PHYSICAL REVIEW B VOLUME 56, NUMBER 7 15 AUGUST 1997-I

Exchange-correlation energy of a hole gas including valence band coupling
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We have calculated an accurate exchange-correlation energy of a hole gas, including the complexities related
to the valence band coupling as occurring in semiconductors like GaAs, but excluding the band warping. A
parametrization for the dependence on the density and the ratio between light- and heavy-hole masses is given.
We apply our results to a hole gas in an, @ _,As/GaAs/AlGa _,As quantum well and calculate the
two-dimensional band structure and the band-gap renormalization. The inclusion of the valence band coupling
in the calculation of the exchange-correlation potentials for holes and electrons leads to a much better agree-
ment between theoretical and experimental data than when it is onji#@#i63-18267)03931-3

I. INTRODUCTION quote below. Because of the rather large numerical difficul-
ties involved, the correlation energy could only be estimated

Electron gases have been used as model systems to stubly these authors using several approximations and interpola-
many-body effects for almost half a century. Very accurateion schemes. The main purpose of the present work is to
results, for, e.g., the total energy, have been obtained analytsystematically evaluate the correlation energy as a function
cally, numerically, or with quantum Monte Carlo techniques.of the density and the ratio between light- and heavy-hole
Because of the effects of impurity scattering, it is hard tomass.
realize an ideal electron gas in a doped isotropic semicon- Band-gap renormalizatioBGR) in silicon and gallium
ductor. However, since the beginning of the eighties, it isarsenide due to many-body effects was studied theoretically
possible to realize almost ideal electron gases in doped sentdy Abram, Childs, and Saundersbithe self-energy opera-
conductor heterostructures. Being laterally confined, thestor, needed to calculate the BGR, was evaluated in the Hedin
electron gases are quasi-two-dimensional, but if the laterabW approximatior® The screened interaction was modeled
width of the electron gas is not too small, successful use cahy a plasmon pole approximation. For the casg afoping,
be made of the local density approximati&wDA ) of density  leading to a hole gas, the plasmon poles were taken from the
functional theory to relate the electron potential to theaforementioned work of Combescot and Noe& hence in-
exchange-correlation energy of the three-dimensional homa:luding the valence band coupling. A similar approach, ap-
geneous electron gas. This approach has been widely usetied to modulation-doped quantum wells, was followed by
and with great success. Bauer and And4.Although their approach is the preferred

The theoretical description of many-body effects in holeone for quasi-two-dimensional systems, these authors remark
gases in llI-V or row IV semiconductors such as GaAs or Gehat in most cases density functional theory in the LDA
is complicated by the structure of the top valence band reyields accurate results. The valence band coupling, however,
gion, leading to so-called valence band coupling. The mosis omitted in their work, as, to our knowledge, in most other
obvious complication is the simultaneous occurrence ofvork on many-body effects in two-dimensional systdisee
heavy and light holes. Often, these complications are simplyRefs. 5 and 6 references thereifiwo recent attempt$ to
ignored and the hole gas is treated in the same way as dake into account the effects of valence coupling are incor-
electron gas, with the electron mass replaced by some effecect. We will briefly comment on them in Sec. IV.
tive hole mass, usually the heavy-hole mass. One could ar- There is clearly a need for a simple, yet accurate, way to
gue that because of the highly different Fermi wave vectorsccount for many-body effects in hole gases in various sys-
of heavy and light holes in GaAs about 80% of the holes igems. As we have tried to argue above, the use of the local
heavy and that hence the complications of the valence bandensity approximation is often justified, but the effects of
coupling will not play a big role in the calculation of the valence band coupling need to be taken into account. What is
exchange-correlation potential. However, this argumenteeded then is an accurate exchange-correlation energy of
overlooks the fact that the Coulomb interaction is nondiagohomogeneous hole gases in bulk semiconductors as a func-
nal with respect to the hole charactbeavy or lighf. One of  tion of the hole density for various ratios between the light-
the consequences of this fact is that even in a hypotheticand heavy-hole masses. From this exchange-correlation en-
situation with an infinitesimaly small light-hole mass, whenergy, we can construct an exchange-correlation potential for
100% of the holes is heavy, the valence band coupling has laoles in, e.g., a quantum well and without much effort cal-
large influence. culate the band structure and properties like the BGR.

In the context of exciton condensation, the exchange- In the next section, we will discuss the theory behind the
correlation energy of the hole component of an electron-holealculation of our exchange-correlation energy. As regards
plasma in germanium was studied by Combescot anthe exchange energy, we simply reproduce the result of
Nozieres! The band warping was neglected. An explicit ex- Combescot and Nozies! As regards the correlation energy,
pression was given for the exchange energy, which we willve use an adapted version of the theory of Vashishta and
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Singwi? originally developed for electron gases. Those onlyThe band warping is determined by the difference between
interested in the results and the parametrization can skip thike Luttinger parameterg, and y5. In order to keep things
section and directly go to Sec. lll. Section IV contains antractable, we need to neglect the band warping, i.e., we need
application to a hole gas in an #ba;_,As/GaAs/ to sety,=vy3. A good choice is to set both parameters equal
Al ,Ga;_,As quantum well. to the following averagé!

Il. THEORY — _[2721373
yY“N—5 (€)
The system we consider is a homogeneous hole gas in a
bulk semiconductor like GaAs. We are interested in holes\eglecting the band warping means that we are not only
created at the top of the valence band near the quadruplet gfaling with a homogeneous, but also an isotropic hole gas.
I's symmetry, which is a manifold of eigenstates of theWe will see that the dependence of the exchange and the
square of the total angular momentuf= (L +S)2 with ei-  correlation energy on the light-hole/heavy-hole mass ratio is
genvaluei2J(J+ 1), with J= 2. The hole density is assumed Nhot very strong, giving ama posteriorijustification for this
to be small enough in order to neglect nonparabolic effectgpproximation. Without the interaction term in Eg), the
and the influence of the spin-orbit split-off bandi={1) and  one-particle energies are easily found to be

more remote bands. Apart from an interaction term due to 52 52
the background potential, the Hamiltonian, in Sl units, is |(k)— (71+27)k2 —k2,
2m
= [ @ S D (1) = o
m,m’ En(K) =5 (7 —2y)k ——k 4
e? o
+ —J d3rlf d°r, defining the light- and heavy-hole effective massgsand
87 €ini€o m;,. We introduce a parameter for the ratio between the
¢m1 r) l/fmz(rz) llfmz(rz)l/fml(fl) light- and heavy-hole Fermi wave vectors:
X 2 — NG K -
mq,my |r1 r2| il ! (5)
th my’

wheree is the electron charge; the dielectric vacuum per- o
mittivity, and € the static, long wavelength dielectric con- Furthermore, we define an effective Bohr radays an ef-

stant of the intrinsic semiconductor. The creation and annifective RydbergR and a dimensionless Wigner-Seitz radius
hilation operatorSzpm(r) and ¢,(r) create and annihilate r by

holes at positiom in eigenstates of the total angular momen-

tum along thez axis J, with eigenvalueim (m=%,3, —3, A= 4 emeoh’ 6)
—3). The matrixD,, , is given by° 0 mye?
h2 | 92 #? 9 — A2
Dapai=— 2mg| 7 (71 272)077 +(y1+ 72)(@ = EY: } R=—, (7)
) 2myag?
=——1(y + —+ +— 1
D117~ 2m0_(7’1 272)(922 (y1— 7’2)( 2 &y }, ro= , ®)
41
(? agp™?
72 #? 9 9 d
D32, -12=— Z—mo\/§ T2 2T ay? +2i Y3 ay|’ vv_it_h p the hole density. We have chosen to base these defi-
nitions on the heavy-hole mass.
) The exchange energy of a hole gas with valence band
Do e — ﬁ_\/— 999 (2  coupling was evaluated in Ref. 1. In effective Rydbergs, the
212 T NS Y3 o) T Gy ) 9z result for the exchange energy per hole is
and D_zp-32=Dspze D-12-12=Dip1z Dip -3~ 1/3
* 3/ 9 1—
—Dap 172, D3i2-32=D12-12=0,  Dmm=Dpy - e,=— (W) 3\ 2.2 r_R’ 9
Herem, is the bare electron mass ang, y,, andys are the ™ s

Luttinger parameters, which characterize the semiconductowhere the numerical functiofi(w) is given by

1+x
1_

+w

1 1
w4+ 3w? +3W+1——(1 W2)2In v i (1 w )f dx_Inj-—

{(w)= (10

4(1+w3)4’3
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Hence, apart from this numerical function, the exchange en- 2 « q
ergy is equal to that of an electron gas at the same density Qo(d,iw)=—— —2—(1+W3)1/3[ f1(Q-w)+W3f1<W.w)
For w=0 andw=1 we find £(0)=1/4+37%/64~0.7126, d
£'(0)=0 and{(1)=2"%3~0.7937,¢'(1)=0, so this func- 3 3
tion is of the order of, but smaller than, unity and depends +§(1—W)(1—W2)— 16q
rather weakly on the mass ratio.

In order to evaluate an accurate correlation energy, we L e ) (1w )
apply the theory of Vashishta and Singhsuitably adapted x fo dg'[f;7(0,9",0)—f;""(0,9", @)
to the case of a hole gas. Following general many-body ar-

guments, as can, e.g., be found in Ref. 12, one can relate the wd) )
exchange-correlation energy to the dielectric function. First, —15"(0,9", 0) + 157" (0,9", )], (16)
the sum of the exchange and correlation energy per hole is
related to the average potential enekgfyrs) per hole by with
1 (rs 2 2 2/4q2_(1_q/2)2
e(r)+e(r)=—j rev(rdrl. (11 —1— — o9 ®
c\ls x\I's r§ 0 s s s fl(q) 1 20] 1+ 4q2 4 | w2/4q2—(1+q/2)2
The potential energy in its turn is related to the structure o q(2+q) q(2—q)
factor S(q,re) by - 2q arcta ta ® '
2 1 17
Vit = = — s [ IS(ar) - 11007, o
(12
f57(0.9",0)
with ao=(4/97)3~0.5211 and with the wave vectorin 24
units of the heavy-hole Fermi wave vector _[9'(a?q'?—g?)? T 28292
ken=[3p 2/ (1L+w>)]*3. Finally, the structure factor is re- - 9%+ w2 —(2a°= BB q'
lated to the wave vector and frequency dependent dielectric s o2z oa
function e(q,w) by n([(aq’—q) -B%q"1*+Blo )
[(aq’+0q)*—B%q"*)*+ p0?
S(qur) = 3¢g? f dolm 1 20/ (a?q'2—q?)?
A= e T Qo)) __,(_2_,4 _ﬁA)
q g 'tw
309? 1 o 1 )
=——— | do/l1-———|, (13 Bw
8agrs (1+wW° “'f [ )| X arctar( ; -
aof s ( )" Jo €(q,iw) (aq —q)7— 322
where the frequency is in units of k2 r/2m;, . Following ’6 B’w )]
i —arcta - viRg 18
Vashishta and Singwiwe write the dielectric function as (aq + 12— 379" (18
_ Qo(q, w) where bothq and g’ are in units ofkg,. Still following
€(q,w)=1+ 1-G(q)Qy(q, )’ (14) Vashishta and Singwi, we take for the local field correction
G(a)
with
J
Qo(d, )=~ ¢(d) xo(, @), (15  Cl@=Gkken= 1+ap%)
with ¢(q) =e?/ €€, the Fourier transform of the Cou- 1 d% k-k'[_[[k=K']
Ipmb interaction and(o(_q,w)_ _the random p_hase ap_proxima— o) 2m)3 k2 [ Kepy S -1
tion (RPA) of the polarizability. The functiorG(q) in Eq.
(14) is the so-called local field correction, which in an ap- _ q z?
proximate fashion takes into account the vertex corrections ~ — C1(@:fs)+a| =3 --Gi(q,ry)— § Jre Gi(a.rs) |,
to the RPA, i.e., the effects of the interaction between ex-
cited holes and electrons, which are left out of the RPA. The (19
evaluation of the functio(q, ) is again straightforward, here

but quite involved. The reason is that one has to account for
four different kinds of excitations, namely, heavy-hole— 3 (o
heavy electron, heavy-hole—light electron, light-hole—heavy G(q,rg)=— ZJ q's(q’,ro—1]
electron, and light-hole—light electron excitatiof@s heavy/ 0
light electron is interpreted as a missing heavy/light hole 9?—q'2
The result can be cast in the following form: x| 1+ 2qq"

dg’. (20

OIQ|
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TABLE I. Correlation energy, in effective Rydbergs per hole, of a hole gas for different values of the
density parametarg and light-hole/heavy-hole Fermi wave vector ratiesin each entry, the upper number
is the RPA result and the lower the result including local field corrections. For the electron gas, the corre-
sponding valuegupper and middle numbersre taken from Ref. 9. The lower number in this case is
calculated with the parametrization of Ref. 15 of the quantum Monte Carlo results of Ref. 14.

rS

1 2 3 4 5 6
0.0 —0.095 —0.071 —0.058 —0.051 —0.045 —0.041
—0.091 —0.067 —0.055 —0.047 —0.042 —0.038
w 0.5 —0.164 —0.124 —0.104 —0.091 —0.081 —0.074
—0.154 —0.115 —0.095 —0.082 —0.073 —0.066
1.0 —0.225 —0.168 —0.140 —0.121 —0.109 —0.098
—0.207 —0.152 —0.123 —0.105 —0.093 —0.083
e-gas —0.157 —0.124 —0.105 —0.094 —0.085 —0.078
—0.112 —0.089 —0.075 —0.065 —0.058 —0.052
—0.119 —0.090 —0.074 —0.064 —0.057 —0.051

The latter equality in Eq(19) is obtained by realizing that etrized with an accuracy of better than 0.1% by the polyno-
g=k/kg, depends on the densipy throughkg,,. With a=0 mial

in Eq. (19) correspondence is obtained with the theory of

Singwi et al,*® in which the density correlation function in

the presence of an external weak field is approximated by an L(w)~2" P+ (1-w)w?(aw+b)

expression containing the equilibrium pair correlation func-
tion. With nonzeraa allowance is made for the change in the
pair correlation function in an external field through the den-

sity derivative of the equilibrium pair correlation function. with a=0.679, b= —0.0686, andc= 1/4+372/64— 212

The parametea can be chosen such that the compressibility o
sum rule is obeyed. This sum rule states that the compress- 0.0811. The qualitative reason why the exchange energy

ibility as calculated from the density dependence of the tot > smaller in magnitude than that for the electron gas
y Y dep Z(w) is smaller than unityis the fact that, besides the spa-
energy should be equal to that following from the large

wavelenath and small frequency behavior of the dielectrictial degrees of freedom, there are four instead of two internal

function gFor details we re?er to )Igef 9. For the electron asdegrees of freedom. Consequently, the Pauli exclusion prin-
T, L . 9 ciple has less of an effect. We note that for the — hypotheti-

the valuea= § guarantees almost satisfaction of this sum rule - :

cal — casewv=0, the exchange energyn®t equal to that of

'ﬁr;(ead Y{Ereyvt;rlazdogegnsrltga:;n?neészc;;ttigesSg#etr?:tsihvevec:nawl\-/gn electron gas, despite the fact that there is just one kind of
hole, the heavy ones. This is a consequence of the fact that

pressibility sum rule is exactly obeyed m¢=1. Again, the the Coulomb interaction couples heavy and light hdles,

sum.rule is almost obeyed in a densny' range co_mparable e Coulomb interaction is nondiagonal with respect to the
that in Ref. 9. The electron gas correlation energies of Ref. ole character

aﬁ;(?ﬁu\rlr??\l/lgvriltla Vgg]rléh?ets)ﬁﬁts k(;mgg \é?:gesérth\:ifgrz the In Table | we give the results for the correlation energy of

garametrized by Perdew and Zunﬁe{sge Tayble I discu?sed the hole gas, for §evera| values of the dens!ty parangter

in the next section We expect the same degreé of accuraC)Isee Eq.(8)] and light-hole/heavy-hole Fermi wave vector
ratiosw. The numerical errors are smaller than an effective

in our case. The values af in our case vary slightly from milli-Rydberg. The correlation energy is calculated with a

1.021 forw=0 (infinitesimally small light hole magsto : ; . ; . .
RPA dielectric constant and with a dielectric constant includ-
1.164 forw=1 (equal massgsNote that Eqs(13), (14), ing the local field correction in the way described in the

(19), and(20) constitute a self-consistency problem, which previous sectiofEg. (14) without and with local field cor-

in practice is solved by iteration, starting from the RPA re'rectionG(q)]. For comparison, we also include the compa-

Sléltt ivr‘]”tg Gft(qr):?.mmr alglhcﬁsf;'it s:;f{;&g]tr cgri\éer?ert]ﬁe 'S rable results for the electron gas, taken from Ref. 9, and the
obtained after not more tha era s=10). Inthe quantum Monte Carlo results for the electron &aas pa-

next section, we will present the results of our CalcuI"’V[ionsrametrized in Ref. 15. The inclusion of the local field correc-

and a parametrization. tion in the hole gas has less influence on the RPA results
than in the electron gas. The reason is the relatively larger

Ill. RESULTS AND PARAMETRIZATION dielectric constant_ fqr the hole gas, caused by the larger
number of possibilities to create hole-electron pairs. The

The exchange energy of the hole gas is given by thdarger dielectric constant leads to a better screening of the
closed expression E¢9). The numerical function Eq.10)  interaction between excited hole-electron pairs. As a conse-
of the Fermi wave vector ratiov of light and heavy holes, quence, RPA, in which this interaction is neglected, becomes
appearing as a prefactor in this expression, can be param-better approximation. As can be understood without much

+c(4ws+3w?+2w+1)], (21)
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effort, the RPA results for the electron gas are related to The correlation energies in Table I, including the local
those for the hole gas witiv=1 by the transformation field effects, can quite adequately be parametrized by

e-ga _ _h-gag~—4/3 i i

€79%rg) = €927 " g)/2 (this is not true for the results _ —
including local field corrections Again, we note that the e(W.rg)~aw)f(b(w)roR, (22)
hole-gas results faw=0 (only heavy holesare not equal to  with the function f(rg) fitting the correlation energy for
the electron-gas results. w=0.5:

—0.1358-0.0179 .+ 0.0752lm .+ 0.0024 Inr  (re=<1)

f(rg)=
(rs) 1/(—2.2568- 3.5742/r — 0.7017 ) (r>1).

(23)

The functionsa(w) andb(w) were determined such that the parison between measured and calculated absorption ener-
approximation Eq(22) and its derivative with respect to, ~ gies at zero wave vector. Experimental absorption energies
have the correct values at=1. Fitting polynomials for —are obtained from photo-luminescence excitatitfiLE)

a(w) andb(w) are spectra, taken at 4.2 K, using perpendicularly incident light
from a tunable Ti:sapphire laser. The laser power was kept
a(w)~1+0.96Qw—0.5—-0.113w—0.5)? below 0.5 W/cnf to prevent significant changes in the car-

rier density or carrier temperature due to the exciting light.
The absorption energies were corrected for the binding ener-
’ gies of the screened0-E0 andH1-E1 excitons(see Fig. 2
b(w)~1+0.364w—0.5 +1.056w—0.5) for this terminology, which were determined from magneto-
—1.667w—0.53+1.865w—0.5% (25 PLE. spec}réa by a method outlined in a fp_rthcoming
publication.® Excitonic effects on thé10-EO transition can
The parametrizations Eq$22), (23), (24), and (25) repro-  be neglected. They only influence the intensity, but not the
duce the numbers in Table I, and calculated numbers fognergy position of the emission peak related to this transi-
several intermediate values farthat are not included in this tion, as was shown by several autht&:?°
table, with errors of at most one effective milli-Rydberg. In order to make a meaningful comparison with the cal-
culations, it is essential to know the real well width, which
usually deviates somewhat from its nominal value. The en-

—0.454w—0.5°+2.106w—0.5% (24

IV. APPLICATION TO A HOLE GAS ergy difference between thE0-EO, LO-EO, andH1-E1
IN A Al ,Ga,_,As/GaAs/ALGa,_As transitions strongly depends on the actual well width but
QUANTUM WELL hardly on the BGR, since the BGR almost cancels in these

energy difference$: We therefore calculated these differ-

As a demonstration, we will apply our results for the ences as a function of the well width from a simple one-
exchange-correlation energy to a hole gas in ajimensional Schidinger equation, including the band offsets
Al,Ga; _/GaAs/Al,Ga; _x quantum well, withk=0.45 and  and the Hartree potential, using as effective two-dimensional
grown in the[001] direction. We will calculate the two- pinding masses mg/(y;—27y,), Mo/(y1+27,), and
dimensional band structure, and compare the BGR we obtai0.0665n0 (Ref. 16 for the heavy holes, light holes, and elec-
with an eXperimenta”y determined value. For the LUttingertronS’ respective|y_ The electron b|nd|ng energy was cor-
parameters and intrinsic dielectric constants of GaAs angected for nonparabolicity along the lines of Ref. 22. We
AlAs we takey;=6.85,y,=2.10, y3=2.90, andy; =3.45,  found that at a well width of 882 A, all calculated energy
¥,=0.68, y3=1.29, ande,=12.79 and 10.06° respec- ifferences were, within experimental errors, equal to their
tively. We apply the virtual crystal approximation to obtain experimental counterparts. In order to obtain the correct
the corresponding values for AsGag ssAs. For the direct  value for theHO-EO transition at zero wave vector, a BGR
band gaps we takeEg*°=1519 eV (Ref. 16 and of 17+2 meV is required. It is important to note that this
E§'°-45Ga°-55“s=2.176 eV’ For the conduction and valence method for obtaining well widths has yielded results that
band offset we take 0.460 and 0.197 eV, respectivaly ~ Were in exact agreement with results from high-resolution
cording to the 7:3 rule The precise values of the band gapsx-ray diffraction measurements for an empty ten-period
and offsets are not critical for our calculations. GaAs/Al,Ga; _,As multiple-quantum-well sampfé. Unfor-

The sample used in the experiments is a singlype  tunately, x-ray diffraction spectra are very insensitive to the
GaAs quantum well, confined between twoyAlGagssAs ~ Width of single quantum wells.
barriers. The sample is symmetrically doped in the barriers To calculate the two-dimensional band structure of the
with Be and has a nominal well width of 95 A. The low quantum well we solve the Luttinger-Kohn Hamiltonian for
temperature (1.4 K) carrier density, obtained from the four envelope functionfy, () (m= 3.%,—3,—3) related
Shubnikov—de Haas and Hall measurements, is<Q@°  to the top of the valence band region near the poinf gf
m~ 2. Experimentally, the BGR was determined from a com-symmetry[cf. Eq. (2)]:*°
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H, b c 0 better performance of the LDA. In our case we have
b* X, 0 c re~5,a,~11 A, andd~88 A, so that the above criterion is
= ' (26)  indeed satisfied. Nevertheless, the LDA is probably the
8 c* 0 M, -—b weakest point in our calculation and could, with corrections
0 c¢* —b* H, of the order ofray/5d, lead to errors of the order of 10%,
which is the size of error we obserysee further on The
agreement between the theoretical results of the Vashishta-
1 522 Singwi theory and thg quantum Montg (;arlo results for the
Hy= — ——p,( 71—272)pZ+V(Z)——”(71+ o), electron gas for =5 is very good(deviations of the order
2m 2mg of 2%, see Table)land we expect the same to be true for the
hole gas. Finally, because of the rougff® dependence of
. the BGR on the density, the well width is not a critical pa-
H1= " o P+ 2720P V(D) ~ 5 (= 72), rameter in the calculation of the theoretical BGR. The well
width we adopted for those calculations is 88 A.
2 /3 s o _ Reboredo and Proetto, in dealing with a two-dimensional
c= 5 Lra(k—ky) —2iyskiky ], hole gas in acceptod-doped GaAd, construct a LDA
0 exchange-correlation potential by making an analogy with
ho\3 the spin-density functional formalisffi.Instead of taking the
b= — —(Ky—iky)(y3P,+P2¥3)- (27 sameV(z) in the diagonal elementy}, and X, [Egs.(27)],
mo 2 they take different potential¥,(z) and V,(z), depending
The z axis is chosen perpendicular to the quantum wellOnly on the local “heavy-hole™ and “light-hole density,”
p,=(fi/i)dl9z andk;= (ky,k,,0) is the wave vector parallel respectively. These local “heavy- and light-hole densities
to the quantum well. At the interfaces between GaAs andi® obtained from the envelope functiofis(s;;)k (2) and
Al ,Ga; _,As we require continuity of the envelope functions ft(l,z),k”(z), respectively. However, no physical meaning

and continuity of the derivatives of the envelope functionscan be attached to these definitions. It is easy to verify that
divided by the effective heavy-holor m==+3) or light-  taking, e.g., thex axis as quantization axis for the total an-
hole mass(for m= = 3).** The potentialV(z) in Eq. (27  gular momentum will change the densities defined in this
contains the valence band offset, the electrostatic Hartregay. Hence, the approach of these authors is not invariant
potential Vy(z) and the exchange-correlation potenNgl..  under a change of quantization axis. Sipahal, in dealing

In the local density approximation, the exchange-correlationwith a similar systenf,use a complicated procedure to con-
potential is related to the exchange-correlation energytruct an exchange-correlation matrix. Their procedure does
exc(p) per hole of a homogeneous hole gas of densiby”  have the above invariance property, but is, apart from that,
ratherad hocand misses the essential physics involved.

In order to calculate the band gap renormalization, we
also need the potential for the electrons. There is of course
q no exchange contribution to this potential, but there is a cor-
_ relation contribution. Again we apply the local density ap-
=~ &clp(2)=p(2) dp[ex‘:(p)]( ) (29 proximation. We procegd in the spaprrile way as in Ref.y2 apnd

approximate the potential of an electron in a homogeneous

The minus sign in this equation is due to the fact that thenole gas by th&W self-energy? The differences with Ref. 2

Luttinger-Kohn Hamiltonian gives the energy of the valenceis that we take into account the full energy dependence of the

band electrons, which is minus the energy of the holes. IntheFreened interactio, instead of using a plasmon pole

exchange-correlation energy we have neglected the effects 3 : : .
band warping(see Sec. ) but we do not neglect the band _model_, and that we use the d_lelec_tnc function of Sec. _II,
L ! S including the local field correction, instead of the RPA di-
warping in the Luttinger-Kohn Hamiltonian Ed26). The . . ] .
neglect of band warping in the calculation of the exchangef_}IeCtrIC function. \{\ée take an effectlve e'ec.”o'.‘ mass in GaAs
of m,=0.0663n,."° The resulting potential in GaAs can

correlation potentials seems justified. The variations of the . o . :
heavy-hole mass in GaAs in different directions are of theuite accurately2.5% accuracy in the density range around

order of 20%'° leading to variations in the light-hole/heavy- rs=5, which is relevant hejebe reproduced by the expres-
hole Fermi wave vector ratiov [Eq. (5)] of the order of 10%. sion

This in turn leads to variations in the exchange-correlation

potential of only a few percent, due to the rather weak de- VE(r )~ —
pendence of the exchange-correlation potentialonAc- e s
cording to the criterion of Langreth and Mefilthe use of

the local density approximation for an electron gas in a quanwith A=4.526,B=1.956 andC=0.273. The effective Ryd-
tum well is justified as long as.a,<5d,? with d the width ~ bergR and the density parametey are defined by Eqg7)

of the quantum well. We expect the range of validity of theand(8). The parametrization Eq29) is of the same kind as
LDA for the hole gas to be even wider. Since the dielectricthat used by Bauer and AnddThe correlation potential Eq.
constant for the hole gas is larger than that for the electrot29) differs very little from the result of Abraret al.2In the
gas(see Sec. l)l, the nonlocality of the self-energy, as, e.g., Al ,Ga; _,As barriers of the well we also use the potential
calculated in th&s W approximatior? is smaller, leading to a Eq. (29). The error made by doing this is extremely small,

where

21,2
Ki

d
Vi2)=— @[PEXC(P)](Z)

1 I
R,
Cyrd1+ArY4+Brif

(29
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FIG. 1. Self-consistent hole density distribution and hole and =~ _gq 4 |
electron potentials of a hole gas in a AlGa,;sAs/GaAs/ )
Al §45Gag 55As quantum well withoutdashed and with (solid for \
the case of holes and dash-dotted for the case of elegtams -100.0 / ' '
exchange-correlation potential. The potential is measured relative to 0.05 0.025 0.0 0.025 0.05
the Hartree potential in the middle of the weli=€0). The band [110] Ikl (2n/a) [100]

edge energies in GaAs are subtracted. The total hole density is

9x 10" m~? and the width of the well is 88 A. FIG. 2. Two-dimensional valence band structure in [h&0]

and [100] directions of the hole gas in the Xba;_,As/GaAs/
because the band offset is very much larger than the possibfd ,Ga;_,As quantum well without(dashedl and with (solid)
error in the electron correlation potential. exchange-correlation potential. The corresponding quasi-Fermi en-
Another popular quantum well system is GalngsAs ergies are indicated by horizontal lines. Also the lowest conduction
between Al ,dn,sAs barriers. Both materials are lattice subband for the two cases is plotted. The energy is measured rela-
matched to InP. The electron correlation potential fortive to the Hartree potential in the middle of the well and the band
Gay 47N o.55AS Was also calculated and fitted with the expres-€d9e energies in GaAs are subtracted.

sion Eq. (29. The fitting parameters areA=4.382, yajye of 17-2 meV. It is not clear what the remaining small
B=1.956, andC=0.300. For the effective masses we tookK gifference between our theoretical and experimental results
me=0.043ng, m,=0.581m;, m;=0.053n,. These effective  should be attributed to. One could think of corrections to the
masses were obtained by linear interpolation of the effective DA or corrections to the exchange-correlation energy due
masses of GaAs and InAs, obtained from the Luttinger pato the band warping. Corrections of only a few percent could
rameters of Ref. 16 and neglecting the band warping by ussring the theoretical value within the experimental uncer-
ing Eq. (3). tainty range. However, these corrections are extremely diffi-
As usual, the eigenstates of the Hamiltonian E2p), cult to estimate.
which depend in a self-consistent way on the density and Surprisingly good agreement between experimental and
hence on théoccupied eigenstates themselves, are found bytheoretical BGR inn- and p-doped ALGa, ,As/GaAs/
iteration. In Fig. 1 we give the self-consistent density andAl xGa; —xAs quantum wells was reported by Haaekteal >
total hole and electron potentials for the case without andiowever, these authors obtained the BGRdettoped wells
with inclusion of the exchange-correlation potential. The in-by interchanging the roles of holes and electrons in all their
clusion of the exchange-correlation potential leads to a congalculations, i.e., they did not only neglect the effects of
siderable upward shift and a flattening of the hole potential¥alence band coupling on the exchange-correlation poten-
The hole density distribution changes only slightly. Thetlals, but did not even use the Luttlnger—Kohn Hamiltonian
change in the electron potential has an opposite trend. In Fi -q.|(26). ,?\p_parfently, thel errorﬁ ma?e almosr;c cancel and thle
2 we give the two-dimensional band structure of the top(:;n‘;"1 result s, fortuitously, rather close to the experimenta
valence ['g) region and the lowest conduction subband ata.

: : . Summarizing, we have evaluated and parametrized an ac-
(rl;G) in the q_ur?ntum V\c’je” |.nhthéllr(1)] and[100] (ljlrgctlon for . Icurate exchange-correlation energy for a hole gas, including
the case without and with exchange-correlation potential,e effects of valence band coupling, but excluding the band

From this figure one can readily read off the BGR of 19.9y5ming. Using the local density approximation to obtain the
meV. We have also calculated the BGR neglecting the vagychange-correlation potential for holes, we calculated the
lence coupling in the calculation of the exchange-correlatiothand  ‘structure  of a p-doped AlLGa;_,As/GaAs/
potential of the holes and assuming all the holes to be heavy| Ga, _,As quantum well. In addition, we constructed a
However, we still used the Luttinger-Kohn Hamiltonian Eq. correlation potential for electrons for this system. We obtain
(26). The corresponding correlation potential for the elec-a band-gap renormalization which is in much better agree-
trons is taken from Ref. 4. The result is a BGR of 21.8 meV.ment with experiment than what is obtained if the valence
We see that our correctly calculated exchange-correlatioband coupling is omitted in the calculation of these poten-
potentials yields a result which is closer to the experimentatials.
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