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Hofstadter butterfly for the hexagonal lattice

Godfrey Gumbs* and Paula Fekete
Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue,

New York, New York 10021
~Received 21 March 1997!

A theoretical investigation is presented for the energy spectrum of two-dimensional Bloch electrons subject
to a periodic modulation in both lateral directions for a lateral surface superlattice with hexagonal symmetry.
The calculation is carried out for a single band in the tight-binding approximation in the presence of a
perpendicular magnetic field. The Peierls’ substitution is applied and the resulting Schro¨dinger equation is
solved when the magnetic flux through a unit cell is a rational fraction (a5p/q) of the flux quantum
(f05h/e). The energy spectrum is obtained numerically and results are presented for several values of the
in-plane wave vectork and the overlap integral between nearest-neighbor lattice sites.
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I. INTRODUCTION

The problem for the electronic properties of a tw
dimensional~2D! electron system~ES! under the influence
of both a periodic potential and a perpendicular magn
field has long been a fascinating subject in theoretical s
state physics. The solution to this problem has been
proached in two fundamentally different ways. One is t
semiclassical, or low-field method, based on the Peie
Onsager assumption.1,2 This method is applicable in the limi
of weak magnetic fields and introduces a single-band ef
tive Hamiltonian for Bloch electrons in a perpendicular ma
netic field. The second method is a quantum mechanical
proach introduced by Rauh, Wannier, and Obermair3 and is
suitable for strong magnetic fields and uses the free-elec
Landau eigenstates as a basis and the periodic lattice p
tial as a perturbation.

So far, there has been a considerable amount of w
which has been carried out to explore the energy spectrum
Bloch electrons in either a weak magnetic field or Land
quantized electrons in a weak 2D lattice potential. Since
publication of the first papers in this field by Azbel4 ~strong
magnetic field limit with a weak lattice potential treated as
perturbation! and Hofstadter5 ~strong lattice potential with a
weak magnetic field!, there has been continuously growin
interest in this field. In addition to the theoretical work on t
subject, recent advances in submicrometer lithography
nanofabrication techniques have made it possible to cr
lateral surface superlattices with modulation periods m
shorter than the elastic mean free path but comparable
the cyclotron radius at low magnetic fields, thereby makin
possible for experimentalists to find indications of the H
stadter spectrum6–8 and its effect on the transport and optic
properties of 2D ES.9,10

The early theoretical5 and experimental11,12 work focused
on square lattices. However, it was not evident whether
conclusions for the square lattice would be valid for the h
agonal and triangular lattices. The energy spectrum for
tight-binding Hamiltonian for a hexagonal lattice was inve
tigated by Langbein13 and Claro and Wannier.14 Sometime
later, Hasewaga, Hatsugai, Kohmoto, and Montambau15

calculated the 2D electronic energies in a perpendicular m
560163-1829/97/56~7!/3787~5!/$10.00
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netic field for the square, triangular, and honeycomb latti
for various values of the overlap integrals for the wave fun
tions. Recently, Kuhnet al.16,17 calculated the Landau leve
spectrum of a 2D ES in a lateral surface superlattice w
hexagonal symmetry using the Landau eigenfunctions a
basis set and diagonalizing the coefficient matrix for a p
determined subset of the basis. The problem of the ene
spectrum for electrons on a hexagonal lattice in the tig
binding approximation in a perpendicular magnetic field
far less explored than the square lattice. The purpose of
paper is to complement this study for this case, thereby
tending the work of Claro and Wannier14 for the hexagonal
lattice to include the effect of anisotropic hopping on t
lattice and to examine the effect on the energy spectrum
a finite lattice wave number. To put the problem in persp
tive, we briefly review the relevant literature.

There have been three limiting situations in the study
2D ES in a periodic potential and a perpendicular magn
field. When the strength of the potential is large compared
the cyclotron energy, one follows Hofstadter5 by using a
single-band Hamiltonian obtained by the Peierls’ subst
tion. This approach was further developed by Schellnhu
and Obermair18 who included a perturbation term given b
the Fourier expansion of the lattice potential which yield
the tight-binding Hamiltonian as the lowest-order appro
mation. Claro19 used this approach to examine the effe
due to the next-nearest neighbors on the energy spectru
a square lattice in a perpendicular magnetic field. Anot
approach has been presented by Thouless20 who compared
the energy spectra of the anisotropic triangular and squ
lattice with nearest-neighbor coupling with the isotrop
square lattice with next-nearest-neighbor coupling. Furt
contributions to the improvement of the tight-binding fo
malism have been made by Zak21 who used group theory to
explain the splitting of the energy bands into magnetic s
bands within the framework of an effective Hamiltonian fo
malism.

On the other hand, when the potential strength is mu
less than the cyclotron energy, the problem can be solved
using free electron Landau eigenstates as a basis set fo
agonalizing the Hamiltonian. This is the approach follow
by Rauh22 in calculating an upper bound for the width of th
3787 © 1997 The American Physical Society
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3788 56GODFREY GUMBS AND PAULA FEKETE
nth Landau subband for a square lattice. Neumann
Rauh23 included second-order terms in a perturbation tre
ment of the Landau eigenstates to obtain the broadenin
the lowest Landau levels due to a square lattice. Making
of Landau eigenstates, Wannier24 demonstrated the existenc
of nesting structures in the electron energy spectrum, the
discovering a possible link between the results of this
proach and Bloch electrons in a magnetic field. Kuhnet al.25

have described the effect of including higher Fourier ter
of the crystal potential on the electron energy spectrum
have related their results to those obtained with seco
nearest-neighbor coupling in the tight-binding approxim
tion. More recent contributors to the field26–31 have calcu-
lated the energy spectrum of a 2D ES in the presence
spatially modulated magnetic field or a combined const
magnetic field and a spatially modulated perpendicular m
netic field commensurate with the lattice.

For magnetic fields of intermediate strength, i.e., when
magnetic field and the lattice potential are comparable,
should include Landau level coupling. Petschel and Geis32

have obtained a generalization of the Harper equation in
vector form by employing a Landau basis and concluded
interband coupling removes the symmetry in the butte
spectrum. The role played by Landau level coupling has a
been determined by Kuhn, Selbmann, Fessatidis, and C16

for 2D electrons in a 2D square array of scatters for vari
potential strengths and the steepness of the potential pro

The rest of this paper is organized as follows. In Sec.

FIG. 1. The energyE/t1 ~in units of E0) of a hexagonal lattice
in a perpendicular magnetic field as a function of the rational fl
quantum a5p/q. The parameters used in the calculation a
t05t25t151. The wave vector is chosen withkx50, ky50.
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we describe the model used and derive the Schro¨dinger equa-
tion in matrix form. Section III is devoted to numerical re
sults and discussion. In Sec. IV, we present a summary
our results.

II. GENERAL FORMULATION OF THE PROBLEM

For a 2D lattice with hexagonal symmetry, it can b
shown that in the absence of an external magnetic field,
lowest energy band with anisotrpic nearest-neighbor ove
is given by33

E52E0$t0cos~kxa!1t1cos@~kx1kyA3!a/2#

1t2cos@~kx2kyA3!a/2#%, ~1!

wherea is the lattice constant and the atom at the origin h
nearest neighbors (6a,0) and (6a/2,6A3a/2), and
k5(kx ,ky) is the wave vector of an electron. In this not
tion, t0 is the nearest-neighbor overlap in thex direction and
t6 are the nearest-neighbor overlap integrals along the s
metry directions which makep/3 and 2p/3 with this direc-
tion. E0 is an energy scale related to the bandwidth. We n
use the Peierls substitution to construct the Hamiltonian
replacing the Bloch wave vector by the momentum opera
in the following way, i.e.,\k→p1eA, where the vector
potential is chosen in the Landau gauge withA5(0,Bx,0),
for a constant magnetic fieldB in the z direction.

Expressing all energies in units ofE0, denoting the wave
function byc(x,y) and noting that the nearest-neighbor c
ordinates are x5ma/2 (m561,62) and y5naA3/2
(n50,61), the time-independent Hamiltonian is given by

x
FIG. 2. The same as Fig. 1, except thatt051, t251, t152.
Hc~mb,nbA3!5t0$c@~m22!b,nbA3#1c@~m12!b,nbA3#%

1t1@c@~m21!b,~n21!bA3#eieBxbA3/\1c@~m11!b,~n11!bA3#e2 ieBxbA3/\#

1t2@c@~m21!b,~n11!bA3#e2 ieBxbA3/\1c@~m11!b,~n21!bA3#eieBxbA3/\#, ~2!

where, for convenience, we have setb5a/2. In what follows, we can assume a plane wave-like behavior in they direction5

with c(mb,nbA3)5exp(inkya)G(m). Equation~2! is further simplified by replacingx in the exponential byma52mb so that
the argument of the exponent is
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Gm5
2mb2A3eB

\
5

2pmBAc

f0
, ~3!

whereAc52b2A3 is the area of a unit cell andf05h/e is the flux quantum. Our numerical results will be restricted to
case when the flux through a unit cellBAc is a rational fractiona5p/q of the flux quantum. The energy eigenvaluesE are
then obtained as solutions of the Schro¨dinger equation

EG~m!5t0@G~m22!1G~m12!#1@ t1ei ~2pma2kya!1t2e2 i ~2pma2kya!#G~m21!

1@ t2ei ~2pma2kya!1t1e2 i ~2pma2kya!#G~m11!, ~4!

wherem is to be set successively tom51,2, . . . ,q since the set of equations are repeated form>q11. Equation~4! is a
generalization of Harper’s equation for the hexagonal lattice. We use the Bloch condition for the wave function and

G~21!5e2 ikxqaG~q21!, G~0!5e2 ikxqaG~q!,

G~q11!5eikxqaG~1!, G~q12!5eikxqaG~2!, ~5!

which then give the following matrix which must be diagonalized to obtain the energy eigenvaluesE/t1 :

AW 51
0 D1 t0 /t1 0 0 ••• 0 ~ t0 /t1!e2 ikxqa D1* e2 ikxqa

D2* 0 D2 t0 /t1 0 ••• 0 0 ~ t0 /t1!e2 ikxqa

t0 /t1 D3* 0 D3 t0 /t1 ••• 0 0 0

0 t0 /t1 D4* 0 D4 ••• 0 0 0

••• ••• ••• ••• ••• ••• ••• ••• •••

0 0 0 0 0 ••• 0 Dq22 t0 /t1

~ t0 /t1!eikxqa 0 0 0 0 ••• Dq21* 0 Dq21

Dqeikxqa ~ t0 /t1!eikxqa 0 0 0 ••• t0 /t1 Dq* 0

2 , ~6!
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Dm[~ t2 /t1!ei [2pm~p/q!2kya]1e2 i [2pm~p/q!2kya] . ~7!

III. NUMERICAL RESULTS AND DISCUSSION

We now present our results for the Hofstadter-type ene
spectrum for a 2D hexagonal lattice in a perpendicular m
netic field. The commensurability between the lattice a

FIG. 3. The same as Fig. 1, except thatt052, t251, t151.
y
-

d

magnetic Brillouin zones again leads to an interesting Blo
band splitting and symmetry patterns which were obtain
for the square lattices in the two limiting regimes discuss
above: Bloch electrons in a weak uniform magnetic field a
Landau quantized electrons in a weak 2D lattice potent
The energy spectrum we obtain applies only to rational v
ues of a for the magnetic flux through a unit cell. For
chosen value ofq, there are as many energy eigenvalu
obtained by diagonalizing the matrix in Eq.~6!. However,

FIG. 4. The same as Fig. 1, except thatt051, t252, t151.
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3790 56GODFREY GUMBS AND PAULA FEKETE
our numerical calculations have shown that the energy eig
values are highly degenerate~there is double and quadrup
degeneracy! for a chosen value of the wave vectork. As a
consequence, the resulting eigenvalue spectrum is not s
metric about the middle of the band as it is for a squ
lattice. We follow Hofstadter,5 Hasewaga et al.,15 and
Gumbset al.,28 and plot the energy versusa to make a com-
parison with the square, triangular, and honeycomb lattic
Since the energy spectrum is periodic in 1/a, Claro and
Wannier,14 Kuhn et al.,17 and Gerhardtset al.31 presented
their results for the energy as a function of the inverse of
rational fraction of the flux since they included several La
dau subbands and intersubband coupling.

Figure 1 is the energy spectrum resulting from t
numerical diagonalization of Eq.~6!; the overlap integrals
are chosen ast05t25t151 and the wave vectork is
at the center of the magnetic Brillouin zone. Since the ene
eigenvalues are highly degenerate, the spectrum la
the symmetry about the middle of the band which is pres
in the Hofstadter ‘‘butterfly’’ for a square lattice. Howeve
there is symmetry abouta51/2 and clustering pattern
are still obtained. Furthermore, energy gaps which
characteristic of the Hofstadter butterfly are also presen
the fractal patterns. There is a distinct array of energy eig
values parallel to the energy axis in the two largest ene
gaps. The overall pattern in Fig. 1 of this paper is similar
but not identical with Fig. 1 in the paper by Claro an
Wannier14 which was obtained using free-electron Land
eigenfunctions as a basis set and diagonalizing the resu
matrix.

In Fig. 2, we present results for the energy as a function
a for t05t251 andt152 with the wave vectork50. Com-
paring these results with Fig. 1, we still have a fractal str
ture. However, the distinct array of eigenvalues parallel
the energy axis in the two largest energy gaps are not pre
and there is a larger degree of degeneracy and a broade
of the energy band.

For Fig. 3, we choset052 andt15t251 with the wave
vector still at the center of the magnetic Brillouin zone. F
this choice of values of the overlap integrals, some of
degeneracy is lifted for a chosen value ofq. The bottom of
the band is very flat nearE524 and the eigenvalue spec

FIG. 5. The same as Fig. 1, except thatkx5p/2, ky50.
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trum is symmetric abouta51/2.
We have chosent05t151 and t252 in Fig. 4 still

keepingk50. These values for the overlap integrals result
a broadening of the energy band in Fig. 2 for which t
values oft2 and t1 are interchanged but all the values f
t0 and the wave vector remain the same. One difference
tween Figs. 2 and 4 is the absence of the two sets of h
zontal eigenvalues within the largest energy gaps in Fig
which are now replaced by a single string of energy eig
values.

Figure 5 presents the energy spectrum for the same va
of t0, t2 , t1 as in Fig. 1, except that a finite value of th
wave vector is chosen withkxa5p/2 andky50. The degen-
eracy of the energy eigenvalues obtained from diagonaliz
Eq. ~6! is greatly increased. These results show the w
vector dependence of the energies should be further
plored. For this, we show the dispersion relation in Fig. 6
p51 andq58. For q58, Eq. ~6! gives eight eigenvalues
However, for21&kxa&1 there are four eigenvalues eac
of which is doubly degenerate. Forkxa*1, the two highest
eigenvalues remain doubly degenerate while the lowest s
band is fourfold degenerate.

IV. CONCLUDING REMARKS AND SUMMARY

In this paper, we have presented a theoretical formula
and numerical results for the eigenvalue spectrum of a
ES in the tight-binding approximation for a lateral surfa
superlattice with hexagonal symmetry in a uniform perpe
dicular magnetic field. Our results show a clustering patt
and energy gaps like the Hofstadter butterfly, except that
zero wave vector there is no symmetry about the middle
the energy band as for a square lattice. The eigenvalues
highly degenerate compared to the square lattice and
degeneracy increases at finite wave vector.
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FIG. 6. The energy dispersion as a function ofkxa for ky50,
t05t25t151, anda5p/q, with p51 andq58.
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