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Charge-injection instability in perfect insulators

Thomas Christen
ABB Corporate Research Ltd., CH-5405, Baden-Da¨ttwil, Switzerland

~Received 10 March 1997!

We show that in a macroscopic perfect insulator, charge injection at a field-enhancing defect is associated
with an instability of the insulating state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged state is governed by two different
processes with clearly separated time scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting defect~or contact!. Charge injection stops when the field enhancement is
screened below criticality. Secondly, the charge slowly redistributes in the bulk. The linear instability mecha-
nism and the final charged steady state are discussed for a simple model and for cylindrical and spherical
geometries. The theory explains an experimentally observed increase of the critical electric field with decreas-
ing size of the injecting contact. Numerical results are presented for dc and ac biased insulators.
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I. INTRODUCTION

Insulation of dielectrics is limited due to dielectr
breakdown.1–3 There exist several different physical mech
nisms that lead to instabilities associated with dielec
breakdown at high electric fields, e.g., thermal runaway
impact ionization avalanches. At breakdown, a change fr
an insulating to a conducting state occurs, at least in a ce
spatial region and for a certain time. A release of cha
carriers is possible from two different sources. First, carri
can be generated intrinsically via a bulk instability, e.g.,
ionization of impurities. Secondly, carriers can enter due
injection at the electrodes. In this paper, we show that cha
injection is associated with an instability too. In contrast
bulk instabilities, however, charge injection is a bounda
instability where the unstable mode~charge injection mode!
is localized at the injecting contact.

In practice, charge injection in macroscopic insulati
bodies occurs at geometrical defects of the electrodes w
the electric field can be strongly enhanced. Below we w
consider concentric cylindrical and spherical contact geo
etries. A small inner electrode has a large electric field a
can serve as a model for a field enhancing defect. The cy
drical system describes also a coaxial cable filled with a
electric medium, which is of obvious technical interest.

Charge injection in dielectrics has been investigated
perimentally for a tip-plate geometry by Hibma and Zelle4

and has been modeled by Zeller and Schneider5 in the limit
of an infinitely sharp mobility edge and by neglecting diff
sion. They describe the mobility edge with a mobilitym(E),
which vanishes forE,Ec but which is very large for
E.Ec , where Ec is a critical value of the electric field
('107 V/cm!. In this model a space charge forms near
tip when the local field reaches the mobility edge. The sp
charge, in turn, screens the electric field enhancement a
tip and pins it to the mobility edge~field limiting space
charge!. Zeller and collaborators assume a bulk instability
Ec associated with an S-shaped negative differential cond
tivity, which forms the basis of their theory.5,6 Below we
show, however, that there is no need for such an underly
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bulk instability. Charge injection turns out to be an instab
ity by itself.

Boggs7,8 pointed out the usefulness of the screening
the injected space charge in ac driven field-grading mater
His model, however, is based on the concept of conductiv
which cannot lead to a consistent physical description
charge injection. The theory assumes a conductivity tha
only a function of the field and that does not distingui
between intrinsic and injected charge carriers. Note t
charge injection is a boundary effect, while conductivity is
bulk quantity associated with intrinsic rather than with i
jected carriers. Boggs’ approach leads, nonetheless, to q
tatively correct ac results in the limit of an infinitely sha
mobility edge and in a certain frequency regime.

For the sake of clearness, we consider a perfect insula
which is defined here as a dielectric without intrinsic carrie
and with a constant permittivitye (5e r ,e0). Electrons or
holes can be present only due to injection at the electro
Without charge injection, a voltage difference at the conta
induces a charge that is located outside the dielectric in a
surface layer~with a thickness of the very short Deby
length! of the metal contacts. We call this locally neutr
state of the insulator theideal insulating state. The electric
field in the insulator is then uniquely determined by t
Laplace equation. The electric field at the contacts is fu
determined by the potential differences of the contac
Clearly, this situation corresponds to a purely capacitive
rangement of the contacts in a dielectric medium.

A prescription of arbitrary boundary conditions to th
electric field at the contacts~e.g.,E50) is more restrictive
and in general implies the presence of a space charge in
dielectric medium. The field is then determined by the Po
son equation. Important work on charge injection1,9–12treats
the formation of a space charge in this way as a direct c
sequence of boundary conditions. These theories treat
charged state, but they do not consider the stability of
locally neutral state.

A different approach, which is appropriate fo
metal-semiconductor contacts, is to prescribe
Richardson-Schottky13,14 or a Fowler-Nordheim15,16 current-
3772 © 1997 The American Physical Society
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56 3773CHARGE-INJECTION INSTABILITY IN PERFECT . . .
field characteristic in order to model thermionic~field! emis-
sion or a tunneling current through the contact barrier,
spectively. In contrast to the well-defined meta
semiconductor microcontacts manufactured by a hig
developed semiconductor technology, macroscopic me
insulator contacts used in high-voltage devices are not w
defined. A description on a hydrodynamic level is thus m
appropriate than a treatment on a microscopic level. Th
fore, we will prescribe below boundary conditions to t
charge densityr. For homogeneous boundary conditions,
turns out that the locally neutral state (r[0) is always a
stationary solution of the problem. However, we will sho
that this ideal insulating state can become unstable again
charge injecting mode or that bistability of neutral a
charged state can occur.

This paper is organized as follows. In the next section,
introduce a model for the perfect insulator with phenome
logical boundary conditions. In Sec. III, we investigate t
charge injection instability of the ideal insulating state. T
steady state that eventually develops is discussed in Sec
Finally, in Sec. V, we present numerical results for an
biased perfect insulator.

II. THE MODEL

We consider a material with electron-hole symmetry a
with an immediate recombination of electrons (n) and holes
(p) by annihilation. This means that the mobilities and t
diffusion constants of electrons and holes have equal a
lute values,m[2mn[mp , andD[Dn[Dp , respectively.
The Einstein relation is not considered for the present n
equilibrium system, and we assume thatD is a field-
independent constant. Due to the fast electron-hole recom
nation, the carrier density is equal to the absolute value
the charge density. The drift current is then simply given
m(E)uruE. Dynamic equations for electrons and holes d
scribing generation-recombination processes do not app
We emphasize that, except for the ac results, all results
low are valid also for unipolar conduction and are not co
sequences of the electron-hole symmetry and of the fas
combination. In particular, the injection instability discuss
below occurs for unipolar conduction. In this case, e
r>0 and the drift current readsm(E)rE.

Consider now a perfect insulator in a capacitor of cyl
drical or of spherical symmetry. Metal contacts are attac
at the inner and the outer radius,r 1 and r 2(@r 1), respec-
tively. In the following, the cylindrical capacitor of lengt
Lz and the spherical capacitor are labeled withd51 and
d52, respectively. All quantities depend only on the rad
coordinate,r . The ~radial! current density can be express
in terms of the charge densityr and the~radial! electric field
E:

j 5m~E!uruE2D] rr. ~1!

We assume a mobilitym(E) that depends on the field in th
form m(E)E[vuE/E0uasgn(E), wherea>1 is a measure o
nonlinearity and wherev is a positive velocity. A power-law
current-field relation usually describes very well the behav
near insulator-conductor transitions at high fields. It is a d
ficult problem to relate the phenomenological parametera
andv to microscopic quantities in typical insulating mate
-

y
l-
ll

e
e-

t

t a

e
-

IV.
c

d

o-

-

bi-
of
y
-
ar.
e-
-
e-

.,

-
d

l

r
-

als used in high-voltage devices~e.g., ceramics, polymers!.
There are, however, special cases, where exponents ch
terizing the nonlinearity of the current response have b
determined from microscopic models.17

The limit a→` corresponds to the infinitely sharp mobi
ity edge atE5E0 discussed in Ref. 5. Note that already t
case of a constant mobility (a51) corresponds to a nonlin
ear current-field relation sincer is related to the electric field
via the Poisson equation

e¹E5r. ~2!

Consequently, a linear dielectric relaxation mode does
exist in the perfect insulator.

There are two equivalent formulations of the dynami
namely, in terms of the Maxwell equation

e] tE5¹3H2 j , ~3!

which is a dynamic equation for the electric field, or in term
of the continuity equation,

] tr52¹ j , ~4!

which is a dynamic equation for the charge density. For c
venience, below we use Eq.~3! for the numerical simulations
and Eq.~4! for the analytical discussion.

The system is driven electrically via a coupling to an e
ternal electric circuit, which consists here of a voltage b
V(t) and an Ohmic resistorRext in series. The total~radial!
current density (¹3H) r5J/r d is determined by

J5adS V~ t !2E
r 1

r 2
EdrD , ~5!

wherea15(2pLzRext)
21 anda25(4pRext)

21 for the cylin-
drical and the spherical case, respectively. We mention
Eq. ~5! gives rise to a strong nonlocality, which can influen
qualitatively the spatiotemporal dynamics of the system18

Below, we restrict ourselves to the limit case of voltage co
trol, i.e., Rext→0 and to low frequencies such that inductiv
effects can be neglected. An increase ofRext corresponds to
forcing a current, which requires the presence of charge
is thus expected to lower the stability of the ideal insulati
state. Voltage control can equivalently be expressed in
form V(t)5* r 1

r 2Edr.

In order to have a well-defined problem we specify mix
homogeneous boundary conditions to the charge density

] rrur 1,2
6krur 1,2

50, ~6!

wherek is a phenomenological parameter, and where1 and
2 refer tor 1 andr 2, respectively. Some remarks concerni
this boundary condition are in order. First, a restriction
homogeneous boundary conditions is not necessary. An
ditional inhomogeneity in Eq.~6! leads to a finite boundary
charge. In this paper, however, we want to show that cha
injection occurs even for homogeneous boundary conditi
where a locally neutral state exists. Secondly,k can depend
on the local electric field. Such nonlinear boundary con
tions can lead to instabilities. Below we show that even
the linear case an instability occurs, and we discuss the
havior of the perfect insulator as a function ofk. We men-
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3774 56THOMAS CHRISTEN
tion that phenomenological parameters introduced in~inho-
mogeneous and nonlinear! boundary conditions are, in
principle, related to microscopic quantities. This is analog
to the formulation of hydrodynamic boundary conditio
starting from, e.g., the Boltzmann transport equation. Ho
ever, this problem goes beyond the subject of this work.

Thirdly, we assume that the charge does not ‘‘wet’’ t
contacts, i.e.,k<0. This is reasonable if the microscop
contact potential has the shape of a barrier. In a purely
fusive system, a ‘‘wetting’’ density leads to an instability
the uniform state. For homogeneous Neumann bound
conditions (k50) that describe contacts with vanishing d
fusion current, the ideal insulating state in the diffusive
gime is marginally stable~gapless stability spectrum!. In-
deed, an arbitrary spatially uniformr is a solution in the
linear diffusive regime, which implies the existence of a ze
mode. For finite negativek, the r[0 state is stable in this
regime. In the following section we show that, on the oth
hand, an instability of the ideal insulating state occurs in
drift dominated regime.

III. INSTABILITY OF THE IDEAL INSULATING STATE

In this and the following section, we consider a stationa
and positive bias voltage applied to the contac
V(t)[V.0. Obviously, a steady state of the system is giv
by r[0 and E5Cd /r d with V/C15 ln(r2 /r1) and
V/C25r 1

212r 2
21. This ideal insulating state corresponds

a purely capacitive system. To test the linear stability of t
state, we seek for the dynamics of a weak perturba
(dE,dr)}exp(lt), which satisfies the boundary condition
~6!. From the continuity equation~4!, one finds an eigen
value equation for the growth ratel:

ldr1
1

r d ] r S ~Cd /E0!a

r d~a21! vudru2Dr d] rdr D 50. ~7!

An instability of the ideal insulating state occurs if the
exists an eigenvaluel with a positive real part, since th
modedr associated with such al grows exponentially in
time. A dimensional analysis of Eq.~7! leads to a ‘‘scaling
relation’’ for the growth rate,

l5
D

r 1
2 f ~L!, ~8!

whereL5(r 1v/D)(E1 /E0)a has the meaning of a dimen
sionless control parameter. Here,E15Cd /r 1

d is the electric
field at the inner contact. Note that the functionf depends
still on d, a, kr 1. The dependence onkr 2 is weak forr 1!r 2
and will be suppressed whenever possible. The critical fi
at instability depends on the various parameters in the fo

Ec5E0

aA D

r 1v
Lc~a,d,kr 1!, ~9!

where the functionLc has to be determined fromf 50. The
eigenvaluel with the largest real part turns out to be pure
real and can be estimated if either the diffusion current or
drift current dominates. First, if the drift term can be n
glected, Eq.~7! reduces to a linear diffusion equation. Co
sequently, the eigenfunctions of the stability problem are
s
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diffusion type and are damped or marginally stable, provid
k<0. On the other hand, if the diffusion term can be n
glected, the stability problem reduces to a first order diff
ential equation. Solving Eq.~7! at D50 leads to a growth
rate

l5
v
r 1

S E1

E0
D a

@d~a21!1r 1k#, ~10!

which indicates an instability associated with a perturbat

dr~r !}r d~a21!expF2S r

r 1
D da11 d~a21!1r 1k

da11 G . ~11!

Equation~11! describes the injection mode, which is loca
ized at the inner contact. Obviously, a negativek acts to
slow down the growth of the unstable mode. In Fig. 1, n
merical solutions of the stability problem of the cylindric
case (d51) are shown as a function ofL with kr 1520.5.
For D/(vr 1)→0 andl>0, the numerical results are in goo
accordance with the approximate analytical results~10! and
~11!.

The physical mechanism for the instability can be und
stood as a positive feedback process. Consider a large
tric field at r 5r 1, and assume a negative field fluctuatio
dE,0 with ] rdE.2dE/r 1, localized atr 1. The Poisson
equation implies then a positive charge fluctuationdr at this
contact. Using the linearized Maxwell equatio

FIG. 1. ~a! Largest eigenvaluel of the stability problem as a
function of the control parameterL (kr 1520.5 d51, a53). ~b!
Eigenfunctions of the stability problem. The solid curve represe
the marginal charge-injection mode (l50) at L5Lc . Modes are
more localized at the inner contact asL increases.
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56 3775CHARGE-INJECTION INSTABILITY IN PERFECT . . .
e] tdE'2d j ,0, one concludes that the negative field flu
tuation grows in amplitude, if drift dominates diffusion. Th
initial perturbation is thus amplified, which characterizes
instability. We mention that fora51, the charge injection
mode ~11! has no physical meaning. In this case, the id
insulating state is linearly stable, although it is not neces
ily globally stable.

For finite D, a competition between the stabilizing diffu
sion term and the destabilizing drift term leads to a fin
critical value of the control parameterLc or, equivalently, to
a finite critical fieldEc . In order to discuss the dependen
of Lc in Eq. ~9! on kr 1, we solve Eq.~7! at l50. A solv-
ability condition leads then to an expression forkr 1 as a
function of Lc ~Appendix!. The result is plotted in Fig. 2~a!
for various values of the nonlinearity parametera, for
d51,2, and for constant radii. Clearly,Lc vanishes for
k→0. On the other hand, the locally neutral state becom
more stable as2k increases which is due to a decrease
the charge density of a density fluctuation at the inject
contact.

In a similar way, stability analysis yields the critical fie
Ec as a function ofr 1. We find that the critical field is almos
independent ofr 1 except for smallr 1, whereEc becomes
large. This behavior is more pronounced asa increases. For
a53 andd51,2, the results are shown in Fig. 2~b!. For a
tip-plate geometry, Hibma and Zeller4 found experimentally
that the critical field is almost independent of the tip size
a large range but increases considerably for very small
radii. Our theory clearly reproduces this behavior.

FIG. 2. ~a! Critical valuesLc as functions of2kr 1, for cylin-
drical ~solid! and spherical~dashed! geometries (r 1 /r 250.01). Dif-
ferent curves with decreasing stability threshold belong toa53, 5,
and 15.~b! Critical value of the electric field at the inner electrod
as a function of the size of the injecting electrode (a53; solid:
d51, dashed:d52).
-
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IV. THE CHARGED STEADY STATE

The injection of the charge acts to decrease the field
hancement. Consequently, the growth of the injection m
saturates at a field below the critical valueEc . Zeller and
Schneider5 observed that in the infinitely sharp mobility-edg
limit, a→`, the final state consists of a charged region w
r}1/r and E(r )'Ec for r 1,r , r̄ , and a locally neutral
region,r[0 andE}1/r d, for r̄ ,r ,r 2. The outer radiusr̄
of the field limiting space charge is determined by the co
tinuity of E(r ) at r̄ and by the prescribed voltage dro
V5*Edr. One expects for finitea ~Ref. 5! and in the pres-
ence of diffusion that this state decays on a long time sc
and is in fact part of a transient behavior. More concrete
the final charged steady state forms on two clearly separ
time scales. On a short time scale determined by Eq.~8!,
charge is injected such that the electric field drops loca
below the critical field. In a second step, the charge dist
utes slowly towards the new stable steady state. The ass
ated time scale is approximately given by the transit timet tr
of the domain wall, which connects the charged and the n
tral regions. A general discussion of front propagation in
unstable states19 goes beyond the purpose of this pap
Here, we give only a rough estimate for the transit time
the case of a thin domain wall

t tr'
r 2

v S r 2E0

V D a

. ~12!

In particular, we neglected diffusion, which acts to slo
down the domain wall velocity and to smear out the dom
wall. Equation~12! can be obtained by a projection onto th
translation mode of the domain wall and has the simple
terpretation that the front travels with the drift velocity of th
carriers.

It should be noted that the slowness of the charge re
tribution indicates a strong dependence on weak pertu
tions of the homogeneous insulator bulk. While weak forc
are not expected to hinder the growth of the fast unsta
injection mode, the charge redistribution can be considera
influenced by traps, grain boundaries, etc. Therefore an
perimental observation of the slow dynamics and the fi
state discussed below requires a sufficiently clean mate
Macroscopic insulating bodies used in high-voltage devi
where the injection instability is expected to be most imp
tant are usually not very clean. Future models of the dyna
ics of the field limiting space charge should thus include b
inhomogeneities.

In Fig. 3, we show a numerical simulation of charge i
jection in the perfect insulator ford51 anda53. After an
increase of the voltage beyond instability threshold, a cha
domain forms. On a long time scale the charge cloud sme
out and relaxes finally towards a (1/r )-like distribution,
whereas the electric field becomes spatially uniform. In or
to discuss this final steady state in the framework of o
model, we first consider the caseD50. From ¹ j 50 one
finds a bulk solution

E~r !5Adr ~12d!/~11a!, ~13!
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3776 56THOMAS CHRISTEN
r~r !5eAd

11da

11a
r 2~a1d!/~11a!, ~14!

with A15V/(r 22r 1) and A25V/(r 2
a/(11a)2r 1

a/(11a))/
(11a21) for the cylindrical and the spherical case, resp
tively. Note the similarity of the electric field distribution
for d51, a arbitrary, and fora→`, d arbitrary. In these
cases,E(r ) relaxes eventually to a constant value@see also
Fig. 3~a!#.

Clearly, the bulk solution~14! does not satisfy the bound
ary conditions. For a small diffusion constant, the solution
expected to be changed considerably only in a bound
layer near the contacts. We find that the solution deep in
bulk far away from the contacts is only weakly disturbed
a small diffusion constant. For, e.g., the cylindrical geome
(d51) and forV,r 2E0, the bulk solution reads in leadin
order ofD

E~r !5
Ṽ

r 2
F12

D

avr S r 2E0

Ṽ D aG , ~15!

where Ṽ is determined by the prescribed voltage drop. F
d5a51, Eq. ~15! is the exact bulk solution. We recall tha
for a51 we do not find a linear instability of the ideal in
sulating state either numerically or with the analytical a
proximation~10!. However, we conjecture bistability of neu
tral and charged state forV.(D/m)ln(r2 /r1) and a loss of
global stability at a certain field. Below, this conjecture w

FIG. 3. Evolution of~a! the electric field distribution and~b! the
charge density distribution beyond stability threshold. The locali
injection mode~dotted curve! grows up to a certain amplitude. Th
domain wall moves into the bulk~dashed-dotted curves! until the
final steady state with a uniform field~solid curve! is reached
(d51, a53).
-

s
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e
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be confirmed with the help of a numerical simulation.
detailed investigation of this case, however, will be pu
lished elsewhere.

Assumingr 2@r 1, Eqs.~13! and ~14! yield a current

I d5bdevE0S V

r 2E0
D a11

, ~16!

where b152pLz and b254pr 2a11a(112a)/(11a)21a

for the cylindrical and the spherical case, respective
Slightly beyond instability threshold the current is finit
though it is small@of O„(r 1 /r 2)a11

…#. We mention that for
d52, a51 and without diffusion, the 1/Ar behavior of the
electric field~13! has been discussed, e.g., by Lampert a
collaborators.9,10 Neglecting diffusion, they obtain a bound
ary layer due to anE50 boundary condition at the contac
One recovers from Eq.~16! in this case the current-voltag
characteristic of the perfect insulator in a spherical cond
tor, I 5(3/2)pemV2/r 2. A detailed discussion of the stead
state, e.g., in the presence of intrinsic carriers, can be fo
also in Refs. 9 and 10.

V. THE AC-DRIVEN INSULATOR

The localized field limiting space charge that forms
instability can be observed in ac experiments.3,4 Since at in-
stability l depends exponentially ona, the injection mode
grows very fast for largea. Consequently, in the limit of an
infinitely sharp mobility edge (a→`) the electric field satu-
rates immediately atE[Ec due to sceening. On the othe
hand, the characteristic time of the charge redistribution,
~12!, diverges, providedEcr 2.V. For Ecr 2,V the whole
bulk is immediately charged up.

In the following, we consider a periodic voltage that va
ishes for t,0 and that, for positivet, is given by
V(t)5V̂sin(vt). The frequency v52p/T obeys vt tr
@1@v/l, wherel is the steady-state stability eigenvalu
for an electric fieldE1 equal to the amplitude of the electri
field oscillation. Sincel21!1 ms and the transit timet tr is
of the order of hours,4 reasonable frequencies are in th
range of 10212103 Hz.

Typical solutions are shown in Fig. 4 for the cylindric
geometry and for various values ofa. The thin solid line
represents the reference electric fieldE1 /E0 at r 1 of the ideal
insulating state with a purely capacitive response. The o
curves represent numerical simulations of the ac respons
the presence of injection. For fields below instability thres
old, E1,Ec , the sample remains locally neutral. An increa
of the field beyond threshold leads to the injection of cha
in such a way that the local electric field at the inner cont
is saturated slightly below the critical field. Negative a
positive charge is periodically injected fora53 ~dotted
curve!. Clearly, due to the electron-hole symmetry the so
tions are symmetric with respect to inversion of the sign
the amplitude. The critical field is about 2E0, where the field
drops fast and saturates belowE0. This discontinuous tran-
sition from the neutral state to the charged state indica

d



a

se
iv
iv
je

an

D
at

a
s

n
bl
.

p
m
on
ar
n
g
t

m

tra
ld

ed
ct
ary
-
ly
i-
f

cay
lude
g

e
. On

ility
zed
ale

cal-
the
me

for
tics
and
nd

st,
nal
rs,

sur-

all
of

de.
tic

the
An-

ters
ry
ls.
ll-

h is

f a
d
e at

e
-

e-
uld
ri-

the
re
e-

fo

56 3777CHARGE-INJECTION INSTABILITY IN PERFECT . . .
also bistability. In the limit of a sharp mobility edge~solid
curve; a551), the neutral state decays immediately
E15E0 and the electric field oscillates between6E0, as
expected.

On the other hand, fora51 the insulating stater[0 is
linearly stable even for large amplitudesV̂. For certain initial
conditions or in the presence of additional current noi
however, we find also periodic solutions where only posit
or only negative charge is injected. An example for posit
charge injection is given by the dashed curve. Charge in
tion occurs at a large field amplitudeE1'9E0. Once charge
has been injected, a part of it remains in the sample
decreases the value of the electric field~dashed curve! com-
pared to the chargeless case~thin solid curve!. During the
negative half-cycle, the electric stress is thus enhanced.
to the presence of this charge, a further injection occurs
much lower field in the second cycle of the oscillation.

For initial conditions with reversed sign andV̂→2V̂ we
find injection of charge with different sign. We conclude th
there are~at least! three different attractors, which indicate
bistability in the stationary case. Consequently, even i
system with electron-hole symmetry, rectification is possi
due to dynamical symmetry breaking via charge injection

VI. CONCLUSION

We have investigated charge injection in a macrosco
and perfect insulator and for cylindrical and spherical geo
etries of the electrodes. The injecting metal-insulator c
tacts are modeled on a hydrodynamic level with bound
conditions for the charge density. We showed that, depe
ing on the nonlinearity of the mobility, the ideal insulatin
state,r[0, is unstable against a charge injection mode a
critical field Ec . Former theories on charge injection assu
either an intrinsic instability6 or force injection directly by
boundary conditions incompatible with a charge neu
state.9,10 These theories cannot predict a finite critical fie

FIG. 4. Time dependence of the field at the inner electrode
a51 ~dashed!, a53 ~dotted!, and a551 ~solid!; vr 1 /D50.1.
Solid thin curve: ac field without injection.
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for the charge injection instability which is clearly observ
in experiments4. For a macroscopic metal-insulator conta
that is usually not well defined, phenomenological bound
conditions to the charge density~which serves as an order
parameter field! are appropriate. Our theory predicts not on
a critical injection fieldEc , but reproduces also the exper
mentally observed increase ofEc with decreasing radius o
the injecting contact.4

For a constant mobility (a51), the ideal insulating state
is linearly stable. But numerical ac simulations show a de
of the neutral state to a charged state. From this we conc
bistability and a loss of global stability of the ideal insulatin
state.

For a.1, the time evolution from the insulating to th
charged state occurs on two clearly separated time scales
a short time scale, the injection mode grows at the instab
and screens the electric field enhancement. A locali
charge cloud forms near the contact. On a long time sc
this charge redistributes over the whole sample. The lo
ized field limiting space charge can be investigated with
help of an ac bias, which oscillates with a characteristic ti
lying between the just mentioned time scales.

Furthermore, we discussed the charged steady state
small diffusion constants. The current-voltage characteris
of these solutions are determined by the bulk properties
are thus equivalent to earlier results by Lampert a
co-workers9,10 in the perfect insulator limit.

Future work should address the following problems. Fir
the transport model must be refined to include additio
physical effects such as the influence of intrinsic carrie
boundary states, traps, and impurity-band conduction,
face potential decay, and~bi-!polarons. The effect of traps
enters already by part via the diffusion constant. A sm
intrinsic carrier density is expected to increase the stability
the neutral state due to a finite dielectric relaxation mo
Furthermore, electron-hole symmetry is not very realis
and one expects rectification in ac experiments.20

Of interest is also the inclusion of heat transport and
influence of the temperature, and of mechanical stresses.
other important task is the determination of the parame
appearing in the mobility-field relation and in the bounda
conditions for the charge density from microscopic mode
This is reasonable, however, only for microscopically we
defined bulk materials and metal-insulator contacts, whic
usually not the case in typical high-voltage devices.

The following interesting problem concerns the case o
constant mobility without linear instability. Injection shoul
then be associated with a nucleation of the charged phas
the contact,21 probably via a critical droplet with a shap
similar to the injection mode~11!. Such an injection mecha
nism is also possible for bistability ata.1 in the region
where the ideal insulating state is supersaturated.

Finally, in order to quantitatively compare theoretical r
sults with applications and experimental results, one sho
investigate geometries different from cylindrical and sphe
cal symmetry such as, e.g., a tip-plate arrangement.5,22,23 In
contrast to the simple finite difference methods used in
simulations of this work, finite element methods are mo
appropriate to simulate charge injection in two- or thre
dimensional geometries with lower symmetry.
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APPENDIX

We calculate the relation between the critical valueLc
and the boundary-condition parameterk by solving Eq.~7!
with the boundary condition~6! for dr at l50. We can
assumedr.0. Integration of Eq.~7! leads to

Lc

r da dr2] rdr5
A2

r d ,
k-

i-
s
i

with a constantA2. The general solution of this equation i

dr5S A12A2E r d r̃

r̃ d
expS Lc r̃ 12ad

ad21
D D expS Lcr

12ad

12ad D .

Applying the boundary conditions~6! to this function yields
two linear equations for the constantsA1 andA2. The exis-
tence of a nontrivial solution requires the vanishing of t
determinant associated with these equations. This cond
can be written in the formak21bk1c50 with constants
a,b,c depending onL. The solution for negativek defines
the stability boundary plotted in Fig. 2~a!. In a similar way
one calculates the dependence ofEc on r 1, which is shown in
Fig. 2~b!.
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