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Bifurcations and the transition to chaos in the resonant-tunneling diode
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Recent experiments by Mulleret al. @Phys. Rev. Lett.75, 2875 ~1995!# and Boebingeret al. @Surf. Sci.
361-362, 742 ~1996!# investigated the transition to chaos and the effects of bifurcations on the magnetotun-
neling spectrum of a quantum well in tilted fields. We introduce a computationally efficient model for the
device which successfully reproduces the main features of the experiments. We find that a number of separate
dynamical regimes in the experiment atu511° are each characterized by a distinctive experimental spectral
profile. We use this signature to identify a period doubling resonance and tangent bifurcation but find that the
second observed period doubling in the tunneling current is not due to a bifurcation.@S0163-1829~97!01331-3#
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I. INTRODUCTION

The problem of a resonant tunnelling diode~RTD! in
tilted electric and magnetic fields has attracted much rec
interest1–5 as a probe of the manifestations of classical ch
in a mesoscopic quantum system. But to date, to our kno
edge, it has not been demonstrated whether the experim
are amenable toquantitativeanalysis within the framework
of periodic orbit theory. However,I -V characteristics have
recently been calculated and compared with experiment.6

In the experiments,1–3 spectral oscillations were found t
be subject to abrupt increases in frequency. In Refs. 1 an
at tilt angle u511°, two period doublings were observe
over a limited range of magnetic fields followed by a retu
to period-1 oscillations. The experiments in Ref. 3 were
terpreted in terms of the accessibility of specific classi
orbits to electrons tunneling in from the two-dimension
electron gas~2DEG! on the left of the emitter barrier. Th
experiments in Refs. 1 and 2, on the other hand, were in
preted as bifurcations1,2,4 of the main traversing orbit (t0, a
two-bounce orbit! with the orbit intermittently losing, then
recovering, stability as a precursor to fully chaotic dynami

A complete analysis within the framework of periodic o
bit theory must simultaneously consider these two sepa
factors: a! a weighting for the accessibility of dynamica
structures like periodic orbits to electrons tunneling in fro
the 2DEG adjacent to the emitter wall and b! another weight-
ing by the stability parameters of the classical motion. T
experiments in Refs. 1 and 2 by investigating specifically
bifurcations, were more directly concerned with changes
the classical stability.

The archetypal dynamical system used to study chao
conservative systems with two degrees of freedom ha
560163-1829/97/56~7!/3913~9!/$10.00
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date been the hydrogen atom in a magnetic field.7 The major
reason why this atomic system has proved such a powe
probe of quantum chaos is that it has a scaling prope
which facilitates detailed quantitative comparisons with t
chaotic classical motion. In other words one may ‘‘invert’’
properly calculated scaled spectrum, by means of a Fou
transform, in order to estimate the stability parameters
amplitudes of the individual periodic-orbit oscillations.

Here we introduce two separate quantum-scaled mo
for the tunneling current which enable us to extract inform
tion concerning the stability and accessibility simultaneou
from the amplitudes of the oscillations of the current. W
also introduce a model for the current which shows that
within a global, energy-dependent envelope which is not
cillatory, the periodic orbit amplitudes are quantitatively o
tained from the dynamics of an infinite well. We show b
formal methods and by direct numerical comparison tha
within this global envelope the model is proportional to t
usual weak tunneling model.8 Hence we demonstrate that th
detailed shape of the barriers is dynamically unimportant

We show that different dynamical regimes have a char
teristic spectral line profile in the experiments at tilt angles
u511° in Refs. 1 and 2. We show that the first perio
doubling region is due to a bifurcation, but the second on
not. Most interestingly we show that in between the tw
period-doubling regions there is a further bifurcation givi
rise to a ‘‘ghost’’: a contribution from a complex periodi
orbit.9 This regime is identifiable by a broad, weak sinusoid
oscillation. To date, to our knowledge, there have been
experimental studies of the characteristics of ghosts, sinc
the analogous atomic systems they are generally swam
by other contributions. They have, however, received con
erable theoretical attention.
3913 © 1997 The American Physical Society
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II. QUANTUM CHAOLOGY, PERIODIC ORBITS, AND
OSCILLATIONS IN THE TUNNELING CURRENT

The literature on the quantum manifestations of class
chaos is already substantial.10 For energy-conserving Hamil
tonian systems, the most powerful theoretical framework
Gutzwiller’s periodic orbit theory, which shows that where
quantum system has a chaotic classical limit, this manife
itself in a rich and subtle way in the quantum spectrum
spite the fact that the quantum system shows no chaos in
sense of exponential sensitivity to perturbations.

Periodic orbit theory starts from a formulation of quantu
theory as a sum over paths, each associated with a p
equal to the classical action divided by\. In the semiclassi-
cal regime\→0, i.e., where the actionS is large in com-
parison with\, the interferences between the various pa
are mainly destructive, except in the vicinity of trajectori
where the action is stationary, which selects the class
trajectories. In the chaotic limit, the typical trajectory will b
one from among an infinite sea of chaotic trajectories. Th
are periodic orbits but these are isolated and of measure z

When he tried to calculate a quantum spectrum~the den-
sity of states! in the chaotic regime, Gutzwiller found that th
stationary-phase approximation produces oscillatory con
butions from these isolated periodic orbits. The result of t
work was the Gutzwiller trace formula. The density of sta
N(E) is given by the trace of an energy Green’s functi
G(q,q8,E) for a path connecting two pointsq,q8:

N~E!5(
i

d~E2Ei !52
1

p
ImTrG. ~1!

Then, in the limit\→0,

N~E!5Nav~E!1Nosc~E!. ~2!

The formula gives the spectrum as a sum of oscillatory c
tributionsNosc(E) from periodic orbits plus a smooth back
ground termNav, called the Weyl term:

Nosc~E!5Im(
n

Tn

p\(
j

expF i j S Sn~E!

\
2mn

p

2 D G
udet~Mn

j 2I !u1/2 . ~3!

Sn is the action of thenth orbit, Tn its period. The index
j refers to the number of traversals of the orbit.mn is an
additional phase, the Maslov index, andMn is the stability
matrix of the unstable orbit. Detailed explanations may
found in Ref. 10.

Most notably, the trace formula relates thequantumspec-
trum to a whollyclassicalentity, the classical stability ma
trix Mn . Its largest eigenvalue is exp(lT), where the expo-
nentl for an unstable orbit is the Liapunov exponent, whi
quantifies the exponential divergence of nearby trajector
the characteristic signature of chaotic classical motion.

In the Gutzwiller formula, the amplitude of the contribu
tion from a given unstable periodic orbit is in effect dete
mined by this Liapunov exponent. So, although the quan
system exhibits no chaos in itself, the trace formula draw
beautiful connection between the quantum spectrum and
parameters of the unstable classical motion. The formula
al
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applies to isolated stable orbits; for a stable orbit, the eig
values are complex quantitiesinT, the winding angles of the
periodic orbit.

A further challenge was in translating this framework
an experimental situation. The Gutzwiller trace formu
yields the quantum density of states, from TrG. Typical ex-
periments, however, investigated a spectrum weighted
some matrix element. Semiclassically, a quantity like TrGA
would typically be involved, whereA is some operator rep
resenting the appropriate observable. For the RTD,
would involve the current operator which brings in the ad
tional relevant information, beyond the orbital stability, r
garding tunneling propensities, in other words the access
ity of a given periodic orbit.

It is this experimental behavior that we seek to analyze
this work, by means of scaled quantum calculations, rat
than the Gutzwiller formula itself. The semiclassical amp
tudes are extracted from a quantum spectrum by means
Fourier transform which subtracts smooth nonoscillato
contributions. This calculation is a precursor to a full ana
sis with a semiclassical theory.

A number of interesting questions may be addressed
an appropriate quantum calculation: In particular we wish
know where the standard periodic orbit theory fails. O
well-known instance is at bifurcations. There, the weighti
by the stability matrix becomes infinite, and the periodic o
bit theory must be corrected appropriately.11 Similarly,
ghosts are beyond the standard semiclassical theory w
gives them zero amplitude. Conclusive experimental e
dence for a ghost would be a desirable objective.

III. CLASSICAL DYNAMICS AT 11°

The RTD problem comprises a quantum well with wa
at x50 andx5L, acted on by an electric fieldF along thex
axis ~directed toward negativex) and a magnetic field of
strengthB, tilted at an angleu to 2F in the x-z plane. The
classical Hamiltonian is3,4

H5E5
1

2m
~px

21pz
2!1

B2e2

2m
~xsinu2zcosu!22eFx.

~4!

Below we use atomic units. Thene511 andm.0.067. The
scaling properties of this system have been investigated
E50,4 and for generalE but constantL.5 By rescaling mo-
menta, i.e.,p̃5p/LB and q̃5q/L, one can show that, mos
generally, the classical dynamics depends on the scaled
ergy R5E/FL as well as a scaled fieldr5L/me ~where
e5F/B2) with no separate dependence on the other par
eters exceptu. These dimensionless parameters represent
ratio of respectively the injection energy and the diamagn
energy inside the well to the potential energy due to the b
voltage.

In Fig. 1, we show Poincare surfaces of section~SOS! for
the classical motion at four consecutive values ofr which
span the experiment. These are obtained by taking a ‘‘slic
of phase space atx50 and plotting a point whenever a cla
sical trajectory intersects that surface. We have selected e
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FIG. 1. Classical Poincare´ surfaces of section
~SOS! on thez,pz plane calculated at the emitte
x50 for eight distinct classical regimes. Fo
comparison, the magnetic field~in T! correspond-
ing to V50.5 V is shown.~a! Stable period-1
island ~b! above bifurcation: period-2 island
chain (2te and 2th) approaches the center~c!
Period-2 bifurcation d! period-1~e! stable orbitt0

approaches unstable orbitt2 prior to tangent bi-
furcation and appearance of ghost~f! unstable
period-2 orbit S1 most accessible to tunnelin
electrons~g! period-2 bifurcation~h! t0 restabi-
lizes. Note the change in scale for~g! and ~h!.
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separate classical regimes corresponding to differentr, in-
dexed by the letters~a! to ~h!:

We discuss these further below, but in brief, Fig. 1 sho
the following:

~a! r51.8, where the dynamics is dominated by a lar
stable island, centered on a stable two-bounce period-1 p
odic orbit ~the t0 orbit in Ref. 5!. This is perhaps the key
periodic orbit of the RTD problem, since it is predominant
the experiments for low fields.3,5

~b! r52.3, where an ‘‘island chain,’’ in other words
pair of periodic orbits of double the period, approaches
central fixed point oft0. The stable orbit~elliptic fixed point!
is indicated as 2te . The unstable one~hyperbolic fixed point!
is denoted by 2th .

~c! r52.6, where the stable/unstable pair is absorbed
the central fixed point. First the unstable orbit is absorb
andt0 loses stability, then the stable orbit is absorbed andt0
restabilizes. The whole process represents a period-2 b
cation of the orbitt0.
s

e
ri-

e

at
,

r-

~d! r53.4, wheret0 has restabilized once again and the
is once again a period-1 stable island.

~e! r54.8, wheret0 prepares for what is called a tange
bifurcation where it annihilates with a different, unstab
two-bounce orbit referred to below ast2. In the SOS the
fixed points of the orbits~arrowed! approach each other
Whent0 andt2 have annihilated~this occurs atr55.2) there
will be no real period-1 periodic orbit, hence no correspon
ing contribution to the Gutzwiller trace formula. Howeve
there exist two complex ‘‘ghost’’ periodic orbits which ar
periodic solutions of the classical equations of motion, bu
a complexified phase space. These periodic orbits are b
from the real period-1 orbits at the bifurcation; they w
appear in the quantum spectrum as contributions which
cay exponentially as\→0. These are the ghosts.

~f! r511.3 where all the orbits reaching the emitter w
are unstable. There is, however, a not-too-unstable perio
orbit S1,5 which is most accessible to the tunneling electro

~g! r517.8, where the orbitt0 restabilizes by anothe
period-2 bifurcation.
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~h! r522.6, where the orbitt0 is centered on a sma
stable island giving another period-1 contribution.

Clearly the SOS also show many other smaller dynam
structures and bifurcations. The classical dynamics has s
ture on infinitely fine scales but only bifurcating structur
comparable to phase space of area.\ should be important
in the analysis of the experiment.

IV. QUANTUM DYNAMICS AT 11°

We have investigated two types of quantum spectra:
~1! A fixed B, fixedR spectrum

S 2
1

2m
¹21

~L2B!2

2m
~ x̃sinu2 z̃cosu!2Dc i5Vi~R1 x̃ !L2c i .

~5!

Here x̃5x/L and z̃5z/L. The eigenvalueVi is the voltage
drop across the well. This corresponds closely to the exp
mentalI -V traces, since thereB is kept fixed, while the volt-
age is tuned from 0–1 V,R being kept approximately con
stant; here we useV.FL. The proportionality ofV and F
has been established experimentally, so takingV.FL is not
an unreasonable approximation at this point in the disc
sion. In the experiments,L5120 nm andR.0.15.2 This
model avoids the usual requirement for separate solution
the Hamiltonian for each change in voltage as, e.g., in Re

~2! A fixed R, fixed r spectrum

S ~ x̃sinu2 z̃cosu!22
2

r
~ x̃1R! Dc i 5

1

~BiL
2!2 ¹2c i .

~6!

In this case, the~generalized! eigenvaluesBi are the mag-
netic field values. Because of the classical scaling, all st
correspond to the same classical dynamics. The classica
tion along a trajectoryS5*pdq becomesS5BL2* p̃d q̃
5BL2S(R,r), which implies that (BL2) plays the role of an
effective Planck constant\21.BL2. Hence, in the semiclas
sical limit, the effect of classical orbits appears in the sp
trum ~plotted as a function ofB, sinceL is a constant! as
modulations of constant frequency. These modulations
be revealed by a Fourier transform of the spectrum car
out with respect toBL2 as peaks at the actions of the releva
classical orbits. Our Fourier transforms of the case~2! spec-
tra were carried out with respect to principal quantum nu
ber N5BL2A(2R11)/r/p rather thanB sinceN}B; the
units for the scaled actionsS(R,r) are then more convenien
since the simplest traversing orbitt0 represents a peak in th
Fourier transform close to action 1; period doubling give
peak near 2. Physically,N roughly represents the number
oscillations alongx of the wave function.

The other very important quantum number is the num
of lateral oscillationsnL ~i.e., in the z dimension! in the
ergodic wave function~one which fills the allowed energ
surface!. nL is roughly the number of Landau states su
ported by the energy surface on the emit
nL.BL2(2R11)/2r; it determines the minimum area
classical phase-space structure~such as for example an islan
of stability! must occupy on the SOS in order to be expe
mentally significant. Hence the ability to resolve contrib
tions from periodic orbits of similar action in the experime
al
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depends strongly onnL . This is especially important at bi
furcations where two or more orbits of similar action a
born together, then move apart asr is varied.

We solved both these equations to obtain eigenvalue
the infinite well, by expanding the eigenfunction in a basis
harmonic-oscillator states inz coordinates and function
Fn(x) which can be either plane waves or Gegenbauer p
nomials in thex coordinate:

c i~x,z!5(
n,l

AnlFn~x!Hl~z!exp~2Bcosuz2/2!. ~7!

The current is then obtained by a sum of eigensta
weighted by their respective tunneling probabilitiesWi :
henceI (V)5( iWi

2d(V2Vi) for the I -V characteristics or
I (B)5( iWi

2d(B2Bi) for a scaled spectrum. A model fo
the Wi is described below.

V. TUNNELING MODEL

For the RTD in tilted fields, the Bardeen transfer Ham
tonian formalism,8 although a weak tunneling approxima
tion, has been shown to give good agreement w
experiment.6 A full Bardeen type calculation requires de
tailed knowledge of the barrier heights and widths. Howev
if we are only interested in therelative intensities of the
periodic orbit oscillations, we can show that the barrier sha
is unimportant and the periodic orbit oscillations are quan
tatively determined by the classical dynamics of the infin
well.

Below we ~1! introduce a simple tunneling weight i
terms of the form of the wavefunction for the infinite we
and ~2! demonstrate by a theoretical argument and by dir
comparisons with the Bardeen treatment, that, to within
global scaling factor, the amplitudes of oscillations obtain
from our model are proportional to the usual Bardeen tre
ment, provided the well width is large relative to the barr
width.

The transition probability for transfer of an electron fro
one side of a barrier of finite height betweenx52a and
x50 to the other within the Bardeen formalism8 is

P~E!5
2p

\ ( zM i z2d~E2Ei ! ~8!

and so is given in terms of a matrix elementM i weighting
the density of final states of energyEi . For weak tunneling,
where separation of the solutions is allowable, theM i are
obtained in terms off0, the solution valid to the left ofx50
and c i the quantum solution for the eigenstates of the w
and valid forx.2a :

M i5
1

2mFf0*
]c i

]x
2c i*

]f0

]x GU
x5xb

d l0. ~9!

This matrix element can be evaluated for anyx and is inde-
pendent ofxb provided2a,xb<0. But M i can be evalu-
ated arbitrarily close tox50. The tunneling electrons outsid
the well are mostly confined to the lowestl 50 Landau state.
This quantum number is conserved so only thel 50 compo-
nent of the well contributes, providedl .0 states are negli-
gibly populated. The initial state should be slightly displac
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56 3917BIFURCATIONS AND THE TRANSITION TO CHAOS IN . . .
relative to the origin to allow for the mean distance betwe
the 2DEG andx50. However at 11° this correction is neg
ligible.

In the infinite barrier case, very close to the walls a
hence to its node,Fn(x) take a form linear inx, while the
derivatives are constant for both Gegenbauer polynomial
plane waves; e.g., for a plane-wave basisFn(d)
5sinnpd/L.npd/L, and similarly]c i /]x.np/L.

We introduce a weightingWi
2 for each eigenstate whic

we calculate from Eq.~9!, but using the solutions of the
infinite well:

Wi5(
n

np

L
Anl50 . ~10!

Below, we show thatWi}M i . One method for calculat
ing M i is to solve for the eigenstates of well of widthL with
finite barriers of widthd contained inside a larger infinit
well ~with infinite barriers atx50 andx5L12d) with the
requirement thatd should exceed the penetration length
the wavefunction in the barriers.

For the system described above for a finite barrier
height Ub , but where Ub@E, the perturbation to the
c i(x5e,z) and to]c i /]x(x5e) is smooth and weak rela
tive to the 1200 Å infinite well. Heree may be small but is
not too close to the node atx50 and x51200 Å of the
infinite well. Other than very close to the emitter where t
infinite barrier wave function has a node, the eigenstates
only weakly perturbed.

Now we consider first the Bardeen matrix element w
the correct~finite barrier! boundary conditions, taken with a
exponentially decaying function from the lef
f05G(E)exp(2gx), where g5A2m(Ub2E) and
k5A2mE. For the high barrier caseg@k, c i5C(E)exp(gx)
for x<0, andc i5C(E)@11gx1O(x2)# for x.0.

C(E) and G(E) are slowly-varying ~non-oscillating!
functions of energy. Evaluating the matrix element correc
within the barrier, we obtain

MBardeen52gC~E!G~E!, ~11!

which is independent ofx for x<0.
We now consider the correct boundary conditions for

infinite well: c i
inf50 for x<0, andc i

inf5a(E)x1O(x3) for
x.0. But since c i(e).c i

inf(e), we expect thatgC(E)
.a(E).

We now evaluate Eq.~9!, but at a pointx51d,e, out-
side but close to the barrier and hence close to the node
the wavefunction, i.e.,

M inf5a~E!G~E!.MBardeen/2. ~12!

But from our solutions of the infinite well problem, w
havea(E)5(n(np/L)Anl50 . So then we have

Wi5(
n

np

L
Anl50.

MBardeen

2G~E!
. ~13!

Hence to within an overall non-oscillatory envelope, dep
dent on the initial state, our model weighting is proportion
to the correct Bardeen matrix element.

In Fig. 2, we show a comparison between our model a
n

or

f
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re
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a Bardeen calculation with a barrier of height 1 V and width
d5100 a.u. of the emitter wall. The finite-barrier spect
have been rescaled by a constant factor. The finite and
nite barrier spectra are remarkably similar, especially in
case of the smoothed spectra. The main differences are in
smooth nonoscillatory envelope and in a small shift in vo
age: in the finite barrier case, the electrons are accelerate
the field over the extra distance through the barrier, and e
the well with a correspondingly higher injection energy. F
the purposes of comparison, the shift in voltage.Vd/L has
been added to the unsmoothed spectra, but not to
smoothed spectra. Some individual states near avoided c
ings are sensitive to the small perturbation resulting from
slight change in injection energy and in the effective wid
of the well. This is especially the case in the chaotic regim
However, the small perturbation leads to mixing betwe
neighboring levels and hence to a simple redistribution
tunneling probability between close neighbors, so
smoothed spectra are unaffected. But even the unsmoo
spectra is seen to be in quite good agreement with
Bardeen calculation. This model is not appropriate for n
row well experiments whereL.d. In that case the perturba

FIG. 2. ExperimentalI -V traces at 0 and 7 T andI -V spectra
calculated atB56 T showing successively the different classic
regimes. The letters indicate the different dynamical regimes s
in the experiment and shown in Fig. 1:~a! and ~b! torus quantiza-
tion; ~c! symmetric profile characteristic of the bifurcation~ar-
rowed!; ~d! left-asymmetric profile below bifurcation;~e! ghost.
The theoretical spectra at 6 T show both the results of our mo
~infinite well! as well as results using the Bardeen transfer Ham
tonian formalism. Both the theoretical stick spectra and the fin
resolution spectra are shown.
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3918 56MONTEIRO, DELANDE, FISHER, AND BOEBINGER
tion to individual levels due to the change in effective wid
of the well is substantial; also, the drift termVd/L.V.

We have also compared our model with another co
pletely different experiment,3 where abrupt period-doubling
of the current oscillations were observed in individualI -V
traces. For that system, an applied voltage ofU50.4 V cor-
responds to a voltage drop across the device of ab
V50.25 V, so we scaled ourV by a factor of 1.5. Our cal-
culations reproduced the period-doubling observed
U.0.35 V as well as other features.

The effects of band nonparabolicity are sometimes c
rected for by means of a voltage dependence of the effec
massm5m(V).6 We have not explicitly done this but th
dynamics depends only on the productm(V)V, so any in-
crease in the effective mass will manifest itself in a prop
tionate reduction in the calculated eigenvalueVi . One would
then simply need to rescale theV axis appropriately. Hence
the I -V patterns and scaled spectra may be distorted at
voltages~stretched out! if m is increasing but any basic pe
riod doubling patterns will be unchanged.

The tunneling current has a large smooth contribution
perposed on theI -V oscillations. This mirrors periodic-orbi
theory where descriptions of the spectra have a smo
~Weyl! term plus periodic orbit oscillations. In the exper
ments in Refs. 3 and 6, this smooth background is s
pressed by differentiating the current; In the Bell L
experiments,1,2 the background was simply subtracte
Hence in the calculations shown in Fig. 2, which are com
rable with Bell Lab data, we have subtracted the nonosc
tory background. This procedure has the advantage of
serving the line profiles~to within experimental resolution!
which, as discussed below, are critical in our analysis.

So, although the implementation of the full Barde
method is numerically straightforward whenUb and d are
known, our model demonstrates that a semiclassical the
based on the hard-wall scattering periodic orbits will give
quantitative description of the observed oscillations. The
tails of the tunneling represent a smooth envelope wh
like the Weyl term of periodic-orbit theory, may be elim
nated as discussed below. We have neglected the colle
barrier in this instance, since we find that it does not exe
strong selective effect on the periodic orbits as they all re
the collector at high speed.

In Fig. 2, we show also experimentalI -V traces.2 Experi-
mental resolution is limited by the lifetime for phonon em
sion; also, there is a voltage dependence in the spectral
width due to coupling to the continuum asE1V approaches
.Ub . This is seen in theI -V trace forB50 in Fig. 2.

At B50, the oscillations are due to one stable straig
line periodic orbit only, so changes in the line widths a
amplitudes are not due to the classical dynamics, but ra
to the tunneling. Hence we use here theB50 I -V traces to
estimate the voltage dependence of the width. The obse
width increases from 14 mV at 0.5 V to 24-mV at 1 V
We have therefore convolved the calculated spectra in
2 by a Gaussian exp@2(Vi2V)2/2w2# with w50.003
10.002(V/0.5)1.5, giving similar widths as a function ofV.
The letters on theB57 T curves label the different classic
regimes shown in the SOS in Fig. 1. Both our model and
Bardeen matrix element involve a smoothly increasingN2

tunneling envelope, present even forB50 T since in a given
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eigenstate theAnl are peaked aboutn.N. Hence in the spec-
tra shown in the next section~Fig. 3!, we find it more con-
venient to show a ‘‘normalized’’ current5I (V)/N2. Then
the normalized current forB50 T corresponds to a set o
period-one oscillations all of equal height.

In sum, Fig. 2 shows that especially for the smooth
spectra there is excellent agreement between our model
the Bardeen transfer Hamiltonian formalism to within t
envelopeG(E). The one minor difference is a small voltag
shift .Vd/L due to the additional acceleration of the ele
trons in the finite barrier. For the stick spectra this shift w
subtracted for the purposes of comparison.

Figure 2 also shows that ourI -V spectra reproduce th
detailed line shapes seen in the experiment correspondin
a succession of different classical regimes. These are
cussed in detail below.

VI. QUANTUM RESULTS AND COMPARISON
WITH EXPERIMENT

We can now use ourscaledspectra to demonstrate ho
periodic orbits contribute differently to the density of stat
and the tunneling density. Only a few periodic orbits contr
ute to the tunneling density. For example, Fig. 3 show
Fourier transform of the density of states and another of
tunneling current. The horizontal axis then shows peaks
the scaled actions of the important periodic orbits. While
density of states itself contains plenty of modulations at va
ous frequencies—appearing as numerous peaks in its Fo
transform—the tunneling density at thisr has a much sim-
pler structure dominated by theS1 orbit and its repetitions.

In Fig. 4, we show severalscaledspectra for fixedR,r in
the range of experimental interest. Each corresponds
particular classical regime illustrated in Fig. 1, identified
the letters~a! to ~h!. These may be also compared with th
experimental traces in Fig. 2, which show a similar seque
of line profiles.

FIG. 3. ~a! Shape in thex-z plane of the most important orbit
showing the stable/unstable pair involved in the period doubl
bifurcation 2th and 2te ; the t0 andt2 orbits which annihilate, leav-
ing a ghost; and theS1 orbit mostly responsible for the secon
period doubling.~b! Fourier transforms of the~quantum! density of
states and the tunneling density forr511.28. All the peaks corre-
spond to periodic orbits of the classical system. While there
plenty of peaks for the density of states, the tunneling density
lects only traversing orbits bouncing on the collector nearz50,
hereS1 and its repetitions.
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We can now understand the origin of both perio
doubling regions observed in Refs. 1 and 2 as well as
region in between. At lowr—spectral region~a!—the only
short orbit of importance ist0 , a two-bounce orbit which a
u50 is a straight line, but which in general winds about t
B field; see Fig. 3. The shorter one-bounce orbits do
contribute to the tunneling.

In regions ~a! and ~b!, t0 is stable and surrounded b
regular invariant tori. For an isolated stable orbit12 centered
on a large elliptic island, a sum over traversals of the o
will resolve discrete states, in fact series of harmon
oscillator-like levels with quantization conditio
d@S/2p\2k2(K1 1

2)n/2p2m/4] wherek represents quan
tization along the orbit andK perpendicular to the orbit;n is
the winding number of the orbit andm its Maslov index.
States characterized byK50 are localized on the elliptic
fixed point; states with higherK are localized on concentri
tori. Tunneling in regions~a! and ~b! is dominated by the
K50 and the weakerK51 series. This produces a pattern
two series which are stillperiod-1but are out of phase byn.
The characteristic right-asymmetric profile is seen in the
periment~Fig. 2; see also Fig. 5!.

As r increases,t0 moves toward its 2:1 resonance~at
r52.6), where two successive period-doubling bifurcatio
take place as the stable/unstable pair of orbits is absorben
tends top and the spectrum is truly period doubled. The 2
resonance—spectrum~c!—is easily identified by a symmet
ric profile, both in the calculations and the experiment. T
provides an important check on the experimental parame
since the symmetric profiles may be used to pinpoint
approximate locus ofr52.6 curve. The observed symmetr
profile in fact is slightly displaced, following roughly th
linear locus V50.11B– 0.27 and deviating visibly from a
parabola at high voltage (B in T, V in V!. Below the bifur-
cation, t0 restabilizes and torus quantization yields a le
asymmetric profile@region ~d!# since theK51 torus now
dominates the current andK50 is weaker.

With increasingr, the stable island corresponding tot0
progressively shrinks untilt0 merges with an unstable two
bounce orbitt2 in a tangent bifurcation atr55.2. This rep-
resents a new bifurcation region, not previously identifi
and is especially interesting since it leaves a ‘‘ghos
contribution9 for r.5.2 which decays with distance from th
bifurcation. In this regime the spectrum@see Fig. 2, region
~e!# is characteristic of unstable motion, with periodic lev
clustering rather than discrete states. The ghost has n

FIG. 4. Numerically calculated tunneling density spectra d
playing the characteristic line profiles corresponding to the differ
classical regimes shown in Fig. 1. The spectra were obtaine
fixed scaled field~fixed classical dynamics! taking into account the
experimental finite resolution.
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gible harmonics, so the characteristic region~e! profile is a
weak period-1 near-sinusoidal modulation, noticea
broader than the experimental broadening width. In cont
a not too unstable orbit with significant harmonics produc
a Lorentzian profile. A stable orbit yields sharp peaks,
shown in Fig. 2, since its quantization, as explained abo
produces discrete states. The experimental traces in Fi

-
t
at

FIG. 5. ~a! Comparison between experiment and perio
doubling amplitudes.a2 ~broken line! represents the amplitude fo
the peak in the Fourier transform of the unweighted density
states near twice the action oft0; A2 /A1 is the ratio for the second
and first traversals oft0 in the tunneling density~density of states
weighted by tunneling probability!. The amplitudes are functions o
r, but have been plotted on nonlinear scales to correspond to
parabolic curves of constantr ~at the values used in Fig. 1! overlaid
on the experimental results. The two period-doubling regions
perimentally observed correspond to maxima ofA2 /A1 . The first
one is associated with bifurcations oft0, while the second corre-
sponds to a maximum contribution of the orbitS1 . ~b! Density plot
of the calculated current, taking into account the finite experime
resolution and its variation with the voltage which may be co
pared with the experiment shown in~a!. The very good agreemen
between the two suggests that the approximation used for the
neling density catches the essential part of the physics.
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3920 56MONTEIRO, DELANDE, FISHER, AND BOEBINGER
are consistent with this interpretation as may be seen
comparing experimental profiles for the ghost atV.0.2 at
B57 T with the correspondingB50 T profiles nearV
.0.2 V.

The region between~e! and ~f! corresponds to a fully
chaotic surface of section atx50: all orbits which can con-
tribute to tunneling are unstable. Both period-1 and perio
oscillations are quite weak; the experiments do show so
irregularity within this range, just before the second per
doubling. Thet0 fixed point reappears atr57.1. It stabilizes
and bifurcates again atr518.3. Finally atr522.6, it has
restabilized, and the modulation is once again period-1@re-
gime ~h!#.

However, the period doubling in the spectrum experim
tally ~and numerically! observed nearr511 has a different
origin. This can beunambiguouslydetermined from our
scaled quantum calculations. Indeed, the dominant pea
the Fourier transform occurs at the action ofS1 ~2.015!, not
at the action of 2t0 ~2.032!.

To permit comparisons between semiclassical amplitu
and tunneling characteristics, we have superimposed in
5~a! lines of constant scaled field on the experimental resu
We have also plotted the amplitudea2 of the period-2 modu-
lation ~peak nearest the second traversal oft0) for thedensity
of states~broken line! as well as the ratio of the second an
first traversalA2 /A1 for the tunneling density~solid line!.
The latter gives an indication of the range where the per
doubling is visible. The amplitudes were obtained fro
Fourier-transformed calculated spectra spanning the exp
mental voltage range.

For the first period doubling,a2 shows a profile consisten
with two back-to-back bifurcations, with exponential dec
above about 1.5 and 2.6. The peak amplitudes occur slig
above the bifurcation points, as expected, at about 1.6
2.4, respectively, and the oscillating region above the t
bifurcations oveRlaps and interferes. However the tunne
density shows that the first bifurcation is unimportant for t
tunneling; the strong maximum at 1.6 is completely elim
nated since at that point the bifurcated orbits translate
amplitude in high Landau states. TheA2 /A1 curve is in
much better agreement with the experimental results.

For the second period-doubling region,a2 shows a small
maximum at aboutr517, just above the period doublin
bifurcation of thet0 orbit. This bifurcation is much narrowe
than the one at 2.6 and has a weaker maximum. Forr.11,
a2 is dominated by the amplitude ofS1 ~whereS1 and 2t0
may be resolved in the Fourier transform, anda2 represents
the amplitude of the largest peak!. The results show that th
amplitude ofS1 at aboutr511 is of the same order as that
2t0 . However the injection point ofS1 is far more favorable
to tunneling, and the tunneling density shows a drastic
crease in the period-doubled amplitude due toS1, peaking at
.
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aboutr512.5, with a very much weaker tail abover517
due to 2t0. Hence the second period-doubling region is n
related to a bifurcation oft0, but rather to a local maximum
of the contribution ofS1 to the tunneling density when thi
orbit’s injection point is favorably fed by electrons from th
ground Landau state.

This changeover between period-1 tunneling due tot0 and
higher frequency oscillations due toS-type orbits was ob-
served in experiments carried out by Fromholdet al.3 for
scaled fieldsr.17 for u.15° but withR.0.2–0.25. So it
seems likely that the second period doubling here is of si
lar origin, with a small contribution due to the bifurcation o
t0. Finally, Fig. 5~b! shows the global spectrum of the tun
neling density in the range@4T–12 T,0.2–1 V# obtained. The
density of the plot represents the computed current~black
regions correspond to low current, white regions to high c
rent!. We takeV5FL. Remarkably, the figure reproduce
the essential features of the experiment@compare with Fig.
5~a!#: the first period-doubling region around~7 T,0.55 V!,
the irregularity before the second period-doubling and
second period-doubling around~11 T,0.4 V!. At low voltage,
the period doubling is not visible because successive pe
overlap. At high voltage, we also observe that the fi
period-doubling tends to be less and less visible: this is
to the loss of resolution at high voltage.

VII. CONCLUSION

There are of course significant uncertainties in the prec
values of the experimental parameters. The values ofm and
R can drift as a function of voltage. The applied voltageV is
not exactly equal toFL. This is only of minor importance. It
can only slightly and smoothly distort the plot in Fig. 5~b!,
i.e., displace the period-doubling regions, but not affect th
existence. The shape of the line profiles provides a valua
check on these parameters: e.g., the observation that
symmetric bifurcation profile tends to follow a linear rath
than a parabolic locus at higher voltages may be due partl
an increase in effective mass with voltage. The calculati
presented here reproduce the detailed features of the ex
ments. We conclude that our simple dynamical models,
ing a tunneling model which is device independent—it do
not depend on the barrier shapes, heights or details of
tunneling—permit a quantitative analysis of periodic or
oscillations observed in the RTD.
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