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Perturbative studies of the conductivity in the vortex-liquid regime
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We calculate the Aslamazov-Larkin term of the conductivity in the presence of a magnetic field applied
along thec axis from the time-dependent Ginzburg-Landau equation perturbatively using two approaches. In
the first a uniform electric field is explicitly applied; in the second the Kubo formula is used to extract the
linear response. The former yields a version of the flux-flow formula for the unitdomplane conductivity,
o4«(k=0), that holds to all orders of perturbation theory. Obtaining the same result from the Kubo formula
requires considerable cancellation of terms. We also use the Kubo calculation to examine the nonlocal
ab-plane conductivityg,,(k#0) (where the cancellations no longer occuas well as the nonlocal-axis
conductivity o,(k#0), and look for the perturbative precursors of the growing viscous length scales. In
addition, we consider the effects of weak disorder—both uncorrelatadt defects and correlatedcolumnar
and planar defects[S0163-182807)02426-(

[. INTRODUCTION Safaret all were in heavily twinned samples. Evidence for
nonlocal effects in pure samples is somewhat weakgoeko

Recent experiments on Y-Ba-Cu-O have exploited nonet al®> made a direct comparison of twinned and untwinned
uniform current distributions to reveal the nonlocal nature ofsamples. In the first of the current configurations described
the conductivity in the vortex-liquid regime. The conductiv- above (current into and out of the topthey took voltage
ity is nonlocal if the current at a siteis determined not only measurements across the top and bottom of their samples as
by E(r) the electric field ar but also by the fields at other @ function of temperature. In twinned samples of Y-Ba-
sitesE(r’). The conductivity is always nonlocal on some Cu-O, the resulting curve¥,, and V,, became almost in-
microscopic scale, but the term “nonlocal” is generally re- distinguishable at temperatures above the melting transition,
served for cases in which the length scale involved is mucfindicative of a longc-axis length scale in the vortex-liquid
longer than some underlying microscopic one. A nonlocaregime. In untwinned crystals, on the other hand, the curves
conductivity implies a nonlocal resistivity, though the lengthonly met at the melting transition. This result demonstrates
scales on which each varies may differ. Nonlocality maythe enhancement of the vortex-line integrity and hence non-
result if the “integrity” of the vortex along thec axis is locality by the correlated defect.
maintained(i.e., not much cutting and reconnectjiras then On the theoretical side nonlocal conductivity has been
a current applied at the top of a sample will yield a responsgtudied within the hydrodynamic framewdtkWe are as-
not only at the top but also at the bottom. The interaction$uming a linear but nonlocal relationship between current
between vortices may also lead to nonlocal effects within thénd electric field, i.e., an integral version of Ohm’s law
ab plane.

The nonlocl:al nature of the conductivity has been studied jl’-(r):J (1, 0)E,(r)dr”, 1)
by Safaret al.” They injected small currents into the top of a
sample with a magnetic field applied along thexis. They whereo, (r,r')#a,,8(r—r'). If the system is translation-
extracted the current in one case from a second contact alongly invariant, Fourier transforming Eq1) results in
the top and in another case from the bottom. In each con-
figuration a series of voltage differences were taken. The ju(K)=0,,(KE,(K), 2
results were then analyzed assuming a local though aniso- ) L
tropic conductivity @, #o,,)—the so-called modified where nonlocality now implies,,, (k) # const. The empha-

Montgomery analysis. Safat al® found an effective value sis is on the large-distance bghavior in reql space and so
for the ratioa,, /o, for each configuration and discovered a Presumably on the smaki-behavior of the Fourier transform.
discrepancy of order 10° between them. The inadequacy of Hu§e and Majumdérexplqred a hydrod_ynamlc approach, in
the local analysis is taken as evidence for a nonlocal condud¥Nich the smalk expansion ofo, (k) is truncated as fol-
tivity. Similar evidence for nonlocal effects in Bi-Sr-Ca- 'OWS:
Cu-O has been reportéd.
! . . k)= + k.Kg.

It should be pointed out that the nonlocal interpretation oK)= 00O F SuapKakip ®
has been questioned both on theorefieald experimentdl In the example they work out in detail to explain features
grounds. It should also be noted that the large effects seen ksgen by Safaet al, they include only oné&: S, ,,,. It mod-
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els the “tilt viscosity”—which measures the influence of than individual vortices, and thus they might raise the resis-
pancake vortices moving in orab plane on those moving in tivity. In fact, both effects are seen in the experiments of
another when they travel with different velocities. Fendrich et al}* in which point defects were induced by
Stability requires thatr,,(k) be a positive definite ma- electron irradiation. Introducing the defects eliminated the
trix. For the hydrodynamic form oé,,(k), it implies, for ~ sudden drop in resistivity al.. At temperatures above
example, thasS,,,,and S,,,, must be positive. When these Tc, the irradiated sample had a lower resistivity; while at
conditions are met, one finds that thesistivitydecays with ~ temperatures below, it had a higher resistivity. Another
a length scale of ordery&/o), which is in turn the length outcome of inducing the defects is that the temperature and
scale of the electric-field and current distributidn@he hy-  field dependence is no longer of the flux-flow type. At low
drodynamic approach also predicts surface currents whickemperatures an activated form might be expettéult such
supposedly should be spread out over some small lengfPnsiderations are beyond the scope of the present work
scale not accessible by that techniquRecent calculatiofS ~ Which employs standard perturbation theory. We will exam-
starting from the time-dependent Ginzburg-Land®@DGL) ine the effect of these defects in the weak disorder limit.
equation find that many of th&'s do not have the requisite ~ Even the lowest-order calculation of, ,(k, »), the wave-
sign—at least not for clean samples at high temperatureyector —and  frequency-dependent  conductivity, is
Those calculations were taken only to Gaussian ofttey- ~ cumbersom&?® To simplify the results we will concentrate
est order in perturbation thednythe purpose of the present ON the leading behavior. In the presence of a magnetic field,
paper is to go beyond Gaussian order and also to explore tHedndau levels provide a natural basis for calculating and de-
effect of various sorts of defects: point, columnar and planarsctibing various phenomena. Two energy scales naturally
Recent simulations of the TDGL equations in two dimen-arise: the first isayy, the energy of states in the=0 or
sions did find a region above the melting transition in whichlowest-Landau levelLLL ); the second is the energy spacing
= 0.2 (The problem of calculating the voltage distribu- between Landau levels given tiyw, with w, the cyclotron
tion whether or not the conductivities are of the “hydrody- frequency. We will gain an immense simplification by focus-
namic” form will be presented elsewhet®. ing on the regime in whichhey <<% wg, the so-called LLL
The first order of business is to calculate the uniform con-approximation. Arguments based on tleaormalizedvalues
ductivity o,,(0). The resistivity of clean samples of Y-Ba- of ey andf wq suggest that such a separation of scales holds
Cu-O in the vortex-liquid regime varies smoothly with tem- Over a significant portion of the vortex-liquid reginfeNote
perature until it experiences a sudden drop generallfhatay<fiwq limit does not imply that onlyn=0 states are
associated with the first-order melting transition to a pinnecemployed in a calculation, although it usually does imply
vortex solid. The temperature and field dependences in thighat the number oh#0 states is kept to a minimum. Con-
smooth region agree with the flux-flow formifavhich was ~ sidering only fluctuations in the LLL states serves not only to
originally conceived of in the vortex-solid phase where oneSimplify the calculations but also to regularize them.
pictures the translation of the entire unpinned vortex lattice. Before presenting the calculations in detail let us highlight
So how is it that the same physics applies in the vortex-liquic® couple of key features. The Kubo formula for the conduc-
regime? The important feature of the flux-flow formula be-tivity involves the product of two current densities, and each
sides the absence of pinning by defects would seem to be igirrent density involves a product offa and a¥*, where
insensitivity to viscous effects. As it is the entire vortex sys-V is the superconducting order paramef8ee Eqs(34)
tem that moves, the amount of entanglement along thes  and(35) below] Thus, calculated in this way the conductiv-
or the extent of crystalline order in theb plane is irrelevant. ity is a “four-point” object, that is, it involves fout fields.
It takes a nonuniform current distribution to probe such vis-If theseW's are expanded in the Landau-level basis, a crucial
cous effects. question arises: how many of these folits can be in the
We will determinec,,(0) in two ways. First, we will LLL? Already we find a notable distinction between the
consider the TDGL equation with an explicit uniform elec- c-axis conductivity,o,0), for which the answer is all four
tric field applied, calculating the current and extractingand theab-plane conductivityg,,(0), for which the answer
o,,(0) directly. Second, we will calculate the conductivity is only two. As a result, in the LLL regime the characteristic
from the Kubo formula, a version of the fluctuation- time scale inherent imr,, is much larger than that iory,.
dissipation theorem which yields the linear response of sAnother outcome is that in terms of LLL stateg,(0) is a
system not too far from equilibrium. The electric field doestwo-point quantity and as such is independent of viscous
not explicitly appear in the latter. We will see that a delicateeffects which are related to four-point quantities.
cancellation of terms arising in the Kubo calculation is nec- Understanding the effect of random pinning in the vortex-
essary for the two approaches to agree, and we will demorliquid regime is no trivial mattet’ When point disorder is
strate this cancellation to second order in perturbation theorgdded, translational invariance is destroyed. Moreover, while
for the conductivity of two-dimensional samples. We will the division ofc,,(0) into n=0 andn=1 parts persists, the
then proceed to examine the nonlocal effects within the1=0 component now becomes a four-point object sensitive
Kubo formalism, see how thie= 0 cancellation breaks down to viscous effects. As a result the associated time and length
at k# 0 and show how viscous effects may enter. scales may grow. The separationrof0 andn=1 states
Next we consider the effect of disorder—first on the uni-also plays a role in the distinction betweeraxis length
form conductivity. It would seem to have two competing scales in materials with correlated and uncorrelated disorder.
effects. On one hand, defects pin the vortices and thus mighto each energy level there is associatedaxis length scale,
lower the resistivity. On the other hand, they disrupt theand the one linked to the=0 level is much longer. It turns
formation of a vortex latticE which is more readily pinned out that thec-axis length scale ofr,, is controlled by the
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n=0 states in the presence of columnar and planar defect/e takeI’, the kinetic coefficient, to be real. Note that a

but by then=1 states in the presence of point defects. complex kinetic Coefficien(I“1H1“51+i)\a1 in Eq. (6)
The rest of the paper is organized as follows. In the nexput r—lﬂral in Eq. (7)] is required to model the Hall

section we lay the groundwork for the calculations that fol-conductivity o, . 2%

low by constructing the Green’s function and correlation The TDGL equation is supplemented by

function from the TDGL equation. In the section following

that we calcule}te the uniform gonductivity,xx(O)_, first by VX VXA= ug[IM+307], 9)

explicitly applying the electric field and then via the Kubo

formula. We then move on to consider the nonlocal conducwhereJ™ is the normal current given by

tivity oy, (k). After that we examine the conductivity of

films. We then consider the effect of weak disorder and fi- JA
nally summarize. JM =g —Vo—— (10
II. TIME-DEPENDENT GINZBURG-LANDAU THEORY andJ® is the superconducting current given by
We begin with the usual Ginzburg-Landau free-energy e*
functional /{¥'] for the superconducting order parameter J}S)(r,t)z 2m'[Plj+P’Z*J-]‘If*(rz,t)\lf(rl,t)
W¥(r,t) in a magnetic field ! rp=rp=r
11
|P;w|? B with P; the momentum operatdb). Equation(9) is simpl
_ 3 j 2, Piga j p . Equation(9) is simply
Y] fd rL;ylz 2m +al |+ 2 vl Maxwell's equation without the Maxwell displacement cur-
rent which is presumed negligibly small. Actually in this
" i VX A)2 4 paper we concentrate solely on the TDGL equation, so that
2,“0( R 4) certain effects that enter with the Maxwell equations, such as
backflow??>~2*will be missing.
whereA is the vector potential anB; is the jth component Let us consider an electric field applied along héirec-
of the momentum operator given by tion: ®d(r,t)=—Ex and a magnetic field applied in the
direction: (A=BxY). The TDGL equation then becomes
Lo
S ——— * .
P; i ar) e*A(r) (5)

19
[F EJrH(r)} P(r,t)=n(r,t)— Bly(r,H)|2u(r,t), (12
with e* =2e. This combination arises for reasons of gauge

invariance. We allow for two masses,=m,, and WhereH is

m,=m, to reflect to some extent the anisotropy of high-

materials; of course, the calculations can be extended to the ,,_ h? 5_2+ 9 ie*Bx|\*  #* 9_2+a
Lawrence-Doniach model in which the layering is treated 2my| ox? | ay h 2m, 9z°
more explicitly. -

Next, we choose a simple relaxational dynamics Yor _1e"Ex (19
given by the time-dependent Ginzburg-Landau equation 'z

1o ierdr. SFV] For the calculations that follow we will need the Green's
Lo e elr, _ function which satisfies
r(at — |vry= (LD +7(r,t). (6)
19

The field ®(r,t) is related to the chemical potential which T T HOGrEr ) =48r—r")s(t—t"). (14

accompanies the time derivative in order to maintain gauge
invariance; in what follows we will use the approximation The Green's function serves as the inverse of the operator
that ®(r,t) is the scalar electric potenti#l=2° The thermal  (I'!4,+ M), allowing us to rewrite the TDGL equation as
fluctuations are represented by the noige,t), which has
zero average and-function correlations

\If(r,t)zf dr’f dt'G(r,t;r’, t)H[ n(r',t")

2kgT

(1071 )= s =) at=t). (@) AN O], (19

which we can write in a more symbolic form
The noise strength is chosen so that in the absence of a
driving electric field, the distribution o¥’s, P[¥], evolves V=G o1~ BG1 V3 VLW (16)

toward its equilibrium solution . .
and solve—at least formally—by iteration

1 W1=G,m,~ G153 §G2.4Go 55 7475+ O( 52
Sl R 1= G1212— BG1 G5 552,452 5m3 1415+ O(5°).
P[‘I’]ocexpl’ kBTJ’ d rf[\lf]]. (8) 1n
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This expansion forms the basis for the standard perturbatiowhereH,(s) are the Hermite polynomials.

theory in 3.

Note that in the absence of an electric field=(0) the

We can constructG(r,t;r’,t") from the eigenstates energy does not depend &p giving the characteristic large

dn(ky K, ;1) and eigenvaluek,(ky ,k,) of H, which are

Ko k. r) = elkyy+iksz X —Ky/ o Mgy
dn(ky Kk, 1) =€y Un| —7r ) (18
and
h2k2
En(ky k)= +aEH+nhw0 ikyo/T", (19
where
app=a+ hwl2 +myw?/24%T2,
and
ho\ 12 e*B E
/:(E*_B) , Wg= Map and Uzg. (20)

degeneracy of the Landau levels. Moreover, we then find in
expression(19) the two energy scales mentioned in the in-
troduction: (1) ay=a+Awy/2, the energy in the LLL at
k,=0, and(2) & w, the energy spacing between levels. Since
the temperature at whick,=0 is where one expects the
LLL modes to go critical within mean-field theory, it is taken
to define the mean-fielt .»(T) line.

Given the presence of thlef term in the energy, it is
convenient to construct two-axis length scales, one corre-
sponding to each energy scale; they are

ﬁ2 1/2 ‘ %
gcz( ) and /C:(m

2meary c@o

1/2
) : (22)

The former is the standard mean-fietdaxis correlation
length, which is temperature dependent; while the latter is a
c-axis version of the magnetic length

(¢ is the magnetic length and is associated with the distance

between vorticesyw, is the cyclotron frequency; and is

roughly speaking the speed at which the flux lines mpve. o (mg\ Y2
The functionsu,(s) are given by /c:( ) 7, (23

which is temperature independent.
(21) From the eigenstates and eigenvalues above we construct
the following Green’s function:

H,(s)exp{—s%/2}
(/Nm2"n1)*2

Un(s)=

dk,
G(r,t;r' t")= FJ J —exp[lky(y y)+ik (z—2z)—iw(t—t")}

o up(xl/— k/—lk /)un(x// Ky/'— ik W)
=0 I'En(ky k) — '

(24)

WhereTiU:mabvlhzl“. One might notice that when+ 0 the arguments of the’s are not complex conjugates wit—x';
that is because the operathris not Hermitian. The real issue is that E@4) is satisfied.

Various representations db(r,t;r’,t’) are useful depending on the calculation in question. Another useful form of
G(r,t;r’,t") can be derived by performing the integral overand using the identity

o n(X)Hn(y) e[2xyt (X2+yd)t?)/(1-1?)

ngo 2"n!

(11912 . (25

(t—t’)}

It leads to

SOt ) r jdkz C [Tha(t—t")]] 1 Fﬁ2k§ 7%k ,2
(r,t,r |t )—Wz E Sin # exp) — 2mc+ 2mab+a’

p{ r{Fﬁwo(t—t’) {(x=x")2+[y—y +ov(t—t")]%
X exp —cot 2

4/
F{i(x+x'—2i'k“v/2)[y—y' +u(t—t")]
xXex

2/7

In this form there is no longer any summation and the spatial dependence is simply that of a Gaussian, but the price paid is in
the hyperbolic time dependence. One can see in the combiratiog’ +v(t—1t")] the tendency for the vortices to move in
the negativey direction under the influence of the Lorentz force.

+ikZ(z—z’)]®(t—t'). (26)
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After the Green'’s function, the next quantity we will need is the correlation fund@int;r’,t")=(W¥(r,t)¥*(r',t")).
There are two complications here: the operatbis neither Hermitian nor translationally invariant. As a result some of the
formulas relatingC and G that we have become accustomed to are inappropriate; it is best to resort to the definitions.
Substituting the expressions fdr(r,t) andW¥™* (r',t") given by Eq.(15) into the definition ofC(r,t;r’,t") and performing the
noise average yields

2kgT
C(r,t;r't")= T fdt”f dr’G(r,t;r" t")G* (r',t";r",t")+O(B). (27)

Many of the calculations that follow will use the Kubo formula in which there is no explicit electric fietel). Then the
expression for the correlator simplifies somewhat, becoming

C r7 ") =2k TI‘f dwf dk}’f de ik ’ ik , . , - un(x//—ky/)un(x’//_ky/’)
v=o(r t;r’,t")=2Kkg o | 3o | sk (y—y') tik(z=2) —iw(t-t )}n:o T2k, + o _
(28)

Now let us move on to using these expressions to calculate the conductivity.

Ill. THE FLUCTUATION CONDUCTIVITY two-point object, instead of the current-current correlation
function, a four-point object. Related to this point is the fact

Having th(? Greerll slfunctrl]on ang co_rr_elat|on fu.rlwlc;tlon, Weihat many of the diagrams occurring in the Kubo calculation
are now ready to calculate the conductivity. We will focus onmae canceling contributions. In addition, in the direct ap-

the conductivity due to fluctuations in the superconductin roach thea/fiwo—0 limit (the LLL approximation re-
order parameter—the so-called Aslamazov-Larkin term. Th%uires only LLL states, which is not true for the Kubo case.
normal contributiono™ must be included separately, and It can also be extended to include the nonlinear effédise
we are neglecting other possible contributions such as thgyyantage of the Kubo formalism is that it can be used to
Maki-Thompson or density-of-states terfis. calculate the nonlocal conductivities,,(k) and o,,(k).]

Recall that conductivities take on a form From Eq.(11) we see that the average current is obtained

e* 2 \/r from the correlation function as follows:
T (29 ) he* [ 9
(37(r,t))= o ———|C(r,t;r',t") .
wheree* andm* are the effective charge and mass, respec- IMap| IX  IX (r)=(r"t")
tively, 7 is a characteristic time scale, aidis the carrier (30)

density. Since we are interested in the conductivity due tqye will drop the superscripts] hereafter. At the lowest

superconducting fluctuatio$¥|?) will serve as the carrier order in perturbation in theory, we can insert expres§ai
density. An examination of the TDGL equation reveals thatinto (30) to obtain

the kinetic coefficienf” has dimensiongenergyx time) ~*; W
: -1 ; . e* [ d J
so thattime=(I' X energy 1. The question then becomes: (3= e ( )jdt,,J' drG(r .t 47)

what is the appropriate energy scale? Thus far two irm,y ax  ax’
candidates—«, and% wy—have emerged.

XG*(r',t/;r",t") (3D)

A. The direct approach (r=(r'.t")
Now let us derive the flux-flow form of the uniform con- We have verifiech posteriorithat in the direct approach the

ductivity from a calculation with an explicit electric field a/fwy—0 limitis equivalent to using onlp=0 states from

applied. This approach has several advantages over the Kultite start. Restricted th=0 states, the Green'’s function be-

calculation. It extracts the conductivity from the current, acomes

o r dky (dk, o ) )
Go(r,t;r',t ):\/—T/f o Zexp{lky(y—y )+ik,(z—2")—TEq(ky k) (t—t")}
17—k =iK,/)? (X' 1/ =k ~iK,/)?
><exp{—(x y2 ko) (X y2 ko) O(t—t"). (32

Notice that the derivative with respectxdn Eq. (31) pulls down a factor of- (x//2— kyl—i'kuv), while that with respect to

x" pulls down—(x’//z—ky2+iFv). The wave vectorg,, andk,, will eventually prove to be equémomentum conserva-
tion), so whenr is set equal ta’ we find
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he*"k'v . * 2 )

<‘JX>_ Map CO(r1t1r1t)_m<|\PO| >'
where Cy(r,t;r,t)={|¥|?) denotes the order-parameter fluctuations in the L{Strictly speaking it is(|¥|?) in the
presence of the electric field, which is where the nonlinear effects would) eNfstie that the conductivity has the expected
form with the characteristic time given by=1/T"% 0wy and that any temperature dependence enters only through the carrier
density and not through the characteristic time.

So far this result is for the lowest order in perturbation theory; however, all terms in the perturbative expansion for
C(r,t;r’,t") begin with someG(r,t;rq,t;) and end with somes*(r',t’;r,,t,). It follows that the effect of taking the
derivatives in Eq(30) will always be the same as it was above, and consequently, the flux-flow resu(@3Edholds to all
orders of perturbation theory in the LLL approximation. This result is remarkable in the simplicity of the relation between
o4(0), a dynamic quantity, and ¥ o|?), a static quantity. One always expects the conductivity to be proportional to carrier
density, but in this case the proportionality constarntirns out to be rather trivial—having no temperature dependence.

(33

B. The Kubo formalism

We now turn to the Kubo approach. For a system not too far from equilibrium the conductivity can be calculated from the
Kubo formula

1 L
U,W(k.w)=mj d(r—r’)Jd(t—t’)e""("”"‘“(‘“ (AP, HID(r )., (34)

where the suffixc denotes the “connected” piece and where this expression allows for a frequency dependence. The Kubo
formula relates the conductivity, a dissipative quantity, to fluctuations in an associated quantity, here the superconducting
current. As such, it is a version of a fluctuation-dissipation theorem. It calculates the linear response to an electric field without
explicitly applying one; the fluctuations above are those in the absence of an electric field.

Inserting the expression for the currdftl) into the Kubo formula34) yields

e*? : .
— ' Naik (r=r")—io(t—t’
U“V(k’w)_BkBTmﬂme d(r—r )f d(t—t")elk T Tet(py +PS )(P3,+P3,)

><<*1f<r1,tw*(rz,tw<r3,t')~lf*<r4.t'>>c‘ - (35
ra=ry=r’
|
One can see that calculated in this way the conductivity is a . e* 2<|\[r0|2>/ 1
four-point object as mentioned in the introduction. Hence- o3 (0)= m \The ) (37)
forth, we will consider dc resultse{=0) only and will drop ab 0
the frequency dependence from our expressions. and
The aim now is to calculate averages of the sort 2 5

(U (11 t)V* (1, 1) W (15, ) P* (14, 1)) At the lowest gy STl 1 ) @9
order in perturbation theorfthe Gaussian terimone simply 2z me \8Tay/

applies Wick's theorem We see here the characteristic time of #teplane conduc-

tivity is 7,p= wo, While that corresponding to the
, , ivity is 74,=1T#hwy while th ponding h
(W(ry, W (rp, W (rg, t")W*(rg,t")). c-axis conductivity ist.=1/8 ey, .
- * ' P\ * Consider now how the Kubo formula reproduced the flux-
(W, O (rg, 1) W(rs, 1) (rz, 1)), (36) flow result at Gaussian order. First of all the momentum
gperators intrinsic ter,,(0) act like creation or annihilation

retaining only the connected piece. The Gaussian term Iopera’tors raising or lowering the Landau level with the result

represented diagrammatically in Fig. 1. An arrow corre-

sponds to a Green'’s function, and a circle corresponds to tht%'%t 0;: O;rg?r?qra?r(att ,()r ;)S \I/\S/eIIT gohr:ggel:;%el; i;ht?]:?_rff
noise average. The combination arrow-circle-arrow consti- g happ 9 ’ ) d Y,

tutes a correlation function. Hence the conductivity at Gaus I_myt, we h_ave _onenzo correlator and 0'?‘3:.1 correlajor.
ith this in mind, we now look at the time integral in the

ian order requires two correlation functions. Not drawn but .

of crucial importance are the momentum operators acting a!§Ub° formula, which becomes

sites (,t) and (',t’) that make it a current-current correla-

tor instead of a density-density correlator. f d(t—t")exp{—T[Eg(ky1) +E1(ko) J|t—t'[}, (39
Let us focus our attention for now on the uniform dc

conductivitieso,,(0) ando,/0). Calculated in the LLL ap- wherek,; andk,, are thez components of momentum run-

proximation and to Gaussian order they are ning through then=0 andn=1 channels, respectivelyAc-
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4(r ) é
(@)

(b)

(r,t)

FIG. 1. Gaussian order diagram for the conductivity. An arrow
corresponds to a Green'’s function, and a circle corresponds to the
noise average. Not drawn but of crucial importance are the momen- F|G. 2. Diagrams with one quartic vertefe) is included in the
tum operators acting at sites,{) and (’',t’). Hartree-Fock resummatioth) has zero contribution &= 0 and is

“down” in the calculation of oy, (k#0).

tually k,;=k,, by momentum conservation.Because

Eo(K,1) is much smaller thai;(k,,) we can dropEq(K,;) ~ BkeT
from the integrand above. This last step is equivalent to us- a=ant 2w/ PEa
ing a static(equilibrium) n=0 correlator and hence produces _ ¢

a relation between the dynamic conductivity and the stati®Replacingay with a constitutes a resummation, the Dyson
density. In fact, the integral yields simply a factor equation for which is represented diagrammatically in Fig. 3.
1T % wy—the characteristic time in the flux-flow formula. It corresponds to a renormalization of the Green'’s function.
The flux-flow formula obtained in the direct approach above In analogy with many-body physics, this replacement is
suggests that the Gaussian dengity|?) should be re- called the Hartree-FockHF) approximation as it takes into
placed by the fully renormalized density¥o|2) but that the account both the direct and exchange terms. In addition to
characteristic timer,,= 1T % w, should remain as is. The eliminating a large numb_er of graphs fror_n the perturbation
way to produce this result within the Kubo formalism is to theory; the HF resummation replaceg which can be zero
renormalize the=0 correlator, while leaving the=1 cor-  Or negative witha which cannot—curing the divergence
relator essentially untouched. If this is true then diagramgroblem mentioned above. The removal of the divergence is
that dress up or otherwise disrupt the bare1 correlator —connected to the fact that a large magnetic field effectively
should have no overall effect. reduces the dimension of the problem by tdoreover,

the HF approximation goes a long way toward achieving
agreement with measured conductivitfghis success sug-
gests that the same philosophy,(— @) should be adopted
Our first attack on going beyond Gaussian order, i.e., inwhen considering where the LLL approximation is valid. In

corporating the nonlinear terms, will be the Hartree-Fockine HE approximation, — a, while % w, remains the same.
approximation. At Gaussian order the superconducting flucgg \whereas it originally appeared that the LLL approxima-

(41)

C. The Hartree-Fock approximation

tuations are tion was valid near the mean-fiel,(T) line whereay, is
small, it would now appear to be valid wheseis small. But

([Wo|2)= kgT (40) as already noted does not chgngg sign, it grows small or)ly

Amané/? as ay grows large and negative, i.e., below the mean-field

H¢o(T) line. Ikedd® has investigated renormalization effects
which would seem to imply that the conductivity diverges atPeyond HF, finding that they are merely refinements to the
mean-fieldH,, (ay=0). This seeming divergence is elimi- HF conS|derat|9ns, sgggestlng_that the_ LLL approxman_on
nated when one adopts the Hartree or Hartree-FoclE‘aS_ a substantial region of validity within the vortex-liquid
approximatiorf126 regime. _

From the perturbation theory foF Eq. (17) we can ob- If we replaceay with « in the Gaussian conductivities

tain the series foRW (r,,t)W*(ry,t)W(rg,t")W*(ry,t")) and look in the limit ofay<<0 we find that
and in turn the series for the conductivity. The new diagram-
matic feature is a “quartic” vertex at which four lines meet im 0, (0) = =

. . . . . XX .
with two arrows pointing in and two pointing out. Two dia- <0 2phBI
grams occurring at the first order j are shown in Fig. 2.
Because of the structure of the conductivity, especially the
momentum operators acting at{) and (’,t"), the diagram
shown in Fig. 2b) has zero contribution ak=0 for both

Oyx ando,. %= — +

Diagrams like that in Fig. @ can be resummed by re-
placing a; with @, wherew is defined self-consistently as

e*|ay| (42)

- ~ 5 — 5 FIG. 3. Diagrammatic representation of the Hartree-Fock ap-
a=ay+2B(|Vo|%), where Wr]f‘t we mean here BjVq|) proximation. The double lines represent renormalized Green’s func-
is (| W,|?) [Eq. (40) with a,— a]; all of which leads to tions; the single lines represent bare Green'’s functions.



56 PERTURBATIVE STUDIES OF THE CONDUCTIVITY IN ... 379

(b)
: ; (d)
FIG. 5. Vertex renormalizing diagrams contributing dg, at
) o ) order x2. (@) and (b) are down;(c) is zero atk=0; and (d) is
FIG. 4. Diagrams contributing to,, at orderx®. The bold lines  canceled by the diagram in Fig(d}.

indicaten=1 Green’s functions; the thin linas=0 Green’s func-

tions. (@) and(c) are Green'’s function renormalizing; whi(b) and b bsorbed ind dth h K ibut
(d) are noise renormalizinga) and (b) contribute to the flux-flow een absorbed inta, and the others make no contribution at

formula, (c) is down and does not contribute to the LLL approxi- k:02' Some diagrams contributing to the conductivity at
mation, and(d) is canceled by another diagramiat 0. O(x“) are shown in Figs. 4, 5, and 6.

There are a number of considerations in addition to the
Note that o,(0) at this level of approximation already usual ones of the topology and degeneracy to keep in mind
shows many of the features seen in the experiments in th&hen enumerating and evaluating the diagrams that occur in
vortex-liquid regime: theesistivityis linear inB with a zero ~ the perturbation series far,, . Because the conductivity is a
intercept and extrapolates to the normal resistivity at th&lynamic quantity, there is the distinction between Green's

data of Fendriclet al. prior to irradiation'* make this differentiation by including a small circle repre-

senting the noise average in the middle of a correlation func-
tion. Diagrams may differ in the placement of circles; for
example, compare Figs(& and 4b) or Figs. §b) and Kc).
While the Hartree or HF approximation goes along wayin addition, because the order parameter is complex, the
toward describing certain properties such as the specific heatreen’s function carries a direction, indicated by the arrow.
it is totally inadequate for examining other features, such agience diagrams may be distinguished by the placement of
the extent of crystalline ordering within theb plane. A arrows around the diagram; for instance, compare Fi@s. 5
much more sophisticated approach, such as the Parquehd Fd). Also because the order parameter is expanded in
resummatior?, is needed for that. We do not provide such aLandau levels, the Landau level of each line is another con-
scheme here, instead we examine a few diagrams beyond tegleration. We make this differentiation by setting the higher
HF approximation. We will find a cancellation among mostLandau-level Green’s functions in bold. So diagrams may
of these diagrams at=0 suggesting that the Hartree ap- differ in Landau-level structure; for example, compare Figs.
proximation is already quite good for the uniform conductiv- 4(a) and 4c) or Figs. %a) and §b). On the other hand, in the
ity. The absence of this cancellation la# 0, on the other evaluation ofa,(0) all of the Green’s functions are in the
hand, suggests the need to go beyond Hartree theory whermnlL.
considering the nonlocal effects. Recall that at Gaussian ordet,(0) has one correlation
As we are now considering a perturbation theory aboufunction and thus two Green'’s functions in the=1 state. It
the HF approximation, the series is no longer a power series
in B. Rather it is a power series inwhere

@ @ Z é (a)
(@) (b

: i : j : (©
(c) (d)

D. Beyond the Hartree-Fock approximation

BkgT

=—, 43
X 167/ 2.0 43

the dimensionless parameter introduced by Ruggeri and
Thouless’” The self-consistent equation above, E4fl), is
now rather compactly written as

ay=a(1-8X). (44) )

In the expansion of the uniform conductivits,(0) there
are no contributions oD(x). Recall that of the diagrams at FIG. 6. More vertex renormalizing diagrams contributing to
order B (Fig. 2 there are those of the HF type which have o, at orderx?. These diagrams do not contributekat 0.
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turns out that at all orders in perturbation theory the diaparity in “masses” (@<t wo) by insisting that the external
grams contributing to the LLL approximation have a maxi- momentumk, be sent through thex=1 channel.(This
mum of two higher-Landau-level Green's functions. So dia-choice does not affect the outcome, it just makes it more
grams like that in Fig. &) and those in Figs.(® and 3b)  appareny. The internal momentum integral is dominated by
are “down” by a factor ofa/fiwy and are not included to the smallest poles, which are those associated witland
this order of approximation. Of the remaining diagrams itthe terms involvingk, and % w, are left essentially intact.
has been argued that those which have a simpid corr-  The full k, dependence at Gaussian order is thus
elator[e.g., Figs. 4a) and 4b)] contribute to the flux-flow
result and that the othefs.g., Figs. 4d), 5(c), 5(d), 6(a), and a® (k) =cC(0)[1+k2/2/2]72, (47)
6(b)] must have a combined contribution of zerokatO. o L,
When we evaluated these diagrams, we indeed found that tijere the structure is simply that dfE;(kz)]"“ with
diagram in Figs. &), 6(a), and &b) gave no contribution at «—0.
k=0 and that the contributions due to the diagrams in Figs. The Landau-level structure &,y is slightly different.
4(d) and Jd) were equal and opposite. We will demonstrate This time one correlator is in the=0 level, while the other
this explicitly in the two-dimensiong2D) case. is in either then=1 or then=2 level. For an expansion in
The diagrams in Figs. (4 and 4c) renormalize the k>2< each additional power dtf( requires one higher Landau
Green'’s function, and those in Figgb#and 4d) renormal-  level. But the important point is that there is no contribution
ize the noise. The diagrams in Figs. 5 and 6 renormalize thavith two n=0 correlators. The&, dependence at Gaussian
quartic vertex. Note that on the=1 side, the Green’'s- order is
function renormalizing diagram was down whereas the noise

renormalizing diagram was not. A similar phenomenon oc- ©) ©) 1—e—k§/2/2
curs when we consider the effect of disorder. Tx (Ka) = 03 (0)) — 272 (48
o/
IV. WAVE-VECTOR DEPENDENCE The combinedk, andk, dependences are given by

Now let us turn to the nonlocak-dependent, conductiv- ©) ©) 22
ity. In some instances we calculate the fuldependencd, i (Kx.k,)=0iS'(0)| e K723 N[N+ 1)+ K 221
while in others we restrict our attention to the coefficients in =0 = e (49)
a smallk expansion

“ o (n+1)(K2/A2)" }

As opposed t&,,,x andS,,,y, Syyyxis positive at Gauss-
0,(K)=0,,(0)+S,,8.KKg+O(K?). (49 jan order. In fact if we had included the next term in the

The coefficientsS, .5, and the associated length scales can/fiwg expar;sion we would see th&,,, changes sign as

be related to the vortex picture. Since the vortices move il is lowered: As T decreases the associated length scale
they direction when the electric field and current are in theassociated with S, & chwo/la, increases. A

x direction,S,,, is associated with sheari?lgndsxyyx with  T-dependent length scale here is somewhat surprising. In the
compressionS,,, is related to the “integrity” of vortices vortex pictureS,,,, appears to be related to compression, but

(Huse and Majumdarcall it the “tilt viscosity”). one might expect that the compressibility to be pretty much
the same for the liquid and the solid, and so relativEly
A. The Gaussian results independent. The Gaussian calculation is in conflict with this

. . expectation. If this length scale found in the transverse con-
The small wave-vector expansion of the conductivity aty,, ity does indeed increase &isdecreases, it will prove
Gaussian ordefwithin the combined HF and LLL approxi- interesting to compare it to similar growirah-plane length
mations is scales, for example, the phase coherence length and the
o 2 ) 2 02 length over which density-density fluctuations detay,
/Ky 3hTwy/ ky — /22 which recent Monte Carlo simulations suggest grow in the
4 642 S otz same way'
In the scenario in which we apply current and wish to
extract the voltage distribution, it is the characteristic lengths
, (46) of the resistivity which are important. This is why the signs
of theS's are so crucial. They determine the pole structure of

where we have factored ouﬂf)(O). First note thas, ., and the nonlocal resisti.vityp(k) and consequently the Iength
S,,,, are negative, i.e., they have the sign that cannot bécales ofo(r). Consider, as an exampleceaaxis conductiv-
handled using the hydrodgnamic ?pproach. Furthermore, thiy Of the form
length scales multiplyinki, and k; are magnetic lengths, —_ (M (s 2 4
i.e., they have no tempera){ture dezpendence. 72dKe) = 022 + 022 (0) + Szl + O(KD, (50

It is easy to see whycalculationally the c-axis length  where a local normal conductivity has been includeds i§
scale in the Gaussian calculation @ff) is /.. Thez de-  positive, the hydrodynamic approdctields a length scale
pendence has no effect on the Landau-level structure; thergS/(a®+ o) ]¥2 If S is negative, a Padepproximant
fore, it remains true thatr,(k,) is comprised of onm=0  approach produces a length scaldo™|S|/ad¥(o(®
and onen=1 correlator. We can take advantage of the dis-+ o(M)]¥2 which is much smaller than the previous one be-

oy (K)=033(0)) 1

+O(k*)
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cause of the factor("/o(®)¥2 Returning to the case of four ¥'s in the calculation 0fS,,,, can be in the LLL. Ap-
Suyyx: if it were to change sign from positive to negative asplying the definition ofS,,,,, namely,
more diagrams are included, the associated length scale

would then be short which may be consistent with the expec- 1 2o, (k)
tations of the vortex picture. With such dramatic conse- yyX=§;X2 , (52)
guences regarding the nonlocal behavior of the resistivity, Ky k=0
one might expect that changes in the signs of$teewould
have experimental signatures. to the Kubo formuld Eq. (35)] and restricting to LLL states
The difference betwees,,,, and the others is that all yields
|
Seyyx= mj d(r—r’ )J d(t—t")(y—y")2(P1x+P5) (P + P}
X(Wo(ry, )P (ra,t)Wo(ra,t’ )Wg(ra,t’))e S (52
rg=ry=r’
|
This expression involving only LLL states is hence acces- " oS (N1 (K2/2)"
| | h h hich ly LLL e~
3&;@3&0 simulations and other methods which use only axx (Ky k) =0y (0)| € E o I[N+ 1) +k2/2/2]2 ,
Another quantity that involves only LLL states is the (54)
c-axis conductivity,o,(k); at Gaussian order it is where
e* 2<|ff'o|2>
oyx(0) = ———, 55
s . @ 2] 1= (L KEEzI4) 22 W 59
oS (k)=0'S(0)| e X’ — , and where
o 3 (Tof?) = —21_1+00)] (56)
e X .
0 Araé/?

where kZ=k2+ kf,. Since the calculation involves only So for this particular subset of diagrams, we only have to do

n=0 states, the-axis Iength scale is necessarﬂy. If this the perturbative expansion for the static quan(i@OF)_

result is expanded one finds that noneSd has the sign  Consequently, iS,,,, andS,,,,are going to change sign at

required by the hydrodynamic approach. low T and give long length scales, then other diagrams, such
as the vertex-renormalizing diagrartsee Fig. 5 must be
important.

Recall that in thea<# w, limit we only want diagrams
As already mentioned the HF approximation is inadequatavith at most two higher Landau leveh&1) Green's func-
for determining the extent of crystal ordering within thb  tions. Green'’s functions meeting at a noise average must be
plane and as such is also inadequate for examining shear the same Landau level; while those meeting at a vertex
effects. To see iS4y has a long length scale or changescan be in different Landau levels. So either the tas 1
sign at lowT, we must look beyond the HF approximation. Green'’s functions meet each other at a noise average, or each
The same is true dB,,,,. meets threem=0 Green’s functions at a vertex. Otherwise,
We argued that the uniform conductivityr,,(k=0), there will be at least three higher Landau-level Green’s func-
could be obtained from the subset of diagrams that renormations; see for example, Fig(@. We have already considered
ize then=0 correlator and leave tire=1 untouched beyond those diagrams in which the two=1 Green’s functions
the HF resummation. In the LLL limit the fully renormalized meet each other at a noise average—they are the ones that
n=0 correlatorénzo(r,t;r’,t’) hasexactlythe same depen- yield the flux-flow I’eSU|t0'(FF)(k) —they are also essentially
dence onx, X', y, andy’ as its “bare” version; thus, the two-point quantities and thus do not probe viscous effects
k, dependence of this particular resummation is exactly théuch as shearing.
same as that in the Gaussian calculafigq. (48)]. Further- Let us find an expression for those terms in which each
more, the external momentuky can still be sent through the n=1 Green’s functions meets a vertex. Recall the TDGL
n=1 channel, yielding again the dependence seen in thequation in symbolic form¥,;=G ,7,—BG;,¥5 ¥, V,
Gaussian calculatiohEqg. (47)]. Resumming this subset of [Eqg. (16)]. Of the four¥'s in the Kubo formula, let us re-
diagrams only alters the magnituds,(0); the k, andk, place the two that are in higher Landau levels with the sec-
dependence remain the same as they were in the Gaussiand term on the right-hand side of E6). This substitution
calculation, i.e., yields

B. Beyond Gaussian
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e*ZBZ ) , ) ,
2xx(kx:kz): 8kBTm2b d(r—r’)f d(t—t’)Jsjﬁe'kx(X_x ) Hikg(z=z )( Pix+ ng)(P3x+ PZX)
2

X{GFCa e V1WEVEWsWWeWg W)+ Go G WiV WEWsWEWEWeWs)tc.cl e
3=4=(1"t")

(57)

In this symbolic notation, the numbers denote points in spacan the LLL limit. Other than a different numerical coefficient
time, e.g., 5-(rs,t5). This expression factors out the in front of thek§ (Skyyx, the result is similar to the 3D result

“bare”_ n=1 Green’s functions explicitly, Ieaving_ averages [Eq. (46)]. Again we are applying the HF approximation so
wh|ch.|nvolve _LLL stqtes qnly. The_LLL_ average is a rath.er that o= an+28(|%,/2) where

complicated eight-point object, but in principle, coupled with

Egs. (49 and (52), it allows one to find the conductivity _ KT

from simulations that use only LLL states. Because the <|qf0|2>2D: ~B , (60)
Green'’s functions that have been factored out involve higher 2magpl,/?

Landau-level states, they are rather short-ranged in both timv?/hich leads to the self-consistent equation

and space. When investigating a regime in which one ex-

pects the LLL object to become long ranged, it is tempting to

approximate the Green’s function by some appropriately W=y — 'BKBI _ (61)
scaleds function 8(r —r’) 5(t—t') after the derivatives have w/Lyayp

acted.

In the next section we will provide some explicit expres- | "€ €xpansion parameter in the two-dimensional perturba-
sions for the diagrams in Figs. 4, 5, and 6 for the two-tion Seriesis
dimensional case. But before leaving this section, let us
make one point about thie, behavior. As previously men- _ BkeT 62)
tioned Figs. 4d) and %d) cancel atk,=0, but note that in 2 am/ e
these diagrams there is no longerma 1 channel through
which we can pass the external momentlm Therefore, allowing one to  re-express Eq. (61) as
one might expect that one picks up thiglength scale in-  ay=asp(1—4Xsp). 2"
stead of /., however, this is not the case. Just as these Evaluating some of the diagrams in Figs. 4 and 5 gives

diagrams cancel a =0 so do the leading term§.e., the )

k2£2 term9 in the k, expansion. Gy IXoD 2 0 2 o L 55
zoe ? 7o = o (0)—— e 1 kG2 ZgkE |
V. TWO-DIMENSIONAL RESULTS (63
Many of the results above hold for films and even sim- 2

L . LS ad Gy, 2D
plify in this case. The uniform conductivity is still given by ¢! ):‘T(xx)(o)T

the flux-flow formula in the LLL approximation. The dia-
grammatic structure of the perturbation series is exactly the
same; and which diagrams are down and so forth also carries 9
through; only the evaluation of the diagrams changes. 5(c)_ () 2D,
=0y (0) 5

1
—K2 /212 2 2 4,04, 1,22 4
e L (1_ky/ +Zky/ +kxky/ )},
(64)

e3kf/2’4( — K/ 2+ kG 2= KOKE 4

To do these calculations we will of course need the 2D 7
Green'’s function, which in the absence of an electric field is 1
214 6
G (r t.r/ t/)ZEJ d_wf %e—iw(t—t')ﬁ—iky(y—y’) " 4kykl/ >:|, (65)
2DV L,) 27} 27 ,
o , , XoD| 2 2 , , O ,
S Un(X// =Ky Wun(X'1/ =Ky ) oig"):a;‘;’)(O)T e K/ (—1+ KZ/ 2+ 2K/ %~ Zkf,kf/“

n=0 FEn_|w ’
1
(58) + Zk§kj/6”, (66)

where E,= a+#fwy(n+1/2) andL, is the film thickness.

The Gaussian result for the conductivity is 6(a) G) 2
oo =03 (0)2x5

e—skf/z/z( K2 /2—K2K2 /4
~ / YKL/
R R AL T . TP
1— + —=—2+0(k% 1
mabrﬁwo { 4 8a2D +_k2k4/6
(59 47y

oK)=
, (67)
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6b)_ (G) 5 and §-function correlations
Oxx = Oxx (O)ZXZD

2 2 ’ .
e 3/ /2( L S o

- W,
ar(nap(r’) == 8(r=1"). (7D

1
+Zk§kj/6) : (68)

The associated disordered TDGL can be written as
These calculations were done with the Green’s function

shown in bold in the figures in the=1 state. Recall that if ) , . D

we are interested i,y ,, we must redo the calculation with \If(r,t):f dr fdt G(r.tir', t)[n(r',t")

all n=0 states, and if we are interesteddgp,,, we must also , o R o

add to the expressions above those with2 Green's func- —ap(r)W(r',t") = pIW(r' t")[*¥(r',t")]
tions. Here our interest is in showing explicitly the overall (72
null contribution of these diagrams &t=0—whether it be

that the individual diagrams have zero contributjery., dia-  Or symbolically as

grams %c), 6(a), and &b)] or that diagrams cancdk.g.,

diagrams 4d) and 5d)]—and to suggest that the same does V=G o7~ araG1 Vo~ BG V5 VoW, (73

I )
not apply atk#0 We have simply added the new term to H45), hence

G, , remains the same, that is, the Green’s function of the
pure, linearized system.

Disorder introduces competing effects: it provides pinning Iterating this equation witi8=0 gives
centers which may couple to the viscous effects even at
k=0, but it also disrupts the growth in crystalline order V1=G12m2— ar2G1G2 373+ araar3G1G28G3 474
which yields the viscous effects in the first place. With trans- +0(ad) (74)
lational invariance destroyed, the flux-flow formula no R
longer applies. We will examine the effects of disorder atDiagrammaticaIIy, we will representg by a small square.
low order in pertu'rbe'ltion theory with!n the Kubo formalism. There will be one arrowGreen’s functioh pointing into it

We can, in principle, take the direct approachkat0  and one out of it. The disorder averaging pairs up dhés,
using the Green'’s functions with the explicit electric field |y represent this feature by a dashed line connecting the two
applied. However, it is more complicated than it was in thegqyares. Because of the spatiafunction in the correlation
absence of disorder. We confirmed for the pure system thajs ihe disordel(71), squares connected by a dashed line rep-
we could use solelyp=0 states from the outset. So long as regent the same point in space but different points in time.
the electric field was explicitly applied, taking the Thys as far as spatial integrals are concerned, diagrams in
alhwe—0 limit in the beginning(i.e., using Green’s func- this perturbation expansion are identical to those found ex-
tions with onlyn=0 state$ or at the end yielded the same panding the nonlinear term. It is the time integrals that make
results. However, the same is not true in the presence df different.
disorder. The time integrals here are more involved, and tak- Figure 7 shows some diagrams that arise at the first order
ing thea/#%wo— O limit in the beginning and at the end gives in an expansion in the disorder strengify. Note that if we
different results. With this complication, the direct approachwere to draw the two points connected by the dashed line as
is no better than using the Kubo formalism. one point, then we would end up with diagrams very much
like those in Fig. 2(They would still differ by the number of
circles) In fact, the diagram in Fig. (d) gives zero contri-
. ) " . bution atk =0 for both o, and o, for the same reasons as
~ In the experiments by Fendriatt al.™ the point defects  hat in Fig. 2b). The diagram in Fig. @) is Green’s function
induced by irradiation were seen to introduce an add't'ona}enormalizing, those in(B) and 7c) are noise renormaliz-
term to theab plane conductivity whiqh was not of thg flux- ing, and that in ) is vertex renormalizing.
flow form. They analyzed their resistivity data using the “cCertain basic facts about the calculations do not change in
form p=(Llp¢+ Lipp) ~* wherep is the flux-flow resistivity  the presence of disorder. For instance, in the calculation of
an(jpp the resistivity due to point defects. The Iat'ter had ang (k, Jk,=0k,), it remains true that there is a maximum of
activated form:pp=poexp{ —U(T,H)/T}, and the field de- tyo n=1 Green’s functions in diagrams contributing to the

0 H 7 — —-0.7+0.1 —~
pendence of the “plastic energy” was~H : alfiwg—0 limit. Hence the diagram in Fig.(d) does not

Let us _conS|der the effect of uncorrelated _dlsorder on th%ontribute to this order. Another invariant is that either the
conductivity calculated from TDGL. We will model the ., h—1 Green's functions meet each other at a noise aver-

fpomt defectsf by ?ddlnlg a quenched random mass term to tréege[as in Figs. 7a) and )] or they each meet a vertéas
ree-energy functiona in Fig. 7(c)]. The difference is now there are two types of
vertices, the original quartic vertices and the new disorder-
FR[\P]zf d3r[---+[a+ag(r)]|¥|?+---], (69  induced vertices. From the case in which the1 Green’s
functions meet at a noise average, one gets the disordered
where the random variablegs(r) have zero average analog of the flux-flow formula witkf| ¥ y|2) replaced by its
disordered counterpar{This particular subset of diagrams
ag(r)=0 (70)  yields the 1p¢ in the Fendrichet al!* analysis) From the

VI. DISORDER

A. Point disorder
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(@)

(b)

(c)

FIG. 7. Some diagrams at first order in the disorder strerigth.
is Green'’s function renormalizingp) and (c) are noise renormal-
izing; and(d) is vertex renormalizing. The last is not only down but
also zero ak=0.
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Then there are new cases, like the noise-renormalizing
diagram shown in Fig. (€). Evaluating it yields

-2
01O (k)=0S(0)

(m—2)zq
5 (79

1
1+ 5K/

Note that we have factored out the pure Gaussian result; it
multiplies a numerical factor angh, the dimensionless ex-
pansion paramet&tfor point disorder

167/ 2 a?

We have also included the diagranks dependence. The
c-axis length scale associated with this diagram, as well as
those in Figs. @) and 1b), is /.. As in the pure case, we
can send the external momentumthrough channel made
entirely of n=1 states. Recall that the points connected by
the dashed line are the same point in space; consequently, in
Fig. 7(c) the dashed line acts as a “short” allowing the ex-
ternal momenturk, to pass through a channel comprised
solely ofn=1 states.

By once again factoring out the higher Landau level

Zy (76)

case in which the two Green'’s functions meet quartic verti-Green'’s functions, this last calculation might be generalized

ces, one gets the disordered analog of &q).

to

2
SOk = 0 ey [at—t) [ drg [ dts [ dtge X +z2 (P, 4 P (Pact P
xx (Kx ,Kz) 16kgTNE, (r=r") [ d( )| drs 5 6€ (Pix+ P50 (Paxt+ Py
a

where we imagine the remaining LLL object as being fully

3z;
renormalized. The disorder average was performed with the U>7<§<°)(kz,0)=<f§§)(0)?

result that the order-parameter field¥y(rg,t5) and

W5 (rs,ts) are at the same point in space but different points
in time. Note that the LLL object here is a four-point quan-

tity and thus probes viscous effects evekat0. The resum-

X{G*(r,,t;r5,t5)G(r3,t";r5,te)(Wo(ry, ) W5 (rs,t5)Wo(rs,te) W (rg.t’))c+c.cl, (77
[
8(— 2+ (1+k2&214) Y2+ (1+ K2£2/4)
3KEEL(1+k2£214)? :
(79

mation suggested in Eq77) is just one example of a new
feature induced by the defects.

B. Correlated disorder

We model columnar defects lying parallel to thexis by
changing the correlation of the disorder from a 8Bunction
to a 2D é function

- Wl
a(r)a(r’)=75(x—x’)5(y—y’). (78

where we have factored the result as above andés the
dimensionless expansion parameter for columnar defects

W,

=—. 80
167/ %a? (80

Z3

Note thatz, differs from z, by the absence o€, in the
denominator ofz;, making z, the larger of the two in the
a—0 limit. The c-axis length scale associated with the dia-
gram in Fig. Tc) is &, . Points connected by a dashed line are
no longer at the same point in space. They have different
values ofz; therefore, the dashed line no longer serves as a
“short” for external momentumk, and we can no longer

For sake of comparison we calculated the diagram in Figsendk, through an exclusivelyn=1 channel. The switch

7(c) for columnar defects, obtaining

from the /. length scale for point defects # for columnar
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defects in the evaluation of theses diagrams is in accord witbnstrated that the cancellation does not extend to the nonlo-
the suggestion that correlated defects align pancake vorticezl conductivityo,,(Kk), allowing viscous effects to enter.

enhancing their integrity.

When it comes to the nonlocal conductivity and the issue

We model planar defects by changing the disorder correof characteristic lengths, the present work has certainly

lations to

W2x

a(ra(r’)= 5

S(X—x");

— W,
a(na(r’)=—2"a(y-y"), (81

where the former models planar defects parallel to ke
plane and the latter those parallel to tkeplane. When the

raised more questions than it has answered. For instance, the
lowest-order(Gaussiah diagram of the transversgb-plane
conductivity already revealed a long, temperature-dependent
length; while all of the diagrams for the longitudinal
ab-plane conductivity individually had short, temperature-
independent length scales. If the longitudinal length scale is
to grow long, as is suggested by its identification with shear-
ing effects of a growing crystal, it will be through the com-
bined effect of many diagrams. The nature of the diagrams

electric field is in thex direction, the vortices move in the that may lead to such an effect have been identified, but what

moving parallel to or perpendicular to the defects. Evaluatiolength scales are independent or related.

of the diagram in Fig. () is then

3 \/;ZZX

0 (k0 = 03 (0)——=—

XX XX 8\/5
8(— 2+ (1+K2E214) Y2+ (1+Kk2£214)
3KEEL(1+K2£214)? :

3\/;22),
82
8(— 2+ (1+K2E214) Y2+ (1+ k2£214)
3KZEL(L+K3E014) ’

019 (k,0)= S (0)

(82

where

Wy,

= 83
167/ ? @3

Zyi

There is a similar question regarding theaxis. Every
diagram contributing to the LLL approximation of,, has
&., the temperature-dependent corelation length, as its length
scale. On the other hand, at each order in the perturbative
expansion of oy, the c-axis length scale is/;, a
temperature-independent magnetic lengtlar Jf(z—z’) is to
become substantially nonlocal dsis lowered, it will be
through the combined effect of various orders. If the two
length scales are long, it is unclear whether they will turn out
to be essentially the same or distinct. In addition, there is the
question of whether or not thab-plane andc-axis length
scales grow independently. Finally, these matters must be
readdressed with regard to the nonlocal resistivity which
may have its own distinct length scales.

We also examined the effect of disorder on #ieplane
conductivity. While there was a subset of diagrams that lead
to the disordered analog of the flux-flow formula, there were
other contributions that coupled to the viscous effects even at
k=0. We also showed that diagrams contributing to the LLL
approximation had as theiraxis length scale’.. in the pres-
ence of point defects angl in the presence of columnar and

(with i=x ory) are the dimensionless expansion parameterganar defects.

for planar defects. For this particular diagram we find no

Missing from this work is any consideration of what

difference between thez andyz planar defects. The planar yector-potential fluctuations might do. Including them would
defect expansion parametey; has the samer dependence require a new kind or vertex, one involvingda, a ¥*, and

and so the same temperature dependeneg.d@3n the other

anA,, whereA, is the fluctuating part of the vector poten-

hand, z; has an additional” in the denominator so the tial. The arguments leading to the flux-flow result may no
magnetic-field dependence of these expansion parameterslismger hold when these new vertices are added. Also lacking

different.

VIl. SUMMARY

are the effects of Maxwell's equations which are needed to
form a complete set of equations. At low order these lead to
back-flow effects and at higher orders may produce lattice
effects. There are many challenging aspects of this problem

We have investigated the conductivity in the vortex-liquid g pe resolved.
regime via perturbation theory. Using an approach in which

an electric field is applied explicitly we showed that within

the lowest Landau levelLLL ) approximation the uniform
ab-plane conductivity,o(0), is proportional to(|W¥|?)
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