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Synchronization in networks of superconducting wires

Kibeom Park and M. Y. Choi
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

~Received 17 June 1996; revised manuscript received 17 September 1996!

We study the synchronization phenomena in networks of superconducting wires driven by quenched random
external currents. Each wire interacts with all the other wires perpendicular to it; this system naturally presents
an example of the well-known phase model. The equations of motion are obtained from current conservation
conditions, which in turn lead to an effective Hamiltonian of the system. We then use the replica method to
derive the self-consistency equations and obtain the phase diagram. Effects of alternating currents as well as
the possibility of glassy behavior are also discussed.@S0163-1829~97!02225-X#
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I. INTRODUCTION

A large population of mutually interacting self-oscillato
units often exhibits a coherent motion among their const
ents over a relatively long distance. This remarkable feat
calledcollective synchronization, is prevalent in various os
cillatory systems in physics, chemistry, biology, and ev
social sciences.1–3 Theoretically, the case of the uniform
infinite-range interaction is most tractable and serves a
starting point towards an understanding of the behavior
realistic systems. The globally coupled system was first a
lyzed by Kuramoto,2 in which each oscillator has been mo
eled as a rotator with randomly distributed natural frequen
It was successfully shown that collective synchronization
deed sets in gradually as the coupling strength is increa
beyond the critical value, which is reminiscent of the seco
order equilibrium transition. In many physical system
short-range interactions are more realistic, and the mean-
approach is regarded as a mathematically simple, al
crude, approximation to the true underlying physics. On
other hand, there also exist a number of systems,1–4 e.g.,
intracavity lasers, series arrays of Josephson junctions,
biological systems, where global coupling appears to
natural. In those systems, the mean-field approach is e
and should not be regarded as an approximation.

The network of superconducting wires, which has
tracted recent interest,5,6 provides another good example
the mean-field system. It consists of two orthogonal sets
N parallel superconducting wires which are coupled w
each other by Josephson junctions at all points of cross
The Hamiltonian of the system is given by the sum of in
vidual Josephson energies, while the phases of the wires
regarded as classical thermodynamic variables. It should
noted here that the number of nearest neighbors scales
the system size, which naturally allows the mean-field
proach. In view of the experimental situation, we consid
the systemdriven by external currents, for which the Hamil-
tonian description is not adequate. Instead we deal with
equations of motion for the driven system, which can
derived from the current conservation conditions. We in p
ticular consider the general case of nonuniform driving, a
allow the current injected at one edge of a wire to be diff
ent from those injected at the edges of other wires. For
ficiently largeN, the driving currents can be regarded
560163-1829/97/56~1!/387~8!/$10.00
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quenchedrandom variables following a distribution with
zero mean and appropriate variance. It should be noted
unlike the Kuramoto model,2 each wire interacts not with al
the rest of the wires but with the half of the wires lyin
perpendicular to it. As a result of thissemiglobalcoupling,
the equations of motion consist of two sets of equations;
two sets govern the dynamics of the horizontal and the v
tical wires, respectively. Still the obtained equations of m
tion are closely related to those of the Kuramoto model,
cause each set of equations is of the mean-field nature
fact, the system may be regarded as a generalization o
Josephson-junction series arrays, which can be mapped
the Kuramoto model in the proper limit.4 Thus, this system
may serve as a physical realization of the Kuramoto mod
and many interesting features present in this system ma
explained in terms of the synchronization. For example,
superconducting state with global phase coherence ca
identified with the synchronized state and t
superconducting-normal transition corresponds to
synchronization-desynchronization transition.

This paper consists of five sections: In Sec. II, we obt
the equations of motion and find the self-consistency eq
tions at zero temperature, which yield results similar to tho
of the Kuramoto model. Section III is devoted to the finit
temperature analysis, which gives the phase diagram, w
Sec. IV presents the effects of periodic driving curren
When the system is driven by alternating currents, it exhib
interesting phenomena of periodic synchronization. The tr
sition into such a state with periodic synchronization m
also be induced by changing the phase delay between
currents applied to horizontal wires and those to verti
wires. Finally, in Sec. V, a summary of the results is give
and the glassy behavior is shown not to appear in the abs
of an external magnetic field, indicating the key role of t
frustration.

II. EQUATIONS OF MOTION AT ZERO TEMPERATURE

We consider an array of two mutually perpendicular s
of N superconducting wires with Josephson junctions at e
node. At one edge of each wire, uniform currentI is injected
and at the opposite edge the same current is extrac
387 © 1997 The American Physical Society
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Neglecting capacitive effects and thermal noise currents,
can write the net current from thei th horizontal wire to the
j th vertical wire as the sum of the Josephson current and
normal current:

I i j5I c sin~f i
~1!2f j

~2!!1
Vi j

R
, ~1!

wheref i
(1) and f i

(2) are the phases ofi th horizontal and
vertical wires, respectively,I c is the critical current of the
junction, andR is the shunt resistance.Vi j ([Vi2Vj ) is the
potential difference across the junction, and related to
phase via the Josephson relation,d(f i

(1)2f j
(2))/dt

52eVi j /\.
7 The current conservation at each horizontal w

imposed on Eq.~1! yields a set ofN coupled equations:

I i
ext5(

j51

N F \

2eR

d

dt
~f i

~1!2f j
~2!!1I c sin~f i

~1!2f j
~2!!G ,

where I i
ext is the external current fed into thei th wire. It is

convenient to write the above set of equations in the form

ḟ i
~1!5

1

N(
j

ḟ j
~2!1v i

~1!2
K

N(
j
sin~f i

~1!2f j
~2!!, ~2!

where v i
(1)[2eRIi

ext/N\ corresponds to the natural fre
quency of thei th wire andK[2eRIc /\ measures the cou
pling strength between the horizontal and vertical wir
Similarly, the equations for vertical wires assume the for

ḟ j
~2!5

1

N(
i

ḟ i
~1!1v j

~2!2
K

N(
i
sin~f j

~2!2f i
~1!!, ~3!

which, together with Eq.~2!, constitute the equations of mo
tion of the system. We consider the general case of non
form driving, and allow the current injected at one edge o
wire to be different from those injected at the edges of ot
wires. In the thermodynamic limit (N→`), the driving cur-
rents can be described by a distribution with appropri
variance. Here the current driving each wire does not cha
with time, and can be regarded as aquenchedrandom vari-
able. We thus assume that the corresponding natural freq
e

he

e

.

i-
a
r

e
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ciesv (1) andv (2) are distributed according to the Gaussi
distributionsg1(v) and g2(v) with variancess1 and s2,
respectively. Without loss of generality, the mean values
the distributions can be taken to be zero.8 ~The detailed shape
of the distribution is irrelevant while the simple case of un
form driving corresponds to the delta-function distributio
with s15s250.! It is convenient to write the above equa
tions in the matrix form

Mi j ḟ j5Fi~v i ,f! ~4!

with Fi being an appropriate function ofv i and
f[(f1

(1) , . . . ,fN
(1) ,f1

(2) , . . . ,fN
(2)), where the component

of the 2N32N matrixM are given by

Mi j5H d i j for 1< i , j<N and for N11< i , j<2N

2
1

N
otherwise.

Here, the determinant of the matrixM vanishes, reflecting
the U~1! symmetry of the whole system. We thus set t
phase of one particular wire, sayf1

(1), equal to zero all time,
i.e.,M1i5Mi150 for all i . Then the inverse matrix ofM can
be easily obtained, and multiplication of both sides of Eq.~4!
by M21 yields more tractable equations of motion:

ḟ i
~1!5v i

~1!2KD2 sin~f i
~1!2u2!,

ḟ j
~2!5v j

~2!2KD1 sin~f j
~2!2u1!1KD1D2 sin~u22u1!,

~5!

where the order parametersDaexp(iua)[(1/N)( jexp@ifj
(a)#

measure the degrees of coherence of the horizontal (a51)
and vertical (a52) wires. It is obvious that these equation
of motion reduce precisely to those for the well-known Kur
moto model if one setsf i

(1)5f i
(2) for all i . Thus this system

can be considered to be a generalization of the Kuram
model and to provide a physical realization of the latter.

The stationary state exhibited by the above equations
motion is described by the probability distributions off (1)

andf (2):
P1~f~1!;v!5H d@f~1!2u22sin21~v/KD2!# for uvu<KD2 ,

Av22~KD2!
2@2puv2KD2 sin~f~1!2u2!u#21 otherwise

and

P2~f~2!;v!5H d$f~2!2u12sin21@~v1D!/KD1#% for uv1Du<KD1 ,

A~v1D!22~KD1!
2@2puv1D2KD1 sin~f~2!2u1!u#21 otherwise,
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56 389SYNCHRONIZATION IN NETWORKS OF . . .
with D[KD1D2 sin(u22u1). The order parameters can b
expressed in terms of the probability distribution

Daexp~ iua!5E dvga~v!E
0

2p

dfPa~f;v!eif,

which in turn gives self-consistency equations

D15KD2E
21

1

dxg1~KD2x!A12x2,

D25KD1E
21

1

dyg2~KD1y!A12y2, ~6!

D50

with x[v/(KD2) andy[v/(KD1). It is interesting to note
that the relative phase difference of the two sets of wir
u12u2, is always zero although the amplitudesD1 andD2
may have different values depending on the distribut
functions of the applied currents. This implies that the wh
system can be fully synchronized with each other ev
though the coupling is not wholly global but semigloba
Thus, the obtained result is indeed a straightforward ex
sion of that of the Kuramoto model despite the difference
the coupling. AsK is increased from zero, the only possib
solution of Eq.~6! is the trivial solution (D15D250) until
K reaches the critical valueKc . At this critical value, a non-
trivial solution branch bifurcates from the zero branch; t
latter becomes unstable beyondKc .

9 Here, both the horizon-
tal and vertical wires become coherent at a singleKc . Over-
all coherence across the system is thus attained forK.Kc ,
and the whole system becomes superconducting. Ex
sion of Eq. ~6! near Kc straightforwardly yields Da
}(K2Kc)

1/2 for a51 and 2, with the critical valueKc

52@pAg1(0)g2(0)#21, where the critical behavior with the
exponent 1/2 is a characteristic of mean-field systems. H
we again emphasize that the amplitudes ofD1 andD2 may
differ from each other even though they have the same
ponent nearKc .
s,
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e
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III. EFFECTIVE HAMILTONIAN
AT FINITE TEMPERATURES

In this section, we consider the extension of the mode
finite temperatures. We thus add thermal noises to the e
tions of motion and obtain

ḟ i
~1!5

1

N(
j

ḟ j
~2!1v i

~1!2
K

N(
j
sin~f i

~1!2f j
~2!!1g i~ t !,

ḟ j
~2!5

1

N(
i

ḟ i
~1!1v j

~2!2
K

N(
i
sin~f j

~2!2f i
~1!!1g j~ t !,

~7!

where the thermal noises are characterized by

^g i~ t !&50,

^g i~ t !g j~ t8!&52Gd i jd~ t2t8!

with G (>0) measuring the strength of the noise. Equat
~7! has the form of a set of Langevin equations, where t
different sets of variables, representing horizontal and ve
cal wires, respectively, are coupled with each other. As in
previous section, one may introduce the order parame
D1 and D2, and write down two Fokker-Planck equation
for the two one-wire probability densitiesP1 and P2, the
zero-temperature limits of which have been given in Sec.
At finite temperatures, however, the two Fokker-Plan
equations lead to self-consistency equations, which cou
D1 andD2 quite complexly and cannot be solved in a tran
parent manner. Therefore we resort to the Fokker-Pla
equation for the2N-wireprobability densityP(f,t):

]P

]t
52(

i
F ]

]f i
hi2G

]2

]f i
2GP ~8!

with
not
escribing
on
2
own to

ding
hi5H wi
~1!2~K/N!(

j
sin~f i

~1!2f j
~2!! for horizontal wires,

wi
~2!2~K/N!(

j
sin~f i

~2!2f j
~1!! for vertical wires,

which leads to a stationary solutionP0(f)}exp(2H@f#/T) with the effective Hamiltonian

H52
1

N(
i , j

cos~f i
~1!2f j

~2!!2
1

K(
i

~v i
~1!f i

~1!1v i
~2!f i

~2!! ~9!

at temperatureT[G/K. Note that the second term in Eq.~9!, which has the form of a generalized washboard potential, is
periodic inf. This apparent absence of the correct periodicity suggests that the above solution is not adequate for d
the dynamics of the system, which involves variations off larger than 2p. Similar problems arise in Josephson-juncti
arrays10 and in networks of neuronal oscillators,11 where the actions were regarded as periodic functions with periodnp
(n→`). The standard Villain approximation, which gives an accurate description at low temperatures, was then sh
restore the correct periodicity and to yield results independent ofn. We thus follow Ref. 10, and regardH in Eq. ~9! as the
effective Hamiltonian of the system, with the period 2np. Here, similarly to Ref. 10, it can also be seen that the correspon
free energy is independent ofn, which allows us to take the integration interval off to be from2p to p.
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We then use the replica method, and obtain the free energy per wire:

f5 lim
n→0

T

nNF12S N

2pTD 3nE )
a

dAadBadCadDadEadFaexp~2NF/T!G ~10!

with

F5
1

2(a ~Aa
21Ba

21Ca
21Da

21Ea
21Fa

2!2TlnKK (
[fa]

expH 1T(a FAa~cosfa
~1!1 cosfa

~2!!1 iBa cosfa
~1!1 iCa cosfa

~2!

1Da~sin fa
~1!1 sin fa

~2!!1 iEa sin fa
~1!1 iF a sin fa

~2!1
1

K
~v~1!fa

~1!1v~2!fa
~2!!G J LL

v

,

where^^•••&&v denotes the quenched average over the distributions ofv (1) andv (2). In the thermodynamic limitN→`, we
perform the integral via the saddle-point method

]F

]Aa
5

]F

]Ba
5•••50,

which leads to

Aa5 ^̂ ^cosfa
~1!1 cosfa

~2!& &&v , Da5 ^̂ ^sin fa
~1!1 sin fa

~2!& &&v ,

Ba5 i ^̂ ^cosfa
~1!& &&v , Ea5 i ^̂ ^sin fa

~1!& &&v , ~11!

Ca5 i ^̂ ^cosfa
~2!& &&v , Fa5 i ^̂ ^sin fa

~2!& &&v .

Here ^O(f)& stands for the average with respect to the actionL,

^O~f!&5
( [f]O~f!eL~ [f] !

( [f]e
L~ [f] !

with the action given by

L5
1

T(a @Aa~cosfa
~1!1 cosfa

~2!!1 iBa cosfa
~1!1 iCa cosfa

~2!1Da~sin fa
~1!1 sin fa

~2!!1 iEa sin fa
~1!1 iF a sin fa

~2!

1~1/K !~v~1!fa
~1!1v~2!fa

~2!!#.

Since the order parametersBa , Ca , Ea , andFa in Eq. ~11! are purely imaginary, we writeBa[ iBa8, etc., for convenience, an
omit the primes hereafter. After performing the quenched average, we obtain the free energy in the form

f5BC1EF2
1

KE Dz1Dz2lnHTr[f]expF1TSC cosf~1!1B cosf~2!1F sin f~1!1E sin f~2!

1
As1

KT
f~1!z11

As2

KT
f~2!z2D G J 5BC1EF2TE Dz1lnF ~As1z1 /KT!2(

n
~21!n

I n~AC21F2/T!

~As1z1 /KT!21n2
G

2TE Dz2lnF ~As2z2 /KT!2(
n

~21!n
I n~AB21E2/T!

~As2z2 /KT!21n2
G , ~12!

whereI n’s represent the modified Bessel functions of the first kind, and the replica-symmetric solution has been chos
Ba5B for all a, etc. Defining the order parametersD1 andD2 measuring the mutual coherence of wires in the same direc
asD1[AB21E2 andD2[AC21F2, which are restricted in the range@0,1#, we finally get the self-consistency equations
differentiating the free energy with respect to the order parameters:

D15E Dz(
n

~21!n
I n8~D2 /T!

~As1z/KT!21n2
F(

n
~21!n

I n~D2 /T!

~As1z/KT!21n2
G21

,

D25E Dz(
n

~21!n
I n8~D1 /T!

~As2z/KT!21n2
F(

n
~21!n

I n~D1 /T!

~As2z/KT!21n2
G21

, ~13!
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56 391SYNCHRONIZATION IN NETWORKS OF . . .
whereI n8(x)[dIn(x)/dx, and*Dz denotes the average ove
the normalized Gaussian variablez.

We now check whether the obtained results are consis
with the zero-temperature results given in Sec. II: At ze
temperature, the direct expansion of Eq.~13! fails because
the arguments of the modified Bessel functions are diverg
in all orders. Therefore, we adopt the spin-wave approxim
tion which should be accurate at zero temperature, and
pand the washboard-type potential in Eq.~12! about its mini-
mum:

exp~A cosf1Bf!'exp@Ã cos~f2f0!#

'exp ÃF12
1

2
~f2f0!

2G ,
wheref0[ sin21(B/A) and Ã[A cosf0. After taking the
trace overf, one can easily confirm that Eq.~13! indeed
reduces to Eq.~6!, reproducing correct behavior in the zer
temperature limit. As the temperature is increased, on
other hand, vortex excitations begin to appear, making
simple spin-wave approximation invalid. It is thus necess
to investigate explicitly Eq.~13!, which can be solved nu
merically. For a given value of the coupling strengthK,
the ~numerical! solution of Eq. ~13! gives the transition
temperatureTc as a function ofK: Above Tc , collective
synchronization is not allowed whereas a coherent s
emerges as the temperature becomes lower thanTc . Alter-
natively, at a given temperature the system may be con
ered to possess the critical coupling strengthKc , below
which no synchronization appears. In particular, at zero te
perature, the critical valueKc has been given in Sec. II
Kc52@pAg1(0)g2(0)#21, which depends on the distribu
tions of external currents. At finite temperatures, the val
of Kc may be obtained numerically to yield phase bounda
in the (K,T) plane. Here we have examined the numeri
solutions of Eq.~13! for several different cases, and foun
that the overall phase boundaries remain qualitatively
changed, regardless of the values ofs1 and s2. Figure 1
displays a typical phase diagram in the (K,T) plane, showing
the phase boundary below which collective synchronizat
sets in.

IV. PERIODICALLY DRIVEN SYSTEM

Periodically driven systems of globally coupled oscill
tors have been studied, and shown to display interes

FIG. 1. Phase boundary on the (K,T) plane. The critical value
Kc is given in the text.
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behaviors.12 We expect such periodic driving to play a sim
lar role in the network of superconducting wires, and co
sider the network driven by combined direct and alternat
applied currents, with particular attention to the phase de
between the driving currents in the horizontal wires a
those in the vertical wires. At zero temperature the equati
of motion take the form

ḟ i
~1!5v i

~1!2KD2 sin~f i
~1!2u2!1I i

~1! cosVt,

ḟ j
~2!5v j

~2!2KD1 sin~f j
~2!2u1!1KD1D2 sin~u22u1!

1I j
~2! cosV~ t1t!, ~14!

wherev i
(1)1I i

(1) cosVt andv i
(2)1I i

(2) cosV(t1t) represent
the driving currents applied to thei th horizontal and vertical
wires, respectively, witht describing the phase delay be
tween the two driving currents. With suitable redefinition
each of Eq.~14! can be cast in the simple form

ḟ1K̃ sin f5v1I cosVt, ~15!

which describes a single resistively shunted Josephson j
tion with the couplingK̃[KDa , biased by an applied cur
rentv1I cosVt. It is well known that such a system can b
locked to the external driving, which is characterized by t
Shapiro steps13

^ḟ&
V

5n

with n integer. On thenth step, the phase of the locked wir
is thus given by

f'nVt1
I

V
sin Vt1f0 ,

wheref0 is determined according to

v5nV1~21!nK̃Jn~ I /V! sin f0

with Jn being the Bessel function of ordern. Off the step, the
wire is unlocked and its phase is given by

f'vt1
I

V
sin Vt1f0,

wheref0 is a constant independent ofv.
The equations for the order parameters are then obta

by imposing self-consistency. For the alternating current a
plitude I distributed according tof a(I ), the self-consistency
equations read

Dae
iua5E dI f a~ I !E dvga~v!^exp@ if~a!#&v,I , ~16!

where ^•••&v,I denotes the average in the stationary st
with givenv and I . Since only locked wires contributed t
collective synchronization,12 it is straightforward to compute
the averages in Eq.~16! and obtain the self-consistency equ
tions
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392 56KIBEOM PARK AND M. Y. CHOI
D1e
i ~u12u2!5KD2(

n
einVtE dI f 1~ I !expS i IV sin Vt D

3Jn~ I /V!E
21

1

dxg1@nV1KD2Jn~ I /V!x#

3@A12x21 i ~21!nx#,

D2e
i ~u22u1!5KD1(

n
einVtE dI f 2~ I !expF i IV sin V~ t1t!G

3Jn~ I /V!E
21

1

dyg2@nV2D1KD1Jn~ I /V!y#

3@A12y21 i ~21!ny#, ~17!

where the integration variablesx andy are defined to be

x[
v2nV

KD2Jn~ I /V!
, y[

v2nV1D

KD1Jn~ I /V!
.

Note that in the limit t→0, Eq. ~17! with D15D2 and
D50 reduces to the corresponding equation of Ref.
which was shown to display periodic synchronization d
pending on the coupling strengthK. Such phenomena of pe
riodic synchronization might be of relevance to the behavi
of many biological systems subject to periodic stimu
Among those which have already been observed experim
tally include oscillatory responses of neurons in the vis
cortex of a cat.14

Here the behavior of the system depends on the additi
parametert, the phase delay between driving currents a
plied to the horizontal and vertical wires. To examine t
role of t, we assumeKD1,2!1 near the transition to the
coherent state, and expandg1 andg2 aroundnV. We further
assume thatg1(v) and g2(v) are nonzero only for
uvu,vc for a finite cutoffvc , and consider high-frequenc
driving such thatV.vc . For simplicity, we consider the
distribution of driving in the form

FIG. 2. Kc as a function of time for two different values of th
phase delay,t15p/2 ~represented by the solid line! and t25p/3
~represented by the dashed line!. We have setI 05V51 for conve-
nience.
,
-

s
.
n-
l

al
-

f 1~ I !5 f 2~ I !5
1

2
@d~ I2I 0!1d~ I1I 0!#,

which gives Eq.~17! in the form

D15a~KD2!2b~KD2!
31O~KD!5,

D25c~KD1!2d~KD1!
31O~KD!5 ~18!

with the coefficients given by

a5
p

2
g1~0!J0S I 0V D cosS I 0V sin Vt D ,

b52
p

2
g19~0!J0

3S I 0V D cosS I 0V sin Vt D ,
c5

p

2
g2~0!J0S I 0V D cosF I 0V sin V~ t1t!G ,

d52
p

2
g29~0!J0

3S I 0V D cosF I 0V sin V~ t1t!G .
Equation~18! allows nontrivial solutions ofD1 andD2 only
if K.Kc([1/Aac). Note thatKc is periodic in time and
varies in the rangeKc

min,Kc,Kc
max, whereKc

max andKc
min

are given by the maximum and the minimum values
1/Aac for given t. ForK,Kc

min , the system is always inco
herent, while it displays synchronization all the time f
K.Kc

max. For intermediate couplings (Kc
min,K,Kc

max), we
have periodically K,Kc for some time intervals and
K.Kc for the rest of time. Thus the system oscillates b
tween the synchronized and the desynchronized states.
of interest here thatKc

min andKc
max depend also on the phas

delay t, which suggests that we may induce transitions
tween different synchronization states by varyingt. For ex-
ample, suppose that the value of the delay is varied fr
t1 to t2, where the couplingK lies betweenKc

max(t1) and
Kc
max(t2). This induces a transition from the~continuously!

synchronized state into the periodically synchronized st
in the latter the system displays synchronizatio

FIG. 3. Periodic behaviors of the order parameters with time
various values of the phase delay. The caset5p/3 represented by
the solid line displays synchronization periodically, while the ca
t5p/2.2 ~dashed line! andt5p/2 ~dotted line! exhibit synchroni-
zation all the time.
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desynchronization transitions periodically.~See Fig. 2.! In a
similar way, we may observe the transition between the
riodically synchronized state and the desynchronized o
whenK lies in the interval@Kc

min(t2), Kc
min(t1)#. Figure 3

displays the numerical solutions of Eq.~18! in the simple
caseg1(v)5g2(v), where the transition between the co
tinuously synchronized state and the periodically synch
nized state can be observed.

V. DISCUSSION

We have studied synchronization phenomena in netwo
of superconducting wires. In particular, we have conside
the networks driven by external currents, which resem
more closely experimental situations. Since the Hamilton
description is not adequate in this case, we have derived
equations of motion from the current conservation con
tions, and investigated their behaviors both at zero temp
ture and at finite temperatures. The peculiar semiglobal c
pling results in the equations of motion consisting of two s
of equations, which governs the dynamics of the horizon
and the vertical wires, respectively. With the constraint t
the phases of thei th horizontal and vertical wires are locke
to each other, the equations of motion have been foun
reduce to those of the Kuramoto model. The network sys
thus includes the Kuramoto model as a special case,
serves as a physical realization of the~generalized! Kura-
moto model, which exhibits collective synchronization in t
proper regime. Here synchronization represents global ph
coherence, which in turn corresponds to the superconduc
state of the system. The synchronization-desynchroniza
transition can then be identified with the superconducti
normal transition. We have also considered the sys
driven by alternating currents, and examined the effects
such periodic driving, to reveal periodic synchronization.
particular, the role of the phase delay in the driving curre
has been investigated, and it has been shown that transi
between states with different types of synchronization can
induced by adjusting the phase delay.

We finally consider the possibility of glassy behavior
this driven system. The system without driving currents h
been shown to display glassiness in the presence of a tr
verse magnetic field.6 In the presence of an applied magne
field, the phase difference in the Josephson term is repla
by the gauge-invariant one:f i2f j2Ai j , whereAi j is the
line integral of the vector potential from thei th wire to the
j th one. In the strong-field limit, the bond angleAi j takes
rapidly fluctuating values depending oni and j ; this suggests
to treatAi j ’s essentially as quenched random variables,
to regard the system~without driving currents! as a realiza-
tion of theXY gauge glass. On the other hand, in our syste
driven by randomly distributed currents, there already ex
quenched disorder associated with driving currents, wh
raises the interesting possibility of glassiness in the abse
of a magnetic field. To examine such possibility, we intr
duce the glass order parameterq, which corresponds to the
Edwards-Anderson order parameter in the spin system:

q[^^u^eif&u2&&, ~19!

where^^•••&& denotes the quenched average over the dis
bution of v, and ^•••& stands for the thermal average. F
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simplicity, we consider only the case that the phases of
i th horizontal and vertical wires are locked to each oth
which amounts to the Kuramoto model. The correspond
Fokker-Planck equation can be written in terms of the sing
wire probability densityP(f,t):

]P

]t
52F ]

]f
Dv2G

]2

]f2GP, ~20!

where the drift coefficientDv is given by

Dv5v2KD sin~f2u!

with the order parameterDexp(iu)[(1/N)( jexp(ifj). The
stationary solutionP(0) of Eq. ~20!, which has been obtaine
in Ref. 15, allows us to computeD andq via the equations

Deiu5E dv g~v!E
0

2p

df P~0!~f,v,u!eif,

q5E dvg~v!U E
0

2p

df P~0!~f,v,u!eifU2.
These equations show that the glass order parameterq can
have a nonzero value only ifD is not zero. Accordingly,
despite the quenched disorder associated with driving
rents, there does not exist a glass phase. This is to be c
pared with the results of Ref. 6, which proposed glassin
induced by an applied magnetic field~without quenched dis-
order!. The absence of glassiness in our system may be
derstood as follows: The effective Hamiltonian of the syst
can be written in the form

H52
K

N(
i , j

cos~f i2f j !2(
i

v if i ~21!

in a manner similar to that leading to Eq.~9!. Provided that
the driving is not too strong, the washboard-type poten
in Eq. ~21! can be transformed into the form
cos(fi2fj2Aij), where the bond angleAi j is related with the
driving currents viaAi j5(v i2v j )/K. Although the bond
angle here possesses quenched randomness arising fro
randomly distributed driving currents, it can be gauged aw
via the simple transformationf i2v i /K→f i . In particular,
it does not give rise to any frustration, which is believed
be essential in glassiness. It is thus concluded that an app
magnetic field is necessary for inducing frustration and c
sequently, for exhibiting glassy synchronization.
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