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Charge-injection instability in perfect insulators
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We show that in a macroscopic perfect insulator, charge injection at a field-enhancing defect is associated
with an instability of the insulating state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged state is governed by two different
processes with clearly separated time scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting deféat contact. Charge injection stops when the field enhancement is
screened below criticality. Secondly, the charge slowly redistributes in the bulk. The linear instability mecha-
nism and the final charged steady state are discussed for a simple model and for cylindrical and spherical
geometries. The theory explains an experimentally observed increase of the critical electric field with decreas-
ing size of the injecting contact. Numerical results are presented for dc and ac biased insulators.
[S0163-18297)01231-9

[. INTRODUCTION bulk instability. Charge injection turns out to be an instabil-
ity by itself.

Insulation of dielectrics is limited due to dielectric  Boggs™® pointed out the usefulness of the screening by
breakdown:~3 There exist several different physical mecha-the injected space charge in ac driven field-grading materials.
nisms that lead to instabilities associated with dielectricHis model, however, is based on the concept of conductivity,
breakdown at high electric fields, e.g., thermal runaway andvhich cannot lead to a consistent physical description of
impact ionization avalanches. At breakdown, a change froncharge injection. The theory assumes a conductivity that is
an insulating to a conducting state occurs, at least in a certaionly a function of the field and that does not distinguish
spatial region and for a certain time. A release of chargdetween intrinsic and injected charge carriers. Note that
carriers is possible from two different sources. First, carriercharge injection is a boundary effect, while conductivity is a
can be generated intrinsically via a bulk instability, e.g., bybulk quantity associated with intrinsic rather than with in-
ionization of impurities. Secondly, carriers can enter due tgected carriers. Boggs’' approach leads, nonetheless, to quali-
injection at the electrodes. In this paper, we show that charggtively correct ac results in the limit of an infinitely sharp
injection is associated with an instability too. In contrast tomobility edge and in a certain frequency regime.
bulk instabilities, however, charge injection is a boundary For the sake of clearness, we consider a perfect insulator,
instability where the unstable modeharge injection mode  which is defined here as a dielectric without intrinsic carriers
is localized at the injecting contact. and with a constant permittivitg (=e€,,€g). Electrons or

In practice, charge injection in macroscopic insulatingholes can be present only due to injection at the electrodes.
bodies occurs at geometrical defects of the electrodes whelithout charge injection, a voltage difference at the contacts
the electric field can be strongly enhanced. Below we willinduces a charge that is located outside the dielectric in a thin
consider concentric cylindrical and spherical contact geomsurface layer(with a thickness of the very short Debye
etries. A small inner electrode has a large electric field andength of the metal contacts. We call this locally neutral
can serve as a model for a field enhancing defect. The cylinstate of the insulator thieleal insulating stateThe electric
drical system describes also a coaxial cable filled with a difield in the insulator is then uniquely determined by the
electric medium, which is of obvious technical interest. Laplace equation. The electric field at the contacts is fully

Charge injection in dielectrics has been investigated exdetermined by the potential differences of the contacts.
perimentally for a tip-plate geometry by Hibma and Zefler, Clearly, this situation corresponds to a purely capacitive ar-
and has been modeled by Zeller and Schnéidethe limit ~ rangement of the contacts in a dielectric medium.
of an infinitely sharp mobility edge and by neglecting diffu- A prescription of arbitrary boundary conditions to the
sion. They describe the mobility edge with a mobilityE),  electric field at the contact®.g.,E=0) is more restrictive
which vanishes forE<E; but which is very large for and in general implies the presence of a space charge in the
E>E., whereE, is a critical value of the electric field dielectric medium. The field is then determined by the Pois-
(=10’ V/cm). In this model a space charge forms near theson equation. Important work on charge injectidn'?treats
tip when the local field reaches the mobility edge. The spacthe formation of a space charge in this way as a direct con-
charge, in turn, screens the electric field enhancement at tteequence of boundary conditions. These theories treat the
tip and pins it to the mobility edgéfield limiting space charged state, but they do not consider the stability of the
charge. Zeller and collaborators assume a bulk instability atlocally neutral state.

E. associated with an S-shaped negative differential conduc- A different approach, which is appropriate for
tivity, which forms the basis of their theo”Rf Below we  metal-semiconductor ~contacts, is to prescribe a
show, however, that there is no need for such an underlyingichardson-Schottky* or a Fowler-Nordheirtr'® current-
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field characteristic in order to model thermiorifield) emis-  als used in high-voltage devicés.g., ceramics, polymers

sion or a tunneling current through the contact barrier, reThere are, however, special cases, where exponents charac-
spectively. In contrast to the well-defined metal-terizing the nonlinearity of the current response have been
semiconductor microcontacts manufactured by a highlydetermined from microscopic modéis.

developed semiconductor technology, macroscopic metal- The limit «— o corresponds to the infinitely sharp mobil-
insulator contacts used in high-voltage devices are not weity edge atE=E, discussed in Ref. 5. Note that already the
defined. A description on a hydrodynamic level is thus morecase of a constant mobilityp(=1) corresponds to a nonlin-
appropriate than a treatment on a microscopic level. Theresar current-field relation singeis related to the electric field
fore, we will prescribe below boundary conditions to thevia the Poisson equation

charge density. For homogeneous boundary conditions, it

turns out that the locally neutral statp=£0) is always a eVE=p. 2
stationary solution of the problem. However, we will show
that this ideal insulating state can become unstable against

charge injecting mode or that bistability of neutral and There are two equivalent formulations of the dynamics,

charg_ed state can occur. . namely, in terms of the Maxwell equation
This paper is organized as follows. In the next section, we

introduce a model for the perfect insulator with phenomeno- € E=VXH-], 3
logical boundary conditions. In Sec. Ill, we investigate the

charge injection instability of the ideal insulating state. Thewhich is a dynamic equation for the electric field, or in terms
steady state that eventually develops is discussed in Sec. I'9f the continuity equation,

Finally, in Sec. V, we present numerical results for an ac

Consequently, a linear dielectric relaxation mode does not
eist in the perfect insulator.

biased perfect insulator. dhp=—Vj, (4)
which is a dynamic equation for the charge density. For con-
Il. THE MODEL venience, below we use E) for the numerical simulations

We consider a material with electron-hole symmetry anoand Eq.(4) for the a.nalytlcal d!scu55|pn. :
The system is driven electrically via a coupling to an ex-

with an immediate recombination of electromg @nd holes R ; . .
m ternal electric circuit, which consists here of a voltage bias

(p) by annihilation. This means that the mobilities and the : . : . .
diffusion constants of electrons and holes have equal absc\)/-(t) and an Ohmic resistdRey in series. The totalradia)

lute values u=—un=u,, andD=D,=D,, respectively. current density Y XH),=J/r% is determined by
The Einstein relation is not considered for the present non-

equilibrium system, and we assume that is a field- J=ad(V(t)—f
independent constant. Due to the fast electron-hole recombi- r
nation, the carrier density is equal to the absolute value 0\1/‘vherea1=(27rLzRext)*1 anda,= (4mRgy) "2 for the cylin-

the charge density. The drift current is then simply given byqrica| and the spherical case, respectively. We mention that
#(E)|p|E. Dynamic equations for electrons and holes de-gq. (5) gives rise to a strong nonlocality, which can influence
scribing gen'eratlon-recomblnatlon processes do not appegyyalitatively the spatiotemporal dynamics of the syst&m.
We emphasize that, except for the ac results, all results bggg|o, we restrict ourselves to the limit case of voltage con-
low are valid also for unipolar conduction and are not con-yq) j e Re—0 and to low frequencies such that inductive
sequences of the electron-hole symmetry and of the fast resacts can be neglected. An increaseRgf; corresponds to
combination. In partic_ular, the injecti.on instabi!ity discussedforcing a current, which requires the presence of charge and
below occurs for unipolar conduction. In this case, €.9.ig thys expected to lower the stability of the ideal insulating

928 an% the drift currefnttrf_eaqsi(ltz)p_E. or of vl state. Voltage control can equivalently be expressed in the
onsider now a perfect insulator in a capacitor o cym-(]cllorm V(t)=f[iEdr.

drical or of spherical symmetry. Metal contacts are attache
at the inner and the outer radiusjJ and r2(>rl), respec- In order to have a well-defined prOblem we SPECify mixed
tively. In the following, the cylindrical capacitor of length homogeneous boundary conditions to the charge density
L, and the spherical capacitor are labeled witk1 and

d=2, respectively. All quantities depend only on the radial 9iple, = xpl, =0, ©®
coordinater. The (radia) current density can be expressed
in terms of the charge densigyand the(radia) electric field

E:

2
Edr), (5)

1

wherex is a phenomenological parameter, and wherand
— refer tor, andr,, respectively. Some remarks concerning
this boundary condition are in order. First, a restriction to
D _ homogeneous boundary conditions is not necessary. An ad-
i=1(B)p[E=Darp. @) ditional inhomogeneity in Eq6) leads to a finite boundary
We assume a mobility.(E) that depends on the field in the charge. In this paper, however, we want to show that charge
form w(E)E=v|E/Ey|*sgnE), wherea=1 is a measure of injection occurs even for homogeneous boundary conditions
nonlinearity and where is a positive velocity. A power-law where a locally neutral state exists. Seconaygan depend
current-field relation usually describes very well the behavioron the local electric field. Such nonlinear boundary condi-
near insulator-conductor transitions at high fields. It is a dif-tions can lead to instabilities. Below we show that even for
ficult problem to relate the phenomenological parameters the linear case an instability occurs, and we discuss the be-
andv to microscopic quantities in typical insulating materi- havior of the perfect insulator as a function of We men-
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tion that phenomenological parameters introduce@nho- a)
mogeneous and nonlingatboundary conditions are, in 0.02
principle, related to microscopic quantities. This is analogous
to the formulation of hydrodynamic boundary conditions 0.01 4
starting from, e.g., the Boltzmann transport equation. How- @ ™
ever, this problem goes beyond the subject of this work. -
Thirdly, we assume that the charge does not “wet” the < .00
contacts, i.e.«=<0. This is reasonable if the microscopic
contact potential has the shape of a barrier. In a purely dif-
fusive system, a “wetting” density leads to an instability of -0.01 ¥ - - - -
the uniform state. For homogeneous Neumann boundary 02 04 06 08 10 12 14
conditions =0) that describe contacts with vanishing dif-
fusion current, the ideal insulating state in the diffusive re-
gime is marginally stablégapless stability spectrumin- b) 2.0
deed, an arbitrary spatially uniform is a solution in the ) B
linear diffusive regime, which implies the existence of a zero 15 e T
mode. For finite negative, the p=0 state is stable in this / g
regime. In the following section we show that, on the other a 1.0 S \\\
hand, an instability of the ideal insulating state occurs in the w \\\\ Y
drift dominated regime. 0.5 - e \\\
lIl. INSTABILITY OF THE IDEAL INSULATING STATE 0.0 ; —
In this and the following section, we consider a stationary 10 20 30 40 50
and positive bias voltage applied to the contacts, rir,
V(t)=V>0. Obviously, a steady state of the system is given
by p=0 and E=Cd/rd with  V/C,=In(r,/r;) and FIG. 1. (a) Largest eigenvalua of the stability problem as a

VIC,=r;'—r, ' This ideal insulating state corresponds to function of the control parametet («r;=—0.5d=1, a=3). (b)

a purely capacitive system. To test the linear stability of thisElgenfungtlons of the_ s_tab!llty problem. The solid curve represents
state, we seek for the dynamics of a weak perturbatiot® marginal charge-injection moda £0) atA=A.. Modes are
(SE, 5p) =exp(\t), which satisfies the boundary conditions more localized at the inner contact Asincreases.

(6). From the continuity equatiofd), one finds an eigen-

value equation for the growth rate e _ i
diffusion type and are damped or marginally stable, provided

1 (C4/Eg)® x<0. On the other hand, if the diffusion term can be ne-
Nop+ g o WU|5P|—Drd0r5P =0. (7))  glected, the stability problem reduces to a first order differ-
ential equation. Solving Eq7) at D=0 leads to a growth
An instability of the ideal insulating state occurs if there rate
exists an eigenvalua with a positive real part, since the
mode dp associated with such & grows exponentially in v ( E,

a[d(a—l)ﬂlK], (10)
Eo

time. A dimensional analysis of Eq7) leads to a “scaling
relation” for the growth rate,

_rl

which indicates an instability associated with a perturbation

D
)\:r_ff(A)' (8 r

5p(r)o<rd(“1)ex;{—(—

r

detlg(@—1)+rk
da+1

(11)

where A =(rv/D)(E{/Ep)* has the meaning of a dimen-
sionless control parameter. He®,=C4/r¢ is the electric ) _ S o
field at the inner contact. Note that the functibrdepends Equation(11) describes the injection mode, which is local-
still ond, a, «r. The dependence otr, is weak forr,<r,  ized at the inner contact. Obviously, a negativeacts to

and will be suppressed whenever possible. The critical fiel§lOW down the growth of the unstable mode. In Fig. 1, nu-

at instability depends on the various parameters in the fornfnerical solutions of the stability problem of the cylindrical
case (I=1) are shown as a function & with xr,=—0.5.

a [ D ForD/(vr,)—0 andA=0, the numerical results are in good
E.=Eo EAc(ardJ(rl)a (99 accordance with the approximate analytical res( and
(12).
where the functiom\ ; has to be determined froffn=0. The The physical mechanism for the instability can be under-

eigenvaluex with the largest real part turns out to be purely stood as a positive feedback process. Consider a large elec-
real and can be estimated if either the diffusion current or théric field atr=r,, and assume a negative field fluctuation,
drift current dominates. First, if the drift term can be ne- SE<O0 with §,6E>— 6E/r,, localized atr,. The Poisson
glected, Eq(7) reduces to a linear diffusion equation. Con- equation implies then a positive charge fluctuat#pnat this
sequently, the eigenfunctions of the stability problem are otontact. Using the linearized Maxwell equation,
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a) IV. THE CHARGED STEADY STATE

The injection of the charge acts to decrease the field en-
hancement. Consequently, the growth of the injection mode
saturates at a field below the critical valtg. Zeller and
Schneidet observed that in the infinitely sharp mobility-edge
limit, a— o0, the final state consists of a charged region with

px1fr and E(r)~E,. for r1<r<r_, and a locally neutral

region,p=0 andEx1/r¢, for r <r<r,. The outer radius
of the field limiting space charge is determined by the con-
10 10° 10* 10° 102 107 10° 10’ tinuity of E(r) at r and by the prescribed voltage drop,
V= [Edr. One expects for finiter (Ref. 5 and in the pres-
ence of diffusion that this state decays on a long time scale
and is in fact part of a transient behavior. More concretely,
the final charged steady state forms on two clearly separated
time scales. On a short time scale determined by (By.
charge is injected such that the electric field drops locally
below the critical field. In a second step, the charge distrib-
utes slowly towards the new stable steady state. The associ-
ated time scale is approximately given by the transit time
of the domain wall, which connects the charged and the neu-
0 : T T tral regions. A general discussion of front propagation into
0.0 0.1 0.2 0.3 0.4 unstable statéd goes beyond the purpose of this paper.
Here, we give only a rough estimate for the transit time in
r/r, the case of a thin domain wall

-Kr,

(=
L

EJ/E, (r,v/D)"®

FIG. 2. (a) Critical valuesA . as functions of— «r 4, for cylin-
drical (solid) and sphericaldashed geometriesi(; /r,=0.01). Dif- rz( "on) a

v (12

ferent curves with decreasing stability threshold belong a3, 5, Ty™~—

and 15.(b) Critical value of the electric field at the inner electrode v

as a function of the size of the injecting electrode=(3; solid:

d=1, dashedd=2). In particular, we neglected diffusion, which acts to slow

down the domain wall velocity and to smear out the domain

€d,0E~ — 6j <0, one concludes that the negative field quc-Wa”' Equation(12) can be obtqined by a projection onto th.e
translation mode of the domain wall and has the simple in-

tuation grows in amplitude, if drift dominates diffusion. The . . . ;
initial perturbation is thus ampl|f|6d, which characterizes anterpretatlon that the front travels with the drift VelOCIty of the

instability. We mention that for=1, the charge injection C&rrers. _
mode (11) has no physical meaning. In this case, the ideal It ;hou_ld .be noted that the slowness of the charge redis-
insulating state is linearly stable, although it is not necessaribution indicates a strong dependence on weak perturba-
ily globally stable. tions of the homogeneous insulator bulk. While weak forces
For finite D, a competition between the stabilizing diffu- are not expected to hinder the growth of the fast unstable
sion term and the destabilizing drift term leads to a finiteinjection mode, the charge redistribution can be considerably
critical value of the control parametdr; or, equivalently, to  influenced by traps, grain boundaries, etc. Therefore an ex-
a finite critical fieldE.. In order to discuss the dependenceperimental observation of the slow dynamics and the final
of A in Eg. (9) on «r4, we solve Eq(7) atA=0. A solv-  state discussed below requires a sufficiently clean material.
ability condition leads then to an expression far; as a  Macroscopic insulating bodies used in high-voltage devices
function of A; (AppendiX. The result is plotted in Fig.(3)  where the injection instability is expected to be most impor-
for various values of the nonlinearity parameter for  tant are usually not very clean. Future models of the dynam-
d=1,2, and for constant radii. Clearly\, vanishes for ics of the field limiting space charge should thus include bulk
k—0. On the other hand, the locally neutral state becomemhomogeneities.
more stable as- « increases which is due to a decrease of |n Fig. 3, we show a numerical simulation of charge in-
the charge density of a density fluctuation at the injectingection in the perfect insulator fat=1 anda= 3. After an
contact. o o _. . increase of the voltage beyond instability threshold, a charge
In a similar way, stability analysis yields the critical field gomain forms. On a long time scale the charge cloud smears
.EC as a function of ;. We find that the critical field is almost 4t and relaxes finally towards a ¢)4like distribution,
independent of; except for smallr;, whereE; becomes  \ynereas the electric field becomes spatially uniform. In order
large. This behavior is more pronouncedascreases. For o discuss this final steady state in the framework of our

a=3 andd=1,2, the results are shown in Fig(b2 For a  model, we first consider the cag=0. FromVj=0 one
tip-plate geometry, Hibma and Zelfeiound experimentally  finds a bulk solution

that the critical field is almost independent of the tip size in
a large range but increases considerably for very small tip
radii. Our theory clearly reproduces this behavior. E(r)=Agrt-d/te, (13
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a) be confirmed with the help of a numerical simulation. A
0.6 detailed investigation of this case, however, will be pub-
. lished elsewhere.
0.4 - Assumingr,>r,, Egs.(13) and(14) yield a current
ui N S
~ ~ _\\.\
W02 - T~ v et
.............................. |d—deUE0 _rzEO y (16)
0.0 T T T
0 5 10 15 20 \where by=27L, and by=4mr a1+ 2a)/(1+ a)2T®
r/r, for the cylindrical and the spherical case, respectively.
b) Slightly beyond instability threshold the current is finite,
0.25 though it is small[of O((r,/r,)**)]. We mention that for
0.20 - d=2, @=1 and without diffusion, the 1jr behavior of the
- electric field(13) has been discussed, e.g., by Lampert and
£ 0.15 - collaborators:!? Neglecting diffusion, they obtain a bound-
ﬂ ary layer due to afE=0 boundary condition at the contact.
0.10 - One recovers from EqJ.16) in this case the current-voltage
a 0.05 - characteristic of the perfect insulator in a spherical conduc-
tor, | =(3/2)meuwV?/r,. A detailed discussion of the steady
0.00 state, e.g., in the presence of intrinsic carriers, can be found
0 also in Refs. 9 and 10.
r/r
FIG. 3. Evolution of(a) the electric field distribution antb) the V. THE AC-DRIVEN INSULATOR

charge density distribution beyond stability threshold. The localized

injection mode(dotted curve grows up to a certain amplitude. The ~ The localized field limiting space charge that forms at
domain wall moves into the bulkdashed-dotted curvesintil the instability can be observed in ac experime:?’ﬂ§ince at in-
final steady state with a uniform fielgsolid curve is reached stability A depends exponentially oa, the injection mode

(d=1, a=3). grows very fast for larger. Consequently, in the limit of an
infinitely sharp mobility edge4— «) the electric field satu-
1+da rates immediately a_lE_EE_c due to sceening. Qn f[he_other
p(r)=eAy r(atd)(1l+a) (14) hand, 'Fhe characterlgtlc time of the charge redistribution, Eq.
lta (12), diverges, providedE r,>V. For E.r,<V the whole

with Ay=V/(ry—r;) and A,=V/(r&/d+a_paldra)y, bulk is immedigtely chargeq up. o
(1+ 1) for the cylindrical and the spherical case, respec- In the following, we consider a pe.”.Od'C vpltage that van-
tively. Note the similarity of the electric field distributions ishes Afolr t<0 and that, for positivet, is given by
for d=1, « arbitrary, and fora—x, d arbitrary. In these V(t)=Vsin(t). The frequency w=2mn/T obeys w7y,
casesE(r) relaxes eventually to a constant valigee also > 1> wl\, V\{here)\ is the steady-state_stabmty elgenvalye
Fig. 3a)]. for an electric field; equal to the amplitude of the electric
Clearly, the bulk solutiori14) does not satisfy the bound- field oscillation. Since\ "*<1 ms and the transit time is
ary conditions. For a small diffusion constant, the solution isof the order of hour§, reasonable frequencies are in the
expected to be changed considerably only in a boundarjange of 10*—10° Hz. o o
layer near the contacts. We find that the solution deep in the Typical solutions are shown in Fig. 4 for the cylindrical
bulk far away from the contacts is only weakly disturbed bygeometry and for various values ef The thin solid line
a small diffusion constant. For, e.g., the cylindrical geometryrepresents the reference electric fiElt/ Eq atr; of the ideal
(d=1) and forvV<r,E,, the bulk solution reads in leading insulating state with a purely capacitive response. The other
order ofD curves represent numerical simulations of the ac response in
_ the presence of injection. For fields below instability thresh-
\% D [ryEq\© old, E;<E_, the sample remains locally neutral. An increase
E(r)= 6[1_ a_vl‘< _"\f) ' (19 of the field beyond threshold leads to the injection of charge
_ in such a way that the local electric field at the inner contact
whereV is determined by the prescribed voltage drop. Foris saturated slightly below the critical field. Negative and
d=a=1, Eg.(15) is the exact bulk solution. We recall that positive charge is periodically injected fae=3 (dotted
for a=1 we do not find a linear instability of the ideal in- curve. Clearly, due to the electron-hole symmetry the solu-
sulating state either numerically or with the analytical ap-tions are symmetric with respect to inversion of the sign of
proximation(10). However, we conjecture bistability of neu- the amplitude. The critical field is abouEg, where the field
tral and charged state for>(D/u)In(r,/r;) and a loss of drops fast and saturates beldsy. This discontinuous tran-
global stability at a certain field. Below, this conjecture will sition from the neutral state to the charged state indicates
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for the charge injection instability which is clearly observed
in experimentd For a macroscopic metal-insulator contact
that is usually not well defined, phenomenological boundary
conditions to the charge densitwhich serves as an order-
parameter fieldare appropriate. Our theory predicts not only
a critical injection fieldE., but reproduces also the experi-
mentally observed increase Bf with decreasing radius of
the injecting contact.

For a constant mobility4=1), the ideal insulating state
is linearly stable. But numerical ac simulations show a decay
of the neutral state to a charged state. From this we conclude
bistability and a loss of global stability of the ideal insulating
state.

For «>1, the time evolution from the insulating to the
| charged state occurs on two clearly separated time scales. On

-10 T T r T a short time scale, the injection mode grows at the instability
000 025 050 075 1.00 1.25 and screens the electric field enhancement. A localized
charge cloud forms near the contact. On a long time scale

t/T this charge redistributes over the whole sample. The local-

FIG. 4. Time dependence of the field at the inner electrode fof2€d field limiting space charge can be investigated with the
a=1 (dasheyj «=3 (dotted, and «=51 (solid); vr,/D=0.1.  help of an ac bias, which oscillates with a characteristic time
Solid thin curve: ac field without injection. lying between the just mentioned time scales.

Furthermore, we discussed the charged steady state for
also bistability. In the limit of a sharp mobility eddgeolid  small diffusion constants. The current-voltage characteristics
curve; a=51), the neutral state decays immediately atof these solutions are determined by the bulk properties and
E,=E, and the electric field oscillates betweenE,, as are thus equivalent to earlier results by Lampert and
expected. co-worker$'%in the perfect insulator limit.

On the other hand, foir=1 the insulating statp=0 is Future work should address the following problems. First,
linearly stable even for large amplitudes For certain initial  the transport model must be refined to include additional
conditions or in the presence of additional current noisephysical effects such as the influence of intrinsic carriers,
however, we find also periodic solutions where only positiveboundary states, traps, and impurity-band conduction, sur-
or only negative charge is injected. An example for positiveface potential decay, angi-)polarons. The effect of traps
charge injection is given by the dashed curve. Charge injecenters already by part via the diffusion constant. A small
tion occurs at a large field amplitudg ~9E,. Once charge intrinsic carrier density is expected to increase the stability of
has been injected, a part of it remains in the sample anthe neutral state due to a finite dielectric relaxation mode.
decreases the value of the electric fidddshed curyecom-  Furthermore, electron-hole symmetry is not very realistic
pared to the chargeless caghin solid curve. During the  and one expects rectification in ac experiméfits.
negative half-cycle, the electric stress is thus enhanced. Due Of interest is also the inclusion of heat transport and the
to the presence of this charge, a further injection occurs at mfluence of the temperature, and of mechanical stresses. An-
much lower field in the second cycle of the oscillation. other important task is the determination of the parameters

For initial conditions with reversed sign av——V we  appearing in the mobility-field relation and in the boundary
find injection of charge with different sign. We conclude thatconditions for the charge density from microscopic models.
there are(at least three different attractors, which indicates This is reasonable, however, only for microscopically well-
bistability in the stationary case. Consequently, even in alefined bulk materials and metal-insulator contacts, which is
system with electron-hole symmetry, rectification is possibleusually not the case in typical high-voltage devices.
due to dynamical symmetry breaking via charge injection.  The following interesting problem concerns the case of a
constant mobility without linear instability. Injection should
then be associated with a nucleation of the charged phase at
the contact! probably via a critical droplet with a shape

We have investigated charge injection in a macroscopisimilar to the injection mod€l1). Such an injection mecha-
and perfect insulator and for cylindrical and spherical geomnism is also possible for bistability at>1 in the region
etries of the electrodes. The injecting metal-insulator conwhere the ideal insulating state is supersaturated.
tacts are modeled on a hydrodynamic level with boundary Finally, in order to quantitatively compare theoretical re-
conditions for the charge density. We showed that, dependsults with applications and experimental results, one should
ing on the nonlinearity of the mobility, the ideal insulating investigate geometries different from cylindrical and spheri-
state,p=0, is unstable against a charge injection mode at @al symmetry such as, e.g., a tip-plate arrangem&nt In
critical field E.. Former theories on charge injection assumecontrast to the simple finite difference methods used in the
either an intrinsic instabiliy or force injection directly by simulations of this work, finite element methods are more
boundary conditions incompatible with a charge neutralappropriate to simulate charge injection in two- or three-
state®1? These theories cannot predict a finite critical field dimensional geometries with lower symmetry.

E,/E,

VI. CONCLUSION
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A A frd"r‘ Agrtmed Agrtmed

T ﬁex ad—1 | /¥ 1=ad )
Applying the boundary condition&) to this function yields
two linear equations for the constamts and A,. The exis-

We calculate the relation between the critical vallg  tence of a nontrivial solution requires the vanishing of the
and the boundary-condition parameteby solving Eq.(7) determinant associated with these equations. This condition
with the boundary conditior{6) for sp at \=0. We can can be written in the fornax?+bx+c=0 with constants
assumesp>0. Integration of Eq(7) leads to a,b,c depending om\. The solution for negative defines

the stability boundary plotted in Fig.(@. In a similar way

Ac _ A one calculates the dependencéd=gfonr ;, which is shown in
rda %P~ 9r0p= g, Fig. 2(b).
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