical Green function and the retarded Green functio
thermal equilibrium,

Ga
s ~e!52i @172nT~e!#ImGa

r ~e!, ~14!

wherenT(e) is the equilibrium distribution function~Fermi
or Bose-Einstein!. The smearedd function obeys the normal
ization

E de d@Ga~e!ue2ea2Da~e!#51, ~15!

and the occupation numbers are obtained from the occu
tion functions in the following manner:
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na5E de d@Ga~e!ue2ea2Da~e!#na~e!. ~16!

Relations~14! – ~16! can be obtained from the Lehman
representation of the Green functions. These relations
valid only if the one-particle Green functions can be cons
ered as diagonal ina, in other words, in the absence o
coherence effects.

As a result of definitions~8! and~13!, the three unknown
functions ReGr , ImGr , and iGs have been replaced by
different set of three unknown functions:Ga(e), Da(e), and
na(e).

If the system is not under dc conditions, one can defin
new pair of time variables: the relative timet125t12t2, and
the ‘‘center of mass’’ timet̄ 125(t11t2)/2. Only slow pro-
cesses will be considered so that all quantities vary int̄ with
some time scale that is large compared to the inverse c
acteristic energy of the particles. In such a case one can
use the formalism given above for the Green functions,
with t̄ as a parameter of the problem, in addition toe ~see,
for example, Ref. 2!.

For slow processes,

Ga
r ~ t̄ ,e!5Ga

r ~0!~ t̄ ,e!1Ga
r ~0!~ t̄ ,e!Sa

r ~ t̄ ,e!Ga
r ~ t̄ ,e!.

~17!

Again Ga
r ( t̄ ,e) can be written as a generalization

Ga
r (0)(e), in the same manner as above, but nowt̄ is a pa-

rameter which appears in all functions. Thus expressi
~10! and ~13! for Ga

r and Ga
s can be used with the thre

unknown functionsGa( t̄ ,e), Da( t̄ ,e), and na( t̄ ,e) that
depend ont̄ as well as one.

The known procedure for obtaining a kinetic equation
na( t̄ ,e) is to apply the operatorĜa2

21* 2Ĝa1
21 to the Dyson

equation forGa
s ( t̄ ,t12),

3 where the operatorĜa i
21 is equal to

i ]/]t i2ea for electrons, and]2/]t i
21ea

2 for photons and
phonons~we use the convention\51 throughout the paper!.
The slow variation in t̄ should be considered and then t
equation should be Fourier transformed in the time diff
ence coordinates. This procedure leads to the QKE

]

] t̄
Ga

s ~ t̄ ,e!522Sa
s ~ t̄ ,e!ImGa

r ~ t̄ ,e!

12 ImSa
r ~ t̄ ,e!Ga

s ~ t̄ ,e!. ~18!

From now on the ‘‘bar’’ overt will be dropped, with the
understanding that all time variables are in fact center
mass time variables. Equation~18! for photons and phonon
includes a factor ofe/ea that multiplies the time derivative
on the left-hand side. Since we are interested in off-sh
energies that are close to the on-shell energy, this factor
be taken to be 1.

In order to obtain equations forGa(t,e) andDa(t,e) one
has to substitute an expression for the retarded self-en
function, in terms of the one-particle Green functions, in
the definitions ofG and D, Eq. ~8!. These equations are i
fact the imaginary and the real parts of Eq.~17!. This yields
coupled, self-consistent equations forG andD, that are also
re
-

a

r-
till
t

s

r

-

f-

ll
an

gy

n dependent. It is important to stress that the occupa
function depends on time explicitly, while the dependence
G and D on time is only through their dependence onn.
Therefore in order to findn one has to write a kinetic equa
tion that will include time evolution through time deriva
tives. The equations for the level shift and width will includ
their dependence on time only through the appearance on,
and will not include time derivatives.

If one uses the self-consistent Born approximation for
self-energy functions, one finds that the equations obtai
for na(t,e), Ga(t,e), andDa(t,e) could have been obtaine
easily by applying a few generalizations to the BE forna . In
the transfer from the BE to the QKE, the number of u
knowns increases from one (n), to three (n,G andD); there-
fore apart from the kinetic equation we require two mo
equations for the unknown functionsGa(t,e) and Da(t,e)
that appear in the equation forna(t,e).

Here we present a recipe which allows one to go from
BE for na(t) to the QKE forna(t,e), and from the decay
term in the Boltzmann equation~which is defined below! to
an equation forGa(t,e). An equation forDa(t,e) can be
obtained from the equation forGa(t,e) using Kramers-
Kronig relations.

The BE, in a spatially homogeneous situation, can
written as

]

]t
na5 (

b,g . . .
uMa,b,g . . . u2@~17na!nb~17ng!•••

2na~17nb!ng•••#2pd~ea2eb1eg••• ![S.

~19!

This equation describes the evolution in time of the occu
tion number of particles in statea, due to interactions with
particles in statesb,g . . . , with matrix elementsMa,b,g . . . .
Different states can also mean different particles. The rig
hand side of the equation includesd functions that are re-
sponsible for energy conservation.

There are many cases in which it is convenient to think
the collision integralS as composed of ‘‘scattering in’
events and ‘‘scattering out’’ events:S5Sin2Sout. The first
term on the right-hand side of Eq.~19! is the scattering-in
term: It describes processes in which particles enter staa
due to the interaction with other particles. This term can
written asSin5(17na)Ga , whereGa includes all the terms
on the right-hand side of the equation that do not multip
na . We refer toGa as the ‘‘generation’’ term. The secon
term is the scattering-out term: It describes processes
which particles leave statea. This term is usually written as
Sout5na /ta , whereta is the scattering-out time from state
a.

In the context of the generalization of the BE to a QKE,
is more convenient to think of the collision integralS as
made up of ‘‘generation’’ and ‘‘decay’’ terms
S5Ga2Gana , where the decay term2Gana includes all
the terms containingna . ThusGa56Ga11/ta is the total
decay rate of particles in statea. It is the total decay rate,
and not only the scattering-out rate, that is related to the
retarded self-energy.12 The general form for the decay rat
Ga , as it is deduced from Eq.~19!, is
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Ga5 (
b,g . . .

uMa,b,g . . . u2@6nb~17ng!•••

1~17nb!ng•••#2pd~ea2eb1eg••• !. ~20!

In a dc situation, for the occupation numbers one obtain

na5Ga /Ga . ~21!

In order to transform the BE into a QKE, one shou
apply the following rules. To the left hand side of Eq.~19!,

apply na(t)→@na(t,e)7 1
2 #d@Ga(t,e)ue2ea2Da(t,e)#,

wheree is the off-shell energy of particles in statea. To the
right-hand side of the equation apply the following steps

~i! The occupation numbers for particles in statesa,b . . .
are replaced with the occupation functions, that depend
the off-shell energiese,e8 . . . corresponding to the on-she
energies ea ,eb . . . , respectively: na(t)→na(t,e),
nb(t)→nb(t,e8) . . . .

~ii ! The summand under the sum over all statesb,g . . . is
multiplied by the product of the smearedd functions for
particles in these states with the corresponding off-shell
ergiese8,e9 . . . , andintegrated over the off-shell energies

(
b,g . . .

→ (
b,g . . .

E de8de9•••d@Gb~ t,e8!ue82eb

2Db~ t,e8!#d@Gg~ t,e9!ue92eg2Dg~ t,e9!#3•••.

~iii ! The energy conservationd function of the on-shell
energiesea ,eb . . . is replaced with an energy conservati
d function of their corresponding off-shell energiese,e8 . . . :
d(ea . . . )→d(e . . . ).

~iv! Multiply the entire right-hand side by
d@Ga(t,e)ue2ea2Da(t,e)#.

In order to obtain an equation forGa(t,e), one should
apply the first three steps of the generalization rules for
right-hand side of the equation to the expression forGa , Eq.
~20!.

The QKE can be written generally in the form

]

]tH S na~ t,e!7
1

2D d@Ga~ t,e!ue2ea2Da~ t,e!#J
5$Ga~ t,e!2Ga~ t,e!na~ t,e!%

3d@Ga~ t,e!ue2ea2Da~ t,e!#. ~22!

The functionGa(t,e) contains all the terms on the right-han
side of the QKE that do not multiplyna(t,e). It is the gen-
erating term—the term in the kinetic equation that is resp
sible for the particle generation rate. Equation~22! shows
clearly that the particle level widthGa(t,e) is in fact the total
particle decay rate. Note that due to Eq.~15! the integration
of Eq. ~22! over e results in the disappearance of the71/2
factor from the left-hand side. The occupation function in t
time-independent case is given by

na~e!5Ga~e!/Ga~e!. ~23!

The representation of the QKE in terms ofn, G, andD is
more convenient than the representation in terms of Gr
n

n-

e

-

e

n

functions, since one can clearly see all physical proces
and use the physical intuition that one gained from the BE
order to simplify the QKE.

III. LUMINESCENCE FROM A QUANTUM WIRE

We now use the formalism given in Sec. II in order
deal with the specific problem of hot luminescence from
QWR. The case in which electrons are excited from the hi
est valence subband to the lowest conduction subband
photons, and then relax via LO-phonon emission~see Fig. 1!,
is considered. All other conduction and valence subbands
neglected~in contrast to Refs. 35 and 28!. We consider a
situation in which electrons are excited by a narrow-ba
noncoherent laser, just above the threshold for optic
phonon emissionek5vo , and describe the hot luminescen
due to the recombination of electrons with holes in an imp
rity level. The laser spot along the QWR is taken to be lar
and electron diffusion along the wire is neglected, so that
excitation can be considered homogeneous along the Q
It is assumed that there is some mechanism due to which
electrons leave the bottom of the conduction subband, so
there is no electron accumulation there, but this recomb
tion can be neglected in the balance equations near
threshold. The spin degree of freedom will be complet
disregarded.

Unless specified otherwise we will assume that the e
trons are excited above the threshold, since we are ma
interested in luminescence due to these electrons. Below
threshold the electrons relax to the bottom of the band
emitting acoustical phonons. The relaxation rate due
acoustical phonons,tac

21 , is much smaller than that due t
optical phonons, and can be neglected above the thresh

FIG. 1. Hot luminescence from a QWR: Electrons are exci
from the highest valence subband«k to the lowest conduction sub
bandek , via photonsn. These electrons relax to the bottom of th
band emitting LO phononsvo . The hot luminescencen8 is due to
recombination of electrons from the vicinity of the threshold f
phonon emission~dotted line! with holes in an impurity level2«
~large dashed line!.



n
s
nd

e
c

t

i-

he

e

gh
ir

of
ar

en

of
i

e
t
t
r-
in

tio
e
no
s

an
o
O
le
he

en

nta-
nce

in
ill
nd
l

ce
, in

d,
cw

-

ix

n-

ion-

The

n

n

is
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The QWR runs along thez direction, so that the electro
wave functions are localized in thexy plane, and free wave
in thez direction. The wave function in the conduction ba
can be written aseikzfe(r )/L1/2, whereL is the wire normal-
ization length, andr is a vector in thexy plane. The electron
energy isek5k2/2me . All energies are measured from th
bottom of the conduction band. The holes in the valen
band have wave functions of the formeipzfh(r )/L1/2 and
energy«g1«p , with «p5p2/2mh .

The exciting photons are taken to be plane waves, and
photon frequency isn5n f5cufz (f is the photon momentum
and c is the light velocity!. The LO phonons are three d
mensional and have a flat dispersion lawvq5vo .

The impurities are distributed randomly in the bulk. T
wave function of a hole in impurityi is of the form
c(r2r i ,z2zi), where r i and zi are the coordinates of th
impurity position.

In order to analyze the hot luminescence, we neglect li
polarization effects for simplicity, and assume that the w
and the crystal are cylindrically symmetric~an assumption
that would not fitV-grooved wires nor the assumption
Ref. 36!. Thus the wave functions of the emitted photons

x f ,m,n~r ,z!5S 1

pR2LuJm11~km,nR!u2
D 1/2

ei f zeimwJm~km,nr !,

~24!

where R is the normalizing radius andL the normalizing
length of the crystal, andz, w, andr are the cylindrical polar
coordinates.Jm are the Bessel functions, and (km,nR) is the
nth zero ofJm . The luminescence photon frequency is giv
by n85n f ,m,n5c( f 21km,n

2 )1/2 ~where the prime signifies
this frequency is of luminescence, and not of excitation!. We
neglect all excitonic effects~these are treated for the case
optical absorption in one-dimensional semiconductors
Refs. 29–31!.

We begin by writing down BE’s for the electrons in th
conduction band, and for the luminescence photons. I
shown why this description fails, and one has to turn
QKE’s. We will then employ the generalization rules in o
der to obtain QKE’s from the BE’s, and use these QKE’s
the analysis of the luminescence.

A. Semiclassical description

We assume a low temperature and a weak excita
level. At equilibrium, when there is no excitation, all th
electrons are in the valence band, and there are no pho
@N(vo)50#, due to the low temperature. In other word
there are no electrons in the conduction band@n(k)50#, no
holes in the valence band@ n̄ (p)50#, and the impurity level
is fully occupied by holes@ n̄ («)51#.

The excitation creates electrons in the conduction b
and holes in the valence band. Most of the excited electr
relax to the bottom of the conduction band, emitting L
phonons, but a small fraction of them recombine with ho
in the impurity level, producing hot luminescence. By t
assumption of weak excitation we mean thatN(vo), n(k),
and n̄ (p) are small. The luminescence would be ev
weaker than the excitation, and thereforen̄ («) remains close
e

he

t
e

e

n

is
o

n

ns
,

d
ns

s

to 1. Due to the weak excitation the luminescence is spo
neous, and the occupation numbers for the luminesce
photons are also small.

In the derivation of the BE’s, terms that are nonlinear
the electron occupation numbers will be neglected. We w
also neglect nonequilibrium contributions to the phonon a
hole ~both in the valence band and in the impurity leve!
occupation numbers.

The interaction of the electrons with the luminescen
field is neglected in the balance equation for the electrons
comparison with their interaction with the excitation fiel
due to the weakness of the excitation. In the case of
excitation the balance equation for the electrons is

05(
f

(
p

uMk,p,f
exc u22pd~n f2ek2«g2«p!

3@12n~k!#N~ f!

2(
q

(
k8

uMk,k8,q
e-LO u22pd~ek2ek82vo!n~k!, ~25!

whereMexc is the matrix element for the electron-exciting
photon interaction, andMe-LO is the matrix element of the
electron–LO-phonon interaction.

Let us first look at the electron-exciting-photon matr
element. In this interaction one photon of wave vectorf is
absorbed, and a hole of momentump and an electron of
momentumk are created. The interaction, in second qua
tized form, is given by

E drE dz
epo

moc
Ĉe†~r ,z!Âexc~r ,z!Ĉh†~r ,z!. ~26!

The massmo is the bare electron mass, and the constantpo is
the ‘‘bare’’ electron momentum operator~in the direction of
the photon polarization, assumed linear for simplicity!, sand-
wiched between the valence-band top and the conduct
band bottom Bloch wave functions.Ĉe(r ,z) and Ĉh(r ,z)
are the electron and hole field operators, respectively.
photon field operator is given by

Âexc~r ,z!5(
f

S 2pc2

Vn f
D 1/2

ei f'•r1 i f z~ âf1â2f
† !, ~27!

wheref' and f are the components off in thexy plane, and
in the z direction, respectively,âf is the annihilation opera-
tor, and V is the normalization volume of the crystal i
which the quantum wire is embedded.

In order to find Mexc, one should sandwich interactio
~26! between the stateŝn(k)51,n̄ («p)51,Nf50u and
un(k)50,n̄ («p)50,Nf51&. This is equal to

Mk,p,f
exc 5

epo

mocS 2pc2

Vn f
D 1/21

LE drE dz

3e2 i ~k1p!zfe* ~r !fh* ~r !ei f'•r1 i f z. ~28!

The photon momentum is small and so isr , since it is limited
by the wire cross section; thereforeei f'•r51. Integrating
over thez coordinates, the square of the matrix element
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uMk,p,f
exc u25S epo

mocD 2 2pc2

Vn f
U E dr fe~r !fh~r !U2

d f ,k1p . ~29!

In the electron–LO-phonon interaction, one phonon
momentumq is emitted, an electronk is annihilated, and an
electronk8 is created. The interaction of the electrons w
the polarization created by the LO phonons is given by

E drE dz
4peg

uqu
Ĉe†~r ,z!B̂~r ,z!Ĉe~r ,z!, ~30!

whereg is some interaction constant~see, for example, Refs
38 and 39!, and the phonon field operator is

B̂~r ,z!5(
q

S 1

2Vrvo
D 1/2

eiq'•r1 iqz~ âq1â2q
† !. ~31!

The components ofq are defined in the same manner
those off, âq is the annihilation operator, andr is the re-
duced mass per unit cell in the lattice.

The matrix elementMe-LO can be found by sandwichin
interaction ~30! between the states^n(k)50,n(k8)
51,N(vo)51u and un(k)51,n(k8)50,N(vo)50&. Carry-
ing out the integration over thez coordinates, the square o
the matrix element is

uMk,k8,q
e-LO u25

1

uqu2

4pavo
3/2

V~2me!
1/2
U E dr ufe~r !u2e2 iq'•rU2

dk2k8,q ,

~32!

where we exchangedg for the known Fro¨hlich constanta,
using the relationg25(rvo

2/4p)(2vo /me)
1/2(a/e2) ~see

Ref. 39!.
SubstitutinguMexcu2 and uMe-LOu2 into Eq. ~25!, we can

sum overp andq. Taking the normalizing volumes to infin
ity and thus exchanging the sums with integrals, we obta

05E df

~2p!3
uMexc~n f!u22pd~n f2ek2«g2« f 2k!

3@12n~k!#N~ f!

2E dk8

2p
uMe-LO~k2k8!u22pd~ek2ek82vo!n~k!, ~33!

where

uMexc~n f!u25
2pe2po

2

mo
2n f

U E dr fe~r !fh~r !U2

, ~34!

uMe-LO~k2k8!u25
1

2p

4pavo
3/2

~2me!
1/2

s~k2k8!, ~35!

and

s~k2k8!5E drE dr 8ufe~r !u2ufe~r 8!u2

3K0~ uk2k8uur2r 8u!. ~36!

The zeroth-order Bessel functionK0 is a result of the inte-
gration overq' .
f

Since the matrix elements~34! and~35! are smooth func-
tions of their arguments, and we are interested only in p
cesses which involve electrons that were excited close to
threshold, we may take them at the threshold values.
threshold value of n f is n̄ 5«g1(11h)vo, where
h5me /mh . This is the frequency that will excite electron
from the valence band to the threshold in the conduct
band. The threshold value ofuk2k8u is qo5(2mevo)1/2.

The electron wave functions that appear ins limit the
spatial integration tor<a, wherea is the wire width; there-
fore we can estimate thats(qo)}u ln(qoa)u for qoa!1 and
s(qo)}1/(qoa)2 for qoa@1. For GaAs, qo52.53106

cm21, thus for most wire widths we are in the regime
qoa@1, in which s is expected to decrease with increasi
wire cross section. The constantas(qo)[a* is the effective
Fröhlich constant in the one-dimensional case. Accord
to Ref. 32, a* '0.1 ~which is of the same order as th
bulk Fröhlich constant! for a wire of cross section
2003100 Å2, while, according to Ref. 35,a* '0.02 for a
wire of cross section 3003100 Å2.

We now perform the integrations which appear in E
~33!. We begin with the generating termG(ek), the free term
@one that does not includen(k)# in the balance equation~33!
for the electron occupation number. This term is physica
the generation rate of electrons in the conduction band. S
f !k, we can approximate « f 2k'«2k . Using
df5n f

2dn fdV f /c
3' n̄ 2dn fdV f /c

3, wheredV f stands for the
solid angle increment, we obtain

E df

~2p!3
uMexc~ n̄ !u22pd~n f2ek2«g2«2k!N~ f!

52puMexc~ n̄ !u2D~ n̄ !^N~ek1«g1«2k!&[G~ek!,

~37!

whereD( n̄ )5 n̄ 2/(2p2c3), is the photon density of states
and

^N~ek1«g1«2k!&5E dV f

4p
N~ f!U

n f5ek1«g1«2k

~38!

is the angular average ofN(f), for photons of frequency
ek1«g1«2k that create electrons with energyek .

We consider a narrow-band photon excitation field su
that the angular average of the occupation number is gi
by

^N~n!&5I S c

n̄
D 3

Dno/2p

~n2no!21Dno
2/4

, ~39!

where I is the excitation field energy density,Dno is the
spectral width, andno is the central frequency. We are inte
ested in a narrow-band excitation close to the thresh
thereforeDno!vo , and the detuning~the difference be-
tween the central excitation frequency and the threshold
quency! is small: ñ o5no2 n̄ !vo .

The integrations that appear in the expression for the
cay rateG(ek), the term that includes all coefficients o
2n(k) in the kinetic equation~33!, will now be carried out.
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3958 56MICHAL ROKNI AND Y. LEVINSON
The first contribution toG(ek) is that of the photons, and i
equal to the generating term~37!. The second contribution to
G(ek) is due to LO phonons,

GLO~ek!5E dk8

2p
uMe-LO~qo!u22pd~ek2ek82vo!

52a* voS vo

ek2vo
D 1/2

. ~40!

The photon contribution to the decay rate is negligib
compared to the phonon contribution, since radiative p
cesses are slow compared to nonradiative processes. T
fore G(ek) can be written as

G~ek!5GLO~ek!5S Gc
3

ek2vo
D 1/2

, ~41!

where

Gc5~2a* !2/3vo . ~42!

The meaning of the energy scaleGc will be explained at the
end of this section. For a* 50.02,35 one obtains
Gc54 meV, thusGc!vo536 meV.

Below the threshold, whereGLO50, the acoustical-
phonon contribution toG is important. Since the latter is
smooth function near the threshold, a good approxima
for G is G(ek)5tac

215const atek,vo .
The occupation number of the electrons that were exc

above the threshold is given by expression~21!, whereG and
G are given by expressions~37! and ~41! respectively. It is
clear from the expressions above thatn(k) depends onk
throughek only.

We now turn our attention to the kinetic equation for t
luminescence photons,

]

]t
N~ f ,m,n!5(

k
uMk, f ,m,n

lum u22pd~n f ,m,n2ek2«!

3$@11N~ f ,m,n!#n~ek! n̄~«!

2N~ f ,m,n!@12n~ek!#@12 n̄~«!#%, ~43!

which for n̄ («)51 and in case of spontaneous luminesce
is

]

]t
N~ f ,m,n!5(

k
uMk, f ,m,n

lum u22pd~n f ,m,n2ek2«!n~ek!.

~44!

M lum is the matrix element for the luminescence photo
electron interaction. The time derivative in the equati
above is kept in order to clarify what is the luminescen
source.

Let us first look at the matrix element that describes
recombination of an electron with a hole from a spec
impurity. We will then have to sum over all impurities an
average over all impurity configurations. In this process
photon of quantum numbersf , m, andn is emitted, and an
electronk and a hole in impurityi are destroyed. The inter
action is given by
-
re-

n

d

e

-

e

e

a

E drE dz
epo

moc
Ĉe~r ,z!Âlum~r ,z!Ĉh~r ,z!, ~45!

where

Âlum~r ,z!5 (
f ,m,n

S 2pc2

n f ,m,n
D 1/2

@x f ,m,n~r ,z!âf ,m,n

1x f ,m,n* ~r ,z!âf ,m,n
† # ~46!

is the field operator of the luminescence photons.
The matrix element of the interaction above betwe

the stateŝ N( f,m,n)51,n(ek)50,n̄ («)50u and uN( f ,m,n)
50,n(ek)51,n̄ («)51& for holes in impurityi is

Mk, f ,m,n
lum ~ i !5

epo

mocS 2pc2

pR2L2n f ,m,nuJm11~km,nR!u2
D 1/2

3E drE dz eikzfe~r !c~r2r i ,z2zi !

3e2 i f z2 imwJm* ~km,nr !. ~47!

We now sum the matrix element squared over all impu
ties and average over all impurity configurations. This yie

uMk, f ,m,n
lum u25S epo

mocD 2 2pc2

pR2L2n f ,m,nuJm11~km,nR!u2

3(
i

1

VE dr iE dziU E drE dz eikzfe~r !

3c~r2r i ,z2zi !e
2 i f z2 imwJm* ~km,nr !U2

. ~48!

Carrying out the integrations over thez coordinates, we ob-
tain

uMk, f ,m,n
lum u25S epo

mocD 2 2pc2

pR2L2n f ,m,nuJm11~km,nR!u2

3(
i

1

VE dr iU E dr fe~r !c~r2r i ,2k!

3e2 imwJm* ~km,nr !U2

, ~49!

where c(r ,k)5*dz e2 ikzc(r ,z). The second argument o
c, f 2k, was replaced by2k becausef !k.

Since the impurities are randomly distributed in the bu
the average over all impurity configurations of the product
the hole wave functions that appear in Eq.~49! can depend
only on the difference between their coordinates. Thus
define

L~r2r 8,2k![E dr i c~r2r i ,2k!c* ~r 82r i ,k!.

The summation over impurities divided by the normalizi
volume renders a factor ofnimp—the impurity spatial den-
sity. The averaged matrix element squared can then be w
ten as
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uMk, f ,m,n
lum u25S epo

mocD 2 2pc2

pR2Ln f ,m,nuJm11~km,nR!u2
nimp

3E drE dr 8fe~r !fe* ~r 8!L~r2r 8,2k!

3e2 im~w2w8!Jm* ~km,nr !Jm~km,nr 8!. ~50!

The matrix element squared is much larger form50 than
for other values ofm, since r and r 8 are constrained to a
small region in thexy plane~due to the electron wave func
tions!, andJ0 is the only Bessel function which is finite a
r→0, J0(r )ur→051. Thus the matrix element squared is pr
portional todm,0 . From now on the indexm is omitted with
the understanding that we are dealing only withm50.

The matrix element squared is a smooth function ofn f ,n
andk, therefore these can be substituted with their thresh
values. The threshold values ofn f ,n and k are n̄ 85«1vo
and ko5(2mevo)1/2, respectively. The kinetic equation fo
the luminescence photons can then be written as

]

]t
N~ f ,n!5E dk

2p
uMn

lum~ko!u22pd~n f ,n2ek2«!n~ek!,

~51!

where the matrix element squared is

uMn
lum~ko!u25S epo

mocD 2 2pc2

pR2L n̄ uJ1~knR!u2
nimpL

3E drE dr 8fe~r !fe* ~r 8!L~r2r 8,2ko!.

~52!

Substitutingn(ek) into Eq. ~51!, and integrating overk,
we obtain

]

]t
N~ f ,n!5uMn

lum~ko!u2S 2me

n f ,n2« D 1/2G~n f ,n2«!

G~n f ,n2«!
. ~53!

The luminescence source can be characterized by
spectral dependence ofE(n8)dn8, the energy of the emitted
field of all spectral modes within the intervaldn8 per unit
length of the wire per unit time. Multiplying the generatin
term of the luminescence photons@the right hand side of Eq
~53!# by d(n82n f ,n)n8dn8/L and summing overf andn, we
obtain

E~n8!dn85
n8

L (
n

(
f

uMn
lum~ko!u2

3S 2me

n f ,n2« D 1/2G~n f ,n2«!

G~n f ,n2«!
d~n82n f ,n!dn8.

~54!

The variablen f ,n in the square root can be replaced w
its threshold value«1vo , due to the smoothness of th
function. Taking the normalization volume~that appears in
-

ld

he

the matrix element! to infinity, the sums overf and n are
transformed into integrals. Performing the integration,
obtain the final result

E~n8!5Cn8D~n8!j~n8!, ~55!

where

C5S epo

mocD 2 2pc2

n̄ 8
nimpE drE dr 8fe~r !fe* ~r 8!

3L~r2r 8,2ko! ~56!

is a constant, and

j~n8!5S 2me

vo
D 1/2G~n82«!

G~n82«!
5S 2me

vo
D 1/22puMexc~ n̄ !u2D~ n̄ !

G~n82«!

3^N@~11h!~n82«!1«g#&, ~57!

is essentially the product of the electron generation rate
the electron lifetime at the corresponding energy.

Sincen8D(n8) is a smooth function ofn8, the spectral
distribution of the luminescence is given byj(n8). Let us
first consider a narrow-band excitation that does not ove
the threshold, i.e.,ñ o@Dno . In this casej(n8) is a peaked
function of n8, reproducing the shape of the excitation. It
of a Lorentzian shape of widthDno85Dno /(11h), centered

at n̄ 81 ñ o8 , where ñ o85 ñ o /(11h) ~see Fig. 2!:

j~n8!}S ñ o

~11h!3Gc
3D 1/2

Dno8/~2p!

~n82 n̄ 82 ñ o8!21~Dno8/2!2
.

~58!

The rescaling ofn8 compared ton follows from the obvious
relations~see Fig. 1! ek1«k5n2«g andn85«1ek .

Only close to the threshold, whenn82 n̄ 8! ñ o /(11h),
the spectral behavior of the luminescence differs from tha
the excitation and is given by~see the inset of Fig. 2!

j~n8!}
Dno

2p ñ o
2Gc

3/2~n82 n̄ 8!1/2. ~59!

FIG. 2. The behavior ofj(n8) as a function of n8 for

ñ o@Dno (h5
1
3 and ñ o58Dno), where ñ o85 ñ o /(11h) and

Dno85Dno /(11h). An enlargement of its behavior fo

n82 n̄ 8! ñ o8 is shown in the inset.
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3960 56MICHAL ROKNI AND Y. LEVINSON
When the narrow-band excitation overlaps the thresh
i.e., ñ o!Dno , the spectral distribution of the luminescen
is very different from that of the excitation~see Fig. 3!:

j~n8!}
2

pDnoGc
3/2~n82 n̄ 8!1/2 when n82 n̄ 8!

Dno8

2
,

~60!

and

j~n8!}
Dno

2p~11h!2Gc
3/2~n2 n̄ 8!23/2

when n82 n̄ 8@
Dno8

2
. ~61!

If one is interested in luminescence due to electrons
were excited close to butbelow the threshold, via an excita
tion that is centeredabovethe threshold, i.e.,n82 n̄ 8,0 and
ñ o.0, thenG(n82«) in expression~57! should be replaced
by tac

21 . In this casej(n8) has the same Lorentzian form a

Eq. ~58! with the amplitude@ ñ o /„(11h)3Gc
3
…#1/2 replaced

by tac/(11h).
One can expect that the luminescence distributionj(n8),

derived from the BE, is not correct for frequenciesn8 close
to the thresholdn̄ 8. Luminescence of such frequencies is d
to electrons with energiesek near the threshold, that have
large widthG(ek) @see Eq.~41!#, while the BE assumes tha
the width of the states is small compared to other ene
scales of the problem. In our case one of these energy sc
is ek2vo . Equating the width with this energy scal
ek2vo5G(ek), one finds an additional energy scale of t
problem~and a critical decay rate!, that is given byGc that
has been defined before Eq.~42!.

Whenek2vo&Gc , we haveG(ek)*ek2vo , and the as-
sumption of the BE breaks down. One would therefore
pect that forek2vo&Gc in the description of the excited
electrons, and forn82 n̄ 8&Gc in the description of the ho
luminescence, the results predicted by the Boltzmann eq
tion would fail. We will learn from the QKE’s that in fact the
situation is more complicated.

FIG. 3. The behavior ofj(n8) as a function ofn8 for Dno@ ñ o

(h5
1
3 andDno58 ñ o), whereDno85Dno /(11h).
d,

at

y
les

-
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B. Quantum description

As we saw in Sec. III A, the Boltzmann description ma
fail for electrons excited to the vicinity of the threshold an
hence for luminescence photons emitted by these electr
Therefore, close to the threshold, the electrons and the lu
nescence photons have to be treated using QKE’s. Th
QKE’s will be written by applying the generalization rules
Eqs. ~33! and ~51!. It is assumed that the energies of th
holes, the phonons, and the excitation photons are not br
ened.

In the generalization to the QKE’s only those terms th
were kept in the Boltzmann description will be retaine
Threshold values of the arguments of the matrix eleme
will be substituted as was done in the Boltzmann descripti
due to the smoothness of the matrix elements.

The QKE for the electrons is

05E df

~2p!3
uMexc~ n̄ !u22pd~n f2e2«g2«2k!N~ f!

2E dk8

2p E de8d@G~k8,e8!ue82ek82De~k8,e8!#

3uMe-LO~qo!u22pd~e2e82vo!n~k,e!, ~62!

where e is the electron off-shell energy,n is the electron
occupation function, andG andDe are the electron-energy
level width and shift, respectively.

The coefficients of2n(k,e) in Eq. ~62! can be recog-
nized as the electron level width due to LO phonons,

GLO~k,e!5E dk8

2p E de8d@G~k8,e8!ue82ek82De~k8,e8!#

3uMe-LO~qo!u22pd~e2e82vo!, ~63!

and the total electron width is given by

G~k,e!5GLO11/tac. ~64!

The photon contribution to the level width was neglected~as
it was neglected in the Boltzmann description of the dec
term!.

One can see that the generating term in Eq.~62! is equal
to expression~37!, the generating term of the electrons’ BE
with the on-shell energyek replaced by the off-shell energye
~in the exciting photon occupation number!

G~k,e!52puMexc~ n̄ !u2D~ n̄ !^N~e1«g1«2k!&. ~65!

The occupation functionn(k,e) is found by substitutingG
andG into Eq.~23!. The generating termG(k,e) depends on
k through«2k5hek only; thereforeG(k,e)5G(ek ,e). It fol-
lows from Eq.~63! that G is independent ofk ~and so is the
level shift!. Therefore,n(k,e)5n(ek ,e).

Equation~63! is a self-consistent equation for the lev
width. Integrating the right-hand side of the equation,
find that
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GLO~e!5a* vo
3/2H Fe2vo2De~e2vo!1

i

2
G~e2vo!G21/2

1Fe2vo2De~e2vo!2
i

2
G~e2vo!G21/2J .

~66!

When e2vo!vo the arguments of G(e2vo) and
De(e2vo) are close to the bottom of the band. In this ca
the level shift can be neglected since it is just a small ren
malization. The level width close to the bottom of the ba
Go , is due to scattering with acoustic phonons and due
thermal recombination. The latter contribution toGo can be
neglected, while the acoustic-phonon contribution can
considered as a constant~though not the same as the wid
due to acoustic phonons at the threshold!. We assume tha
Go is small compared to all other energy scales of the pr
lem. Thus, close to the threshold,

GLO~e!5a* vo
3/2H Fe2vo1

i

2
GoG21/2

1Fe2vo2
i

2
GoG21/2J . ~67!

The behavior ofGLO(e) when e is close tovo is shown in
Fig. 4.

From expression~67!, we see that above the threshold f
e2vo@Go/2, G(e) can be written as

G~e!5GLO~e!52a* voS vo

e2vo
D 1/2

5S Gc
3

e2vo
D 1/2

. ~68!

Comparing expression~68! to expression~41!, it is evident
that above the thresholdG(e) is equal toG(ek) when the
on-shell energyek is replaced by the off-shell energye.
SinceGo is the smallest energy scale in the problem, expr
sion ~68! can be used for the electron level width above
threshold.

Contrary to the Boltzmann description, the electron–L
phonon scattering contributes to the electron level width

FIG. 4. The behavior of the electron level width due to optic
phonons, at the vicinity of the threshold for LO-phonon emissi
when the electron level width at the bottom of the subband is c
sidered.
e
r-

to

e

-

s-
e

-
-

low the threshold as well. Whenvo2e@Go the electron
width due to optical phonons decays likeue2vou23/2, much
faster than the decay above the threshold~see Fig. 4!. The
contribution of the acoustic phonons to the electron wid
below the thresholdtac

21 , will be negligible compared to
GLO for vo2e!(Gotac)

2/3Gc /2. Since Gotac!1 and
Gctac@1, the right-hand side of the inequality above is mu
smaller thanGc , and much larger thanGo @see the crossing
point of GLO(e) andtac

21 in Fig. 4#.
The QKE that is obtained by applying the generalizati

rules to the BE for the luminescence photons, Eq.~51!, is

]

]t
$@ 1

2 1N~ f ,n,n8!#d@g~ f ,n,n8!un82n f ,n2Dn~ f ,n,n8!#%

5d@g~ f ,n,n8!un82n f ,n2Dn~ f ,n,n8!#

3E dk

2pE de d@G~e!ue2ek2De~e!#uMn
lum~ko!u2

32pd~n82e2«!n~ek ,e!, ~69!

where n8 is the photon off-shell energy,N is the photon
occupation function, andg and Dn are the photon energy
level width and shift, respectively. All the photon function
are written form50.

By applying the generalization rules to the right-hand s
of the full BE, Eq.~43!, one can find the photon level widt

g~n,n8!52E dk

2pE de d@G~e!ue2ek2De~e!#

3uMn
lum~ko!u22pd~n82e2«!n~ek ,e!. ~70!

Note thatg,0 corresponds to photon generation. It is e
dent from expression~70! that g does not depend onf , and
therefore neither doesDn.

Using Eq.~70!, Eq. ~69! can be written as

]

]t
$@ 1

2 1N~ f ,n,n8!#d@g~n,n8!un82n f ,n2Dn~n,n8!#%

52g~n,n8!d@g~n,n8!un82n f ,n2Dn~n,n8!#. ~71!

The right-hand side of Eq.~71! is the photon-generating
term, the term from which the luminescence spectral dis
bution will be obtained.

As in the classical case, the luminescence source ca
characterized by the spectral dependence ofE(n8)dn8, that
is obtained by multiplying the right-hand side of Eq.~71! by
n8dn8/L and summing overf andn

E~n8!dn852
n8

L (
n

(
f

g~n,n8!

3d@g~n,n8!un82n f ,n2Dn~n,n8!#dn8. ~72!

The main contribution toE(n8) comes fromf and n, such
that n f ,n is close ton8.

It is convenient to writeg(n,n8) in the form

g~n,n8!52
1

pR2uJ1~knR!u2
Cj~n8!, ~73!

l
,
-
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whereC is given by Eq.~56!, and

j~n8!5E dk

2pE de d@G~e!ue2ek2De~e!#

32pd~n82e2«!n~ek ,e!. ~74!

When the electrons’ energy is taken to be on shell—tha
when the electron-smearedd function is reduced to a singu
lar d function—j(n8) is reduced to expression~57!. In writ-
ing g in the form ~73!, the normalization volume has bee
separated from the rest of the function—that is, independ
of the indexn—and can therefore be taken out of the su
mation inE(n8).

Taking the normalization volume to infinity the sums ov
f and n are transformed into integrals. From Eq.~73! it is
evident thatguR→`→0. This is due to the fact that the pho
tons are emitted into an ‘‘infinite’’ space, while their inte
action with the electrons is confined to the finite volume
the wire. In this caseg and Dn are negligible compared to
the other widths, and the smeared photond function that
appears in the expression forE(n8) becomes a singulard
function, giving

E~n8!5Cn8j~n8!E
2`

` d f

2pE0

`k dk

2p
d~n82n f ,n!

5Cn8D~n8!j~n8!. ~75!

Sincen8D(n8) is a smooth function it is clear at this poin
that in order to understand the dependence ofE(n8) on n8,
the behavior ofj(n8) should be analyzed.

Performing the integration overe in Eq. ~74!, and substi-
tuting the expression we obtained forn(ek ,e), we obtain

j~n8!5~2me!
1/2

2puMexc~ n̄ !u2D~ n̄ !

G~n82«!

3E
0

`dek

ek
1/2

d„G~n82«!un82«2ek…

3^N~n82«1«k1«g!&. ~76!

Since ek2vo!vo , we substitutevo for ek in the one-
dimensional density of states. This integral contains in f
two Lorentzians. The first is of widthG(n82«): The elec-
tron level width at energye5n82«. The second Lorentzian
is of width Dno /h: A width that is proportional to the spec
tral width of the exciting photon source. Since the excitat
is such thatek is close tovo , and all the energy scales th
can characterize the level width are much smaller thanvo ,
the integrand goes to zero whenek approaches zero from
above. Thus the lower boundary of the integral can be ta
to minus infinity. As a result the spectral distribution of th
luminescence is given by the function
s,

nt
-

f

t

n

n

j~n8!5S 2me

vo
D 1/22puMexc~ n̄ !u2D~ n̄ !

G~n82«!
I S c

n̄
D 3

3E
2`

`

dekS G~n82«!/2p

~n82«2ek!
21G~n82«!2/4

D
3S Dno /2p

@~n82«1hek1«g!2no#21Dno
2/4

D . ~77!

The region of validity of the BE is evident from Eq.~77!.
In order to obtain the result of the BE, Eq.~57!, one has to
replace the first Lorentzian with ad function. This can be
done only when its width is smaller than that of the seco
Lorentzian, i.e.,G(n82«)!Dno /h. It follows from this in-
equality that the Boltzmann description of the luminescen
spectra is correct only far from the threshold, wh
n82 n̄ 8@h2Gc

3/Dno
2[nc . The quantum intervalnc differs

from the naive estimateGc ~see the discussion at the end
Sec. III A!: It is larger for ‘‘narrow’’-band excitation
(Dno!Gc), and smaller for ‘‘wide’’-band excitation
(Dno@Gc).

For an excitation that is mostly of frequencies abo
n̄ 1nc , the spectral dependence of the energy of the emi
photons will behave according to the predictions of the
~see Figs. 2 and 3!. However, as long as the excitation
above the threshold, very close to the thresholdj(n8) will
increase linearly withn8, and not as a square root; see E
~59!.

Non-Boltzmann behavior is obtained whenG(n82«)
@Dno /h—that is, when n82 n̄ 8!nc—and the second
Lorentzian can be treated as ad function. In this case one
obtains

j~n8!}
h

2p~11h!2F S n82 n̄ 82
ñ o

11h
D 2

1
h2

4~11h!2

Gc
3

n82 n̄ 8
G21

. ~78!

Here we bring two specific examples of an extreme n
Boltzmann behavior ofj(n8). In both examples the excita
tion is centered within the quantum interval, i.e.,ñ o!nc ,
and ‘‘narrow’’ band, i.e.,Dno!Gc . Due to the latter in-
equalitync@Gc .

In the first case the detuning is large,ñ o@Gc ; therefore
the energy width of an electron excited by the central ex
tation frequency,ek5vo1 ñ o /(11h)—that is, of the order
of (Gc

3/ ñ o)1/2—is small compared to its distance from th
threshold. This is true for most of the electrons. In such
case the electron states are ‘‘well defined,’’ but the pred
tion of the BE for the electron distribution is wrong, since
width Dno /(11h) is much smaller than the width of th
states. As a result, it follows from Eq.~78! that the lumines-
cence spectra is symmetric and centered at the classica
sition n̄ 81 ñ o8 , with ñ o85 ñ o /(11h), but its width is given
by the quantum-mechanical width of the electron states~see
Fig. 5!,
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Dno85
h

11hF Gc
3

ñ o /~11h!
G 1/2

.

In the second case the detuning is small,ñ o!Gc , and the
electrons are excited to ‘‘badly defined’’ states, since
broadening of these states is larger than their distance f
the threshold. As a result the luminescence spectral distr
tion differs greatly from that predicted by the BE. One fin
from Eq. ~78! that ~see Fig. 6!

j~n8!}
2

phGc
3 ~n82 n̄ 8! when n82 n̄ 8!Gc

and

j~n8!}
h

2p~11h!2

1

~n82 n̄ 8!2
when nc@n82 n̄ 8@Gc .

In conclusion, let us note that the hole dispersion plays
essential role in determining the quantum behavior of
luminescence spectra. The width of the second Lorentzia
Eq. ~77!, Dno /h, is not equal to the width of the classic
luminescence lineDno /(11h), and the integral is not a
simple convolution of the classical luminescence profile w
the spectral function of an electron state. One can see f
Eq. ~77! that for a flat hole band (h50) the second Lorent
zian does not depend on the integration variable, and the
Lorentzian is integrated to 1, unexpectedly restoring the
result.

The luminescence due to electrons that were excitedbe-
low the threshold (e,vo) by an excitation centeredabove

the threshold (ñ o.0) is not obtained by the simple ex
change ofGLO by tac

21 , as in the classical case. As long

n82 n̄ 8,(Gotac)
2/3Gc /2, one should takeG5GLO from ex-

pression~67! since GLO(n82«).tac
21 ; therefore, although

the electrons are below the threshold, it is the optical-pho
contribution to the electron width that is dominant.

IV. CONCLUSIONS

We have presented a recipe that allows one to genera
the BE to a QKE in spatially homogeneous situations. T

FIG. 5. The behavior ofj(n8) as a function of n8 for

nc@ ñ o@Gc@Dno (h5
1
3 , ñ o515Dno , and Gc55Dno), where

ñ o85 ñ o /(11h) and Dno85h(Gc
3/ ñ o8)

1/2/(11h). An enlargement

of its behavior forn82 n̄ 8!(h2/4)Gc
3/ ñ o

2 is shown in the inset.
e
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QKE obtained by employing this recipe is the same as t
obtained by the Keldysh-Green function technique in
self-consistent Born approximation. The advantage of t
method for writing the QKE is that it provides a physic
understanding of the terms in the QKE, and it allows one
neglect those terms that were negligible in the Boltzma
description. This is due to the fact that the equations
written for quantities that are similar to the quantities d
scribed by the Boltzmann equation.

Spatially homogeneous situations are realized in m
optical experiments in which the samples are thin and o
weakly absorbing. In this case it can be assumed that
incident optical fields are not attenuated within the samp
and that the density of excited carriers is homogeneous,
so is the luminescence source.

We considered the specific example of hot luminesce
from a QWR. The recipe described above was used in o
to generalize the set of BE’s that describe the problem t
set of QKE’s. Solving these equations, we were able to
scribe the luminescence spectral distribution.

We have shown that there is a domain of luminesce
frequencies that correspond to a domain of photoexc
electron energies, for which the quantum description of
luminescence spectral distribution leads to a different beh
ior than that given by the Boltzmann description. This qua
tum domain could not be easily guessed from level wid
considerations. Two other nontrivial conclusions were o
tained. The first is the role played by the hole mass in
definition of the quantum domain. When the hole dispers
relation is flat the quantum domain shrinks to zero, and
results of the Boltzmann description are retrieved. The s
ond nontrivial conclusion is that there is an energy dom
below the threshold for LO-phonon emission, in which t
LO-phonon contribution to the electron level width is dom
nant.
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FIG. 6. The behavior ofj(n8) as a function of n8 for

nc@Gc@ ñ o ,Dno (h5
1
3 , ñ o52Dno , andGc515Dno).
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7Y. Levinson, Zh. Éksp. Teor. Fiz.65, 331 ~1973! @Sov. Phys.

JETP38, 162 ~1974!#.
8S. A. Bulgadaev, B. I. Kaplan, and Y. Levinson, Zh. E´ ksp. Teor.

Fiz. 70, 1550~1976! @Sov. Phys. JETP43, 808 ~1976!#.
9Y. Levinson, Phys. Rev. B51, 16 898~1995!.

10M. Potemskiet al., Phys. Rev. Lett.66, 2239~1991;!.
11S. M. Badalian, U. Ro¨ssler, and M. Potemski, J. Phys., Conde

Matter 5, 6719~1993!.
12L. P. Kadanoff and G. Baym,Quantum Statistical Mechanic

~Benjamin, New York, 1962!.
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