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Analytical asymptotic structure of the Kohn-Sham exchange potential at a metal surface
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In a recent paper we presented the analytical asymptotic structure of the Kohn-Sham exchange potential in
the classically forbidden region at a metal-vacuum interface. This result is valid for self-consistently deter-
mined orbitals of the semi-infinite jellium and structureless-pseudopotential models of a metal surface. In this
paper we provide the details of our derivation. The correctness of the analytical derivation is further substan-
tiated through numerical workS0163-18207)09231-X

In a recent paperwe presented thanalytical asymptotic 1
structure of the exchange potentia)(r) component of the Vye(F)= 20(1) f dr' 2 ((r,r';eg) Wy(r’)
Kohn-Sham (KS) density-functional theory exchange-
correlation potentialv,(r) in the classically forbidden re- 1 R .
gion of a metal-vacuum interface. The potentiajg(r) and + 2W¥(r) dri Wi (r)Zxlr'.riee), (2
v(r) are defined as the functional derivatives . ) )
5EXKCS[p]/5p(r) and 5E;<S[p]/5p(r) of the KS theory where the electron is at the Fermi lewgl. The asymptotic
exchange-correlatioEXS p] and exchang&“S[p] energy structure of the exchange Compolner;’(r) is o,btained ,by
functionals of the density(r), respectively. The asymptotic substituting the self-energR,(r,r')=—yy(r,r)/2r-r’|

H H ry — * ’
structure ofw,(r), valid for the self-consistenbrbitals of into the above equation. Hergs(r,r') =23, W ()W (r’')
both the semi-infinite jellium®® and 'S the idempotent density matrix constructed with the KS

§tr'uctureIess—pgequpotenii‘éI (stabilized-jellium models, fhrg't;fiif_géb;?feﬁsgcl,ttlgﬁﬁ%ﬁrf(f'%nef'i?];ffggn'Zed to be

is image-potential-like of the form ays «(B)/x, wherex is '

the distance from the surface. The coefficient x(5) de-

pends upon the metal properties through the paramg@ter Vx,k(r):f

=(W/eg)2 whereW is the surface-barrier height ang

the Fermi energy. For metallic densities corresponding to gue to the orbital-dependent Fermi hojg ,(r,r’) of

Wigner-Seitz radius of ;=2-6, the coefficientays y(/3) Hartree-Fock theory which in turn is defined as

varies from 0.195-0.274. Fop=2%2 the coefficient

axsx(B) is exactly, thereby leading to the classical image- pxyk(r,r’):E \P:,(r)\lfk/(r’)\lfk(r’)/\Pk(r). 4

potential structure fow,(r). The contrast of this result with k'

the work of other§'%is discussed elsewheté! We present

in this paper only our derivation of the asymptotic structure For both jellium and structureless-pseudopotential models

of the potentialv,(r). of a metal surface, there is translational symmetry in the
The relationship between density-functional theory andplane parallel to the surface, and since the effective potential

many-body perturbation theory as established by SHamn  in which the electrons move is local, the KS orbitals are of

via the integral equation relating,.(r) to the nonlocal the form

exchange-correlation componelt(r,r’;w) of the self- 12

energy>(r,r';w). This equation is ‘l’k(f)=(v) ek Xig(x), (5)

pX,k(rir,)

T o

where ;,X;) are the momentum and position vectors paral-
f dr'ch(f')f de Gy(r,r';e)G(r',r;e) lel to the surface, andk(x) the components perpendicular to
it. The structure of the componewi(x) of the orbitals for
the two models is the same in the asymptotic vacuum and
:f f dr’dr”f de Gy(r.r';€)2,(r',r";€)G(r".,r,€),  metal bulk regions. It is only in the surface region that the
orbitals ¢, (x) differ.
1) Employing the KS orbitals of Eq5), Harbola and Sahti
derived the expression for the orbital-dependent-potential
where G(r,r';€) is the one-particle Green function and v, ,(z) corresponding to the Fermi-level electron with mo-
Gq(r,r';e) the KS Green function. From this equation mentum perpendicular to the surfa@e dimensionless vari-
Shanf derived the asymptotic structure of,(r) to be ables,

0163-1829/97/5@)/36554)/$10.00 56 3655 © 1997 The American Physical Society



3656 BRIEF REPORTS 56

vy 1(2) 4 w dz factor in J(q,z). Furthermore, sinc&k~1 for large z, the
' =- T $1(2) effective value ofk_~1/z due to thee™ “¥* factor. Expand-
3kg/2 3 —w |2 . . . .
(3ke/2m) $1(2) l2=2 ing J(q,2) of Eq. (11) in g we obtain for the asymptotic
1 , region,
xf dk ¢ () p(2)(1—e M= 7]), (6)
0 k_
~ @ 47 + —— gj
where\ =(1—k?)¥2 andz=kgx. Noting that Jﬁi’f) © q’+k? coso- q’+k? sin o-
1—e*x\ffz | _ fxdq e—q\z—Z'l, ) a7 sind, qcosd, N 2DD
|Z_Z | 0 k+ ki Kk+ K1
the expression fow, ;(z) can be written in the following 2
form: xertnr 2 | “dz (B, Al +Cy Bi(Z)
0
o2 = [as@ [daxan, ®
=- k(Z q q.2),
(Bel2m)  36:(2) Jo 0 X{B1 A(£))+Cy Bi(zi)}}
where
49D\D,
> , - ——— g (ktK)Z, 12
J(q,z)=2f dz’e W= 2lgx (2 ) py(2). (9 (rit K1) (12

Next consider the contribution af(q,z) of Eq. (12) to the
In order to make the derivation of the asymptotic structurgntegral overq in Eqg. (8). The last term of Eq(12) is expo-
of v,(r) accessible, we first derive the structure for the or-nentially small in the vacuum region and does not contribute.
bitals of the effective finite-linear-potential modéWe then ~ The contribution of the second set of terms is
prove that the result is equally valid for the KS orbitals of the NS
fully self-consistently determined effective potential. The or-1—€

_Sin o N 2DD o (ki k1)25

bitals corresponding to the finite-linear-potential model are z k, Kt Ky
=i - i i z e M 1\] cosé
¢x(2)=sirlkz+ 5(k)]6(—2)+[By Ai(£0)+ Cic Bi(Z)] v [Pazg ]+ S L
0 V4 22 ki

X[0(z) — 60(z—z,) ]+ Dy exp — k¢z) 0(2—zp,),
100 Now )z~ kY%z=(k_z)Y%2?>1 for largez sincek_~1/z.
B Thus, the contribution of Eq13) is 0(1/4z). The contribution

where k=\2E, x=V2(W-E), &=2%"~%o, {o  of the first term of Eq(12) to the integral oveq in Eq. (8),
=k?z2®, F=(K/2)/zr, ze=(KEI2)z,/W, E is the energy, with qz=u anda=k_z, is
W the barrier height, and A{{) and Bi(Z,) the Airy func-
tions. The phase factof(k) and the coefficient8,, Cy, s °°d ue ! s wd e ! 1
and D, are determined by the requirement of continuity of coSo- 0 u ul+a? tasino- 0 u u2+a? +0 7]

the wave function and its logarithmic derivativezat 0 and (14)
= Zb .

We first determinel(q,z) of Eq. (9) for z>0 for these We next consider the integral ovéde in Eq. (8 and

orbitals to obtain rewrite it as (1Z)f,da. Since for largez, k~1, we

_ have kyz=«kq,z+ca where c=1/k;, so that ¢.(2)

3(q,2)=e" g cosd_+k_ sing_ ~ ¢1(z)exp(—ca). Substituting this¢,(z) into Eq. (8) and

' o>+k? using the fact that co§_~1 and sins_~0 for k~1, we

) derive the expression far, ;(z) to be
qcoséd,+k, sinéd,

q2+ki 3 E 2 1 Jocd ood Ue_ba—u
ve(2)~ 27 361(2) $1(2) - e T A
+2J "dz 6% (B, Ai(£})+Ci Bi(Z)} o
0

or equivalently
x{By Ai({})+Cy Bi({])} agsx(B)
2D,D, vy(X)=— X ;

— - e (trma)zp
Kt k1—(

2—-1 In(B%—1)
aKS,x(,B):IBZIBZ [ _W(Bf—l)llz

The above derivation also shows that, for the extended metal
wherek-=15k and 6-=46(1)F 6(k). In the asymptotic surface system for which the energy spectrum is continuous,
large z region, the effective value af~ 1/z due to thee™%*  to the leading order, the orbital-dependent potentials

4qDyD, . (16)

o TTRmL A (kktkyzZ 11
(Kt K1)*—0° © ' a9
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vy k(1) for electrons within a shell of thickness g)l/about  J(q,z)
the Fermi level are the same. Thus, their average taken over
this shell, which is the exchange potential, is equivalent in % ,
leading order to the orbital-dependent potential for electrons = Jd dz'e = Zlgy(2) ¢1(2') (20)
at the Fermi level. In the case of discrete systems such as
atoms, it is of course more readily apparent that the
asymptotic structure is due to the highest occupied orbital Ne—quZdZ,eqz/(Z/)Vk+V1e—(Kk+Kl>z/
electrons. d

To prove that the asymptotic structure of the Kohn-Sham .
exchange potential E¢16) is valid for the self-consistently _l_eqzj dz e 97 (2 )"t g (kict k)7’
determined effective potential, we divide thexis into three z
parts: z<—d, —d<z=<d, z=d, whered is an effective _
width of the surface region. In the first region, which corre- _ & "L (Mt w1+ D)~ Tt vyt L(xt k12— )2}
sponds to the metal bulk, the potentia)(z) is constant. (Kt kq— )"k ratt
Consequently, the orbitals are of the forgh)(z)=sinkx
+8(K)], where thes(k) are the self-consistent phase shifts.
The contribution tal(q,z) of Eq. (9) from this region is then (kkt Ky—

eV [ v+ v+ 1(k+ K1+ 9)Z]

e %y vt v+ (Kt k1 —q)d]
- q)vk+vl+1

d vet+rvy+1 ' (21)
J(q,z)=2e’qu’ dz e sikz + 8(k)sinz’ + 8(1)] (it rey Q)"
o where
~lgcogk_d—4_)—k_ sinfk_d—4_)

=e qze qd 5 5 X o0
q°+kZ y(a,x)zf e 't dt, F(a,x):j e 't dt, (22

0 X

q cogk,d—8.)—k, sin(k,d+3,)
- e . (A7 are the incomplete functions. Now* I'(a,x)~x*"le % as
+

X—o0, S0 that

Note that this contribution is the same as the corresponding . .
terms of Eq.(11) except that they are modified by the factor Jq.2)= e M(ytrn+l) 29z
d. Now, due to screening, the surface region is small in Zi’m (Kt k1— Q) "1 Y (ke +K1)°—q
comparison to the asymptotic electron positiah<z for

z—o. Furthermore, again the effective valuet 1/z, so e 9y p+ v+ 1 ke + k1 —q)d]
that on expansion i this contribution ofJ(q,z) is -

—(kgtK1)Z
2e (Kk K]_)

(it 1= ) Tt @3

[See Eq(11) for a comparison with the corresponding terms

cosé_, (18 of the finite-linear-potential modéIThe first and third terms
of Eq. (23) give a 1#? contribution tov,(z). The second
term has the functional dependencezmmsz’«* "1e~ (k" x1)2

- q
—aaz

which is the same result as derived previoUslye Eq(12)].  instead ofe™ (*k**UZ of the model potential. The contribu-
Recall, that it is this term which leads to the coefficienttion of this term asymptotically te,(z) vanishes.
aksx(B)- Therefore, the asymptotic structure of the KS exchange

In the region—d=<z=d, the self-consistent orbitals will, potential for the self-consistently determined effective poten-
of course, differ from those of the model effective potentialtial is the same as Eq16) derived previously. We empha-
considered. However, the contribution from this region tosize again that this asymptotic structure of the potential in
J(q,2), which is the vacuum region is governed and arises from the orbitals

deep in the metal interior whose structuredig(x) = sinkx
d +&(K)] irrespective of whether the effective potential at the
\](q,z)zzj dz'e—Q\Z—Z’|¢k(zf)¢l(z'), (19 surface is modeled or determined self-consistently.
—d To demonstrate the correctness of our derivation, we note
that the KS exchange energilfs[p] and potentialv,(r)
will be similar to the second set of terms of HEG2). Con- may be expressed in terms of the Slater potemﬁt) as
sequently, its contribution te,(z) is 0(142).

In the regionz=d, the orbitals of the model potential KS 1 s
assumed previously were exponenfisge Eq(10)]. If, how- Exlrl=5 f dr p(r)Vy(r), (24
ever, we assume that the asymptotic structure of the effective
potential which is that ofy,.~—1/4x, then the orbitals in and
this region are of the forfngy(z) ~z"e™“<. [For an elec-
tron at the Fermi IevebkF=1/(4kF JB%—1).] The expres-

sion forJ(q,2) in this region is

SVR(r')
dp(r)

1 1
nn=5 Vi +5 | drpar) (25)
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FIG. 1. Comparison of thexactSlater potentiavxs(r) as deter-
mined by its definition Eq.26) with the analytical expression
— ag(B)/z for asymptotic positions of the electron in the vacuum.

respectively, Where/f(r) is defined in terms of the Fermi
hole p,(r,r")=—|ys(r.,r')[?/2p(r) as

VS(I’) f Px(r r )

Now, in our previous work,we derived in a similar manner
the asymptotic structure o;ff(r) in the vacuum region to be
—a4(B)/x, where the Slater coefficient ag(B)

(26)
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of Vf(r) throughout space since the integrals are then over
the finite region from 0 to 1 in units normalized to the Fermi
momentum. In Fig. 1 we plot for Li metalr{=3.24) the
Slater potentian(r) outside the metal as determined by this
exactexpression as well as the functiena¢(8)/z. The cal-
culations for theexactresults are performed for the orbitals
of the finite-linear-potential model for which the relationship
betweenr and B8 is determined via energy minimization in
the local-density approximatiofsee Appendix of Ref. 15
The same value g8 is employed in the analytical expression
for ag(B). It is evident that the two curves merge by about
ten Fermi wavelengths from the surface, thereby confirming
the analytical results derived. It is interesting to note that in
contrast the KS asymptotic functiort axs(8)/z merges
with an accurate approximate representéﬁanf v,(r) by
about one Fermi wavelength from the surface.

A similar analysis can be performEdor the asymptotic
structure of the Pauli and correlation-kinetic components of
the Kohn-Sham exchange potentig(r). The Pauli compo-
nent can be shown to decay asymptotically-aa(8)/x
with the coefficientay,(B) being derived as

B*-1 (B=1)In(B*-1)
aw(B)= e (1_ 72
2_
+ Bﬂz (28

=2agsx(B). Thus, the contribution of the second term of From this expression it is evident that the decay coefficients

Eq. (25 in the vacuum region is zero in the leading order o
1/z, so that in this asymptotic region

v(2)~3V5(2). (27)

The correctness of the derivation can therefore be shown
comparison of the asymptotic structure W(r) in the
vacuum as determined by its definition of Eg6) with the
function — ag(B)/x. An expression foN;f‘(r) in terms of
momentum space integrals has been defivadd given in
Egs. (2)—(5) of Ref. 1. This enables the easy determinatio

fof the Kohn-Sham exchange potentia)(r) and its Pauli
component differ. Furthermore, it can be seen that the
correlation-kinetic component then also decays asymptoti-
cally asx~ 1, and becomes more significant for low-density

etals. This is in sharp contrast to the case of finite systems,

uch as atoms and molecules, where the asymptotic structure
of the entire exchange-correlation potential is due to the
Pauli component.
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