
PHYSICAL REVIEW B 15 AUGUST 1997-IVOLUME 56, NUMBER 7
Analytical asymptotic structure of the Kohn-Sham exchange potential at a metal surface
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In a recent paper we presented the analytical asymptotic structure of the Kohn-Sham exchange potential in
the classically forbidden region at a metal-vacuum interface. This result is valid for self-consistently deter-
mined orbitals of the semi-infinite jellium and structureless-pseudopotential models of a metal surface. In this
paper we provide the details of our derivation. The correctness of the analytical derivation is further substan-
tiated through numerical work.@S0163-1829~97!09231-X#
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In a recent paper,1 we presented theanalyticalasymptotic
structure of the exchange potentialnx(r ) component of the
Kohn-Sham2 ~KS! density-functional theory3 exchange-
correlation potentialnxc(r ) in the classically forbidden re
gion of a metal-vacuum interface. The potentialsnxc(r ) and
nx(r ) are defined as the functional derivativ
dExc

KS@r#/dr(r ) and dEx
KS@r#/dr(r ) of the KS theory

exchange-correlationExc
KS@r# and exchangeEx

KS@r# energy
functionals of the densityr~r !, respectively. The asymptoti
structure ofnx(r ), valid for the self-consistentorbitals of
both the semi-infinite jellium4,5 and
structureless-pseudopotential4,6 ~stabilized-jellium! models,
is image-potential-like of the form2aKS,x(b)/x, wherex is
the distance from the surface. The coefficientaKS,x(b) de-
pends upon the metal properties through the parameteb
5(W/eF)1/2, whereW is the surface-barrier height andeF

the Fermi energy. For metallic densities corresponding t
Wigner-Seitz radius ofr s52 – 6, the coefficientaKS,x(b)
varies from 0.195–0.274. Forb521/2, the coefficient
aKS,x(b) is exactly1

4, thereby leading to the classical imag
potential structure fornx(r ). The contrast of this result with
the work of others7–10 is discussed elsewhere.1,11 We present
in this paper only our derivation of the asymptotic structu
of the potentialnx(r ).

The relationship between density-functional theory a
many-body perturbation theory as established by Sham3,7 is
via the integral equation relatingnxc(r ) to the nonlocal
exchange-correlation componentSxc(r ,r 8;v) of the self-
energyS~r ,r 8;v!. This equation is

E dr 8nxc~r 8!E de Gs~r ,r 8;e!G~r 8,r ;e!

5E E dr 8dr 9E de Gs~r ,r 8;e!Sxc~r 8,r 9;e!G~r 9,r ,e!,

~1!

where G(r ,r 8;e) is the one-particle Green function an
Gs(r ,r 8;e) the KS Green function. From this equatio
Sham7 derived the asymptotic structure ofnxc(r ) to be
560163-1829/97/56~7!/3655~4!/$10.00
a

d

nxc~r !5
1

2Ck~r !
E dr 8Sxc~r ,r 8;eF!Ck~r 8!

1
1

2Ck* ~r !
E dr 8Ck* ~r 8!Sxc~r 8,r ;eF!, ~2!

where the electron is at the Fermi leveleF . The asymptotic
structure of the exchange componentnx(r ) is obtained by
substituting the self-energySx(r ,r 8)52gs(r ,r 8)/2ur2r 8u
into the above equation. HeregS(r ,r 8)52SkCk* (r )Ck(r 8)
is the idempotent density matrix constructed with the K
orbitalsCk(r ). The resulting expression is recognized to
the orbital-dependent potential12 nx,k(r ) defined as

nx,k~r !5E rx,k~r ,r 8!

ur2r 8u
dr 8, ~3!

due to the orbital-dependent Fermi holerx,k(r ,r 8) of
Hartree-Fock theory which in turn is defined as

rx,k~r ,r 8!5(
k8

Ck8
* ~r !Ck8~r 8!Ck~r 8!/Ck~r !. ~4!

For both jellium and structureless-pseudopotential mod
of a metal surface, there is translational symmetry in
plane parallel to the surface, and since the effective poten
in which the electrons move is local, the KS orbitals are
the form

Ck~r !5S 2

VD 1/2

eiki•xifk~x!, ~5!

where (ki ,xi) are the momentum and position vectors par
lel to the surface, and (k,x) the components perpendicular
it. The structure of the componentfk(x) of the orbitals for
the two models is the same in the asymptotic vacuum
metal bulk regions. It is only in the surface region that t
orbitalsfk(x) differ.

Employing the KS orbitals of Eq.~5!, Harbola and Sahni9

derived the expression for the orbital-dependent-poten
nx,1(z) corresponding to the Fermi-level electron with m
mentum perpendicular to the surface~in dimensionless vari-
ables!,
3655 © 1997 The American Physical Society
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nx,1~z!

~3kF/2p!
52

4

3f1~z!
E

2`

` dz8

uz2z8u
f1~z8!

3E
0

1

dk fk* ~z8!fk~z!~12e2luz2z8u!, ~6!

wherel5(12k2)1/2 andz5kFx. Noting that

12e2luz2z8u

uz2z8u
5E

0

l

dq e2quz2z8u, ~7!

the expression fornx,1(z) can be written in the following
form:

nx,1~z!

~3kF/2p!
52

2

3f1~z!
E

0

1

dk fk~z!E
0

l

dq J~q,z!, ~8!

where

J~q,z!52E
2`

`

dz8e2quz2z8ufk* ~z8!f1~z8!. ~9!

In order to make the derivation of the asymptotic struct
of nx(r ) accessible, we first derive the structure for the
bitals of the effective finite-linear-potential model.13 We then
prove that the result is equally valid for the KS orbitals of t
fully self-consistently determined effective potential. The o
bitals corresponding to the finite-linear-potential model a

fk~z!5sin@kz1d~k!#u~2z!1@Bk Ai ~zk!1Ck Bi~zk!#

3@u~z!2u~z2zb!#1Dk exp~2kkz!u~z2zb!,

~10!

where k5A2E, kk5A2(W2E), zk5zzF
21/32z0 , z0

5k2zF
2/3, F5(kF

2/2)/zF , zF5(kF
2/2)zb /W, E is the energy,

W the barrier height, and Ai(zk) and Bi(zk) the Airy func-
tions. The phase factord(k) and the coefficientsBk , Ck ,
and Dk are determined by the requirement of continuity
the wave function and its logarithmic derivative atz50 and
z5zb .

We first determineJ(q,z) of Eq. ~9! for z.0 for these
orbitals to obtain

J~q,z!5e2qzFq cosd21k2 sin d2

q21k2
2

2
q cosd11k1 sin d1

q21k1
2

12E
0

zb
dz8eqz8$Bk Ai ~zk8!1Ck Bi~zk8!%

3$B1 Ai ~z18!1C1 Bi~z18!%

1
2DkD1

kk1k12q
e2~kk1k12q!zbG

2
4qDkD1

~kk1k1!22q2 e2~kk1k1!z, ~11!

where k7517k and d75d(1)7d(k). In the asymptotic
largez region, the effective value ofq;1/z due to thee2qz
e
-

-

f

factor in J(q,z). Furthermore, sincek;1 for large z, the
effective value ofk2;1/z due to thee2kkz factor. Expand-
ing J(q,z) of Eq. ~11! in q we obtain for the asymptotic
region,

J~q,z!
z→`

;e2qzF q

q21k2
2 cosd21

k2

q21k2
2 sin d2G

1e2qzF2
sin d1

k1
2

q cosd1

k1
2 1

2DkD1

kk1k1

3e2~kk1k1!zb12E
0

zb
dz8$Bk Ai ~zk8!1Ck Bi~zk8!%

3$B1 Ai ~z18!1C1 Bi~z18!%G
2

4qDkD1

~kk1k1!2 e2~kk1k1!z. ~12!

Next consider the contribution ofJ(q,z) of Eq. ~12! to the
integral overq in Eq. ~8!. The last term of Eq.~12! is expo-
nentially small in the vacuum region and does not contribu
The contribution of the second set of terms is

12e2lz

z F2
sin d1

k1
1

2DkD1

kk1k1
e2~kk1k1!zb

12E
0

zb
dz8$ %$ %G1Fle2lz

z
10S 1

z2D G cosd1

k1
2 . ~13!

Now lz;k2
1/2z5(k2z)1/2z1/2@1 for largez sincek2;1/z.

Thus, the contribution of Eq.~13! is 0(1/z). The contribution
of the first term of Eq.~12! to the integral overq in Eq. ~8!,
with qz5u anda5k2z, is

cosd2E
0

`

du
ue2u

u21a2 1a sin d2E
0

`

du
e2u

u21a2 10S 1

zD .

~14!

We next consider the integral overk in Eq. ~8! and
rewrite it as (1/z)*0

`da. Since for large z, k;1, we
have kkz5k1z1ca where c51/k1 , so that fk(z)
;f1(z)exp(2ca). Substituting thisfk(z) into Eq. ~8! and
using the fact that cosd2;1 and sind2;0 for k;1, we
derive the expression fornx,1(z) to be

nx,1~z!;2
3kF

2p

2

3f1~z!
f1~z!

1

z E
0

`

da E
0

`

du
ue2ba2u

u21a2 ,

~15!

or equivalently

nx~x!52
aKS,x~b!

x
;

aKS,x~b!5
b221

2b2 F12
ln~b221!

p~b221!1/2G . ~16!

The above derivation also shows that, for the extended m
surface system for which the energy spectrum is continuo
to the leading order, the orbital-dependent potenti
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nx,k(r ) for electrons within a shell of thickness (1/z) about
the Fermi level are the same. Thus, their average taken
this shell, which is the exchange potential, is equivalen
leading order to the orbital-dependent potential for electr
at the Fermi level. In the case of discrete systems suc
atoms, it is of course more readily apparent that
asymptotic structure is due to the highest occupied orb
electrons.

To prove that the asymptotic structure of the Kohn-Sh
exchange potential Eq.~16! is valid for the self-consistently
determined effective potential, we divide thez axis into three
parts: z<2d, 2d<z<d, z>d, where d is an effective
width of the surface region. In the first region, which corr
sponds to the metal bulk, the potentialnxc(z) is constant.
Consequently, the orbitals are of the formfk(z)5sin@kx
1d(k)#, where thed(k) are the self-consistent phase shif
The contribution toJ(q,z) of Eq. ~9! from this region is then

J~q,z!52e2qzE
2`

d

dz8eqz8 sin@kz81d~k!#sin@z81d~1!#

5e2qze2qdFq cos~k2d2d2!2k2 sin~k2d2d2!

q21k2
2

2
q cos~k1d2d1!2k1 sin~k1d1d1!

q21k1
2 G . ~17!

Note that this contribution is the same as the correspond
terms of Eq.~11! except that they are modified by the fact
d. Now, due to screening, the surface region is small
comparison to the asymptotic electron position:d!z for
z→`. Furthermore, again the effective value ofq;1/z, so
that on expansion inq this contribution ofJ(q,z) is

J~q,z!5e2qz
q

q21k2
2 cosd2 , ~18!

which is the same result as derived previously@see Eq.~12!#.
Recall, that it is this term which leads to the coefficie
aKS,x(b).

In the region2d<z<d, the self-consistent orbitals will
of course, differ from those of the model effective potent
considered. However, the contribution from this region
J(q,z), which is

J~q,z!52E
2d

d

dz8e2quz2z8ufk~z8!f1~z8!, ~19!

will be similar to the second set of terms of Eq.~12!. Con-
sequently, its contribution tonx(z) is 0(1/z2).

In the regionz>d, the orbitals of the model potentia
assumed previously were exponential@see Eq.~10!#. If, how-
ever, we assume that the asymptotic structure of the effec
potential which is that ofnxc;21/4x, then the orbitals in
this region are of the form8 fk(z);znke2kkz. @For an elec-
tron at the Fermi levelnkF

51/(4kFAb221).# The expres-

sion for J(q,z) in this region is
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n
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J~q,z!

5E
d

`

dz8e2quz2z8ufk~z8!f1~z8! ~20!

;e2qzE
d

z

dz8eqz8~z8!nk1n1e2~kk1k1!z8

1eqzE
z

`

dz8e2qz8~z8!nk1n1e2~kk1k1!z8

5
e2qz$G~nk1n111!2G@nk1n111,~kk1k12q!z#%

~kk1k12q!nk1n111

2
e2qzg@nk1n111,~kk1k12q!d#

~kk1k12q!nk1n111

1
eqzG@nk1n111,~kk1k11q!z#

~kk1k11q!nk1n111 , ~21!

where

g~a,x!5E
0

x

e2tta21dt, G~a,x!5E
x

`

e2tta21dt, ~22!

are the incompleteg functions. Now14 G(a,x);xa21e2x as
x→`, so that

J~q,z!
z→`

5
e2qzG~nk1n111!

~kk1k12q!nk1n1112
2qznk1n1

~kk1k1!22q2 e2~kk1k1!z

2
e2qzg@nk1n111,~kk1k12q!d#

~kk1k12q!nk1n111 . ~23!

@See Eq.~11! for a comparison with the corresponding term
of the finite-linear-potential model.# The first and third terms
of Eq. ~23! give a 1/z2 contribution tonx(z). The second
term has the functional dependence onz asznk1n1e2(kk1k1)z

instead ofe2(kk1k1)z of the model potential. The contribu
tion of this term asymptotically tonx(z) vanishes.

Therefore, the asymptotic structure of the KS exchan
potential for the self-consistently determined effective pot
tial is the same as Eq.~16! derived previously. We empha
size again that this asymptotic structure of the potentia
the vacuum region is governed and arises from the orbi
deep in the metal interior whose structure isfk(x)5sin@kx
1d(k)# irrespective of whether the effective potential at t
surface is modeled or determined self-consistently.

To demonstrate the correctness of our derivation, we n
that the KS exchange energyEx

KS@r# and potentialnx(r )
may be expressed in terms of the Slater potentialVx

S(r ) as

Ex
KS@r#5

1

2 E dr r~r !Vx
S~r !, ~24!

and

nx~r !5
1

2
Vx

S~r !1
1

2 E dr 8r~r 8!
dVx

S~r 8!

dr~r !
, ~25!
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respectively, whereVx
S(r ) is defined in terms of the Ferm

hole rx(r ,r 8)52ugs(r ,r 8)u2/2r(r ) as

Vx
S~r !5E rx~r ,r 8!

ur2r 8u
dr 8. ~26!

Now, in our previous work,1 we derived in a similar manne
the asymptotic structure ofVx

S(r ) in the vacuum region to be
2as(b)/x, where the Slater coefficient aS(b)
52aKS,x(b). Thus, the contribution of the second term
Eq. ~25! in the vacuum region is zero in the leading order
1/z, so that in this asymptotic region

nx~z!' 1
2 Vx

S~z!. ~27!

The correctness of the derivation can therefore be shown
comparison of the asymptotic structure ofVx

S(r ) in the
vacuum as determined by its definition of Eq.~26! with the
function 2aS(b)/x. An expression forVx

S(r ) in terms of
momentum space integrals has been derived11 and given in
Eqs. ~2!–~5! of Ref. 1. This enables the easy determinat

FIG. 1. Comparison of theexactSlater potentialVx
S(r ) as deter-

mined by its definition Eq.~26! with the analytical expression
2aS(b)/z for asymptotic positions of the electron in the vacuum
,

-
h

f

by

of Vx
S(r ) throughout space since the integrals are then o

the finite region from 0 to 1 in units normalized to the Fer
momentum. In Fig. 1 we plot for Li metal (r s53.24) the
Slater potentialVx

S(r ) outside the metal as determined by th
exactexpression as well as the function2as(b)/z. The cal-
culations for theexactresults are performed for the orbita
of the finite-linear-potential model for which the relationsh
betweenr s andb is determined via energy minimization i
the local-density approximation~see Appendix of Ref. 15!.
The same value ofb is employed in the analytical expressio
for as(b). It is evident that the two curves merge by abo
ten Fermi wavelengths from the surface, thereby confirm
the analytical results derived. It is interesting to note that
contrast the KS asymptotic function2aKS,x(b)/z merges
with an accurate approximate representation16 of nx(r ) by
about one Fermi wavelength from the surface.

A similar analysis can be performed17 for the asymptotic
structure of the Pauli and correlation-kinetic components
the Kohn-Sham exchange potentialnx(r ). The Pauli compo-
nent can be shown to decay asymptotically as2aW(b)/x
with the coefficientaW(b) being derived as

aW~b!5
b221

b2 F 2

pAb221
S 12

~b221!ln~b221!

b2 D
1

b222

b2 G . ~28!

From this expression it is evident that the decay coefficie
of the Kohn-Sham exchange potentialnx(r ) and its Pauli
component differ. Furthermore, it can be seen that
correlation-kinetic component then also decays asympt
cally asx21, and becomes more significant for low-dens
metals. This is in sharp contrast to the case of finite syste
such as atoms and molecules, where the asymptotic struc
of the entire exchange-correlation potential is due to
Pauli component.
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