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Hofstadter butterfly for the hexagonal lattice
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A theoretical investigation is presented for the energy spectrum of two-dimensional Bloch electrons subject
to a periodic modulation in both lateral directions for a lateral surface superlattice with hexagonal symmetry.
The calculation is carried out for a single band in the tight-binding approximation in the presence of a
perpendicular magnetic field. The Peierls’ substitution is applied and the resultingdBgjeo equation is
solved when the magnetic flux through a unit cell is a rational fractier §/q) of the flux quantum
(¢o=hle). The energy spectrum is obtained numerically and results are presented for several values of the
in-plane wave vectok and the overlap integral between nearest-neighbor lattice sites.
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[. INTRODUCTION netic field for the square, triangular, and honeycomb lattices
for various values of the overlap integrals for the wave func-
The problem for the electronic properties of a two- tions. Recently, Kuhret al1®!’ calculated the Landau level
dimensional(2D) electron system{ES) under the influence spectrum of a 2D ES in a lateral surface superlattice with
of both a periodic potential and a perpendicular magneticiexagonal symmetry using the Landau eigenfunctions as a
field has long been a fascinating subject in theoretical solidasis set and diagonalizing the coefficient matrix for a pre-
state physics. The solution to this problem has been apdetermined subset of the basis. The problem of the energy
proached in two fundamentally different ways. One is thespectrum for electrons on a hexagonal lattice in the tight-
semiclassical, or low-field method, based on the Peierlsbinding approximation in a perpendicular magnetic field is
Onsager assumptidrf. This method is applicable in the limit far less explored than the square lattice. The purpose of this
of weak magnetic fields and introduces a single-band effegpaper is to complement this study for this case, thereby ex-
tive Hamiltonian for Bloch electrons in a perpendicular mag-tending the work of Claro and Wanntérfor the hexagonal
netic field. The second method is a quantum mechanical apattice to include the effect of anisotropic hopping on the
proach introduced by Rauh, Wannier, and Oberfnaid is  lattice and to examine the effect on the energy spectrum for
suitable for strong magnetic fields and uses the free-electroa finite lattice wave number. To put the problem in perspec-
Landau eigenstates as a basis and the periodic lattice potetive, we briefly review the relevant literature.
tial as a perturbation. There have been three limiting situations in the study of
So far, there has been a considerable amount of workD ES in a periodic potential and a perpendicular magnetic
which has been carried out to explore the energy spectrum dfeld. When the strength of the potential is large compared to
Bloch electrons in either a weak magnetic field or Landauhe cyclotron energy, one follows Hofstadtdsy using a
guantized electrons in a weak 2D lattice potential. Since thsingle-band Hamiltonian obtained by the Peierls’ substitu-
publication of the first papers in this field by Azbébtrong  tion. This approach was further developed by Schellnhuber
magnetic field limit with a weak lattice potential treated as aand Obermaif who included a perturbation term given by
perturbation and Hofstadter(strong lattice potential with a the Fourier expansion of the lattice potential which yielded
weak magnetic field there has been continuously growing the tight-binding Hamiltonian as the lowest-order approxi-
interest in this field. In addition to the theoretical work on themation. Clard® used this approach to examine the effects
subject, recent advances in submicrometer lithography andue to the next-nearest neighbors on the energy spectrum of
nanofabrication techniques have made it possible to creat square lattice in a perpendicular magnetic field. Another
lateral surface superlattices with modulation periods muclapproach has been presented by Thodfestio compared
shorter than the elastic mean free path but comparable witthe energy spectra of the anisotropic triangular and square
the cyclotron radius at low magnetic fields, thereby making itlattice with nearest-neighbor coupling with the isotropic
possible for experimentalists to find indications of the Hof-square lattice with next-nearest-neighbor coupling. Further
stadter spectrufi®and its effect on the transport and optical contributions to the improvement of the tight-binding for-
properties of 2D ES:10 malism have been made by Zakvho used group theory to
The early theoreticaland experimentat?work focused  explain the splitting of the energy bands into magnetic sub-
on square lattices. However, it was not evident whether théands within the framework of an effective Hamiltonian for-
conclusions for the square lattice would be valid for the hex-malism.
agonal and triangular lattices. The energy spectrum for the On the other hand, when the potential strength is much
tight-binding Hamiltonian for a hexagonal lattice was inves-less than the cyclotron energy, the problem can be solved by
tigated by Langbeil? and Claro and Wanniéf. Sometime  using free electron Landau eigenstates as a basis set for di-
later, Hasewaga, Hatsugai, Kohmoto, and Montambaux agonalizing the Hamiltonian. This is the approach followed
calculated the 2D electronic energies in a perpendicular madgsy Raul¥? in calculating an upper bound for the width of the
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FIG. 1. The energ¥/t, (in units of Ey) of a hexagonal lattice FIG. 2. The same as Fig. 1, except thg1,t_=1,t,=2.
in a perpendicular magnetic field as a function of the rational flux

quantum a=p/q. The parameters used in the calculation arewe describe the model used and derive the Stihger equa-
to=t_=t,=1. The wave vector is chosen wiky=0, k,=0. tion in matrix form. Section Il is devoted to numerical re-
sults and discussion. In Sec. IV, we present a summary of
nth Landau subband for a square lattice. Neumann an@ur results.
Raulf® included second-order terms in a perturbation treat-
ment of the Landau eigenstates to obtain the broadening of 1. GENERAL FORMULATION OF THE PROBLEM
the lowest Landau levels due to a square lattice. Making use
of Landau eigenstates, Wanrfiedemonstrated the existence . .
of nesting structures in the electron energy spectrum, there own that in the absgnce pf an .external magnetic field, the
discovering a possible link between the results of this ap: west e”eggy band with anisotrpic nearest-neighbor overlap
proach and Bloch electrons in a magnetic field. Kl 2° is given by
have described the effect of including higher Fourier terms _
of the crystal potential on the electron engergy spectrum and E=2Eq{tocogk,a) +t,cog (k. +ky\3)a/2]
have relat(_ed their resqlts to thosg obta_lingd with segond— +t_co{(kx—ky\/§)a/2]}, (1)
nearest-neighbor coupling in the tight-binding approxima- _ _ .
tion. More recent contributors to the fiéfg3! have calcu- Wherea is the lattice constant and the atom at the origin has
lated the energy spectrum of a 2D ES in the presence of Bearest neighbors #a,0) and (+a/2,*3a/2), and
spatially modulated magnetic field or a combined constank= (Kx.Ky) is the wave vector of an electron. In this nota-
magnetic field and a spatially modulated perpendicular magtion, to is the nearest-neighbor overlap in thelirection and
netic field commensurate with the lattice. t. are the nearest-neighbor overlap integrals along the sym-
For magnetic fields of intermediate strength, i.e., when thénetry directions which make/3 and 2r/3 with this direc-
magnetic field and the lattice potential are comparable, on#on. Eg is an energy scale related to the bandwidth. We now
should include Landau level coupling. Petschel and G¥isel use the Peierls substitution to construct the Hamiltonian by
have obtained a generalization of the Harper equation in théeplacing the Bloch wave vector by the momentum operator
vector form by employing a Landau basis and concluded tha the following way, i.e.,ik—p+eA, where the vector
interband coupling removes the symmetry in the butterflypotential is chosen in the Landau gauge witk-(0,Bx,0),
spectrum. The role played by Landau level coupling has alséor a constant magnetic field in the z direction.
been determined by Kuhn, Selbmann, Fessatidis, antf Cui  Expressing all energies in units Bf, denoting the wave
for 2D electrons in a 2D square array of scatters for variougunction by ¢(x,y) and noting that the nearest-neighbor co-
potential strengths and the steepness of the potential profilerdinates arex=ma2 (m==1,=2) and y=nay3/2
The rest of this paper is organized as follows. In Sec. Il(n=0,=1), the time-independent Hamiltonian is given by

For a 2D lattice with hexagonal symmetry, it can be

|
Hip(mb,nby3)=te{ Y (M—2)b,nby3]+ Y[ (M+2)b,nby3]}
+t+[1ﬂ[(m—1)b,(n_1)b\/§]eieBva“§/ﬁ+ IJI[(m+ 1)b,(n+ 1)b\/§]efieBXb\s‘§/ﬁ]
+t,[zp[(m—1)b’(n+1)b\/§]e—ie8xb\s‘§/ﬁ+ lﬂ[(m-l—l)b,(n—]_)b\/g]eieBxb\@/ﬁ], )

where, for convenience, we have seta/2. In what follows, we can assume a plane wave-like behavior iry thigectior?
with zp(mb,nbﬁ)=exp6nkya)G(m). Equation(2) is further simplified by replacing in the exponential byna=2mb so that
the argument of the exponent is
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_2mb?\3eB 2wmBA,
m T
whereA.=2b?/3 is the area of a unit cell and,=h/e is the flux quantum. Our numerical results will be restricted to the

case when the flux through a unit c8Hk is a rational fractiore=p/q of the flux quantum. The energy eigenvallesre
then obtained as solutions of the Sdfirger equation

)

EG(M)=to[G(M—2)+G(m+2)]+[t e'P™Ma—ka t gi(CmMma—ka)|G(m—1)
+ [t_ei(Zﬂ'ma—kya)+t+e—i(2ﬂ'ma—kya)]G(m+ 1)’ (4)

wherem is to be set successively ta=1,2, ... g since the set of equations are repeatednfierq-+1. Equation(4) is a
generalization of Harper’'s equation for the hexagonal lattice. We use the Bloch condition for the wave function and take

G(—1)=e ™G(q—-1), G(0)=e 3G(q),
G(q+1)=€*93G(1), G(q+2)=e"x93G(2), (5)

which then give the following matrix which must be diagonalized to obtain the energy eigenlues

0 A to/t, 0 0 ce 0 (t0/t+)e_ikxqa Aice—ikxqa
Az 0 Ay tolty O 0 0 (to/t,)e 1
to/t, A% 0 A tolts 0 0 0
. 0 tolt A% 0 A 0 0 0
A= 0lt+ 4 4 ®
0 0 0 0 o .- 0 Ag—2 to/t,
(to/t)exa2 0 0 0 Ay_y 0 Ag-1
Aqeikxqa (tolt+)eikxqa 0 0 tO/t+ A; o
|
where magnetic Brillouin zones again leads to an interesting Bloch

band splitting and symmetry patterns which were obtained
Ap=(t_/t,)e'2mmpPla-kal 4 g=il2zrm(p/a)=kyal = (7)  for the square lattices in the two limiting regimes discussed
above: Bloch electrons in a weak uniform magnetic field and
Landau quantized electrons in a weak 2D lattice potential.
The energy spectrum we obtain applies only to rational val-

We now present our results for the Hofstadter-type energyies of @ for the magnetic flux through a unit cell. For a

spectrum for a 2D hexagonal lattice in a perpendicular magchosen value ofj, there are as many energy eigenvalues
netic field. The commensurability between the lattice andobtained by diagonalizing the matrix in E(f). However,

Ill. NUMERICAL RESULTS AND DISCUSSION

1

1

g _ s _
1 1
3 3

8 10

FIG. 3. The same as Fig. 1, except thgt2,t_=1,t,=1. FIG. 4. The same as Fig. 1, except thgt1,t_=2,t,=1.
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FIG. 5. The same as Fig. 1, except that 7/2, k,=0. FIG. 6. The energy dispersion as a functionkgé for k,=0,

to=t_=t,=1, ande=p/q, with p=1 andq=8.

our numerical calculations have shown that the energy eigen-
values are highly degeneratimere is double and quadruple trum is symmetric about = 1/2.
degeneracyfor a chosen value of the wave vector As a We have choserig=t, =1 andt_=2 in Fig. 4 still
consequence, the resulting eigenvalue spectrum is not syrkeepingk=0. These values for the overlap integrals result in
metric about the middle of the band as it is for a squarea broadening of the energy band in Fig. 2 for which the
lattice. We follow Hofstadte?, Hasewagaet al,'> and  values oft_ andt, are interchanged but all the values for
Gumbset al,?® and plot the energy versusto make a com- to and the wave vector remain the same. One difference be-
parison with the square, triangular, and honeycomb latticesween Figs. 2 and 4 is the absence of the two sets of hori-
Since the energy spectrum is periodic inwl/Claro and zontal eigenvalues within the largest energy gaps in Fig. 2
Wannier* Kuhn et al,’” and Gerhardtset al®* presented which are now replaced by a single string of energy eigen-
their results for the energy as a function of the inverse of this/alues.
rational fraction of the flux since they included several Lan- Figure 5 presents the energy spectrum for the same values
dau subbands and intersubband coupling. of ty, t_, ty as in Fig. 1, except that a finite value of the

Figure 1 is the energy spectrum resulting from thewave vector is chosen witha= 7/2 andk,=0. The degen-
numerical diagonalization of Eq6); the overlap integrals eracy of the energy eigenvalues obtained from diagonalizing
are chosen agy=t_=t,=1 and the wave vectok is Eg. (6) is greatly increased. These results show the wave
at the center of the magnetic Brillouin zone. Since the energyector dependence of the energies should be further ex-
eigenvalues are highly degenerate, the spectrum lackslored. For this, we show the dispersion relation in Fig. 6 for
the symmetry about the middle of the band which is presenp=1 andq=8. Forg=8, Eq.(6) gives eight eigenvalues.
in the Hofstadter “butterfly” for a square lattice. However, However, for—1<k,a=<1 there are four eigenvalues each
there is symmetry aboutr=1/2 and clustering patterns of which is doubly degenerate. Fga=1, the two highest
are still obtained. Furthermore, energy gaps which areigenvalues remain doubly degenerate while the lowest sub-
characteristic of the Hofstadter butterfly are also present iand is fourfold degenerate.
the fractal patterns. There is a distinct array of energy eigen-
values parallel to the energy axis in the two largest energy
gaps. The overall pattern in Fig. 1 of this paper is similar to,
but not identical with Fig. 1 in the paper by Claro and In this paper, we have presented a theoretical formulation
Wanniet* which was obtained using free-electron Landauand numerical results for the eigenvalue spectrum of a 2D
eigenfunctions as a basis set and diagonalizing the resultingS in the tight-binding approximation for a lateral surface
matrix. superlattice with hexagonal symmetry in a uniform perpen-

In Fig. 2, we present results for the energy as a function otlicular magnetic field. Our results show a clustering pattern
a forty=t_=1 andt, =2 with the wave vectok=0. Com-  and energy gaps like the Hofstadter butterfly, except that for
paring these results with Fig. 1, we still have a fractal struczero wave vector there is no symmetry about the middle of
ture. However, the distinct array of eigenvalues parallel tathe energy band as for a square lattice. The eigenvalues are
the energy axis in the two largest energy gaps are not presehighly degenerate compared to the square lattice and this
and there is a larger degree of degeneracy and a broadenidggeneracy increases at finite wave vector.
of the energy band.

For Fig. 3, we chosgy;=2 andt, =t_=1 \{vith _the wave ACKNOWLEDGMENT
vector still at the center of the magnetic Brillouin zone. For
this choice of values of the overlap integrals, some of the The authors gratefully acknowledge the support in part
degeneracy is lifted for a chosen valuepfThe bottom of from the City University of New York PSC-CUNY-BHE
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IV. CONCLUDING REMARKS AND SUMMARY



56

HOFSTADTER BUTTERFLY FOR THE HEXAGONAL LATTICE

3791

“Also at The Graduate School and University Center of the CitylGO. Kuhn, P. E. Selbmann, V. Fessatidis, and H. L. Cui, J. Phys.

University of New York, 33 West 42 Street, New York, NY
10036.

IR. Peierls, Z. Phys80, 763(1933.

2L, Onsager, Philos. Mag!3, 1006(1952.

Condens. Matteb, 8225(1993.

170. Kuhn, V. Fessatidis, H. L. Cui, and N. J. M. Horing, lifi-
crocrystalline and Nanocrystalline Semiconductadited by L.
Brus, M. Hiroge, R. W. Collins, F. Koch, and C. C. Tsai, MRS

3A. Rauh, G. W. Wannier, and G. Obermair, Phys. Status Solidi B Symposia Proceedings No. 338laterials Research Society,

63, 215(1974.

4M. Ya. Azbel, Zh. Eksp. Teor. Fizi6, 939 (1964); [ Sov. Phys.
JETP19, 634(1964)].

5D. R. Hofstadter, Phys. Rev. B4, 2239(1976.

6R. R. Gerhardts and D. Pfannkuche, Surf. S263 324
(1992.

"R. R. Gerhardts, D. Weiss, and U. Wulf, Phys. Rev4® 5192
(1999).

8p. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. von Klitzing,

K. Eberl, and H. Nickel, Phys. Rev. Leff4, 3013(1995.

9s. J. Bending, K. von Klitzing, and K. Ploog, Phys. Rev. L68,
1060(1990.

105, J. Bending, K. von Klitzing, and K. Ploog, Phys. Rev4R
9859(1990.

11D, Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. von
Klitzing, and G. Wieman, Phys. Rev. Le@6, 2790(1991.

2A. Lorke, J. P. Kotthaus, and K. Ploog, Phys. Reva4® 3447
(1999).

13p. Langbein, Phys. Re\i.80, 633 (1969.

FE. H. Claro and G. H. Wannier, Phys. Rev.1B, 6068(1979.

Pittsburgh, 1995 p. 1047.

184, J. Schellhuber and G. M. Obermair, Phys. Rev. L£%.276
(1980.

19F H. Claro, Phys. Status Solidi B04, K31 (1981).

20D, J. Thouless, Phys. Rev. B3, 4272(1983.

213, zak, Phys. Rev. Let67, 2565(1991).

22A. Rauh, Phys. Status Solidi 89, K9 (1975.

234, W. Neumann and A. Rauh, Phys. Status Solido& 233
(1979.

24G. W. Wannier, Phys. Status Solidi B)0, 163 (1980.

250. Kuhn, V. Fessatidis, H. L. Cui, P. E. Selbmann, and N. J. M.
Horing, Phys. Rev. B7, 13 019(1993.

2. Wu and S. E. Ulloa, Phys. Rev. &7, 7182(1993.

27X. Wu and S. E. Ulloa, Phys. Rev. &7, 10 028(1993.

28G. Gumbs, D. Miessein, and D. Huang, Phys. Re\62B14 755
(1995.

29p, Vasilopoulos and F. M. Peeters, Superlattices Microstct.
393(1990; Phys. Rev. B47, 1466(1993.

30|, s. Ibrahim and F. Peeters, Phys. RevsB 17 3211995.

3IR. R. Gerhardts, D. Pfannkuche, and V. Gudmundsson, Phys.
Rev. B53, 9591(1996.

By, Hasewaga, Y. Hatsugai, M. Kohmoto, and G. Montambaux,32G. Petschel and T. Geisel, Phys. Rev. L&ft, 239(1993.

Phys. Rev. B41, 9174(1990.

33C. Kittel (unpublishedl



