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Exchange-correlation energy of a hole gas including valence band coupling

P. A. Bobbert, H. Wieldraaijer, R. van der Weide, M. Kemerink, P. M. Koenraad, and J. H. Wolter
COBRA Interuniversitary Research Institute, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
~Received 1 November 1996!

We have calculated an accurate exchange-correlation energy of a hole gas, including the complexities related
to the valence band coupling as occurring in semiconductors like GaAs, but excluding the band warping. A
parametrization for the dependence on the density and the ratio between light- and heavy-hole masses is given.
We apply our results to a hole gas in an AlxGa12xAs/GaAs/AlxGa12xAs quantum well and calculate the
two-dimensional band structure and the band-gap renormalization. The inclusion of the valence band coupling
in the calculation of the exchange-correlation potentials for holes and electrons leads to a much better agree-
ment between theoretical and experimental data than when it is omitted.@S0163-1829~97!03931-3#
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I. INTRODUCTION

Electron gases have been used as model systems to
many-body effects for almost half a century. Very accur
results, for, e.g., the total energy, have been obtained ana
cally, numerically, or with quantum Monte Carlo technique
Because of the effects of impurity scattering, it is hard
realize an ideal electron gas in a doped isotropic semic
ductor. However, since the beginning of the eighties, it
possible to realize almost ideal electron gases in doped s
conductor heterostructures. Being laterally confined, th
electron gases are quasi-two-dimensional, but if the lat
width of the electron gas is not too small, successful use
be made of the local density approximation~LDA ! of density
functional theory to relate the electron potential to t
exchange-correlation energy of the three-dimensional ho
geneous electron gas. This approach has been widely
and with great success.

The theoretical description of many-body effects in ho
gases in III-V or row IV semiconductors such as GaAs or
is complicated by the structure of the top valence band
gion, leading to so-called valence band coupling. The m
obvious complication is the simultaneous occurrence
heavy and light holes. Often, these complications are sim
ignored and the hole gas is treated in the same way a
electron gas, with the electron mass replaced by some e
tive hole mass, usually the heavy-hole mass. One could
gue that because of the highly different Fermi wave vect
of heavy and light holes in GaAs about 80% of the holes
heavy and that hence the complications of the valence b
coupling will not play a big role in the calculation of th
exchange-correlation potential. However, this argum
overlooks the fact that the Coulomb interaction is nondia
nal with respect to the hole character~heavy or light!. One of
the consequences of this fact is that even in a hypothe
situation with an infinitesimaly small light-hole mass, wh
100% of the holes is heavy, the valence band coupling h
large influence.

In the context of exciton condensation, the exchan
correlation energy of the hole component of an electron-h
plasma in germanium was studied by Combescot
Nozières.1 The band warping was neglected. An explicit e
pression was given for the exchange energy, which we
560163-1829/97/56~7!/3664~8!/$10.00
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quote below. Because of the rather large numerical diffic
ties involved, the correlation energy could only be estima
by these authors using several approximations and interp
tion schemes. The main purpose of the present work is
systematically evaluate the correlation energy as a func
of the density and the ratio between light- and heavy-h
mass.

Band-gap renormalization~BGR! in silicon and gallium
arsenide due to many-body effects was studied theoretic
by Abram, Childs, and Saunderson.2 The self-energy opera
tor, needed to calculate the BGR, was evaluated in the He
GW approximation.3 The screened interaction was model
by a plasmon pole approximation. For the case ofp doping,
leading to a hole gas, the plasmon poles were taken from
aforementioned work of Combescot and Nozie`res,1 hence in-
cluding the valence band coupling. A similar approach,
plied to modulation-doped quantum wells, was followed
Bauer and Ando.4 Although their approach is the preferre
one for quasi-two-dimensional systems, these authors rem
that in most cases density functional theory in the LD
yields accurate results. The valence band coupling, howe
is omitted in their work, as, to our knowledge, in most oth
work on many-body effects in two-dimensional systems~see
Refs. 5 and 6 references therein!. Two recent attempts7,8 to
take into account the effects of valence coupling are inc
rect. We will briefly comment on them in Sec. IV.

There is clearly a need for a simple, yet accurate, way
account for many-body effects in hole gases in various s
tems. As we have tried to argue above, the use of the lo
density approximation is often justified, but the effects
valence band coupling need to be taken into account. Wh
needed then is an accurate exchange-correlation energ
homogeneous hole gases in bulk semiconductors as a f
tion of the hole density for various ratios between the lig
and heavy-hole masses. From this exchange-correlation
ergy, we can construct an exchange-correlation potential
holes in, e.g., a quantum well and without much effort c
culate the band structure and properties like the BGR.

In the next section, we will discuss the theory behind t
calculation of our exchange-correlation energy. As rega
the exchange energy, we simply reproduce the result
Combescot and Nozie`res.1 As regards the correlation energ
we use an adapted version of the theory of Vashishta
3664 © 1997 The American Physical Society
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56 3665EXCHANGE-CORRELATION ENERGY OF A HOLE GAS . . .
Singwi,9 originally developed for electron gases. Those o
interested in the results and the parametrization can skip
section and directly go to Sec. III. Section IV contains
application to a hole gas in an AlxGa12xAs/GaAs/
Al xGa12xAs quantum well.

II. THEORY

The system we consider is a homogeneous hole gas
bulk semiconductor like GaAs. We are interested in ho
created at the top of the valence band near the quadrupl
G8 symmetry, which is a manifold of eigenstates of t
square of the total angular momentumJ25(L1S)2 with ei-
genvalue\2J(J11), with J5 3

2. The hole density is assume
to be small enough in order to neglect nonparabolic effe
and the influence of the spin-orbit split-off band (J5 1

2! and
more remote bands. Apart from an interaction term due
the background potential, the Hamiltonian, in SI units, is

H5E d3r (
m,m8

cm
† ~r !Dm,m8cm8~r !

1
e2

8pe inte0
E d3r 1E d3r 2

3 (
m1 ,m2

cm1

† ~r1!cm2

† ~r2!cm2
~r2!cm1

~r1!

ur12r2u
, ~1!

wheree is the electron charge,e0 the dielectric vacuum per
mittivity, and e int the static, long wavelength dielectric con
stant of the intrinsic semiconductor. The creation and an
hilation operatorscm

† (r ) and cm(r ) create and annihilate
holes at positionr in eigenstates of the total angular mome
tum along thez axis Jz with eigenvalue\m (m5 3

2,
1
2,2

1
2,

2 3
2!. The matrixDm,m8 is given by10

D3/2,3/252
\2

2m0
F ~g122g2!

]2

]z2 1~g11g2!S ]2

]x2 1
]2

]y2D G ,
D1/2,1/252

\2

2m0
F ~g112g2!

]2

]z2 1~g12g2!S ]2

]x2 1
]2

]y2D G ,
D3/2,21/252

\2

2m0
A3F2g2S ]2

]x2 2
]2

]y2D12ig3

]

]x

]

]yG ,
D3/2,1/252

\2

m0
A3F2g3S ]

]x
2 i

]

]yD ]

]zG , ~2!

and D23/2,23/25D3/2,3/2, D21/2,21/25D1/2,1/2, D1/2,23/25

2D3/2,21/2, D3/2,23/25D1/2,21/250, Dm,m85Dm8,m
* .

Herem0 is the bare electron mass andg1, g2, andg3 are the
Luttinger parameters, which characterize the semiconduc
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The band warping is determined by the difference betw
the Luttinger parametersg2 andg3. In order to keep things
tractable, we need to neglect the band warping, i.e., we n
to setg25g3. A good choice is to set both parameters eq
to the following average:11

ḡ 5A2g2
213g3

2

5
. ~3!

Neglecting the band warping means that we are not o
dealing with a homogeneous, but also an isotropic hole g
We will see that the dependence of the exchange and
correlation energy on the light-hole/heavy-hole mass ratio
not very strong, giving ana posteriori justification for this
approximation. Without the interaction term in Eq.~1!, the
one-particle energies are easily found to be

El~k!5
\2

2m0
~g112ḡ !k2[

\2

2ml
k2,

Eh~k!5
\2

2m0
~g122ḡ !k2[

\2

2mh
k2, ~4!

defining the light- and heavy-hole effective massesml and
mh . We introduce a parameterw for the ratio between the
light- and heavy-hole Fermi wave vectors:

w[
kFl

kFh
5Aml

mh
. ~5!

Furthermore, we define an effective Bohr radiusa0, an ef-
fective RydbergR and a dimensionless Wigner-Seitz radi
r s by

a05
4pe inte0\2

mhe2 , ~6!

R5
\2

2mha0
2

, ~7!

r s5
1

S 4p

3 D 1/3

a0r1/3

, ~8!

with r the hole density. We have chosen to base these d
nitions on the heavy-hole mass.

The exchange energy of a hole gas with valence b
coupling was evaluated in Ref. 1. In effective Rydbergs,
result for the exchange energy per hole is

ex52z~w!
3

2S 9

4p2D 1/3 1

r s
R, ~9!

where the numerical functionz(w) is given by
z~w!5

w413w313w112
3

4
~12w2!2lnU11w

12wU1 3

4
~12w4!E

w

1

dx
1

x
lnU11x

12xU
4~11w3!4/3 . ~10!
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Hence, apart from this numerical function, the exchange
ergy is equal to that of an electron gas at the same den
For w50 and w51 we find z(0)51/413p2/64'0.7126,
z8(0)50 andz(1)5221/3'0.7937,z8(1)50, so this func-
tion is of the order of, but smaller than, unity and depen
rather weakly on the mass ratio.

In order to evaluate an accurate correlation energy,
apply the theory of Vashishta and Singwi,9 suitably adapted
to the case of a hole gas. Following general many-body
guments, as can, e.g., be found in Ref. 12, one can relate
exchange-correlation energy to the dielectric function. Fi
the sum of the exchange and correlation energy per ho
related to the average potential energyV(r s) per hole by

ec~r s!1ex~r s!5
1

r s
2E

0

r s
r s8V~r s8!drs8 . ~11!

The potential energy in its turn is related to the struct
factor S(q,r s) by

V~r s!5
2

p

1

a0r s

1

~11w3!1/3E
0

`

@S~q,r s!21#dqR,

~12!

with a05(4/9p)1/3'0.5211 and with the wave vectorq in
units of the heavy-hole Fermi wave vect
kFh5@3rp2/(11w3)#1/3. Finally, the structure factor is re
lated to the wave vector and frequency dependent diele
function e(q,v) by

S~q,r s!52
3q2

8a0r s

1

~11w3!4/3E
0

`

dvImS 1

e~q,v! D ,

5
3q2

8a0r s

1

~11w3!4/3E
0

`

dvF12
1

e~q,iv!G , ~13!

where the frequencyv is in units of \kFh
2 /2mh . Following

Vashishta and Singwi,9 we write the dielectric function as

e~q,v!511
Q0~q,v!

12G~q!Q0~q,v!
, ~14!

with

Q0~q,v!52f~q!x0~q,v!, ~15!

with f(q)5e2/e inte0q2 the Fourier transform of the Cou
lomb interaction andx0(q,v) the random phase approxima
tion ~RPA! of the polarizability. The functionG(q) in Eq.
~14! is the so-called local field correction, which in an a
proximate fashion takes into account the vertex correcti
to the RPA, i.e., the effects of the interaction between
cited holes and electrons, which are left out of the RPA. T
evaluation of the functionQ0(q,v) is again straightforward
but quite involved. The reason is that one has to accoun
four different kinds of excitations, namely, heavy-hole
heavy electron, heavy-hole–light electron, light-hole–hea
electron, and light-hole–light electron excitations~a heavy/
light electron is interpreted as a missing heavy/light ho!.
The result can be cast in the following form:
n-
ty.

s

e

r-
the
t,
is

e

ric

s
-
e

or

y

Q0~q,iv!52
2

p

a0r s

q2 ~11w3!1/3H f 1~q,v!1w3f 1S q

w
,v D

1
3

2
~12w!~12w2!2

3

16q

3E
0

1

dq8@ f 2
~1,1!~q,q8,v!2 f 2

~1,w!~q,q8,v!

2 f 2
~w,1!~q,q8,v!1 f 2

~w,w!~q,q8,v!#J , ~16!

with

f 1~q!512
1

2qS 11
v2

4q2 2
q2

4 D lnS v2/4q22~12q/2!2

v2/4q22~11q/2!2D
2

v

2qH arctanS q~21q!

v D1arctanS q~22q!

v D J ,

~17!

and

f 2
~a,b!~q,q8,v!

5S q8~a2q822q2!2

q841v2 2~2a22b2!b2q82
2b2q2

q8 D
3 lnS @~aq82q!22b2q82#21b4v2

@~aq81q!22b2q82#21b4v2D
2

2v

q8 S ~a2q822q2!2

q841v2 2b4D
3H arctanS b2v

~aq82q!22b2q82D
2arctanS b2v

~aq81q!22b2q82D J , ~18!

where bothq and q8 are in units ofkFh. Still following
Vashishta and Singwi, we take for the local field correcti
G(q)

G~q!5G~k/kFh!5S 11ar
]

]r D
3H 2

1

rE d3k8

~2p!3

k•k8

k82 FSS uk2k8u
kFh

,r sD21G J
5GI~q,r s!1aS 2

q

3

]

]q
GI~q,r s!2

r s

3

]

]r s
GI~q,r s! D ,

~19!

where

GI~q,r s!52
3

4E0

`

q82@S~q8,r s!21#

3S 11
q22q82

2qq8
lnUq1q8

q2q8
U Ddq8. ~20!
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TABLE I. Correlation energy, in effective Rydbergs per hole, of a hole gas for different values o
density parameterr s and light-hole/heavy-hole Fermi wave vector ratiosw. In each entry, the upper numbe
is the RPA result and the lower the result including local field corrections. For the electron gas, the
sponding values~upper and middle numbers! are taken from Ref. 9. The lower number in this case
calculated with the parametrization of Ref. 15 of the quantum Monte Carlo results of Ref. 14.

r s

1 2 3 4 5 6

0.0 20.095 20.071 20.058 20.051 20.045 20.041
20.091 20.067 20.055 20.047 20.042 20.038

w 0.5 20.164 20.124 20.104 20.091 20.081 20.074
20.154 20.115 20.095 20.082 20.073 20.066

1.0 20.225 20.168 20.140 20.121 20.109 20.098
20.207 20.152 20.123 20.105 20.093 20.083

e-gas 20.157 20.124 20.105 20.094 20.085 20.078
20.112 20.089 20.075 20.065 20.058 20.052
20.119 20.090 20.074 20.064 20.057 20.051
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The latter equality in Eq.~19! is obtained by realizing tha
q5k/kFh depends on the densityr throughkFh. With a50
in Eq. ~19! correspondence is obtained with the theory
Singwi et al.,13 in which the density correlation function i
the presence of an external weak field is approximated b
expression containing the equilibrium pair correlation fun
tion. With nonzeroa allowance is made for the change in th
pair correlation function in an external field through the de
sity derivative of the equilibrium pair correlation function
The parametera can be chosen such that the compressibi
sum rule is obeyed. This sum rule states that the compr
ibility as calculated from the density dependence of the to
energy should be equal to that following from the lar
wavelength and small frequency behavior of the dielec
function. For details we refer to Ref. 9. For the electron g
the valuea5 2

3 guarantees almost satisfaction of this sum r
in a very broad density range. For the hole gas, we h
fixed the value ofa for each mass ratio such that the com
pressibility sum rule is exactly obeyed atr s51. Again, the
sum rule is almost obeyed in a density range comparabl
that in Ref. 9. The electron gas correlation energies of Re
agree very well with the best known values, which are
quantum Monte Carlo results of Ceperley and Alder,14 as
parametrized by Perdew and Zunger15 ~see Table I, discusse
in the next section!. We expect the same degree of accura
in our case. The values ofa in our case vary slightly from
1.021 for w50 ~infinitesimally small light hole mass! to
1.164 for w51 ~equal masses!. Note that Eqs.~13!, ~14!,
~19!, and ~20! constitute a self-consistency problem, whi
in practice is solved by iteration, starting from the RPA r
sult with G(q)50. In all cases, sufficient convergence
obtained after not more than 12 iterations~for r s<10). In the
next section, we will present the results of our calculatio
and a parametrization.

III. RESULTS AND PARAMETRIZATION

The exchange energy of the hole gas is given by
closed expression Eq.~9!. The numerical function Eq.~10!
of the Fermi wave vector ratiow of light and heavy holes
appearing as a prefactor in this expression, can be pa
f

n
-

-

y
s-
l

c
s
e
e

to
9
e

y
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s

e

m-

etrized with an accuracy of better than 0.1% by the polyn
mial

z~w!'221/31~12w!2@w2~aw1b!

1c~4w313w212w11!#, ~21!

with a50.679, b520.0686, andc51/413p2/642221/3

'20.0811. The qualitative reason why the exchange ene
is smaller in magnitude than that for the electron g
@z(w) is smaller than unity# is the fact that, besides the sp
tial degrees of freedom, there are four instead of two inter
degrees of freedom. Consequently, the Pauli exclusion p
ciple has less of an effect. We note that for the — hypoth
cal — casew50, the exchange energy isnot equal to that of
an electron gas, despite the fact that there is just one kin
hole, the heavy ones. This is a consequence of the fact
the Coulomb interaction couples heavy and light holes~i.e.,
the Coulomb interaction is nondiagonal with respect to
hole character!.

In Table I we give the results for the correlation energy
the hole gas, for several values of the density parameter s
@see Eq.~8!# and light-hole/heavy-hole Fermi wave vect
ratiosw. The numerical errors are smaller than an effect
milli-Rydberg. The correlation energy is calculated with
RPA dielectric constant and with a dielectric constant inclu
ing the local field correction in the way described in t
previous section@Eq. ~14! without and with local field cor-
rectionG(q)#. For comparison, we also include the comp
rable results for the electron gas, taken from Ref. 9, and
quantum Monte Carlo results for the electron gas,14 as pa-
rametrized in Ref. 15. The inclusion of the local field corre
tion in the hole gas has less influence on the RPA res
than in the electron gas. The reason is the relatively lar
dielectric constant for the hole gas, caused by the lar
number of possibilities to create hole-electron pairs. T
larger dielectric constant leads to a better screening of
interaction between excited hole-electron pairs. As a con
quence, RPA, in which this interaction is neglected, becom
a better approximation. As can be understood without m
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effort, the RPA results for the electron gas are related
those for the hole gas withw51 by the transformation
ec

e-gas(r s)5ec
h-gas(224/3r s)/2 ~this is not true for the results

including local field corrections!. Again, we note that the
hole-gas results forw50 ~only heavy holes! are not equal to
the electron-gas results.
e

f

e

ta
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an

in

e
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ie
w

m

o The correlation energies in Table I, including the loc
field effects, can quite adequately be parametrized by

ec~w,r s!'a~w! f „b~w!r s…R, ~22!

with the function f (r s) fitting the correlation energy for
w50.5:
f ~r s!5H 20.135820.0179r s10.0752lnr s10.0024r slnr s ~r s<1!

1/~22.256823.5742Ar s20.7017r s! ~r s.1!.
~23!
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The functionsa(w) andb(w) were determined such that th
approximation Eq.~22! and its derivative with respect tor s
have the correct values atr s51. Fitting polynomials for
a(w) andb(w) are

a~w!'110.960~w20.5!20.112~w20.5!2

20.454~w20.5!312.106~w20.5!4, ~24!

b~w!'110.364~w20.5!11.056~w20.5!2

21.667~w20.5!311.865~w20.5!4. ~25!

The parametrizations Eqs.~22!, ~23!, ~24!, and ~25! repro-
duce the numbers in Table I, and calculated numbers
several intermediate values forw that are not included in this
table, with errors of at most one effective milli-Rydberg.

IV. APPLICATION TO A HOLE GAS
IN A Al xGa12xAs/GaAs/AlxGa12xAs

QUANTUM WELL

As a demonstration, we will apply our results for th
exchange-correlation energy to a hole gas in
Al xGa12x/GaAs/AlxGa12x quantum well, withx50.45 and
grown in the @001# direction. We will calculate the two-
dimensional band structure, and compare the BGR we ob
with an experimentally determined value. For the Lutting
parameters and intrinsic dielectric constants of GaAs
AlAs we takeg156.85,g252.10,g352.90, andg153.45,
g250.68, g351.29, ande int512.79 and 10.06,16 respec-
tively. We apply the virtual crystal approximation to obta
the corresponding values for Al0.45Ga0.55As. For the direct
band gaps we takeEg

GaAs51.519 eV ~Ref. 16! and
Eg

Al0.45Ga0.55As
52.176 eV.17 For the conduction and valenc

band offset we take 0.460 and 0.197 eV, respectively~ac-
cording to the 7:3 rule!. The precise values of the band ga
and offsets are not critical for our calculations.

The sample used in the experiments is a singlep-type
GaAs quantum well, confined between two Al0.45Ga0.55As
barriers. The sample is symmetrically doped in the barr
with Be and has a nominal well width of 95 Å. The lo
temperature ~1.4 K! carrier density, obtained from
Shubnikov–de Haas and Hall measurements, is 9.031015

m22. Experimentally, the BGR was determined from a co
or

a
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r
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rs
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parison between measured and calculated absorption e
gies at zero wave vector. Experimental absorption ener
are obtained from photo-luminescence excitation~PLE!
spectra, taken at 4.2 K, using perpendicularly incident lig
from a tunable Ti:sapphire laser. The laser power was k
below 0.5 W/cm2 to prevent significant changes in the ca
rier density or carrier temperature due to the exciting lig
The absorption energies were corrected for the binding e
gies of the screenedL0-E0 andH1-E1 excitons~see Fig. 2
for this terminology!, which were determined from magneto
PLE spectra by a method outlined in a forthcomi
publication.18 Excitonic effects on theH0-E0 transition can
be neglected. They only influence the intensity, but not
energy position of the emission peak related to this tran
tion, as was shown by several authors.4,19,20

In order to make a meaningful comparison with the c
culations, it is essential to know the real well width, whic
usually deviates somewhat from its nominal value. The
ergy difference between theH0-E0, L0-E0, and H1-E1
transitions strongly depends on the actual well width b
hardly on the BGR, since the BGR almost cancels in th
energy differences.21 We therefore calculated these diffe
ences as a function of the well width from a simple on
dimensional Schro¨dinger equation, including the band offse
and the Hartree potential, using as effective two-dimensio
binding masses m0 /(g122g2), m0 /(g112g2), and
0.0665m0 ~Ref. 16! for the heavy holes, light holes, and ele
trons, respectively. The electron binding energy was c
rected for nonparabolicity along the lines of Ref. 22. W
found that at a well width of 8862 Å, all calculated energy
differences were, within experimental errors, equal to th
experimental counterparts. In order to obtain the corr
value for theH0-E0 transition at zero wave vector, a BG
of 1762 meV is required. It is important to note that th
method for obtaining well widths has yielded results th
were in exact agreement with results from high-resolut
x-ray diffraction measurements for an empty ten-per
GaAs/AlxGa12xAs multiple-quantum-well sample.18 Unfor-
tunately, x-ray diffraction spectra are very insensitive to t
width of single quantum wells.

To calculate the two-dimensional band structure of
quantum well we solve the Luttinger-Kohn Hamiltonian f
the four envelope functionsf mki

(z) (m5 3
2,

1
2,2

1
2,2

3
2! related

to the top of the valence band region near the point ofG8
symmetry@cf. Eq. ~2!#:10
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HG8
5S Hh b c 0

b* Hl 0 c

c* 0 Hl 2b

0 c* 2b* Hh

D , ~26!

where

Hh52
1

2m0
pz~g122g2!pz1V~z!2

\2ki
2

2m0
~g11g2!,

Hl52
1

2m0
pz~g112g2!pz1V~z!2

\2ki
2

2m0
~g12g2!,

c5
\2

m0

A3

2
@g2~kx

22ky
2!22ig3kxky#,

b5
\

m0

A3

2
~kx2 iky!~g3pz1pzg3!. ~27!

The z axis is chosen perpendicular to the quantum w
pz5(\/ i )]/]z andki5(kx ,ky,0) is the wave vector paralle
to the quantum well. At the interfaces between GaAs a
Al xGa12xAs we require continuity of the envelope function
and continuity of the derivatives of the envelope functio
divided by the effective heavy-hole~for m56 3

2! or light-
hole mass~for m56 1

2!.
23 The potentialV(z) in Eq. ~27!

contains the valence band offset, the electrostatic Har
potentialVH(z) and the exchange-correlation potentialVxc .
In the local density approximation, the exchange-correlat
potential is related to the exchange-correlation ene
exc(r) per hole of a homogeneous hole gas of densityr by24

Vxc~z!52
d

dr
@rexc~r!#~z!

52exc„r~z!…2r~z!
d

dr
@exc~r!#~z!. ~28!

The minus sign in this equation is due to the fact that
Luttinger-Kohn Hamiltonian gives the energy of the valen
band electrons, which is minus the energy of the holes. In
exchange-correlation energy we have neglected the effec
band warping~see Sec. II! but we do not neglect the ban
warping in the Luttinger-Kohn Hamiltonian Eq.~26!. The
neglect of band warping in the calculation of the exchan
correlation potentials seems justified. The variations of
heavy-hole mass in GaAs in different directions are of
order of 20%,10 leading to variations in the light-hole/heavy
hole Fermi wave vector ratiow @Eq. ~5!# of the order of 10%.
This in turn leads to variations in the exchange-correlat
potential of only a few percent, due to the rather weak
pendence of the exchange-correlation potential onw. Ac-
cording to the criterion of Langreth and Mehl,25 the use of
the local density approximation for an electron gas in a qu
tum well is justified as long asr sa0!5d,26 with d the width
of the quantum well. We expect the range of validity of t
LDA for the hole gas to be even wider. Since the dielect
constant for the hole gas is larger than that for the elec
gas~see Sec. III!, the nonlocality of the self-energy, as, e.g
calculated in theGW approximation,3 is smaller, leading to a
l,

d

s

ee

n
y

e

e
of

-
e
e

n
-

-

c
n

better performance of the LDA.27 In our case we have
r s'5, a0'11 Å, andd'88 Å, so that the above criterion i
indeed satisfied. Nevertheless, the LDA is probably
weakest point in our calculation and could, with correctio
of the order ofr sa0/5d, lead to errors of the order of 10%
which is the size of error we observe~see further on!. The
agreement between the theoretical results of the Vashis
Singwi theory and the quantum Monte Carlo results for
electron gas forr s'5 is very good~deviations of the order
of 2%, see Table I! and we expect the same to be true for t
hole gas. Finally, because of the roughlyr1/3 dependence of
the BGR on the density, the well width is not a critical p
rameter in the calculation of the theoretical BGR. The w
width we adopted for those calculations is 88 Å.

Reboredo and Proetto, in dealing with a two-dimensio
hole gas in acceptord-doped GaAs,7 construct a LDA
exchange-correlation potential by making an analogy w
the spin-density functional formalism.28 Instead of taking the
sameV(z) in the diagonal elementsHh andHl @Eqs.~27!#,
they take different potentialsVh(z) and Vl(z), depending
only on the local ‘‘heavy-hole’’ and ‘‘light-hole density,’’
respectively. These local ‘‘heavy- and light-hole densitie
are obtained from the envelope functionsf 6(3/2),ki

(z) and

f 6(1/2),ki
(z), respectively. However, no physical meanin

can be attached to these definitions. It is easy to verify t
taking, e.g., thex axis as quantization axis for the total a
gular momentum will change the densities defined in t
way. Hence, the approach of these authors is not invar
under a change of quantization axis. Sipahiet al., in dealing
with a similar system,8 use a complicated procedure to co
struct an exchange-correlation matrix. Their procedure d
have the above invariance property, but is, apart from th
ratherad hocand misses the essential physics involved.

In order to calculate the band gap renormalization,
also need the potential for the electrons. There is of cou
no exchange contribution to this potential, but there is a c
relation contribution. Again we apply the local density a
proximation. We proceed in the same way as in Ref. 2 a
approximate the potential of an electron in a homogene
hole gas by theGW self-energy.3 The differences with Ref. 2
is that we take into account the full energy dependence of
screened interactionW, instead of using a plasmon pol
model, and that we use the dielectric function of Sec.
including the local field correction, instead of the RPA d
electric function. We take an effective electron mass in Ga
of me50.0665m0.16 The resulting potential in GaAs ca
quite accurately~2.5% accuracy in the density range arou
r s55, which is relevant here! be reproduced by the expres
sion

Vc
e~r s!'2

1

CAr s@11Ars
1/41Brs

1/8#
R, ~29!

with A54.526,B51.956 andC50.273. The effective Ryd-
bergR and the density parameterr s are defined by Eqs.~7!
and~8!. The parametrization Eq.~29! is of the same kind as
that used by Bauer and Ando.4 The correlation potential Eq
~29! differs very little from the result of Abramet al..2 In the
Al xGa12xAs barriers of the well we also use the potent
Eq. ~29!. The error made by doing this is extremely sma
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3670 56P. A. BOBBERTet al.
because the band offset is very much larger than the pos
error in the electron correlation potential.

Another popular quantum well system is Ga0.47In 0.53As
between Al0.48In 0.52As barriers. Both materials are lattic
matched to InP. The electron correlation potential
Ga0.47In 0.53As was also calculated and fitted with the expre
sion Eq. ~29!. The fitting parameters areA54.382,
B51.956, andC50.300. For the effective masses we to
me50.043m0, mh50.581m0, ml50.053m0. These effective
masses were obtained by linear interpolation of the effec
masses of GaAs and InAs, obtained from the Luttinger
rameters of Ref. 16 and neglecting the band warping by
ing Eq. ~3!.

As usual, the eigenstates of the Hamiltonian Eq.~26!,
which depend in a self-consistent way on the density
hence on the~occupied! eigenstates themselves, are found
iteration. In Fig. 1 we give the self-consistent density a
total hole and electron potentials for the case without a
with inclusion of the exchange-correlation potential. The
clusion of the exchange-correlation potential leads to a c
siderable upward shift and a flattening of the hole potent
The hole density distribution changes only slightly. T
change in the electron potential has an opposite trend. In
2 we give the two-dimensional band structure of the
valence (G8) region and the lowest conduction subba
(G6) in the quantum well in the@110# and@100# direction for
the case without and with exchange-correlation poten
From this figure one can readily read off the BGR of 19
meV. We have also calculated the BGR neglecting the
lence coupling in the calculation of the exchange-correlat
potential of the holes and assuming all the holes to be he
However, we still used the Luttinger-Kohn Hamiltonian E
~26!. The corresponding correlation potential for the ele
trons is taken from Ref. 4. The result is a BGR of 21.8 me
We see that our correctly calculated exchange-correla
potentials yields a result which is closer to the experimen

FIG. 1. Self-consistent hole density distribution and hole a
electron potentials of a hole gas in a Al0.45Ga0.55As/GaAs/
Al 0.45Ga0.55As quantum well without~dashed! and with ~solid for
the case of holes and dash-dotted for the case of electrons! an
exchange-correlation potential. The potential is measured relativ
the Hartree potential in the middle of the well (z50). The band
edge energies in GaAs are subtracted. The total hole densi
931015 m22 and the width of the well is 88 Å.
le
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value of 1762 meV. It is not clear what the remaining sma
difference between our theoretical and experimental res
should be attributed to. One could think of corrections to
LDA or corrections to the exchange-correlation energy d
to the band warping. Corrections of only a few percent co
bring the theoretical value within the experimental unc
tainty range. However, these corrections are extremely d
cult to estimate.

Surprisingly good agreement between experimental
theoretical BGR inn- and p-doped AlxGa12xAs/GaAs/
Al xGa12xAs quantum wells was reported by Haackeet al.29

However, these authors obtained the BGR forp-doped wells
by interchanging the roles of holes and electrons in all th
calculations, i.e., they did not only neglect the effects
valence band coupling on the exchange-correlation po
tials, but did not even use the Luttinger-Kohn Hamiltoni
Eq. ~26!. Apparently, the errors made almost cancel and
final result is, fortuitously, rather close to the experimen
data.

Summarizing, we have evaluated and parametrized an
curate exchange-correlation energy for a hole gas, includ
the effects of valence band coupling, but excluding the ba
warping. Using the local density approximation to obtain t
exchange-correlation potential for holes, we calculated
band structure of a p-doped AlxGa12xAs/GaAs/
Al xGa12xAs quantum well. In addition, we constructed
correlation potential for electrons for this system. We obt
a band-gap renormalization which is in much better agr
ment with experiment than what is obtained if the valen
band coupling is omitted in the calculation of these pote
tials.

d

to

is

FIG. 2. Two-dimensional valence band structure in the@110#
and @100# directions of the hole gas in the AlxGa12xAs/GaAs/
Al xGa12xAs quantum well without~dashed! and with ~solid!
exchange-correlation potential. The corresponding quasi-Fermi
ergies are indicated by horizontal lines. Also the lowest conduc
subband for the two cases is plotted. The energy is measured
tive to the Hartree potential in the middle of the well and the ba
edge energies in GaAs are subtracted.
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