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Synchronization in networks of superconducting wires
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We study the synchronization phenomena in networks of superconducting wires driven by quenched random
external currents. Each wire interacts with all the other wires perpendicular to it; this system naturally presents
an example of the well-known phase model. The equations of motion are obtained from current conservation
conditions, which in turn lead to an effective Hamiltonian of the system. We then use the replica method to
derive the self-consistency equations and obtain the phase diagram. Effects of alternating currents as well as
the possibility of glassy behavior are also discus$80163-18207)02225-X

[. INTRODUCTION guenchedrandom variables following a distribution with
zero mean and appropriate variance. It should be noted that,
A large population of mutually interacting self-oscillatory unlike the Kuramoto modélgach wire interacts not with all
units often exhibits a coherent motion among their constituthe rest of the wires but with the half of the wires lying
ents over a relatively long distance. This remarkable featurgerpendicular to it. As a result of themiglobalcoupling,
called collective synchronizatigris prevalent in various os- the equations of motion consist of two sets of equations; the
cillatory systems in physics, chemistry, biology, and evenwo sets govern the dynamics of the horizontal and the ver-
social science$:® Theoretically, the case of the uniform tical wires, respectively. Still the obtained equations of mo-
infinite-range interaction is most tractable and serves as fion are closely related to those of the Kuramoto model, be-
starting point towards an understanding of the behavior ofayse each set of equations is of the mean-field nature. In
realistic systems. The glqbally coupleq system was first andyct, the system may be regarded as a generalization of the
lyzed by Kuramot&,m which each oscillator has been mod- josephson-junction series arrays, which can be mapped into
eled as a rotator with randomly distributed natural frequencyiha kuramoto model in the proper linfitThus, this system
It was successfully shown that collective synchronization in- ay serve as a physical realization of the Kuramoto model,

deed sets in _g_radually as th_e c_ouplin_g_strength Is increase, d many interesting features present in this system may be
beyond thg pnycal valuez \.Nh'Ch IS rem|n|scent.of the Second'explained in terms of the synchronization. For example, the
order equilibrium transition. In many physical systems,

short-range interactions are more realistic, and the mean-fie perconducting state with global phase coherence can be

approach is regarded as a mathematically simple, albel entified W.'th the synchr.o_nlzed state and the
crude, approximation to the true underlying physics. On thesupercon'duc.tlng-normal trgns!tlon co.rr'esponds o the
other hand, there also exist a number of systéthis.g., SYynchronization-desynchronization transition. _
intracavity lasers, series arrays of Josephson junctions, and 1hiS paper consists of five sections: In Sec. II, we obtain
biological systems, where global coupling appears to bdhe equations of motion and find the self-consistency equa-
natural. In those systems, the mean-field approach is exaiPns at zero temperature, which yield results similar to those
and should not be regarded as an approximation. of the Kuramoto model. Section Ill is devoted to the finite-
The network of superconducting wires, which has at-temperature analysis, which gives the phase diagram, while
tracted recent intere3f provides another good example of Sec. IV presents the effects of periodic driving currents.
the mean-field system. It consists of two orthogonal sets ofVhen the system is driven by alternating currents, it exhibits
N parallel superconducting wires which are coupled withinteresting phenomena of periodic synchronization. The tran-
each other by Josephson junctions at all points of crossingsition into such a state with periodic synchronization may
The Hamiltonian of the system is given by the sum of indi-also be induced by changing the phase delay between the
vidual Josephson energies, while the phases of the wires atgirrents applied to horizontal wires and those to vertical
regarded as classical thermodynamic variables. It should bgjres. Finally, in Sec. V, a summary of the results is given,
noted here that the number of nearest neighbors scales wihd the glassy behavior is shown not to appear in the absence

the system size, which naturally allows the mean-field apof an external magnetic field, indicating the key role of the
proach. In view of the experimental situation, we consideffrystration.

the systendriven by external currentdor which the Hamil-

tonian description is not adequate. Instead we deal with the

equations of motion for the driven system, which can be EQUATIONS OF MOTION AT ZERO TEMPERATURE
derived from the current conservation conditions. We in par-

ticular consider the general case of nonuniform driving, and We consider an array of two mutually perpendicular sets
allow the current injected at one edge of a wire to be differ-of N superconducting wires with Josephson junctions at each
ent from those injected at the edges of other wires. For sufrode. At one edge of each wire, uniform curréms injected
ficiently large N, the driving currents can be regarded asand at the opposite edge the same current is extracted.
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Neglecting capacitive effects and thermal noise currents, weies ) and w® are distributed according to the Gaussian
can write the net current from theh horizontal wire to the distributionsg,(w) and g,(w) with varianceso; and o,
jth vertical wire as the sum of the Josephson current and theespectively. Without loss of generality, the mean values of
normal current: the distributions can be taken to be z&(@he detailed shape
of the distribution is irrelevant while the simple case of uni-
lo=1, sin( ¢V — ¢(2))+ ﬁ 1) fo_rm driving corresponds to _the deltaffunction distribution
e ! J R’ with o;=0,=0.) It is convenient to write the above equa-

. . tions in the matrix form
where ¢{* and ¢{?) are the phases dth horizontal and

vertical wires, respectivelyl,; is the critical current of the

Junctlo_n, ar)d? is the shunt resmt_ancla’_ij (=Vi—V)) isthe Mij¢;=Fi(w;, ) (4)
potential difference across the junction, and related to the

phase via the Josephson relatiord(4™ — ¢{?)/dt _ _ _ _

=2eV;; /" The current conservation at each horizontal wireWith F; being an appropriate function ofw; and

imposed on Eq(1) yields a set oN coupled equations: d=(4", ... '¢(Nl),ff’(12), - ,4?&2)), where the components
of the 2N X 2N matrix M are given by

N
A d . ..
I?thzl ﬁa(dﬁl)—(ﬁ}z))ﬂcsin(¢>i<1>—¢}2>) , 8; for 1=<i,j<N andfor N+1=i,j<2N

J

1 .
N otherwise.

wherel ™ is the external current fed into th¢h wire. It is

convenient to write the above set of equations in the form ) ) )
Here, the determinant of the matrM vanishes, reflecting

the U1) symmetry of the whole system. We thus set the
. 1 : K phase of one particular wire sagfll) equal to zero all time
S p— (2 ,b_ in(Y— (2 ; . ’ . . '
¢i N; ¢ 7+ o N; sin(¢i”"—¢;7), (2 i.e.,M;;=M;,=0 for alli. Then the inverse matrix dfl can
be easily obtained, and multiplication of both sides of @&g.

by M1 yields more tractable equations of motion:
where w{M=2eRI™YN% corresponds to the natural fre-

guency of theth wire andK=2eR|./% measures the cou- _
pling strength between the horizontal and vertical wires. diV=0Y—KA, sin(¢Y - 6,),
Similarly, the equations for vertical wires assume the form

$; =0 —KA; sin(¢{?— 1)+ KA1A, sin(6,— 6,),

5
where the order parametets,exp(6,)=(1/N)=exdi¢\”]
which, together with Eq(2), constitute the equations of mo- measure the degrees of coherence of the horizoatal 1)
tion of the system. We consider the general case of nonungnd vertical ¢=2) wires. It is obvious that these equations
form driving, and allow the current injected at one edge of g0f motion reduce precisely to those for the well-known Kura-
wire to be different from those injected at the edges of othemoto model if one setg{")= ¢{? for all i. Thus this system
wires. In the thermodynamic limitN— ), the driving cur- can be considered to be a generalization of the Kuramoto
rents can be described by a distribution with appropriatenodel and to provide a physical realization of the latter.
variance. Here the current driving each wire does not change The stationary state exhibited by the above equations of
with time, and can be regarded asjaenchedandom vari- motion is described by the probability distributions &%
able. We thus assume that the corresponding natural frequeand ¢(:

¢j<2>=$2 ¢i<l>+w§2>—§2i sin(¢f? = ¢"), (3

N p Y —60,—sin Hw/KA,)] for |w|<KA,,

D- )=
Pa(@he) ’m[Zﬂw—KAz5in(¢(1)—92)|]_1 otherwise

and

SpP—0,—sin [(w+A)KA]} for |o+A|<KA,,
V(w+A)°— (KA 2m|lw+A—KA, sin(¢®P—6,)|]"! otherwise,

P2(¢?;0) =f
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with A=KA;A, sin(6,—6,). The order parameters can be . EFFECTIVE HAMILTONIAN
expressed in terms of the probability distribution AT FINITE TEMPERATURES

27 _ In this section, we consider the extension of the model to
A exp(i ea)zf dogy(w) | d@P(¢;w)e'?, finite temperatures. We thus add thermal noises to the equa-
0 tions of motion and obtain
which in turn gives self-consistency equations

K
1 D=_ @4 D sin( ™ — d2) + (1),
A1=KAzf dxa(KA 0 T, 2 ¢+ of N2 Sl = )+ w0
-1
ot o, @ K inf 62— D
A2—KA1J dyg(KA1y)V1-y*, (6) b :NZ ¢+ o _NEi Sin(¢™'— ™)+ (1),
)
A=0 . :
where the thermal noises are characterized by
with x=w/(KA,) andy=w/(KA,). It is interesting to note
that the relative phase difference of the two sets of wires, (%(1))=0

0,— 6, is always zero although the amplitudas and A,
may have different values depending on the distribution , ,
functions of the applied currents. This implies that the whole (ri(Oyt))=2Ig;o(t—t")

system can be fully synchronized with each other even . . . .
though the coupling is not wholly global but semiglobal. with I' (=0) measuring the strength of the noise. Equation

Thus, the obtained result is indeed a straightforward extenl”) has the form of a set of Langevin equations, where two
sion of that of the Kuramoto model despite the difference in dlfferent sets of variables, representing horizontal and verti-
the coupling. A is increased from zero, the only possible cal wires, respectively, are coupled with each other. As in the
solution of Eq.(6) is the trivial solution (;=A,=0) until previous section, one may introduce the order parameters

K reaches the critical valu€.. . At this critical value, a non- A; and A, and write down two Fokker-Planck equations,

trivial solution branch bifurcates from the zero branch; thefor the two one-wire probablhlty densitiesP, and P?' the
zero-temperature limits of which have been given in Sec. Il.

latter becomes unstable beyokd.® Here, both the horizon- L
yoKid At finite temperatures, however, the two Fokker-Planck

tal and vertical wires become coherent at a sirgle Over- i lead t i ist i hich I

all coherence across the system is thus attaine& fokK, equations lead fo sell-consisiency equations, which couple

and the whole system becomes superconducting. Expat‘?l andA, quite complexly and cannot be solved in a trans-
parent manner. Therefore we resort to the Fokker-Planck

sion of Eq. (6) near K. straightforwardly yields A,
(K—K)¥ for a=1 and 2, with the critical valud equation for the2N-wire probability densityP(¢,t):

=2[791(0)g,(0)] %, where the critical behavior with the

2
exponent 1/2 is a characteristic of mean-field systems. Here _ 2 p ®)
we again emphasize that the amplitudestgfand A, may aqbl (9_¢|Z
differ from each other even though they have the same ex-
ponent neak. . with
|
wV—(K/N) 2 sin(¢{V—¢{?) for horizontal wires,
i
hi=
w@—(KIN) Y sin(¢{?—¢{")  for vertical wires,
J
which leads to a stationary solutid®,( @) <exp(—H[ ¢]/T) with the effective Hamiltonian
1 H_ @2 L D1, (2) 42
H== 2 cot =)= g2 (Ve +0”9”) )

at temperaturd =I'/K. Note that the second term in E@®), which has the form of a generalized washboard potential, is not
periodic in¢. This apparent absence of the correct periodicity suggests that the above solution is not adequate for describing
the dynamics of the system, which involves variationsgofarger than 2r. Similar problems arise in Josephson-junction
arrays® and in networks of neuronal oscillatorsyhere the actions were regarded as periodic functions with periatl 2
(n—x). The standard Villain approximation, which gives an accurate description at low temperatures, was then shown to
restore the correct periodicity and to yield results independent &¥e thus follow Ref. 10, and regatd in Eq. (9) as the

effective Hamiltonian of the system, with the period2 Here, similarly to Ref. 10, it can also be seen that the corresponding
free energy is independent of which allows us to take the integration interval ¢fto be from— 7 to .
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We then use the replica method, and obtain the free energy per wire:

f=li Tl N
=lm N 2T

noonN

3n
f IT dA,dB,dC,dD,dEdFexp — N@/T)} (10)
a

with

1 1
d=_> (A2+B2+C2+D2+E2+F2)—TiIn{( >, exp/=>,
245 () T3

As(cos ¢V + cosp?)+iB, cospP+iC, cos P

1
+D,(sin ¢V + sin @) +iE, sin ¢V +iF, sin ¢\ + K(a)(l)qsglw w<2)¢§f))H >> ,

w

where((- - -)), denotes the quenched average over the distributions’dfand »'?). In the thermodynamic limiN— o, we
perform the integral via the saddle-point method

o _oe
A, B,

which leads to
Aa=( (cos ¢+ cosd() N, Da=( (sin ¢+ sin ¢{) ).,
Ba=i{ (cosa{’) Do, Ea=i{ (sin ") o, (1D
Ca=i{ (c0587) Nu, Fa=i{ (sin ) M.

Here(O(¢)) stands for the average with respect to the actipn

E[¢]@(¢)eﬁ([¢])

(O(fb)):W

with the action given by
1
L= T}é\) [A(cos P+ cos¢pl?)+iB, cospll)+iC, cos di?) +D,(sin P+ sin ¢p2)+iE, sin ¢\ +iF, sin ¢

+(UK) (Mg + 0@ g,

Since the order parameteBg, C,, E,, andF, in Eq.(11) are purely imaginary, we writB,=iB, etc., for convenience, and
omit the primes hereafter. After performing the quenched average, we obtain the free energy in the form

1 1 1 2 H 1 H 2
f=BC+EF— | Dz;Dz,In{ Tryexg | C cos Y+ B cos p@+F sin ¢V +E sin ¢@

Vo Vo, ) } I,(JVCZ+FT)
+-——opMz+ =9z =BC+EF—TJ DzyIn| (Vo123 IKT)2Y, (—1)"—
KT ¢ 1 KT ¢ 2 1 ( 0141 ) ; ( ) (\/0_—121/KT)2+n2

. In(VBZ+E?/T)
(Jo,2,IKT)2+n?
wherel ;'s represent the modified Bessel functions of the first kind, and the replica-symmetric solution has been chosen, i.e.,
B,=B for all a, etc. Defining the order parameteXs andA, measuring the mutual coherence of wires in the same direction

asA,=B?+E? andA,=/C?+F?, which are restricted in the ran§®,1], we finally get the self-consistency equations by
differentiating the free energy with respect to the order parameters:

—TJ Dz,In| (Vo,2,/KT)2Y, (—1) , (12)

_ _p 2D [ (e
Al_f DZ; =1 (\/a_lz/KT)2+n2_; (-1 (Jo,zIKT)2+n2|
1AL T) 1 (Aq/T) !
A= __1\n _q\n_ Mnm=L1S
2 fDZ; v (\/cr_zz/KT)2+n2_§n: =V (No,zIKT)?+n?| 13
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T behaviors? We expect such periodic driving to play a simi-
lar role in the network of superconducting wires, and con-
sider the network driven by combined direct and alternating
applied currents, with particular attention to the phase delay
between the driving currents in the horizontal wires and
those in the vertical wires. At zero temperature the equations
of motion take the form

desynchronized
synchronized

$iV=wV—KA, sin( ¢ - 6,)+1(Y cosOt,

Ke ¢ D= 02— KA, sin(¢{2— 0;)+KALA, Sin(0,— 0,)
FIG. 1. Phase boundary on th¥,T) plane. The critical value +11? cosQ(t+7), (14)
K. is given in the text. !

1 1 2 2
wherel ! (x)=dI,(x)/dx, andfDz denotes the average over where_w_i( J+1{V cost a’_‘d“’i( )+_|i( ) cos()(t+ ) represent
the normalized Gaussian variatde the driving currents applied to théh horizontal and vertical

We now check whether the obtained results are consisteN{ires, respectively, withr describing the phase delay be-
with the zero-temperature results given in Sec. II: At zerotween the two driving currents. With suitable redefinitions,
temperature, the direct expansion of E3) fails because ©ach of Eq(14) can be cast in the simple form
the arguments of the modified Bessel functions are divergent
in all orders. Therefore, we adopt the spin-wave approxima- ;z,”z sin ¢=w+1 cosQOt, (15)
tion which should be accurate at zero temperature, and ex-

pand the washboard-type potential in Eb@) about its mini-  which describes a single resistively shunted Josephson junc-

mum: tion with the couplingkK=KA ,, biased by an applied cur-
= rento+1 cosQt. It is well known that such a system can be
+ ~ -
eXHA cos§+Be)=exHA cos $= o) locked to the external driving, which is characterized by the
~ Shapiro steps
~expA

1 2
1-5 (¢~ o)

@ _,

where ¢o= sin"}(B/A) and A=A cosd,. After taking the ) ) Q )
trace overg, one can easily confirm that E¢13) indeed ywth n |n'§eger. On thaenth step, the phase of the locked wire
reduces to Eq(6), reproducing correct behavior in the zero- is thus given by

temperature limit. As the temperature is increased, on the |

other hand, vortex excitations begin to appear, making the d~nQt+ = sin Qt+ ¢y,

simple spin-wave approximation invalid. It is thus necessary Q

to investigate explicitly Eq(13), which can be solved nu-

merically. For a given value of the coupling strendth  where ¢, is determined according to

the (numerical solution of Eq.(13) gives the transition ~

temperatureT, as a function ofK: Above T., collective w=nQ+(—1)"KJI(1/4) sin ¢
synchronization is not allowed whereas a coherent state

emerges as the temperature becomes lower ThanAlter-  with J,, being the Bessel function of order Off the step, the
natively, at a given temperature the system may be considwire is unlocked and its phase is given by

ered to possess the critical coupling strength, below
which no synchronization appears. In particular, at zero tem-
perature, the critical valu&, has been given in Sec. II:
K.=2[7g,(0)g,(0)] "%, which depends on the distribu-
tions of external currents. At finite temperatures, the valuesvhere ¢° is a constant independent of

of K. may be obtained numerically to yield phase boundaries The equations for the order parameters are then obtained
in the (K,T) plane. Here we have examined the numericalby imposing self-consistency. For the alternating current am-
solutions of Eq.(13) for several different cases, and found plitude | distributed according té,(l), the self-consistency
that the overall phase boundaries remain qualitatively unequations read

changed, regardless of the valuesof and o,. Figure 1 '

displays a typical phase diagram in th€,T) plane, showing Aae'0a=f dlfa(l)f dwg,(o)(exdi¢ @), , (16)

the phase boundary below which collective synchronization

sets in.

|
p~ott o sin Qt+ ¢°,

where (- --), | denotes the average in the stationary state
IV. PERIODICALLY DRIVEN SYSTEM with given andl. 'Sm'ce qn_ly Iocked wires contributed to
collective synchronizatioff. it is straightforward to compute
Periodically driven systems of globally coupled oscilla- the averages in E¢16) and obtain the self-consistency equa-
tors have been studied, and shown to display interestintjons
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Kcmax(fz)

Kcmax(t1 )

Kcmin(11)

Kcmin("z)

FIG. 2. K, as a function of time for two different values of the
phase delayr,= /2 (represented by the solid linand r,= 7/3
(represented by the dashed liné&/e have set,=0 =1 for conve-
nience.

|
i — sin Qt)

A0 —KAL, D e‘”“tf dlfl(l)exp( Q
n

1
X Jn(I/Q)f dxg[nQ+KALJ(1/Q)X]
-1

X[V1—=x2+i(—1)"x],

) sin Q(t+17)

A€ P2 t—KA, D e”‘mf dlfz(l)ex;{i
n

1
xJn(wQ)f dyg[nQ—A+KA,J,(1/Q)y]
-1

X[V1=y*+i(=D)"],

where the integration variablesandy are defined to be

17

w—n{) w—nOQ+A

*T KAL) YT KA1

Note thatin the limit 7——0, Eq. (17) with A;=A, and
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0.4

A1,2 02|

0.1

t

FIG. 3. Periodic behaviors of the order parameters with time for
various values of the phase delay. The caser/3 represented by
the solid line displays synchronization periodically, while the cases
7= /2.2 (dashed lingand = /2 (dotted ling exhibit synchroni-
zation all the time.

1
fa()=fa(l) =3[ =1o)+ (1 +10)],
which gives Eq(17) in the form
Aj=a(KA,)—b(KA,)3+0(KA)S,

A,=c(KA;)—d(KA;)3+O(KA)®

with the coefficients given by
lo . Q
cog ¢ sin t,

_ T o e lo
b= 5 gl(O)JO(Q)cos<Q sin Qt),

(18

a IO
a= 2 0:(0)Jo|

. lo lo
C—Egz(O)\]o aQ co ﬁsm Q(t+7)

T rongd 10 sd 0
d= 5 gz(O)JO(Q>co{Q
Equation(18) allows nontrivial solutions ofA; andA, only

if K>K.(=1/\/ac). Note thatK, is periodic in time and

sin Q(t+7)|.

A=0 reduces to the corresponding equation of Ref. 12, = min max max min
which was shown to display periodic synchronization de_Varles' in the rang& §K°< K™ Where'K.C andKg
are given by the maximum and the minimum values of

pending on the coupling strengkh Such phenomena of pe- X i . .
riodic synchronization might be of relevance to the behaviors/vac for given 7. Fork <K', the system is always inco-

of many biological systems subject to periodic stimuli. herenra,axwhlle it displays synchr_onlzatlign all thrfa time for
Among those which have already been observed experimef& K¢~ For intermediate couplingK(™"<K<Kg™), we
tally include oscillatory responses of neurons in the visuahave periodically K<K. for some time intervals and
cortex of a cat? K>K, for the rest of time. Thus the system oscillates be-
Here the behavior of the system depends on the additiondveen the synchronized and the desynchronized states. It is
parameterr, the phase delay between driving currents ap-Of interest here tha " andKZ'® depend also on the phase
plied to the horizontal and vertical wires. To examine thedelay 7, which suggests that we may induce transitions be-
role of 7, we assumeKA;,<1 near the transition to the tween different synchronization states by varying-or ex-
coherent state, and expaggandg, aroundn{). We further ~ ample, suppose that the value of the delay is varied from

assume thatg,(w) and g,(w) are nonzero only for
|w| < w, for a finite cutoffw., and consider high-frequency
driving such thatQ)>w.. For simplicity, we consider the
distribution of driving in the form

7, to 75, where the coupling lies betweerK®{r,) and
KT®(r,). This induces a transition from theontinuously
synchronized state into the periodically synchronized state;
in the latter the system displays synchronization-
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desynchronization transitions periodicallgee Fig. 2.In a  simplicity, we consider only the case that the phases of the

similar way, we may observe the transition between the peith horizontal and vertical wires are locked to each other,

riodically synchronized state and the desynchronized oneyhich amounts to the Kuramoto model. The corresponding

whenK lies in the intervall KI"(7,), K"(71)]. Figure 3  Fokker-Planck equation can be written in terms of the single-

displays the numerical solutions of E(L8) in the simple wire probability densityP(¢,t):

casegs(w)=g,(w), where the transition between the con-

tinuously synchronized state and the periodically synchro- 5

nized state can be observed. P o1t |p (20
gt |ap v T ap?|

V. DISCUSSION

We have studied synchronization phenomena in network#here the drift coefficienD,, is given by
of superconducting wires. In particular, we have considered
the networks drivep by extgrna! currents, which re_semple D,=w—KA sin(¢—6)
more closely experimental situations. Since the Hamiltonian

description is not adequate in this case, we have derived thgjth the order parametenexp( 6)=(1N)Z,exp(¢;). The

equations of motion from the current conservation Condi'stationary solutiorP(® of Eq. (20), which has been obtained
tions, and investigated their behaviors both at zero temperay ref. 15. allows us to computé andq via the equations
ture and at finite temperatures. The peculiar semiglobal cou- '

pling results in the equations of motion consisting of two sets .
of equations, wh|qh governs the dynarmcs of the honzontal Ae”’zf de g(w)J' dé PO(¢,w,0)e',
and the vertical wires, respectively. With the constraint that 0
the phases of thiah horizontal and vertical wires are locked
to each other, the equations of motion have been found to
reduce to those of the Kuramoto model. The network system q= f dwg(w)
thus includes the Kuramoto model as a special case, and
serves as a physical realization of ttgeneralizedl Kura-
moto model, which exhibits collective synchronization in the These equations show that the glass order parametem
proper regime. Here synchronization represents global phadive a nonzero value only ik is not zero. Accordingly,
coherence, which in turn corresponds to the superconductingespite the quenched disorder associated with driving cur-
state of the system. The synchronization-desynchronizatiorents, there does not exist a glass phase. This is to be com-
transition can then be identified with the superconductingpared with the results of Ref. 6, which proposed glassiness
normal transition. We have also considered the systenmnduced by an applied magnetic fighdithout quenched dis-
driven by alternating currents, and examined the effects ofrdep. The absence of glassiness in our system may be un-
such periodic driving, to reveal periodic synchronization. Inderstood as follows: The effective Hamiltonian of the system
particular, the role of the phase delay in the driving currentsan be written in the form
has been investigated, and it has been shown that transitions
between states with different types of synchronization can be
induced by adjusting the phase delay. _

We finally consider the possibility of glassy behavior in H=- N.EJ cos éi— ¢J)_Ei @iy (21)
this driven system. The system without driving currents has
been shown to display glassiness in the presence of a trans-
verse magnetic fielfiln the presence of an applied magneticin @ manner similar to that leading to E@). Provided that
field, the phase difference in the Josephson term is replacéfe driving is not too strong, the washboard-type potential
by the gauge-invariant ones;— ¢;—A;;, whereA;; is the in Eq. (21) can be transformed into the form
line integral of the vector potential from thiéh wire to the ~ COSkh— ¢;—A;j), where the bond angl;; is related with the
jth one. In the strong-field limit, the bond anghg; takes driving currents viaA;;=(w;—w;)/K. Although the bond
rapidly fluctuating values depending bandj; this suggests angle here possesses quenched randomness arising from the
to treatA;;’s essentially as quenched random variables, angandomly distributed driving currents, it can be gauged away
to regard the systertwithout driving currentsas a realiza-  Via the simple transformatioth; — w; /K— ¢; . In particular,
tion of theXY gauge glass. On the other hand, in our systemi,t does not give rise to any frustration, which is believed to
driven by randomly distributed currents, there already exist§€ essential in glassiness. It is thus concluded that an applied
quenched disorder associated with driving currents, whicknagnetic field is necessary for inducing frustration and con-
raises the interesting possibility of glassiness in the absen&@quently, for exhibiting glassy synchronization.
of a magnetic field. To examine such possibility, we intro-
duce the glass order parametgrwhich corresponds to the
Edwards-Anderson order parameter in the spin system: ACKNOWLEDGMENTS
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