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Bifurcations and the transition to chaos in the resonant-tunneling diode

T. S. Monteiro
Department of Physics and Astronomy, University College, University of London, Gower St, London WC1E 6BT, United Kingdom

D. Delande
Laboratoire Kastler Brossel, 4 place Jussieu, Tour 1¥,éage, F-75252 Paris Cedex 05, France

A. J. Fisher
Department of Physics and Astronomy, University College, University of London, Gower St, London WC1E 6BT, United Kingdom

G. S. Boebinger
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974
(Received 20 February 1997

Recent experiments by Mullet al. [Phys. Rev. Lett75, 2875 (1995] and Boebingeet al. [Surf. Sci.
361-362 742 (1996 investigated the transition to chaos and the effects of bifurcations on the magnetotun-
neling spectrum of a quantum well in tilted fields. We introduce a computationally efficient model for the
device which successfully reproduces the main features of the experiments. We find that a number of separate
dynamical regimes in the experiment &t 11° are each characterized by a distinctive experimental spectral
profile. We use this signature to identify a period doubling resonance and tangent bifurcation but find that the
second observed period doubling in the tunneling current is not due to a bifur¢&d#¥63-18207)01331-3

I. INTRODUCTION date been the hydrogen atom in a magnetic fiéltie major
The problem of a resonant tunnelling dio@&TD) in reason why this atomic system ha_s proved suc_h a powerful
tilted electric and magnetic fields has attracted much rece rqbe of gquantum chaos 1S th_at It has a sqallng property
) 15 ) . X hich facilitates detailed quantitative comparisons with the
!nteres asa probe of the manifestations of classical Chao%haotic classical motion. In other words one may “invert” a
in a mesoscopic quantum system. But to date, to our knowlaronerly calculated scaled spectrum, by means of a Fourier
edge, it has not been demonstrated whether the experimentsnsform, in order to estimate the stability parameters and
are amenable tquantitativeanalysis within the framework  ampiitudes of the individual periodic-orbit oscillations.
of periodic orbit theory. Howeved,-V characteristics have Here we introduce two separate quantum-scaled models
recently been calculated and compared with experifient.  for the tunneling current which enable us to extract informa-
In the experiment$;® spectral oscillations were found to tion concerning the stability and accessibility simultaneously
be subject to abrupt increases in frequency. In Refs. 1 and Z,om the amplitudes of the oscillations of the current. We
at tilt angle 6=11°, two period doublings were observed also introduce a model for the current which shows that to
over a limited range of magnetic fields followed by a returnwithin a global, energy-dependent envelope which is not os-
to period-1 oscillations. The experiments in Ref. 3 were in-cillatory, the periodic orbit amplitudes are quantitatively ob-
terpreted in terms of the accessibility of specific classicatained from the dynamics of an infinite well. We show by
orbits to electrons tunneling in from the two-dimensionalformal methods and by direct numerical comparison that to
electron gag2DEG) on the left of the emitter barrier. The within this global envelope the model is proportional to the
experiments in Refs. 1 and 2, on the other hand, were interdsual weak tunneling mod&Hence we demonstrate that the
preted as bifurcatiod of the main traversing orbitt, a  detailed shape of the barriers is dynamically unimportant.
two-bounce orbjt with the orbit intermittently losing, then We show that different dynamical regimes have a charac-
recovering, stability as a precursor to fully chaotic dynamicsteristic spectral line profile in the experiments at tilt angles of
A complete analysis within the framework of periodic or- #=11° in Refs. 1 and 2. We show that the first period-
bit theory must simultaneously consider these two separatgoubling region is due to a bifurcation, but the second one is
factors: a a weighting for the accessibility of dynamical not. Most interestingly we show that in between the two
structures like periodic orbits to electrons tunneling in fromperiod-doubling regions there is a further bifurcation giving
the 2DEG adjacent to the emitter wall andamother weight-  rise to a “ghost”: a contribution from a complex periodic
ing by the stability parameters of the classical motion. Theorbit.® This regime is identifiable by a broad, weak sinusoidal
experiments in Refs. 1 and 2 by investigating specifically theoscillation. To date, to our knowledge, there have been no
bifurcations, were more directly concerned with changes irexperimental studies of the characteristics of ghosts, since in
the classical stability. the analogous atomic systems they are generally swamped
The archetypal dynamical system used to study chaos ihy other contributions. They have, however, received consid-
conservative systems with two degrees of freedom has terable theoretical attention.
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II. QUANTUM CHAOLOGY, PERIODIC ORBITS, AND applies to isolated stable orbits; for a stable orbit, the eigen-
OSCILLATIONS IN THE TUNNELING CURRENT values are complex quantitiesT, the winding angles of the

. . . . [Periodic orbit.

The literature on the quantum manifestations of classica A furth hall . lati his f K

chaos is already substantidIFor energy-conserving Hamil- urther challenge was in transiating this framework to
.an experimental situation. The Gutzwiller trace formula

tonian systems, the most powerful theoretical framework is . . !
Gutzwiller's periodic orbit theory, which shows that where aylelds the quantum density of states, fronGI'Typical ex

guantum system has a chaotic classical limit, this manifestge”mems' however, investigated a spectrum weighted by

itself in a rich and subtle way in the quantum spectrum de>0Me matrix element. Semiclassically, a quantity lik&Ar

spite the fact that the quantum system shows no chaos in thvt\éOUId typically be involved, wherd is some operator rep-
sense of exponential sensitivity to perturbations. resenting the appropriate observablg. Fo_r th‘? RTD, th's
Periodic orbit theory starts from a formulation of quantum vyould involve the current operator which br[ngs n th? addi-
ggnal relevant information, beyond the orbital stability, re-

theory as a sum over paths, each associated with a pha arding tunneling propensities, in other words the accessibil-
equal to the classical action divided By In the semiclassi- g gt g Propensiues,
ity of a given periodic orbit.

cal .reg|mgﬁ—>0, €., where the actios is large n com- It is this experimental behavior that we seek to analyze in
parison with, the interferences between the various path%his work, by means of scaled quantum calculations, rather

are mainly destructive, except in the vicinity of tralJeCtorIeStpan the Gutzwiller formula itself. The semiclassical ampli-

wh.ere the action is sta_tiona_ry, WhiCh. selects the CI&.ISSiC%udes are extracted from a quantum spectrum by means of a
trajectories. In the chac_)t|p limit, the typica : trajectory will be Fourier transform which subtracts smooth nonoscillatory
one from among an infinite sea of chaotic trajectories. There

L - ; contributions. This calculation is a precursor to a full analy-
are periodic orbits but these are isolated and of measure zerg. P y

When he tried to calculate a quantum spectiine den- Sis with a semiclassical theory.

sity of stategin the chaotic regime, Gutzwiller found that the A numbgr of interesting ques.tlor?s may _be address_ed by
: J T : .an appropriate quantum calculation: In particular we wish to
stationary-phase approximation produces oscillatory contri; L . i
X ) C . . know where the standard periodic orbit theory fails. One
butions from these isolated periodic orbits. The result of this : . . ' I
well-known instance is at bifurcations. There, the weighting

work was _the Gutzwiller trace formula. The densqy of St"’}tesoy the stability matrix becomes infinite, and the periodic or-
N(E) is given by the trace of an energy Green's funCtIonbit theory must be corrected appropriat&ly Similarly

G(0.9’,E) for a path connecting two pointaq’: ghosts are beyond the standard semiclassical theory which
gives them zero amplitude. Conclusive experimental evi-

N(E):Z S(E—E)=— %ImTrG. (1)  dence for a ghost would be a desirable objective.
I
Then, in the limitz—0, IIl. CLASSICAL DYNAMICS AT 11°
The RTD problem comprises a quantum well with walls
N(E) =Na E) + Nosd E). @ P P d

atx=0 andx=L, acted on by an electric field along thex

The formula gives the spectrum as a sum of oscillatory conaxis (directed toward negativ&) and a magnetic field of
tributions N E) from periodic orbits plus a smooth back- strengthB, tilted at an anglef to —F in the x-z plane. The

ground termN,,, called the Weyl term: classical Hamiltonian f&*
Tn h n2 1, ., B% )
NOSC(E)—ImEr]: EE}: detMl— 1|72 €)) H—E—%(px+pz)+ﬁ(xsm0—zcosﬁ) —eFx

4

S, is the action of thenth orbit, T,, its period. The index ) .
j refers to the number of traversals of the orhit, is an ~ Below we use atomic units. Then= +1 andm=0.067. The
additional phase, the Maslov index, aht, is the stability scalln‘? properties of this system haves been investigated for
matrix of the unstable orbit. Detailed explanations may beE="0," and for generak but constant..” By rescaling mo-
found in Ref. 10. menta, i.e.p=p/LB andq=q/L, one can show that, most

Most notably, the trace formula relates tipgantumspec-  generally, the classical dynamics depends on the scaled en-
trum to a whollyclassicalentity, the classical stability ma- ergy R=E/FL as well as a scaled field=L/me (where
trix M,,. Its largest eigenvalue is expl), where the expo- e=F/B?) with no separate dependence on the other param-
nent\ for an unstable orbit is the Liapunov exponent, whicheters except. These dimensionless parameters represent the
guantifies the exponential divergence of nearby trajectoriegatio of respectively the injection energy and the diamagnetic
the characteristic signature of chaotic classical motion. energy inside the well to the potential energy due to the bias

In the Gutzwiller formula, the amplitude of the contribu- voltage.
tion from a given unstable periodic orbit is in effect deter- In Fig. 1, we show Paincare surfaces of sectis@®9 for
mined by this Liapunov exponent. So, although the quantunthe classical motion at four consecutive valuespoivhich
system exhibits no chaos in itself, the trace formula draws @pan the experiment. These are obtained by taking a “slice”
beautiful connection between the quantum spectrum and thef phase space at=0 and plotting a point whenever a clas-
parameters of the unstable classical motion. The formula alssical trajectory intersects that surface. We have selected eight
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FIG. 1. Classical Poincarsurfaces of section
(SOS9 on thez,p, plane calculated at the emitter
x=0 for eight distinct classical regimes. For
comparison, the magnetic fie{th T) correspond-
ing to V=0.5 V is shown.(a) Stable period-1
island (b) above bifurcation: period-2 island
chain (2, and 2,) approaches the centéc)
Period-2 bifurcation fperiod-1(e) stable orbit,
approaches unstable orhit prior to tangent bi-
furcation and appearance of ghd$j unstable
period-2 orbitS; most accessible to tunneling
electrons(g) period-2 bifurcation(h) t, restabi-

. lizes. Note the change in scale f@) and (h).
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separate classical regimes corresponding to diffepenn- (d) p=3.4, wherey has restabilized once again and there
dexed by the letter&) to (h): is once again a period-1 stable island.
We discuss these further below, but in brief, Fig. 1 shows (€) p=4.8, wheret, prepares for what is called a tangent
the following: bifurcation where it annihilates with a different, unstable,
(8 p=1.8, where the dynamics is dominated by a |argetwo—bounce orbit referred to below ds. In the SOS the

: - ixed points of the orbitgarrowed approach each other.
stable island, centered on a stable two-bounce period-1 petfl'—Xe e . a
odic orbit (the t, orbit in Ref. §. This is perhaps the key Whent, andt, have annihilatedthis occurs ap=5.2) there

S . ; L . . will be no real period-1 periodic orbit, hence no correspond-
Fheer'ggg:e?iﬁgr?gst?;ITJWDﬁFg%%em’ since it is predominant in ing contribution to the Gutzwiller trace formula. However,

~ o there exist two complex “ghost” periodic orbits which are
(b) p=2.3, where an "island chain,” in other words a heriggic solutions of the classical equations of motion, but in
pair of periodic orbits of double the period, approaches the, complexified phase space. These periodic orbits are born

central fixed point of,. The stable orbitelliptic fixed poind  from the real period-1 orbits at the bifurcation; they will
is indicated as €. The unstable onghyperbolic fixed point  appear in the quantum spectrum as contributions which de-
is denoted by £,. cay exponentially ag— 0. These are the ghosts.

(c) p=2.6, where the stable/unstable pair is absorbed at (f) p=11.3 where all the orbits reaching the emitter wall
the central fixed point. First the unstable orbit is absorbedare unstable. There is, however, a not-too-unstable period-3
andt, loses stability, then the stable orbit is absorbedgnd orbit S;,°> which is most accessible to the tunneling electrons.
restabilizes. The whole process represents a period-2 bifur- (g) p=17.8, where the orbit, restabilizes by another
cation of the orbit,,. period-2 bifurcation.



3916 MONTEIRO, DELANDE, FISHER, AND BOEBINGER 56

(h) p=22.6, where the orbit, is centered on a small depends strongly on, . This is especially important at bi-
stable island giving another period-1 contribution. furcations where two or more orbits of similar action are

Clearly the SOS also show many other smaller dynamicaborn together, then move apart @ss varied.
structures and bifurcations. The classical dynamics has struc- We solved both these equations to obtain eigenvalues of
ture on infinitely fine scales but only bifurcating structuresthe infinite well, by expanding the eigenfunction in a basis of
comparable to phase space of ared should be important harmonic-oscillator states iz coordinates and functions
in the analysis of the experiment. F.(x) which can be either plane waves or Gegenbauer poly-

nomials in thex coordinate:
IV. QUANTUM DYNAMICS AT 11°

We have investigated two types of quantum spectra: lﬁi(X,Z):; AnFr(X)H (2)exp( —Bco9z?/2).  (7)
(1) A fixed B, fixed R spectrum '

The current is then obtained by a sum of eigenstates
— = 2|y =2, weighted by their respective tunneling probabiliti¥ :
(XSiNG=2CoK)" | i =Vi(R+X)L%4);. henceI(V)=ZiWi25(V—Vi) for the |-V characteristics or
(5) I(B)==;W?8(B—B;) for a scaled spectrum. A model for
the W; is described below.

1 L2B)?
2m 2m

HereX=x/L andZ=z/L. The eigenvalud/; is the voltage
drop across the well. This corresponds closely to the experi-
mentall -V traces, since the® is kept fixed, while the volt-

age is tuned from 0-1 VR being kept approximately con-  For the RTD in tilted fields, the Bardeen transfer Hamil-
stant; here we us¥=FL. The proportionality oV andF  tonjan formalisnf although a weak tunneling approxima-
has been established experimentally, SO taklﬁgFL is not tion, has been shown to give good agreement with
an unreasonable approximation at this point in the discusexperimenf A full Bardeen type calculation requires de-
sion. In the experimentd, =120 nm andR=0.15? This  tailed knowledge of the barrier heights and widths. However,
model avoids the usual requirement for separate solutions ¢f we are only interested in theelative intensities of the
the Hamiltonian for each change in voltage as, e.g., in Ref. 6periodic orbit oscillations, we can show that the barrier shape

V. TUNNELING MODEL

(2) A fixed R, fixed p spectrum is unimportant and the periodic orbit oscillations are quanti-
2 1 tatively determined by the classical dynamics of the infinite
Xsind—zcosH)’— —(X+R) | h = =5 V2. well.
( ) p( )| ¥ (BiL?) Vi Below we (1) introduce a simple tunneling weight in

(6)  terms of the form of the wavefunction for the infinite well,
In this case, thégeneralizedl eigenvaluess, are the mag- and(2) demonstrate by a theoretical argument and by direct

netic field values. Because of the classical scaling, all statés2mparisons with the Bardeen treatment, that, to within a

correspond to the same classical dynamics. The classical a?rl_obal scaling factor, the amplitudes of oscillations obtained

. . ~ ~ om our model are proportional to the usual Bardeen treat-
tion along a trajectoryS=[pdq becomesS=BL?[pdq u proport Lsu

—BL2S(R. p), which implies that BL?) plays the role of an vr\r/]fj?rt] provided the well width is large relative to the barrier

effective Planck constarit™'=BL?. Hence, in the semiclas-
sical limit, the effect of classical orbits appears in the SP€CHne side of a barrier of finite height betwegr —a and

trum (plqtted as a function oB, sincel is a constan)tas x=0 to the other within the Bardeen formali&iis
modulations of constant frequency. These modulations can

be revealed by a Fourier transform of the spectrum carried 2

out with respect t®L? as peaks at the actions of the relevant P(E)= 72 IMi[?S(E~E;) (8)
classical orbits. Our Fourier transforms of the cé®espec-

tra were carried out with respect to principal quantum num-and so is given in terms of a matrix elemevi{ weighting
ber N=BL?\/(2R+1)/p/ = rather thanB sinceNxB; the the density of final states of ener@y. For weak tunneling,
units for the scaled actior&R,p) are then more convenient Where separation of the solutions is allowable, Mg are
since the simplest traversing orlitrepresents a peak in the obtained in terms oy, the solution valid to the left at=0
Fourier transform close to action 1; period doubling gives aand #; the quantum solution for the eigenstates of the well
peak near 2. Physicallyy roughly represents the number of and valid forx>—a :

oscillations along of the wave function.

The other very important quantum number is the number :i
of lateral oscillationsn, (i.e., in thez dimension in the ' 2m
ergodic wave functiorfone which fills the allowed energy
surface. n, is roughly the number of Landau states sup-This matrix element can be evaluated for angnd is inde-
ported by the energy surface on the emitterpendent ofx, provided —a<x,=<O0. But M; can be evalu-
n.=BL%(2R+1)/2p; it determines the minimum area a ated arbitrarily close t&a=0. The tunneling electrons outside
classical phase-space struct(sach as for example an island the well are mostly confined to the lowdst 0 Landau state.
of stability) must occupy on the SOS in order to be experi-This quantum number is conserved so only ltké compo-
mentally significant. Hence the ability to resolve contribu-nent of the well contributes, providdd-0 states are negli-
tions from periodic orbits of similar action in the experiment gibly populated. The initial state should be slightly displaced

The transition probability for transfer of an electron from

i ox dio- 9

X=X|~.J

R
0 Hx




56 BIFURCATIONS AND THE TRANSITION TO CHAOSN . .. 3917

relative to the origin to allow for the mean distance between
the 2DEG and=0. However at 11° this correction is neg-
ligible.

In the infinite barrier case, very close to the walls and
hence to its nodef,(x) take a form linear irx, while the Expt 7T C\ b
derivatives are constant for both Gegenbauer polynomials o e d
plane waves; e.g., for a plane-wave baslks,(J)
=sinnmwdL=nwdL, and similarlydy; /ox=nx/L.

We introduce a weightint_Wi2 for each eigenstate which
we calculate from Eq(9), but using the solutions of the |nf We" \
infinite well:

Expt OT

Fin well

nar
Wi=20 T-Ani=o- (10

Below, we show thaW;=<M;. One method for calculat-
ing M, is to solve for the eigenstates of well of widthwith
finite barriers of widthd contained inside a larger infinite
well (with infinite barriers atx=0 andx=L+2d) with the
requirement thatl should exceed the penetration length of
the wavefunction in the barriers.

For the system described above for a finite barrier of
height U,, but where Uy,>E, the perturbation to the
Ji(x=¢€,z) and tody; /ox(x=¢€) is smooth and weak rela-

Infinite well

Intensity (arb. units)

il

tive to the 1200 A infinite well. Here may be small but is Finite well

not too close to the node at=0 andx=1200 A of the ' : :
infinite well. Other than very close to the emitter where the 0.2 0.4 0.6 0.8
infinite barrier wave function has a node, the eigenstates ar Voltage (Volts)

only weakly perturbed. _
Now we consider first the Bardeen matrix element with ~ FIG. 2. Experimental -V traces at 0 and 7 T andV spectra

the correci(finite barriey boundary conditions, taken with an calculated aB=6 T showing successively the different classical
exponentially decaying function from the left: regimes. The letters indicate the different dynamical regimes seen

o=G(E)exp(1x), where  y=+2m(U,—E) and |tn the experlmer;t.and sfhlownhm Fltg. Cbz andf(l:t)% toLgfs quz?ntlza-
k:m For the high barrier casgsk, ¢ = C(E)exp(x) ion; (c) symmetric profile characteristic of the bifurca iqar-
for x<0 .andw C(E)[1+ x+O(x2)],f0|r X=>0 rowed; (d) left-asymmetric profile below bifurcation(e) ghost.

=V i = Y .

: L The theoretical spectra at 6 T show both the results of our model
C(E) and G(E) are slowly-varying (non-oscillating  (infinite well) as well as results using the Bardeen transfer Hamil-

functions of energy. Evaluating the matrix element correctlyyynian formalism. Both the theoretical stick spectra and the finite
within the barrier, we obtain resolution spectra are shown.

Mgardeer= 2YC(E)G(E), (1) a Bardeen calculation with a barrier of heighV and width
d=100 a.u. of the emitter wall. The finite-barrier spectra
ehave been rescaled by a constant factor. The finite and infi-
nite barrier spectra are remarkably similar, especially in the

k inf case of the smoothed spectra. The main differences are in the
x>0. But since i;(e)=yi"(e), we expect thatyC(E) smooth nonoscillatory envelope and in a small shift in volt-
=a(E). . age: in the finite barrier case, the electrons are accelerated by

. We now evaluate Eq.9_), but at a poink= + §<e, out- Qr[.!;e field over the extra distance through the barrier, and enter
side but close _to the barrier and hence close to the node e well with a correspondingly higher injection energy. For
the wavefunction, i.e., the purposes of comparison, the shift in voltag¥ d/L has
o - been added to the unsmoothed spectra, but not to the
Mint=a(E)G(E) =M sargech2- (12 smoothed spectra. Some individual states near avoided cross-

But from our solutions of the infinite well problem, we ings are sensitive to the small perturbation resulting from the

which is independent af for x<0.
We now consider the correct boundary conditions for th

infinite well: =0 for x<0, andy!" = a(E)x+ O(x%) for

have a(E) =3 ,(n7/L)Ay_o. So then we have slight change in injection energy and in the effective width
of the well. This is especially the case in the chaotic regime.

nm M Bardeen However, the small perturbation leads to mixing between

WiZEn: TAnI=0: 2G(E) - (13 neighboring levels and hence to a simple redistribution of

tunneling probability between close neighbors, so the
Hence to within an overall non-oscillatory envelope, depensmoothed spectra are unaffected. But even the unsmoothed
dent on the initial state, our model weighting is proportionalspectra is seen to be in quite good agreement with the
to the correct Bardeen matrix element. Bardeen calculation. This model is not appropriate for nar-
In Fig. 2, we show a comparison between our model andow well experiments where=d. In that case the perturba-
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tion to individual levels due to the change in effective width
of the well is substantial; also, the drift tersrd/L=V.

We have also compared our model with another com-
pletely different experimentwhere abrupt period-doubling h t 81
of the current oscillations were observed in individuigV
traces. For that system, an applied voltagéJef0.4 V cor-
responds to a voltage drop across the device of abol
V=0.25V, so we scaled oW by a factor of 1.5. Our cal-
culations reproduced the period-doubling observed a
U=0.35V as well as other features.

The effects of band nonparabolicity are sometimes cor-
rected for by means of a voltage dependence of the effectiv
massm=m(V).% We have not explicitly done this but the
dynamics depends only on the produfV)V, so any in-
crease in the effective mass will manifest itself in a propor- FIG. 3. (a) Shape in thex-z plane of the most important orbits
tionate reduction in the calculated eigenvalje One would  showing the stable/unstable pair involved in the period doubling
then simply need to rescale theaxis appropriately. Hence bifurcation 2y, and 2 ; thet, andt, orbits which annihilate, leav-
the 1-V patterns and scaled spectra may be distorted at highig @ ghost; and the&, orbit mostly responsible for the second
Voltages(stretched Ol)tlf mis |ncreas|ng but any basic pe- pel’iod doubllng(b) FO.urier tl’ar.leOl’mS of the}uantum density of
riod doubling patterns will be unchanged. states and tht_a tgnnellr_wg density t@#l_l.zs. All the pea}ks corre-

The tunneling current has a large smooth contribution gyspond to periodic orbits of t'he classical system. Whlle ther_e are
perposed on thée-V oscillations. This mirrors periodic-orbit P/€nty of peaks for the density of states, the tunneling density se-
theory where descriptions of the spectra have a smoot cts only traversing _orblts bouncing on the collector nearo,
(Weyl) term plus periodic orbit oscillations. In the experi- eresS; and its repetitions.
ments in Refs. 3 and 6, this smooth background is s“péigenstate thé

pressed by differentiating the current; In the Bell Lab 5 shown in the next sectioffFig. 3), we find it more con-
experiments;?> the background was simply subtracted.venient to show a “normalized” currentI(V)/N2. Then
Hence in the calculations shown in Fig. 2, which are COMPash o normalized current foB=0 T corresponds to a set of
rable with Bell Lab data, we have subtracted the nonoscilla: eriod-one oscillations all of equal height.

tory background. This procedure has the advantage of prep- In sum, Fig. 2 shows that especially for the smoothed

ser.ving the_Iine profilegto within e_x_perimental resolgtion spectra there is excellent agreement between our model and
which, as discussed below, are critical in our analysis. the Bardeen transfer Hamiltonian formalism to within the

Sr(]),da_lthough .the” lmple.mhe?tatlond ththe fuI(Ij dBardeenenvelopeG(E). The one minor difference is a small voltage
E]et od 1S numgrllcz; y straig torvx;]ar w Mb lan ) allreh shift =Vd/L due to the additional acceleration of the elec-
nown, our model demonstrates that a semiclassical theory ¢ i the finite barrier. For the stick spectra this shift was

based on the hard-wall scattering periodic orbits will give ag 4o tod for the purposes of comparison
guantitative description of the observed oscillations. The de- Figure 2 also shows that ourV spectra.reproduce the

tails of the tunneling represent a smooth envelope Wh'.ChdetaiIed line shapes seen in the experiment corresponding to

like the Weyl term of periodic-orbit theory, may be elimi- ;g cossion of different classical regimes. These are dis-
nated as discussed below. We have neglected the COHeCteﬁssed in detail below

barrier in this instance, since we find that it does not exert a
strong selective effect on the periodic orbits as they all reach
the collector at high speed.

In Fig. 2, we show also experimentaV traces’ Experi-
mental resolution is limited by the lifetime for phonon emis-  We can now use ouscaledspectra to demonstrate how
sion; also, there is a voltage dependence in the spectral linseriodic orbits contribute differently to the density of states
width due to coupling to the continuum &stV approaches and the tunneling density. Only a few periodic orbits contrib-
=Uy. This is seen in thé-V trace forB=0 in Fig. 2. ute to the tunneling density. For example, Fig. 3 shows a

At B=0, the oscillations are due to one stable straight+ourier transform of the density of states and another of the
line periodic orbit only, so changes in the line widths andtunneling current. The horizontal axis then shows peaks at
amplitudes are not due to the classical dynamics, but rathehe scaled actions of the important periodic orbits. While the
to the tunneling. Hence we use here Bie 0 |-V traces to  density of states itself contains plenty of modulations at vari-
estimate the voltage dependence of the width. The observeslis frequencies—appearing as numerous peaks in its Fourier
width increases from 14 mV at 0.5 V to 24-mV at 1 V. transform—the tunneling density at thishas a much sim-
We have therefore convolved the calculated spectra in Figpler structure dominated by tH# orbit and its repetitions.

2 by a Gaussian egp(V,—V)¥2w?] with w=0.003 In Fig. 4, we show severalcaledspectra for fixed?, p in
+0.002(v/0.5)*, giving similar widths as a function of.  the range of experimental interest. Each corresponds to a
The letters on th&=7 T curves label the different classical particular classical regime illustrated in Fig. 1, identified by
regimes shown in the SOS in Fig. 1. Both our model and thehe letters(a) to (h). These may be also compared with the
Bardeen matrix element involve a smoothly increashiigy  experimental traces in Fig. 2, which show a similar sequence
tunneling envelope, present even B0 T since in a given of line profiles.

z

2 4 0 2 4
Scaled action Scaled action
Density of states Tunneling density

|Fourier Transforml|?

1 are peaked about=N. Hence in the spec-

VI. QUANTUM RESULTS AND COMPARISON
WITH EXPERIMENT
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c p=26 tobifurcation g p=17.8 to bifurcation 2 1
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d p=3.4 below bifurcation hp=22.6 period one 0

NN NN

25 30 N 25 30 N 35 0.8 -

~~
FIG. 4. Numerically calculated tunneling density spectra dis- \>./O.6 .
playing the characteristic line profiles corresponding to the differeni gy ]
classical regimes shown in Fig. 1. The spectra were obtained ¢ D4

fixed scaled fieldfixed classical dynamigdaking into accountthe 4=
experimental finite resolution. O 0.2
> .

We can now understand the origin of both period-
doubling regions observed in Refs. 1 and 2 as well as th
region in between. At lowp—spectral regior{a)—the only
short orbit of importance it,, a two-bounce orbit which at  (a)
=0 is a straight line, but which in general winds about the
B field; see Fig. 3. The shorter one-bounce orbits do no
contribute to the tunneling.

In regions (a) and (b), ty is stable and surrounded by
regular invariant tori. For an isolated stable otbitentered
on a large elliptic island, a sum over traversals of the orbit ~
will resolve discrete states, in fact series of harmonic- ©
oscillator-like  levels with  quantization condition
8 SI2mh —k— (K + 3) v/2m— ul4] wherek represents quan-
tization along the orbit andl perpendicular to the orbit; is
the winding number of the orbit ang its Maslov index.
States characterized ig=0 are localized on the elliptic
fixed point; states with highef are localized on concentric
tori. Tunneling in regionga) and (b) is dominated by the 0.2
K=0 and the weakek =1 series. This produces a pattern of
two series which are stifjeriod-1but are out of phase by. (b) 4 B (Tes|a) 12
The characteristic right-asymmetric profile is seen in the ex:
periment(Fig. 2; see also Fig.)5

As p increasest, moves toward its 2:1 resonandat

0.0

Voltag

FIG. 5. (a) Comparison between experiment and period-

_ . . . . . _doubling amplitudesa, (broken ling represents the amplitude for
p=2.6), where two successive period-doubling blfurcatlonsthe peak in the Fourier transform of the unweighted density of

take place as the stable/unst'able pair O,f orbits is al:)So'ibe‘j:states near twice the action gf A,/A; is the ratio for the second
tends tor and the SpECtmm IS tTU'Y pe”_o_d doubled. The 2:]'and first traversals df, in the tunneling densitydensity of states
resonance—spectrufe)—is easily identified by a symmet- \aighted by tunneling probability The amplitudes are functions of
ric profile, both in the calculations and the experiment. This, pyt have been plotted on nonlinear scales to correspond to the
provides an important check on the experimental parametergaranolic curves of constapt(at the values used in Fig) bverlaid
since the symmetric profiles may be used to pinpoint theyn the experimental results. The two period-doubling regions ex-
approximate locus o= 2.6 curve. The observed symmetric perimentally observed correspond to maximaAgf/A,. The first
profile in fact is slightly displaced, following roughly the one is associated with bifurcations tf, while the second corre-
linear locus V=0.11B—-0.27 and deviating visibly from a sponds to a maximum contribution of the or8it. (b) Density plot
parabola at high voltageB(in T, V in V). Below the bifur-  of the calculated current, taking into account the finite experimental
cation, t, restabilizes and torus quantization yields a left-resolution and its variation with the voltage which may be com-
asymmetric profile[region (d)] since theK=1 torus now pared with the experiment shown {a). The very good agreement
dominates the current ari=0 is weaker. between the two suggests that the approximation used for the tun-
With increasingp, the stable island corresponding tip neling density catches the essential part of the physics.
progressively shrinks until; merges with an unstable two-
bounce orbitt, in a tangent bifurcation gt=5.2. This rep- gible harmonics, so the characteristic regien profile is a
resents a new bifurcation region, not previously identifiedweak period-1 near-sinusoidal modulation, noticeably
and is especially interesting since it leaves a ‘“ghost”broader than the experimental broadening width. In contrast
contributior? for p>5.2 which decays with distance from the a not too unstable orbit with significant harmonics produces
bifurcation. In this regime the spectrufsee Fig. 2, region a Lorentzian profile. A stable orbit yields sharp peaks, as
(e)] is characteristic of unstable motion, with periodic level shown in Fig. 2, since its quantization, as explained above,
clustering rather than discrete states. The ghost has neglroduces discrete states. The experimental traces in Fig. 2
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are consistent with this interpretation as may be seen bgboutp=12.5, with a very much weaker tail aboye=17
comparing experimental profiles for the ghost\Va+0.2 at  due to 2,. Hence the second period-doubling region is not
B=7 T with the correspondind=0 T profiles nearV  related to a bifurcation dfy,, but rather to a local maximum
=0.2 V. of the contribution ofS; to the tunneling density when this
The region betweerte) and (f) corresponds to a fully orbit’s injection point is favorably fed by electrons from the
chaotic surface of section at=0: all orbits which can con- ground Landau state.
tribute to tunneling are unstable. Both period-1 and period-2 This changeover between period-1 tunneling dukg tand
oscillations are quite weak; the experiments do show somhigher frequency oscillations due ®type orbits was ob-
irregularity within this range, just before the second periodserved in experiments carried out by Fromheidal® for
doubling. Thet, fixed point reappears at=7.1. It stabilizes  scaled fieldsp=17 for 6>15° but with/R=0.2-0.25. So it
and bifurcates again gi=18.3. Finally atp=22.6, it has seems likely that the second period doubling here is of simi-
restabilized, and the modulation is once again periddel lar origin, with a small contribution due to the bifurcation of
gime (h)]. to. Finally, Fig. §b) shows the global spectrum of the tun-
However, the period doubling in the spectrum experimen-neling density in the range&T—12 T,0.2—1 Y obtained. The
tally (and numerically observed neap=11 has a different density of the plot represents the computed curfefack
origin. This can beunambiguouslydetermined from our regions correspond to low current, white regions to high cur-
scaled quantum calculations. Indeed, the dominant peak ireny. We takeV=FL. Remarkably, the figure reproduces
the Fourier transform occurs at the action§f(2.019, not  the essential features of the experimprampare with Fig.
at the action of 2, (2.032. 5(a)]: the first period-doubling region aroun@ T,0.55 V),
To permit comparisons between semiclassical amplitudethe irregularity before the second period-doubling and the
and tunneling characteristics, we have superimposed in Figeecond period-doubling arourdil T,0.4 \). At low voltage,
5(a) lines of constant scaled field on the experimental resultsthe period doubling is not visible because successive peaks
We have also plotted the amplitude of the period-2 modu- overlap. At high voltage, we also observe that the first
lation (peak nearest the second traversaifior thedensity  period-doubling tends to be less and less visible: this is due
of states(broken ling as well as the ratio of the second and to the loss of resolution at high voltage.
first traversalA,/A; for the tunneling density(solid line).
The latter gives an indication of the range where the period VIl. CONCLUSION
doubling is visible. The amplitudes were obtained from

Fourier-transformed calculated spectra spanning the experi- There are of course significant uncertainties in the precise
mental voltage range values of the experimental parameters. The valuas ahd

For the first period doubling, shows a profile consistent R can drift as a function of voltage. The applied voltages

with two back-to-back bifurcations, with exponential decayn°t €xactly equal t&L. This is only of minor importance. It
above about 1.5 and 2.6. The peak amplitudes occur slightrI}}an only slightly and smoothly distort the plot in Figh
above the bifurcation points, as expected, at about 1.6 anlf:» displace the period-doubling regions, but not affect their
2.4, respectively, and the oscillating region above the wweEXistence. The shape of the line profiles prowdes_ a valuable
bifurcations oveRlaps and interferes. However the tunnelingeck on these parameters: e.g., the observation that the

density shows that the first bifurcation is unimportant for theSYmmetric bifurcation profile tends to follow a linear rather
tunneling: the strong maximum at 1.6 is completely elimi- than a parabolic locus at higher voltages may be due partly to

nated since at that point the bifurcated orbits translate int@" increase in effective mass with voltage. The calculations
amplitude in high Landau states. THe/A, curve is in presented here reproduce the Qetalled featu_res of the experi-
much better agreement with the experimental results. ments. We ponclude that_ our S|mp_le d.ynam|cal modgls, us-
For the second period-doubling regiaa, shows a small ing a tunneling model which is device independent—it does
maximum at aboufp=17, just above the period doubling not depend on the barrier shapes, heights or details of the

bifurcation of thet, orbit. This bifurcation is much narrower t“”r.‘e'if‘g—perm“ a quantitative analysis of periodic orbit
than the one at 2.6 and has a weaker maximum.pBet1, oscillations observed in the RTD.

a, is dominated by the amplitude &; (whereS; and %, We thank P. Dando and J. Zakrzewski for helpful discus-
may be resolved in the Fourier transform, amdrepresents sions. T.S.M. acknowledges funding from EPSRC and
the amplitude of the largest pealhe results show that the thanks the Institute Henri PoincaireParis for its hospitality.
amplitude ofS,; at aboufp=11 is of the same order as that of CPU time has been provided by IDRIS. Laboratoire Kastler-
2t,. However the injection point o, is far more favorable Brossel, de I'Ecole Normale Supeure et de I'Universite
to tunneling, and the tunneling density shows a drastic inPierre et Marie Curie, is unitassocie 18 du CNRS. A.J.F.
crease in the period-doubled amplitude du&fppeaking at  acknowledges funding from EPSRC.
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