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Perturbative studies of the conductivity in the vortex-liquid regime
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We calculate the Aslamazov-Larkin term of the conductivity in the presence of a magnetic field applied
along thec axis from the time-dependent Ginzburg-Landau equation perturbatively using two approaches. In
the first a uniform electric field is explicitly applied; in the second the Kubo formula is used to extract the
linear response. The former yields a version of the flux-flow formula for the uniformab-plane conductivity,
sxx(k50), that holds to all orders of perturbation theory. Obtaining the same result from the Kubo formula
requires considerable cancellation of terms. We also use the Kubo calculation to examine the nonlocal
ab-plane conductivity,sxx(kÞ0) ~where the cancellations no longer occur!, as well as the nonlocalc-axis
conductivity szz(kÞ0), and look for the perturbative precursors of the growing viscous length scales. In
addition, we consider the effects of weak disorder—both uncorrelated~point defects! and correlated~columnar
and planar defects!. @S0163-1829~97!02426-0#
on
o
v-

r
e
e-
uc
ca
th
a

ns
n
th

ie
a

lo
o
h
is

a
of
u
-

ion

n

or

ed
ed

s as
a-

ion,

ves
tes
on-

en

ent

-

so
.
in

es
I. INTRODUCTION

Recent experiments on Y-Ba-Cu-O have exploited n
uniform current distributions to reveal the nonlocal nature
the conductivity in the vortex-liquid regime. The conducti
ity is nonlocal if the current at a siter is determined not only
by E(r ) the electric field atr but also by the fields at othe
sitesE(r 8). The conductivity is always nonlocal on som
microscopic scale, but the term ‘‘nonlocal’’ is generally r
served for cases in which the length scale involved is m
longer than some underlying microscopic one. A nonlo
conductivity implies a nonlocal resistivity, though the leng
scales on which each varies may differ. Nonlocality m
result if the ‘‘integrity’’ of the vortex along thec axis is
maintained~i.e., not much cutting and reconnecting! as then
a current applied at the top of a sample will yield a respo
not only at the top but also at the bottom. The interactio
between vortices may also lead to nonlocal effects within
ab plane.

The nonlocal nature of the conductivity has been stud
by Safaret al.1 They injected small currents into the top of
sample with a magnetic field applied along thez axis. They
extracted the current in one case from a second contact a
the top and in another case from the bottom. In each c
figuration a series of voltage differences were taken. T
results were then analyzed assuming a local though an
tropic conductivity (sxxÞszz)—the so-called modified
Montgomery analysis. Safaret al.1 found an effective value
for the ratiosxx /szz for each configuration and discovered
discrepancy of order;105 between them. The inadequacy
the local analysis is taken as evidence for a nonlocal cond
tivity. Similar evidence for nonlocal effects in Bi-Sr-Ca
Cu-O has been reported.2

It should be pointed out that the nonlocal interpretat
has been questioned both on theoretical3 and experimental4

grounds. It should also be noted that the large effects see
560163-1829/97/56~1!/372~15!/$10.00
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Safaret al.1 were in heavily twinned samples. Evidence f
nonlocal effects in pure samples is somewhat weaker. Lo´pez
et al.5 made a direct comparison of twinned and untwinn
samples. In the first of the current configurations describ
above ~current into and out of the top!, they took voltage
measurements across the top and bottom of their sample
a function of temperature. In twinned samples of Y-B
Cu-O, the resulting curvesVtop andVbot became almost in-
distinguishable at temperatures above the melting transit
indicative of a longc-axis length scale in the vortex-liquid
regime. In untwinned crystals, on the other hand, the cur
only met at the melting transition. This result demonstra
the enhancement of the vortex-line integrity and hence n
locality by the correlated defect.

On the theoretical side nonlocal conductivity has be
studied within the hydrodynamic framework.6 We are as-
suming a linear but nonlocal relationship between curr
and electric field, i.e., an integral version of Ohm’s law

j m~r !5E smn~r ,r 8!En~r 8!dr 8, ~1!

wheresmn(r ,r 8)Þsmnd(r2r 8). If the system is translation
ally invariant, Fourier transforming Eq.~1! results in

j m~k!5smn~k!En~k!, ~2!

where nonlocality now impliessmn(k)Þconst. The empha-
sis is on the large-distance behavior in real space and
presumably on the small-k behavior of the Fourier transform
Huse and Majumdar7 explored a hydrodynamic approach,
which the small-k expansion ofsmn(k) is truncated as fol-
lows:

smn~k!5smn~0!1Smabnkakb . ~3!

In the example they work out in detail to explain featur
seen by Safaret al., they include only oneS: Sxzzx. It mod-
372 © 1997 The American Physical Society



f

-

e

hic
ng

re

t
t
a
n
ich
u-
y-

on
-
-
al
e
th

n
ce
ui
e
e
s

is

c-
ng
ty
-
f
es
te
c
o
o
ill
th

ni
g
ig
he

is-
of
y
he

at
r
and
w

ork
m-

is
e
eld,
de-
ally

g

s-

lds

ly
-
to

ht
c-
ch

-

ial

e

tic

us

x-

hile

tive
gth

der.
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els the ‘‘tilt viscosity’’—which measures the influence o
pancake vortices moving in oneab plane on those moving in
another when they travel with different velocities.7

Stability requires thatsmn(k) be a positive definite ma
trix. For the hydrodynamic form ofsmn(k), it implies, for
example, thatSxzzx andSxxxx must be positive. When thes
conditions are met, one finds that theresistivitydecays with
a length scale of order (AS/s), which is in turn the length
scale of the electric-field and current distributions.7 ~The hy-
drodynamic approach also predicts surface currents w
supposedly should be spread out over some small le
scale not accessible by that technique.! Recent calculations8,9

starting from the time-dependent Ginzburg-Landau~TDGL!
equation find that many of theS’s do not have the requisite
sign—at least not for clean samples at high temperatu
Those calculations were taken only to Gaussian order~low-
est order in perturbation theory!; the purpose of the presen
paper is to go beyond Gaussian order and also to explore
effect of various sorts of defects: point, columnar and plan
Recent simulations of the TDGL equations in two dime
sions did find a region above the melting transition in wh
Sxxxx>0.10 ~The problem of calculating the voltage distrib
tion whether or not the conductivities are of the ‘‘hydrod
namic’’ form will be presented elsewhere.11!

The first order of business is to calculate the uniform c
ductivity smn(0). The resistivity of clean samples of Y-Ba
Cu-O in the vortex-liquid regime varies smoothly with tem
perature until it experiences a sudden drop gener
associated with the first-order melting transition to a pinn
vortex solid. The temperature and field dependences in
smooth region agree with the flux-flow formula12 which was
originally conceived of in the vortex-solid phase where o
pictures the translation of the entire unpinned vortex latti
So how is it that the same physics applies in the vortex-liq
regime? The important feature of the flux-flow formula b
sides the absence of pinning by defects would seem to b
insensitivity to viscous effects. As it is the entire vortex sy
tem that moves, the amount of entanglement along thec axis
or the extent of crystalline order in theab plane is irrelevant.
It takes a nonuniform current distribution to probe such v
cous effects.

We will determinesmn(0) in two ways. First, we will
consider the TDGL equation with an explicit uniform ele
tric field applied, calculating the current and extracti
smn(0) directly. Second, we will calculate the conductivi
from the Kubo formula, a version of the fluctuation
dissipation theorem which yields the linear response o
system not too far from equilibrium. The electric field do
not explicitly appear in the latter. We will see that a delica
cancellation of terms arising in the Kubo calculation is ne
essary for the two approaches to agree, and we will dem
strate this cancellation to second order in perturbation the
for the conductivity of two-dimensional samples. We w
then proceed to examine the nonlocal effects within
Kubo formalism, see how thek50 cancellation breaks down
at kÞ0 and show how viscous effects may enter.

Next we consider the effect of disorder—first on the u
form conductivity. It would seem to have two competin
effects. On one hand, defects pin the vortices and thus m
lower the resistivity. On the other hand, they disrupt t
formation of a vortex lattice13 which is more readily pinned
h
th

s.

he
r.
-

-

ly
d
is

e
.
d
-
its
-

-

a

-
n-
ry

e

-

ht

than individual vortices, and thus they might raise the res
tivity. In fact, both effects are seen in the experiments
Fendrich et al.14 in which point defects were induced b
electron irradiation. Introducing the defects eliminated t
sudden drop in resistivity atTc . At temperatures above
Tc , the irradiated sample had a lower resistivity; while
temperatures belowTc , it had a higher resistivity. Anothe
outcome of inducing the defects is that the temperature
field dependence is no longer of the flux-flow type. At lo
temperatures an activated form might be expected,15 but such
considerations are beyond the scope of the present w
which employs standard perturbation theory. We will exa
ine the effect of these defects in the weak disorder limit.

Even the lowest-order calculation ofsmn(k,v), the wave-
vector and frequency-dependent conductivity,
cumbersome.8,9 To simplify the results we will concentrat
on the leading behavior. In the presence of a magnetic fi
Landau levels provide a natural basis for calculating and
scribing various phenomena. Two energy scales natur
arise: the first isaH , the energy of states in then50 or
lowest-Landau level~LLL !; the second is the energy spacin
between Landau levels given by\v0 with v0 the cyclotron
frequency. We will gain an immense simplification by focu
ing on the regime in whichaH!\v0, the so-called LLL
approximation. Arguments based on therenormalizedvalues
of aH and\v0 suggest that such a separation of scales ho
over a significant portion of the vortex-liquid regime.16 Note
thataH!\v0 limit does not imply that onlyn50 states are
employed in a calculation, although it usually does imp
that the number ofnÞ0 states is kept to a minimum. Con
sidering only fluctuations in the LLL states serves not only
simplify the calculations but also to regularize them.

Before presenting the calculations in detail let us highlig
a couple of key features. The Kubo formula for the condu
tivity involves the product of two current densities, and ea
current density involves a product of aC and aC* , where
C is the superconducting order parameter.@See Eqs.~34!
and~35! below.# Thus, calculated in this way the conductiv
ity is a ‘‘four-point’’ object, that is, it involves fourC fields.
If theseC ’s are expanded in the Landau-level basis, a cruc
question arises: how many of these fourC ’s can be in the
LLL? Already we find a notable distinction between th
c-axis conductivity,szz(0), for which the answer is all four
and theab-plane conductivity,sxx(0), for which the answer
is only two. As a result, in the LLL regime the characteris
time scale inherent inszz is much larger than that insxx .
Another outcome is that in terms of LLL statessxx(0) is a
two-point quantity and as such is independent of visco
effects which are related to four-point quantities.

Understanding the effect of random pinning in the vorte
liquid regime is no trivial matter.17 When point disorder is
added, translational invariance is destroyed. Moreover, w
the division ofsxx(0) into n50 andn>1 parts persists, the
n50 component now becomes a four-point object sensi
to viscous effects. As a result the associated time and len
scales may grow. The separation ofn50 andn>1 states
also plays a role in the distinction betweenc-axis length
scales in materials with correlated and uncorrelated disor
To each energy level there is associated ac-axis length scale,
and the one linked to then50 level is much longer. It turns
out that thec-axis length scale ofsxx is controlled by the
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374 56T. BLUM AND M. A. MOORE
n50 states in the presence of columnar and planar def
but by then>1 states in the presence of point defects.

The rest of the paper is organized as follows. In the n
section we lay the groundwork for the calculations that f
low by constructing the Green’s function and correlati
function from the TDGL equation. In the section followin
that we calculate the uniform conductivity,sxx(0), first by
explicitly applying the electric field and then via the Kub
formula. We then move on to consider the nonlocal cond
tivity sxx(k). After that we examine the conductivity o
films. We then consider the effect of weak disorder and
nally summarize.

II. TIME-DEPENDENT GINZBURG-LANDAU THEORY

We begin with the usual Ginzburg-Landau free-ene
functional F@C# for the superconducting order parame
C(r ,t) in a magnetic field

F@C#5E d3r F (
j5x,y,z

uPjCu2

2mj
1auCu21

b

2
uCu4

1
1

2m0
~¹3A!2G , ~4!

whereA is the vector potential andPj is the j th component
of the momentum operator given by

Pj5
\

i

]

]r j
2e*Aj~r ! ~5!

with e*52e. This combination arises for reasons of gau
invariance. We allow for two massesmx,y5mab and
mz5mc to reflect to some extent the anisotropy of high-Tc
materials; of course, the calculations can be extended to
Lawrence-Doniach model in which the layering is treat
more explicitly.

Next, we choose a simple relaxational dynamics forC
given by the time-dependent Ginzburg-Landau equation

1

GS ]

]t
1
ie*F~r ,t !

\ DC~r ,t !52
dF@C#

dC* ~r ,t !
1h~r ,t !. ~6!

The fieldF(r ,t) is related to the chemical potential whic
accompanies the time derivative in order to maintain ga
invariance; in what follows we will use the approximatio
thatF(r ,t) is the scalar electric potential.18–20 The thermal
fluctuations are represented by the noiseh(r ,t), which has
zero average andd-function correlations

^h* ~r ,t !h~r 8,t8!&5
2kBT

G
d~r2r 8!d~ t2t8!. ~7!

The noise strength is chosen so that in the absence
driving electric field, the distribution ofC ’s, P@C#, evolves
toward its equilibrium solution

P@C#}expH 2
1

kBT
E d3rF@C#J . ~8!
ts

t
-
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e
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e
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We takeG, the kinetic coefficient, to be real. Note that
complex kinetic coefficient@G21→G0

211 il0
21 in Eq. ~6!

but G21→G0
21 in Eq. ~7!# is required to model the Hal

conductivitysxy .
20,21

The TDGL equation is supplemented by

¹3¹3A5m0@J
~n!1J~s!#, ~9!

whereJ(n) is the normal current given by

J~n!5s~n!F2¹F2
]A

]t G ~10!

andJ(s) is the superconducting current given by

Jj
~s!~r ,t !5

e*

2mj
@P1 j1P2 j* #C* ~r2 ,t !C~r1 ,t !U

r15r25r

~11!

with Pj the momentum operator~5!. Equation~9! is simply
Maxwell’s equation without the Maxwell displacement cu
rent which is presumed negligibly small. Actually in th
paper we concentrate solely on the TDGL equation, so
certain effects that enter with the Maxwell equations, such
backflow,22–24will be missing.

Let us consider an electric field applied along thex direc-
tion: F(r ,t)52Ex and a magnetic field applied in thez
direction: (A5Bxŷ). The TDGL equation then becomes

F 1G ]

]t
1H~r !Gc~r ,t !5h~r ,t !2buc~r ,t !u2c~r ,t !, ~12!

whereH is

H52
\2

2mab
F ]2

]x2
1S ]

]y
2
ie*Bx

\ D 2G2
\2

2mc

]2

]z2
1a

2
ie*Ex

G\
. ~13!

For the calculations that follow we will need the Green
function which satisfies

F 1G ]

]t
1H~r !GG~r ,t;r 8,t8!5d~r2r 8!d~ t2t8!. ~14!

The Green’s function serves as the inverse of the oper
(G21] t1H), allowing us to rewrite the TDGL equation as

C~r ,t !5E dr 8E dt8G~r ,t;r 8,t8!@h~r 8,t8!

2buC~r 8,t8!u2C~r 8,t8!#, ~15!

which we can write in a more symbolic form

C15G1,2h22bG1,2C2*C2C2 . ~16!

and solve—at least formally—by iteration

C15G1,2h22bG1,2G2,3* G2,4G2,5h3*h4h51O~b2!.
~17!
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This expansion forms the basis for the standard perturba
theory inb.

We can constructG(r ,t;r 8,t8) from the eigenstates
fn(ky ,kz ;r ) and eigenvaluesEn(ky ,kz) of H, which are

fn~ky ,kz ;r !5eikyy1 ikzzunS xl 2kyl 2
ivmabl

\2G D , ~18!

and

En~ky ,kz!5
\2kz

2

2mc
1aEH1n\v02 ikyv/G , ~19!

where

aEH5a1 \v0/21mabv
2/2\2G2,

and

l 5S \

e*BD 1/2, v05
e*B
mab

and v5
E

B
. ~20!

(l is the magnetic length and is associated with the dista
between vortices;v0 is the cyclotron frequency; andv is
roughly speaking the speed at which the flux lines mov!
The functionsun(s) are given by

un~s!5
Hn~s!exp$2s2/2%

~ l Ap2nn! !1/2
, ~21!
n

ce

.

whereHn(s) are the Hermite polynomials.
Note that in the absence of an electric field (v50) the

energy does not depend onky giving the characteristic large
degeneracy of the Landau levels. Moreover, we then find
expression~19! the two energy scales mentioned in the i
troduction: ~1! aH5a1\v0/2, the energy in the LLL at
kz50, and~2! \v0 the energy spacing between levels. Sin
the temperature at whichaH50 is where one expects th
LLL modes to go critical within mean-field theory, it is take
to define the mean-fieldHc2(T) line.

Given the presence of thekz
2 term in the energy, it is

convenient to construct twoc-axis length scales, one corre
sponding to each energy scale; they are

jc5S \2

2mcaH
D 1/2 and l c5S \

mcv0
D 1/2. ~22!

The former is the standard mean-fieldc-axis correlation
length, which is temperature dependent; while the latter
c-axis version of the magnetic length

l c5Smab

mc
D 1/2l , ~23!

which is temperature independent.
From the eigenstates and eigenvalues above we cons

the following Green’s function:
of

paid is in
in
G~r ,t;r 8,t8!5GE dv

2pE dky
2p E dkz

2p
exp$ iky~y2y8!1 ikz~z2z8!2 iv~ t2t8!%

3 (
n50

`
un~x/l 2kyl 2 i k̃ vl !un~x8/l 2kyl 2 i k̃ vl !

GEn~ky ,kz!2 iv
, ~24!

where k̃ v5mabv/\
2G. One might notice that whenvÞ0 the arguments of theu’s are not complex conjugates withx↔x8;

that is because the operatorH is not Hermitian. The real issue is that Eq.~14! is satisfied.
Various representations ofG(r ,t;r 8,t8) are useful depending on the calculation in question. Another useful form

G(r ,t;r 8,t8) can be derived by performing the integral overv and using the identity

(
n50

`
Hn~x!Hn~y!

2nn!
tn5

e[2xyt2~x21y2!t2]/ ~12t2!

~12t2!1/2
. ~25!

It leads to

G~r ,t;r 8,t8!5
G

4pl 2E dkz
2p H sinhFG\v0~ t2t8!

2 G J 21

expH 2GF\2kz
2

2mc
1

\2 k̃ v
2

2mab
1aG ~ t2t8!J

3expH 2cothFG\v0~ t2t8!

2 G$~x2x8!21@y2y81v~ t2t8!#2%

4l 2 J
3expH i ~x1x822i k̃ vl

2!@y2y81v~ t2t8!#

2l 2 1 ikz~z2z8!J Q~ t2t8!. ~26!

In this form there is no longer any summation and the spatial dependence is simply that of a Gaussian, but the price
the hyperbolic time dependence. One can see in the combination@y2y81v(t2t8)# the tendency for the vortices to move
the negativey direction under the influence of the Lorentz force.
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After the Green’s function, the next quantity we will need is the correlation functionC(r ,t;r 8,t8)5^C(r ,t)C* (r 8,t8)&.
There are two complications here: the operatorH is neither Hermitian nor translationally invariant. As a result some of
formulas relatingC andG that we have become accustomed to are inappropriate; it is best to resort to the defin
Substituting the expressions forC(r ,t) andC* (r 8,t8) given by Eq.~15! into the definition ofC(r ,t;r 8,t8) and performing the
noise average yields

C~r ,t;r 8,t8!5
2kBT

G E dt9E dr9G~r ,t;r 9,t9!G* ~r 8,t8;r 9,t9!1O~b!. ~27!

Many of the calculations that follow will use the Kubo formula in which there is no explicit electric field (v50). Then the
expression for the correlator simplifies somewhat, becoming

Cv50~r ,t;r 8,t8!52kBTGE dv

2pE dky
2p E dkz

2p
exp$ iky~y2y8!1 ikz~z2z8!2 iv~ t2t8!% (

n50

`
un~x/l 2kyl !un~x8/l 2kyl !

G2En
2~kz!1v2 .

~28!

Now let us move on to using these expressions to calculate the conductivity.
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III. THE FLUCTUATION CONDUCTIVITY

Having the Green’s function and correlation function, w
are now ready to calculate the conductivity. We will focus
the conductivity due to fluctuations in the superconduct
order parameter—the so-called Aslamazov-Larkin term. T
normal contributions (n) must be included separately, an
we are neglecting other possible contributions such as
Maki-Thompson or density-of-states terms.25

Recall that conductivities take on a form

s}
e* 2Nt

m*
, ~29!

wheree* andm* are the effective charge and mass, resp
tively, t is a characteristic time scale, andN is the carrier
density. Since we are interested in the conductivity due
superconducting fluctuations^uCu2& will serve as the carrier
density. An examination of the TDGL equation reveals th
the kinetic coefficientG has dimensions~energy3time! 21;
so that time5(G3energy! 21. The question then become
what is the appropriate energy scale? Thus far t
candidates—aH and\v0—have emerged.

A. The direct approach

Now let us derive the flux-flow form of the uniform con
ductivity from a calculation with an explicit electric fiel
applied. This approach has several advantages over the K
calculation. It extracts the conductivity from the current,
g
e

e

-

o

t

o

bo

two-point object, instead of the current-current correlati
function, a four-point object. Related to this point is the fa
that many of the diagrams occurring in the Kubo calculat
make canceling contributions. In addition, in the direct a
proach thea/\v0→0 limit ~the LLL approximation! re-
quires only LLL states, which is not true for the Kubo cas
It can also be extended to include the nonlinear effects.@The
advantage of the Kubo formalism is that it can be used
calculate the nonlocal conductivitiessxx(k) andszz(k).#

From Eq.~11! we see that the average current is obtain
from the correlation function as follows:

^Jx
~s!~r ,t !&5

\e*

2imab
S ]

]x
2

]

]x8DC~r ,t;r 8,t8!U
~r ,t !5~r8,t8!

.

~30!

We will drop the superscript (s) hereafter. At the lowest
order in perturbation in theory, we can insert expression~27!
into ~30! to obtain

^Jx&5
kBT\e*

iGmab
S ]

]x
2

]

]x8D E dt9E dr9G~r ,t;r 9,t9!

3G* ~r 8,t8;r 9,t9!U
~r ,t !5~r8,t8!

. ~31!

We have verifieda posteriori that in the direct approach th
a/\v0→0 limit is equivalent to using onlyn50 states from
the start. Restricted ton50 states, the Green’s function be
comes
-

G0~r ,t;r 8,t8!5
G

Apl
E dky
2p E dkz

2p
exp$ iky~y2y8!1 ikz~z2z8!2GE0~ky ,kz!~ t2t8!%

3expH 2
~x/l 2kyl 2 i k̃ vl !2

2
2

~x8/l 2kyl 2 i k̃ vl !2

2 J Q~ t2t8!. ~32!

Notice that the derivative with respect tox in Eq. ~31! pulls down a factor of2(x/l 22ky12 i k̃ v), while that with respect to

x8 pulls down2(x8/l 22ky21 i k̃ v). The wave vectorsky1 andky2 will eventually prove to be equal~momentum conserva
tion!, so whenr is set equal tor 8 we find
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^Jx&5
\e* k̃ v
mab

C0~r ,t;r ,t !5
e* 2E

mabG\v0
^uC0u2&, ~33!

whereC0(r ,t;r ,t)5^uC0u2& denotes the order-parameter fluctuations in the LLL.~Strictly speaking it is^uC0u2& in the
presence of the electric field, which is where the nonlinear effects would enter!. Note that the conductivity has the expect
form with the characteristic time given byt51/G\v0 and that any temperature dependence enters only through the c
density and not through the characteristic time.

So far this result is for the lowest order in perturbation theory; however, all terms in the perturbative expans
C(r ,t;r 8,t8) begin with someG(r ,t;r1 ,t1) and end with someG* (r 8,t8;r n ,tn). It follows that the effect of taking the
derivatives in Eq.~30! will always be the same as it was above, and consequently, the flux-flow result, Eq.~33!, holds to all
orders of perturbation theory in the LLL approximation. This result is remarkable in the simplicity of the relation be
sxx(0), a dynamic quantity, and̂uC0u2&, a static quantity. One always expects the conductivity to be proportional to ca
density, but in this case the proportionality constantt turns out to be rather trivial—having no temperature dependence

B. The Kubo formalism

We now turn to the Kubo approach. For a system not too far from equilibrium the conductivity can be calculated fr
Kubo formula

smn~k,v!5
1

2kBT
E d~r2r 8!E d~ t2t8!eik•~r2r8!2 iv~ t2t8!^Jm

~s!~r ,t !Jn
~s!~r 8,t8!&c , ~34!

where the suffixc denotes the ‘‘connected’’ piece and where this expression allows for a frequency dependence. Th
formula relates the conductivity, a dissipative quantity, to fluctuations in an associated quantity, here the superco
current. As such, it is a version of a fluctuation-dissipation theorem. It calculates the linear response to an electric field
explicitly applying one; the fluctuations above are those in the absence of an electric field.

Inserting the expression for the current~11! into the Kubo formula~34! yields

smn~k,v!5
e* 2

8kBTmmmn
E d~r2r 8!E d~ t2t8!eik•~r2r8!2 iv~ t2t8!~P1m1P2m* !~P3n1P4n* !

3^C~r1 ,t !C* ~r2 ,t !C~r3 ,t8!C* ~r4 ,t8!&cU r15r25r

r35r45r8

. ~35!
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One can see that calculated in this way the conductivity
four-point object as mentioned in the introduction. Henc
forth, we will consider dc results (v50) only and will drop
the frequency dependence from our expressions.

The aim now is to calculate averages of the s
^C(r1 ,t1)C* (r2 ,t2)C(r3 ,t3)C* (r4 ,t4)&c . At the lowest
order in perturbation theory~the Gaussian term!; one simply
applies Wick’s theorem

^C~r1 ,t !C* ~r2 ,t !C~r3 ,t8!C* ~r4 ,t8!&c

5^C~r1 ,t !C* ~r4 ,t8!&^C~r3 ,t8!C* ~r2 ,t !&, ~36!

retaining only the connected piece. The Gaussian term
represented diagrammatically in Fig. 1. An arrow cor
sponds to a Green’s function, and a circle corresponds to
noise average. The combination arrow-circle-arrow con
tutes a correlation function. Hence the conductivity at Gau
ian order requires two correlation functions. Not drawn b
of crucial importance are the momentum operators actin
sites (r ,t) and (r 8,t8) that make it a current-current correla
tor instead of a density-density correlator.

Let us focus our attention for now on the uniform d
conductivitiessxx(0) andszz(0). Calculated in the LLL ap-
proximation and to Gaussian order they are
a
-

t

is
-
he
i-
s-
t
at

sxx
~G!~0!5

e* 2^uC0u2&
mab

S 1

G\v0
D ~37!

and

szz
~G!~0!5

e* 2^uC0u2&
mc

S 1

8GaH
D . ~38!

We see here the characteristic time of theab-plane conduc-
tivity is tab51/G\v0, while that corresponding to the
c-axis conductivity istc51/8GaH .

Consider now how the Kubo formula reproduced the flu
flow result at Gaussian order. First of all the momentu
operators intrinsic tosxx(0) act like creation or annihilation
operators raising or lowering the Landau level with the res
that one of theC ’s at (r ,t) is in a higher level; the same
thing happening at (r 8,t8) as well. Consequently, in the LLL
limit, we have onen50 correlator and onen51 correlator.
With this in mind, we now look at the time integral in th
Kubo formula, which becomes

E d~ t2t8!exp$2G@E0~kz1!1E1~kz2!#ut2t8u%, ~39!

wherekz1 andkz2 are thez components of momentum run
ning through then50 andn51 channels, respectively.~Ac-
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378 56T. BLUM AND M. A. MOORE
tually kz15kz2 by momentum conservation.! Because
E0(kz1) is much smaller thanE1(kz2) we can dropE0(kz1)
from the integrand above. This last step is equivalent to
ing a static~equilibrium! n50 correlator and hence produce
a relation between the dynamic conductivity and the st
density. In fact, the integral yields simply a fact
1/G\v0—the characteristic time in the flux-flow formula
The flux-flow formula obtained in the direct approach abo
suggests that the Gaussian density^uC0u2& should be re-
placed by the fully renormalized density^uC̃0u2& but that the
characteristic timetab51/G\v0 should remain as is. The
way to produce this result within the Kubo formalism is
renormalize then50 correlator, while leaving then51 cor-
relator essentially untouched. If this is true then diagra
that dress up or otherwise disrupt the baren51 correlator
should have no overall effect.

C. The Hartree-Fock approximation

Our first attack on going beyond Gaussian order, i.e.,
corporating the nonlinear terms, will be the Hartree-Fo
approximation. At Gaussian order the superconducting fl
tuations are

^uC0u2&5
kBT

4paHjcl
2 , ~40!

which would seem to imply that the conductivity diverges
mean-fieldHc2 (aH50). This seeming divergence is elim
nated when one adopts the Hartree or Hartree-F
approximation.21,26

From the perturbation theory forC Eq. ~17! we can ob-
tain the series for̂ C(r1 ,t)C* (r2 ,t)C(r3 ,t8)C* (r4 ,t8)&
and in turn the series for the conductivity. The new diagra
matic feature is a ‘‘quartic’’ vertex at which four lines me
with two arrows pointing in and two pointing out. Two dia
grams occurring at the first order inb are shown in Fig. 2.
Because of the structure of the conductivity, especially
momentum operators acting at (r ,t) and (r 8,t8), the diagram
shown in Fig. 2~b! has zero contribution atk50 for both
sxx andszz.

Diagrams like that in Fig. 2~a! can be resummed by re
placingaH with ã , whereã is defined self-consistently a
ã5aH12b^uC̃0u2&, where what we mean here by^uC̃0u2&
is ^uC0u2& @Eq. ~40! with aH→ã#; all of which leads to

FIG. 1. Gaussian order diagram for the conductivity. An arr
corresponds to a Green’s function, and a circle corresponds to
noise average. Not drawn but of crucial importance are the mom
tum operators acting at sites (r ,t) and (r 8,t8).
s-

ic

e

s

-
k
c-

t

k

-

e

ã5aH1
bkBT

2pl 2jcã
. ~41!

ReplacingaH with ã constitutes a resummation, the Dyso
equation for which is represented diagrammatically in Fig
It corresponds to a renormalization of the Green’s functio

In analogy with many-body physics, this replacement
called the Hartree-Fock~HF! approximation as it takes into
account both the direct and exchange terms. In addition
eliminating a large number of graphs from the perturbat
theory; the HF resummation replacesaH which can be zero
or negative withã which cannot—curing the divergenc
problem mentioned above. The removal of the divergenc
connected to the fact that a large magnetic field effectiv
reduces the dimension of the problem by two.27 Moreover,
the HF approximation goes a long way toward achiev
agreement with measured conductivities.28 This success sug
gests that the same philosophy (aH→ã) should be adopted
when considering where the LLL approximation is valid.
the HF approximationaH→ã , while \v0 remains the same
So whereas it originally appeared that the LLL approxim
tion was valid near the mean-fieldHc2(T) line whereaH is
small, it would now appear to be valid whereã is small. But
as already notedã does not change sign, it grows small on
asaH grows large and negative, i.e., below the mean-fi
Hc2(T) line. Ikeda

16 has investigated renormalization effec
beyond HF, finding that they are merely refinements to
HF considerations, suggesting that the LLL approximat
has a substantial region of validity within the vortex-liqu
regime.

If we replaceaH with ã in the Gaussian conductivitie
and look in the limit ofaH!0 we find that

lim
aH!0

sxx~0!5
e* uaHu
2b\BG

. ~42!

he
n- FIG. 2. Diagrams with one quartic vertex.~a! is included in the
Hartree-Fock resummation.~b! has zero contribution atk50 and is
‘‘down’’ in the calculation ofsxx(kÞ0).

FIG. 3. Diagrammatic representation of the Hartree-Fock
proximation. The double lines represent renormalized Green’s fu
tions; the single lines represent bare Green’s functions.



y
t

th
he

ay
e
a

q
a
d
s
p-
iv-

h

ou
ri

an

t
ve

at
at

the
ind
r in
a
n’s
e
e-
nc-
or

the
w.
t of
5
in

on-
er
ay
gs.

e

i-

to

56 379PERTURBATIVE STUDIES OF THE CONDUCTIVITY IN . . .
Note that sxx(0) at this level of approximation alread
shows many of the features seen in the experiments in
vortex-liquid regime: theresistivityis linear inB with a zero
intercept and extrapolates to the normal resistivity at
mean-fieldHc2(T) line, as can be seen, for instance, in t
data of Fendrichet al. prior to irradiation.14

D. Beyond the Hartree-Fock approximation

While the Hartree or HF approximation goes along w
toward describing certain properties such as the specific h
it is totally inadequate for examining other features, such
the extent of crystalline ordering within theab plane. A
much more sophisticated approach, such as the Par
resummation,29 is needed for that. We do not provide such
scheme here, instead we examine a few diagrams beyon
HF approximation. We will find a cancellation among mo
of these diagrams atk50 suggesting that the Hartree a
proximation is already quite good for the uniform conduct
ity. The absence of this cancellation atkÞ0, on the other
hand, suggests the need to go beyond Hartree theory w
considering the nonlocal effects.

As we are now considering a perturbation theory ab
the HF approximation, the series is no longer a power se
in b. Rather it is a power series inx where

x5
bkBT

16pl 2jcã
2
, ~43!

the dimensionless parameter introduced by Ruggeri
Thouless.27 The self-consistent equation above, Eq.~41!, is
now rather compactly written as

aH5ã~128x!. ~44!

In the expansion of the uniform conductivitysxx(0) there
are no contributions ofO(x). Recall that of the diagrams a
orderb ~Fig. 2! there are those of the HF type which ha

FIG. 4. Diagrams contributing tosxx at orderx
2. The bold lines

indicaten>1 Green’s functions; the thin linesn50 Green’s func-
tions. ~a! and~c! are Green’s function renormalizing; while~b! and
~d! are noise renormalizing.~a! and ~b! contribute to the flux-flow
formula, ~c! is down and does not contribute to the LLL approx
mation, and~d! is canceled by another diagram atk50.
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been absorbed intoã , and the others make no contribution
k50. Some diagrams contributing to the conductivity
O(x2) are shown in Figs. 4, 5, and 6.

There are a number of considerations in addition to
usual ones of the topology and degeneracy to keep in m
when enumerating and evaluating the diagrams that occu
the perturbation series forsxx . Because the conductivity is
dynamic quantity, there is the distinction between Gree
functions and correlation functions to bear in mind. W
make this differentiation by including a small circle repr
senting the noise average in the middle of a correlation fu
tion. Diagrams may differ in the placement of circles; f
example, compare Figs. 4~a! and 4~b! or Figs. 5~b! and 5~c!.
In addition, because the order parameter is complex,
Green’s function carries a direction, indicated by the arro
Hence diagrams may be distinguished by the placemen
arrows around the diagram; for instance, compare Figs.~c!
and 5~d!. Also because the order parameter is expanded
Landau levels, the Landau level of each line is another c
sideration. We make this differentiation by setting the high
Landau-level Green’s functions in bold. So diagrams m
differ in Landau-level structure; for example, compare Fi
4~a! and 4~c! or Figs. 5~a! and 5~b!. On the other hand, in the
evaluation ofszz(0) all of the Green’s functions are in th
LLL.

Recall that at Gaussian ordersxx(0) has one correlation
function and thus two Green’s functions in then51 state. It

FIG. 5. Vertex renormalizing diagrams contributing tosxx at
order x2. ~a! and ~b! are down;~c! is zero atk50; and ~d! is
canceled by the diagram in Fig. 4~d!.

FIG. 6. More vertex renormalizing diagrams contributing
sxx at orderx

2. These diagrams do not contribute atk50.
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380 56T. BLUM AND M. A. MOORE
turns out that at all orders in perturbation theory the d
grams contributing to the LLL approximation have a ma
mum of two higher-Landau-level Green’s functions. So d
grams like that in Fig. 4~c! and those in Figs. 5~a! and 5~b!

are ‘‘down’’ by a factor of ã /\v0 and are not included to
this order of approximation. Of the remaining diagrams
has been argued that those which have a simplen51 corr-
elator @e.g., Figs. 4~a! and 4~b!# contribute to the flux-flow
result and that the others@e.g., Figs. 4~d!, 5~c!, 5~d!, 6~a!, and
6~b!# must have a combined contribution of zero atk50.
When we evaluated these diagrams, we indeed found tha
diagram in Figs. 5~c!, 6~a!, and 6~b! gave no contribution a
k50 and that the contributions due to the diagrams in Fi
4~d! and 5~d! were equal and opposite. We will demonstra
this explicitly in the two-dimensional~2D! case.

The diagrams in Figs. 4~a! and 4~c! renormalize the
Green’s function, and those in Figs. 4~b! and 4~d! renormal-
ize the noise. The diagrams in Figs. 5 and 6 renormalize
quartic vertex. Note that on then51 side, the Green’s-
function renormalizing diagram was down whereas the no
renormalizing diagram was not. A similar phenomenon
curs when we consider the effect of disorder.

IV. WAVE-VECTOR DEPENDENCE

Now let us turn to the nonlocal,k-dependent, conductiv
ity. In some instances we calculate the fullk dependence,9

while in others we restrict our attention to the coefficients
a small-k expansion

smn~k!5smn~0!1Smabnkakb1O~k4!. ~45!

The coefficientsSmabn and the associated length scales c
be related to the vortex picture. Since the vortices move
the y direction when the electric field and current are in t
x direction,Sxxxx is associated with shearing

8 andSxyyxwith
compression.Sxzzx is related to the ‘‘integrity’’ of vortices
~Huse and Majumdar7 call it the ‘‘tilt viscosity’’ !.

A. The Gaussian results

The small wave-vector expansion of the conductivity
Gaussian order~within the combined HF and LLL approxi
mations! is

sxx
~G!~k!5sxx

~G!~0!F12
l 2kx

2

4
1
3\2v0

2l 2ky
2

64ã2
2l c

2kz
2

1O~k4!G , ~46!

where we have factored outsxx
(G)(0). First note thatSxxxxand

Sxzzx are negative, i.e., they have the sign that cannot
handled using the hydrodynamic approach. Furthermore,
length scales multiplyingky

2 and kz
2 are magnetic lengths

i.e., they have no temperature dependence.
It is easy to see why~calculationally! the c-axis length

scale in the Gaussian calculation ofsxx
(G) is l c . The z de-

pendence has no effect on the Landau-level structure; th
fore, it remains true thatsxx(kz) is comprised of onen50
and onen51 correlator. We can take advantage of the d
-

-

t

he

.

e

e
-

n
in

t

e
he

re-

-

parity in ‘‘masses’’ (ã!\v0) by insisting that the externa
momentumkz be sent through then51 channel. ~This
choice does not affect the outcome, it just makes it m
apparent.! The internal momentum integral is dominated
the smallest poles, which are those associated withã , and
the terms involvingkz and \v0 are left essentially intact
The full kz dependence at Gaussian order is thus

sxx
~G!~kz!5sxx

~G!~0!@11kz
2l c

2/2#22, ~47!

where the structure is simply that of@E1(kz)#
22 with

ã→0.
The Landau-level structure ofSxxxx is slightly different.

This time one correlator is in then50 level, while the other
is in either then51 or then52 level. For an expansion in
kx
2 each additional power ofkx

2 requires one higher Landa
level. But the important point is that there is no contributi
with two n50 correlators. Thekx dependence at Gaussia
order is

sxx
~G!~kx!5sxx

~G!~0!F12e2kx
2
l 2/2

kx
2l 2/2

G . ~48!

The combinedkx andkz dependences are given by

sxx
~G!~kx ,kz!5sxx

~G!~0!Fe2kx
2
l 2/2(

n50

`
~n11!~kx

2l 2/2!n

n! @~n11!1kz
2l c

2/2#2
G .

~49!

As opposed toSxxxx andSxzzx, Sxyyx is positive at Gauss-
ian order. In fact if we had included the next term in th
ã /\v0 expansion we would see thatSxyyx changes sign as
T is lowered.8 As T decreases the associated length sc
associated with Sxyyx, j'}\v0l /ã , increases. A
T-dependent length scale here is somewhat surprising. In
vortex pictureSxyyxappears to be related to compression, b
one might expect that the compressibility to be pretty mu
the same for the liquid and the solid, and so relativelyT
independent. The Gaussian calculation is in conflict with t
expectation. If this length scale found in the transverse c
ductivity does indeed increase asT decreases, it will prove
interesting to compare it to similar growingab-plane length
scales, for example, the phase coherence length and
length over which density-density fluctuations decay30

which recent Monte Carlo simulations suggest grow in
same way.31

In the scenario in which we apply current and wish
extract the voltage distribution, it is the characteristic leng
of the resistivity which are important. This is why the sig
of theS’s are so crucial. They determine the pole structure
the nonlocal resistivityr(k) and consequently the lengt
scales ofr(r ). Consider, as an example, ac-axis conductiv-
ity of the form

szz~kz!5szz
~n!1szz

~s!~0!1Szzzzkz
21O~k4!, ~50!

where a local normal conductivity has been included. IfS is
positive, the hydrodynamic approach7 yields a length scale
@S/(s (s)1s (n))#1/2. If S is negative, a Pade´ approximant
approach9 produces a length scale@s (n)uSu/s (s)(s (s)

1s (n))] 1/2 which is much smaller than the previous one b
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cause of the factor (s (n)/s (s))1/2. Returning to the case o
Sxyyx, if it were to change sign from positive to negative
more diagrams are included, the associated length s
would then be short which may be consistent with the exp
tations of the vortex picture. With such dramatic cons
quences regarding the nonlocal behavior of the resistiv
one might expect that changes in the signs of theS’s would
have experimental signatures.

The difference betweenSxyyx and the others is that a
es
LL

e
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a

he
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four C ’s in the calculation ofSxyyx can be in the LLL. Ap-
plying the definition ofSxyyx, namely,

Sxyyx5
1

2

]2sxx~k!

]ky
2 U

k50

, ~51!

to the Kubo formula@Eq. ~35!# and restricting to LLL states
yields
Sxyyx52
e* 2

16kBTmab
2 E d~r2r 8!E d~ t2t8!~y2y8!2~P1x1P2x* !~P3x1P4x* !

3^C0~r1 ,t !C0* ~r2 ,t !C0~r3 ,t8!C0* ~r4 ,t8!&cU r15r25r

r35r45r8

. ~52!
do

t
uch

t be
tex

each
e,
nc-
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cts

ch
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ec-
This expression involving only LLL states is hence acc
sible to simulations and other methods which use only L
states.32

Another quantity that involves only LLL states is th
c-axis conductivity,szz(k); at Gaussian order it is

szz
~G!~k!5szz

~G!~0!Fe2k'
2
l 2/2S 12~11kz

2jc
2/4!21/2

kz
2jc

2/8 D G ,
~53!

where k'
25kx

21ky
2 . Since the calculation involves onl

n50 states, thec-axis length scale is necessarilyjc . If this
result is expanded one finds that none ofS’s has the sign
required by the hydrodynamic approach.

B. Beyond Gaussian

As already mentioned the HF approximation is inadequ
for determining the extent of crystal ordering within theab
plane and as such is also inadequate for examining s
effects. To see ifSxxxx has a long length scale or chang
sign at lowT, we must look beyond the HF approximatio
The same is true ofSxzzx.

We argued that the uniform conductivity,sxx(k50),
could be obtained from the subset of diagrams that renorm
ize then50 correlator and leave then51 untouched beyond
the HF resummation. In the LLL limit the fully renormalize
n50 correlatorC̃n50(r ,t;r 8,t8) hasexactlythe same depen
dence onx, x8, y, and y8 as its ‘‘bare’’ version; thus, the
kx dependence of this particular resummation is exactly
same as that in the Gaussian calculation@Eq. ~48!#. Further-
more, the external momentumkz can still be sent through th
n51 channel, yielding again the dependence seen in
Gaussian calculation@Eq. ~47!#. Resumming this subset o
diagrams only alters the magnitudesxx(0); the kx and kz
dependence remain the same as they were in the Gau
calculation, i.e.,
-

te

ar

l-

e

e

ian

sxx
~FF!~kx ,kz!5sxx~0!Fe2kx

2
l 2/2(

n50

`
~n11!~kx

2l 2/2!n

n! @~n11!1kz
2l c

2/2#2
G ,

~54!

where

sxx~0!5
e* 2^uC̃0u2&
mabG\v0

, ~55!

and where

^uC̃0u2&5
kBT

4pãjcl
2

@11O~x2!#. ~56!

So for this particular subset of diagrams, we only have to

the perturbative expansion for the static quantity^uC̃0u2&.
Consequently, ifSxxxx andSxzzxare going to change sign a
low T and give long length scales, then other diagrams, s
as the vertex-renormalizing diagrams~see Fig. 5!, must be
important.

Recall that in theã!\vo limit we only want diagrams
with at most two higher Landau level (n>1) Green’s func-
tions. Green’s functions meeting at a noise average mus
in the same Landau level; while those meeting at a ver
can be in different Landau levels. So either the twon>1
Green’s functions meet each other at a noise average, or
meets threen50 Green’s functions at a vertex. Otherwis
there will be at least three higher Landau-level Green’s fu
tions; see for example, Fig. 4~c!. We have already considere
those diagrams in which the twon>1 Green’s functions
meet each other at a noise average—they are the ones
yield the flux-flow resultsxx

(FF)(k)—they are also essentiall
two-point quantities and thus do not probe viscous effe
such as shearing.

Let us find an expression for those terms in which ea
n>1 Green’s functions meets a vertex. Recall the TDG
equation in symbolic formC15G1,2h22bG1,2C2*C2C2

@Eq. ~16!#. Of the fourC ’s in the Kubo formula, let us re-
place the two that are in higher Landau levels with the s
ond term on the right-hand side of Eq.~16!. This substitution
yields
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Sxx~kx ,kz!5
e* 2b2

8kBTmab
2 E d~r2r 8!E d~ t2t8!E

5
E
6
eikx~x2x8!1 ikz~z2z8!~P1x1P2x* !~P3x1P4x* !

3$G2,5* G3,6̂ C1C5*C5*C5C6C6C6*C4* &c1G2,5* G4,6* ^C1C5*C5*C5C6*C6*C6C3&c1c.c.%U
1525~r ,t !
3545~r8,t8!

.

~57!
ac
e
s
er
ith

th
he
tim
e
t
el

s-
o
u
-

es

m
y
-
th
rri

2D
i

t
lt
o

ba-

s

In this symbolic notation, the numbers denote points in sp
time, e.g., 5→(r5 ,t5). This expression factors out th
‘‘bare’’ n>1 Green’s functions explicitly, leaving average
which involve LLL states only. The LLL average is a rath
complicated eight-point object, but in principle, coupled w
Eqs. ~49! and ~52!, it allows one to find the conductivity
from simulations that use only LLL states. Because
Green’s functions that have been factored out involve hig
Landau-level states, they are rather short-ranged in both
and space. When investigating a regime in which one
pects the LLL object to become long ranged, it is tempting
approximate the Green’s function by some appropriat
scaledd functiond(r2r 8)d(t2t8) after the derivatives have
acted.

In the next section we will provide some explicit expre
sions for the diagrams in Figs. 4, 5, and 6 for the tw
dimensional case. But before leaving this section, let
make one point about thekz behavior. As previously men
tioned Figs. 4~d! and 5~d! cancel atkz50, but note that in
these diagrams there is no longer ann51 channel through
which we can pass the external momentumkz . Therefore,
one might expect that one picks up thejc length scale in-
stead of l c , however, this is not the case. Just as th
diagrams cancel atk50 so do the leading terms~i.e., the
kz
2jc

2 terms! in the kz expansion.

V. TWO-DIMENSIONAL RESULTS

Many of the results above hold for films and even si
plify in this case. The uniform conductivity is still given b
the flux-flow formula in the LLL approximation. The dia
grammatic structure of the perturbation series is exactly
same; and which diagrams are down and so forth also ca
through; only the evaluation of the diagrams changes.

To do these calculations we will of course need the
Green’s function, which in the absence of an electric field

G2D~r ,t;r 8,t8!5
G

Lz
E dv

2pE dky
2p

e2 iv~ t2t8!1 iky~y2y8!

3 (
n50

`
un~x/l 2kyl !un~x8/l 2kyl !

GEn2 iv
,

~58!

whereEn5a1\v0(n11/2) andLz is the film thickness.
The Gaussian result for the conductivity is

sxx~k!5
e* 2^uC̃0u2&2D
mabG\v0

F12
l 2kx

2

4
1

\2v0
2l 2ky

2

8ã2D
2

1O~k4!G
~59!
e

e
r
e

x-
o
y

-
s

e

-

e
es

s

in the LLL limit. Other than a different numerical coefficien
in front of theky

2 (Sxyyx), the result is similar to the 3D resu
@Eq. ~46!#. Again we are applying the HF approximation s

that ã5aH12b^uC̃0u2& where

^uC̃0u2&2D5
kBT

2pã2DLzl
2
, ~60!

which leads to the self-consistent equation

ã2D5aH2
bkBT

pl 2LZã2D

. ~61!

The expansion parameter in the two-dimensional pertur
tion series is

x2D5
bkBT

4pl 2Lzã2D
2
, ~62!

allowing one to re-express Eq. ~61! as
aH5ã2D(124x2D).

27

Evaluating some of the diagrams in Figs. 4 and 5 give

sxx
~FF!5sxx

~G!~0!
7x2D

2

2 Fe2k'
2
l 2/2S 12ky

2l 21
1

4
ky
2k'

2 l 4D G ,
~63!

sxx
4~d!5sxx

~G!~0!
x2D
2

4 Fe2k'
2
l 2/2S 12ky

2l 21
1

4
ky
4l 41kx

2ky
2l 4D G ,

~64!

sxx
5~c!5sxx

~G!~0!
x2D
2

8 Fe23k'
2
l 2/4S 2kx

2l 21ky
2l 22ky

2k'
2 l 4

1
1

4
ky
2k'

4 l 6D G , ~65!

sxx
5~d!5sxx

~G!~0!
x2D
2

4 Fe2k'
2
l 2S 211kx

2l 212ky
2l 22

5

4
ky
2k'

2 l 4

1
1

4
ky
2k'

4 l 6D G , ~66!

sxx
6~a!5sxx

~G!~0!2x2D
2 Fe23k'

2
l 2/2S k'

2 l 22ky
2k'

2 l 4

1
1

4
ky
2k'

4 l 6D G , ~67!
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sxx
6~b!5sxx

~G!~0!2x2D
2 Fe23k'

2
l 2/2S 2kx

2l 21ky
2l 22ky

2k'
2 l 4

1
1

4
ky
2k'

4 l 6D G . ~68!

These calculations were done with the Green’s funct
shown in bold in the figures in then51 state. Recall that if
we are interested inSxyyx we must redo the calculation wit
all n50 states, and if we are interested inSxxxxwe must also
add to the expressions above those withn52 Green’s func-
tions. Here our interest is in showing explicitly the over
null contribution of these diagrams atk50—whether it be
that the individual diagrams have zero contribution@e.g., dia-
grams 5~c!, 6~a!, and 6~b!# or that diagrams cancel@e.g.,
diagrams 4~d! and 5~d!#—and to suggest that the same do
not apply atkÞ0.

VI. DISORDER

Disorder introduces competing effects: it provides pinn
centers which may couple to the viscous effects even
k50, but it also disrupts the growth in crystalline ord
which yields the viscous effects in the first place. With tran
lational invariance destroyed, the flux-flow formula n
longer applies. We will examine the effects of disorder
low order in perturbation theory within the Kubo formalism

We can, in principle, take the direct approach atk50
using the Green’s functions with the explicit electric fie
applied. However, it is more complicated than it was in t
absence of disorder. We confirmed for the pure system
we could use solelyn50 states from the outset. So long
the electric field was explicitly applied, taking th
ã /\v0→0 limit in the beginning~i.e., using Green’s func-
tions with onlyn50 states! or at the end yielded the sam
results. However, the same is not true in the presence
disorder. The time integrals here are more involved, and
ing theã /\v0→0 limit in the beginning and at the end give
different results. With this complication, the direct approa
is no better than using the Kubo formalism.

A. Point disorder

In the experiments by Fendrichet al.14 the point defects
induced by irradiation were seen to introduce an additio
term to theab plane conductivity which was not of the flux
flow form. They analyzed their resistivity data using t
form r5(1/r f11/rP)

21 wherer f is the flux-flow resistivity
andrP the resistivity due to point defects. The latter had
activated form:rP5r0exp$2U(T,H)/T%, and the field de-
pendence of the ‘‘plastic energy’’ wasU;H20.760.1.

Let us consider the effect of uncorrelated disorder on
conductivity calculated from TDGL. We will model th
point defects by adding a quenched random mass term to
free-energy functional

FR@C#5E d3r @•••1@a1aR~r !#uCu21•••#, ~69!

where the random variablesaR(r ) have zero average

aR~r !50 ~70!
n

l

s

at

-

t

at

of
k-

l

n

e

he

andd-function correlations

aR~r !aR~r 8!5
W0

2
d~r2r 8!. ~71!

The associated disordered TDGL can be written as

C~r ,t !5E dr 8E dt8G~r ,t;r 8,t8!@h~r 8,t8!

2aR~r 8!C~r 8,t8!2buC~r 8,t8!u2C~r 8,t8!#

~72!

or symbolically as

C15G1,2h22aR2G1,2C22bG1,2C2*C2C2 . ~73!

We have simply added the new term to Eq.~15!, hence
G1,2 remains the same, that is, the Green’s function of
pure, linearized system.

Iterating this equation withb50 gives

C15G1,2h22aR2G1,2G2,3h31aR2aR3G1,2G2,3G3,4h4

1O~aR
3 !. ~74!

Diagrammatically, we will representaR by a small square.
There will be one arrow~Green’s function! pointing into it
and one out of it. The disorder averaging pairs up theaR’s,
we represent this feature by a dashed line connecting the
squares. Because of the spatiald function in the correlation
of the disorder~71!, squares connected by a dashed line r
resent the same point in space but different points in tim
Thus as far as spatial integrals are concerned, diagram
this perturbation expansion are identical to those found
panding the nonlinear term. It is the time integrals that ma
it different.

Figure 7 shows some diagrams that arise at the first o
in an expansion in the disorder strengthW0. Note that if we
were to draw the two points connected by the dashed line
one point, then we would end up with diagrams very mu
like those in Fig. 2.~They would still differ by the number of
circles.! In fact, the diagram in Fig. 7~d! gives zero contri-
bution atk50 for bothsxx andszz for the same reasons a
that in Fig. 2~b!. The diagram in Fig. 7~a! is Green’s function
renormalizing, those in 7~b! and 7~c! are noise renormaliz-
ing, and that in 7~d! is vertex renormalizing.

Certain basic facts about the calculations do not chang
the presence of disorder. For instance, in the calculation
sxx(kx ,ky50,kz), it remains true that there is a maximum
two n>1 Green’s functions in diagrams contributing to th
ã /\v0→0 limit. Hence the diagram in Fig. 7~d! does not
contribute to this order. Another invariant is that either t
two n>1 Green’s functions meet each other at a noise av
age@as in Figs. 7~a! and 7~b!# or they each meet a vertex@as
in Fig. 7~c!#. The difference is now there are two types
vertices, the original quartic vertices and the new disord
induced vertices. From the case in which then>1 Green’s
functions meet at a noise average, one gets the disord
analog of the flux-flow formula witĥuC0u2& replaced by its
disordered counterpart.~This particular subset of diagram
yields the 1/r f in the Fendrichet al.14 analysis.! From the
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case in which the two Green’s functions meet quartic ve
ces, one gets the disordered analog of Eq.~57!.

FIG. 7. Some diagrams at first order in the disorder strength~a!
is Green’s function renormalizing;~b! and ~c! are noise renormal-
izing; and~d! is vertex renormalizing. The last is not only down b
also zero atk50.
lly
th

nt
n-

ig
i-

Then there are new cases, like the noise-renormaliz
diagram shown in Fig. 7~c!. Evaluating it yields

sxx
7~c!~kz!5sxx

~G!~0!
~p22!z0

2 F11
1

2
kz
2l c

2G22

. ~75!

Note that we have factored out the pure Gaussian resu
multiplies a numerical factor andz0, the dimensionless ex
pansion parameter33 for point disorder

z05
W0

16pl 2jcã
2
. ~76!

We have also included the diagram’skz dependence. The
c-axis length scale associated with this diagram, as wel
those in Figs. 7~a! and 7~b!, is l c . As in the pure case, we
can send the external momentumkz through channel made
entirely of n51 states. Recall that the points connected
the dashed line are the same point in space; consequent
Fig. 7~c! the dashed line acts as a ‘‘short’’ allowing the e
ternal momentumkz to pass through a channel compris
solely ofn>1 states.

By once again factoring out the higher Landau lev
Green’s functions, this last calculation might be generaliz
to
Sxx
~1!~kx ,kz!5

e* 2W0

16kBTmab
2 E d~r2r 8!E d~ t2t8!E dr5E dt5E dt6e

ikx~x2x8!1 ikz~z2z8!~P1x1P2x* !~P3x1P4x* !

3$G* ~r2 ,t;r5 ,t5!G~r3 ,t8;r5 ,t6!^C0~r1 ,t !C0* ~r5 ,t5!C0~r5 ,t6!C0* ~r4 ,t8!&c1c.c.%, ~77!
ia-
re
ent
s a
r

where we imagine the remaining LLL object as being fu
renormalized. The disorder average was performed with
result that the order-parameter fieldsC0(r5 ,t5) and
C0* (r5 ,t5) are at the same point in space but different poi
in time. Note that the LLL object here is a four-point qua
tity and thus probes viscous effects even atk50. The resum-
mation suggested in Eq.~77! is just one example of a new
feature induced by the defects.

B. Correlated disorder

We model columnar defects lying parallel to thec axis by
changing the correlation of the disorder from a 3Dd function
to a 2Dd function

a~r !a~r 8!5
W1

2
d~x2x8!d~y2y8!. ~78!

For sake of comparison we calculated the diagram in F
7~c! for columnar defects, obtaining
e

s

.

sxx
7~c!~kz,0!5sxx

~G!~0!
3z1
8

3F8~221~11kz
2jc

2/4!1/21~11kz
2jc

2/4!

3kz
2jc

2~11kz
2jc

2/4!2 G ,
~79!

where we have factored the result as above andz1 is the
dimensionless expansion parameter for columnar defects

z15
W1

16pl 2ã2
. ~80!

Note thatz1 differs from z0 by the absence ofjc in the
denominator ofz1, making z1 the larger of the two in the
ã→0 limit. The c-axis length scale associated with the d
gram in Fig. 7~c! is jc . Points connected by a dashed line a
no longer at the same point in space. They have differ
values ofz; therefore, the dashed line no longer serves a
‘‘short’’ for external momentumkz and we can no longe
sendkz through an exclusivelyn>1 channel. The switch
from thel c length scale for point defects tojc for columnar
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defects in the evaluation of theses diagrams is in accord
the suggestion that correlated defects align pancake vor
enhancing their integrity.

We model planar defects by changing the disorder co
lations to

a~r !a~r 8!5
W2x

2
d~x2x8!;

a~r !a~r 8!5
W2y

2
d~y2y8!, ~81!

where the former models planar defects parallel to theyz
plane and the latter those parallel to thexz plane. When the
electric field is in thex direction, the vortices move in th
y direction. One might expect different results for vortic
moving parallel to or perpendicular to the defects. Evaluat
of the diagram in Fig. 7~c! is then

sxx
7~c!~kz,0!5sxx

~G!~0!
3Apz2x

8A2

3F8~221~11kz
2jc

2/4!1/21~11kz
2jc

2/4!

3kz
2jc

2~11kz
2jc

2/4!2 G ,
sxx
7~c!~kz,0!5sxx

~G!~0!
3Apz2y

8A2

3F8~221~11kz
2jc

2/4!1/21~11kz
2jc

2/4!

3kz
2jc

2~11kz
2jc

2/4!2 G ,
~82!

where

z2i5
W2i

16pl ã2
~83!

~with i5x or y) are the dimensionless expansion parame
for planar defects. For this particular diagram we find
difference between thexz andyz planar defects. The plana
defect expansion parameterz2i has the sameã dependence
and so the same temperature dependence asz1. On the other
hand, z1 has an additionall in the denominator so the
magnetic-field dependence of these expansion paramete
different.

VII. SUMMARY

We have investigated the conductivity in the vortex-liqu
regime via perturbation theory. Using an approach in wh
an electric field is applied explicitly we showed that with
the lowest Landau level~LLL ! approximation the uniform
ab-plane conductivity,sxx(0), is proportional to^uC0u2&
with a temperature-independent proportionality constant
all orders in perturbation theory. This result elevates the d
vation of the flux-flow formula to nonzero temperatures. W
identified the subset of diagrams that yields the same re
calculated within the Kubo formalism and conjectured th
the remaining diagrams must cancel. We verified this can
lation to second order in perturbation theory and also de
th
es

-

n

rs

is

h

to
i-

ult
t
l-
-

onstrated that the cancellation does not extend to the no
cal conductivitysxx(k), allowing viscous effects to enter.

When it comes to the nonlocal conductivity and the iss
of characteristic lengths, the present work has certa
raised more questions than it has answered. For instance
lowest-order~Gaussian! diagram of the transverseab-plane
conductivity already revealed a long, temperature-depend
length; while all of the diagrams for the longitudina
ab-plane conductivity individually had short, temperatur
independent length scales. If the longitudinal length scal
to grow long, as is suggested by its identification with she
ing effects of a growing crystal, it will be through the com
bined effect of many diagrams. The nature of the diagra
that may lead to such an effect have been identified, but w
remains unclear is whether the longitudinal and transve
length scales are independent or related.

There is a similar question regarding thec axis. Every
diagram contributing to the LLL approximation ofszz has
jc , the temperature-dependent corelation length, as its le
scale. On the other hand, at each order in the perturba
expansion of sxx , the c-axis length scale isl c , a
temperature-independent magnetic length. Ifsxx(z2z8) is to
become substantially nonlocal asT is lowered, it will be
through the combined effect of various orders. If the tw
length scales are long, it is unclear whether they will turn o
to be essentially the same or distinct. In addition, there is
question of whether or not theab-plane andc-axis length
scales grow independently. Finally, these matters must
readdressed with regard to the nonlocal resistivity wh
may have its own distinct length scales.

We also examined the effect of disorder on theab-plane
conductivity. While there was a subset of diagrams that le
to the disordered analog of the flux-flow formula, there we
other contributions that coupled to the viscous effects eve
k50. We also showed that diagrams contributing to the L
approximation had as theirc-axis length scalel c in the pres-
ence of point defects andjc in the presence of columnar an
planar defects.

Missing from this work is any consideration of wha
vector-potential fluctuations might do. Including them wou
require a new kind or vertex, one involving aC, aC* , and
anAm , whereAm is the fluctuating part of the vector poten
tial. The arguments leading to the flux-flow result may
longer hold when these new vertices are added. Also lack
are the effects of Maxwell’s equations which are needed
form a complete set of equations. At low order these lead
back-flow effects and at higher orders may produce lat
effects. There are many challenging aspects of this prob
to be resolved.
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