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Influence of dislocations in Thomson’s problem
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We investigate Thomson’s problem of charges on a sphere as an example of a system with complex
interactions. Assuming certain symmetries we can work with a larger number of charges than before. We found
that, when the number of charges is large enough, the lowest energy states are not those with the highest
symmetry. As predicted previously by Dodgson and Moore, the complex patterns in these states involve
dislocation defects which screen the strains of the 12 disclinations required to satisfy Euler’s theorem.
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I. INTRODUCTION

The properties of real systems are often determined b
large number of interacting entities. Progress in understa
ing such systems relies on the astute combination of ana
cal and numerical tools. This paper presents numerical s
ies on Thomson’s problem for numbers of particles mu
larger than have been studied in the past. Thomson’s p
lem is to find the lowest energy ofN Coulomb charges dis
tributed on the surface of a unit sphere. Although the pr
lem is simple to state, its solution is nontrivial, an
numerical means are required to treat the interplay of fr
tration with ordering.1–4 On a local scale, the charges a
best distributed as a triangular lattice with six neighbors
each charge. Over the whole sphere, however, Euler’s th
rem dictates that there must exist 12 disclinations—char
with only five nearest neighbors.

The problem of constructing a latticelike structure ove
spherical surface has attracted attention in other context
model with a spherical geometry of a two-dimensional el
tron system in a perpendicular magnetic field has been u
to study the quantum Hall effect5 and vortices in a thin-film
superconductor.6–8 The magnetic field is due to a Dira
monopole at the center of the sphere. Using numerical w
on this model for vortices, along with the continuum elast
ity theory of topological defects on a curved surface~see
Ref. 9!, it was claimed in Ref. 8 that including addition
defects to the necessary 12 disclinations could lower the
ergy of configurations on the sphere. These defects are
locations~essentially bound pairs of fivefold and sevenfo
disclinations! with a particular orientation. This improved o
the work of Ref. 7 where only the 12 disclinations we
included, with the result that the energy per particle o
lattice on a sphere was greater than for a flat plane eve
the thermodynamic limit ofN→`, because of the long rang
560163-1829/97/56~7!/3640~4!/$10.00
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strains associated with the disclinations. The inclusion of d
locations allows the same thermodynamic limit to be rec
ered, as they may screen these long range strains. The id
dislocations screening the strains due to curvature effec10

or to a disclination,11 has been discussed before.
The continuum elasticity theory allows the number of d

grees of freedom to be reduced from the total number
particles to the number of disclination and dislocation d
fects. Following Ref. 8, if we consider the 12 disclinations
be fixed at the corners of an icosahedron, the total ela
energyEtot of the system can be written as

Etot5E121NdEd1(
s51

12

(
d51

Nd

Esd1 (
d51

Nd

(
d8.d

Nd

Ed8d ,

whereE12 is the interaction and self-energy of the 12 disc
nations, Ed is the self-energy of a dislocation and th
disclination-dislocation and dislocation-dislocation pairwi
interactions are given byEsd and Ed8d respectively. These
energies vary in a nontrivial manner with the ratioR/ l 0
}N1/2, whereR is the radius of the sphere andl 0 is the mean
lattice spacing. Summing up the results of Ref. 8,Esd in-
creases more rapidly withN than the self-energy and th
dislocation-dislocation energy. Depending on the orientati
it may also be negative so that dislocations could lower
total energy of the system. The energy landscape of a si
dislocation has minima along the lines that join the disclin
tions.

The values ofN with the most stable ground states a
those which are compatible with icosahedral symmetry.7 The
structures of proteins~capsomeres! in the shells~capsids! of
spherical viruses are known to display icosahed
symmetry,12 and it was in this context that these compatib
numbers were predicted. Each possible structure is defi
by the translations along the triangular lattice vectors
tween each disclination (h f ,k f), which gives a ‘‘magic’’
number ofN510P f12 particles whereP5h21k21hk (h
3640 © 1997 The American Physical Society
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andk are integers without common factors,f is an integer,
and P f is the triangulation number denoted byT in the
literature!.13,14The same numbers and structures observe
nature~in particular,N572 and 132) were found in the nu
merical work of Ref. 7, and are also found in Thomson
problem.

As Thomson’s problem involves a simpler interacti
than the model of vortices over a sphere, we have chose
for numerical studies of ground states on a sphere with la
N. Both the numerical and analytical results of Ref. 8 su
gested that sizes withN of order 103 must be reached befor
the dislocations will be energetically favorable. This expla
why they have not been seen in previous work on Thomso
problem, which has concentrated on finding the ground st
for smaller system sizes to very high accuracy. We will n
be so concerned with locating the absolute ground state
rather we will look for the general features of the low ener
configurations, especially the influence of dislocations on
total energy.

II. NUMERICAL METHOD

To treat systems of charges withN;103, a different ap-
proach is developed from earlier work on Thomson’s pro
lem. The highest number used in this problem before w
N5200 using a genetic algorithm.4 To reduce the number o
degrees of freedom, we imposed certain symmetries on
system: fivefold rotational symmetry about a given axis a
a twofold rotational symmetry about a perpendicular a
~these are symmetries possessed by an icosahedron!. This
limitation to a reduced part of phase space is in part justi
by the fact that the 12 disclinations, with their strong rep
sions, will be most favorably situated at the corners of
icosahedron. Although the true ground state may be
cluded, this restriction still allows us a good view of th
interplay between dislocations and disclinations. To perfo
this restriction, we first keep two charges fixed on the po
of the sphere. We then impose the symmetries by plac
clusters of ten charges, represented by$u i ,f i%, at the polar
coordinates (u i ,f i1n2p/5) and (p2u i ,2f i1n2p/5) for
n50,1,2,3,4.

The energyET of the system is given by the relation

ET5Ep1(
i

Nc

Epi1(
i

Nc

Ei1(
i . j

Nc

Eji .

The first term is the potential energy of the two charges
the poles~always equal to1

2 for a unit sphere; the potentia
energy of two unit charges separated by a distanced is given
by 1/d), the first sum is the potential energy of each clus
with the poles, the second sum is the potential energy of
charges in the same cluster, and the last term is the energ
interaction of clusters with each other, whe
Nc5(N22)/10 is the number of clusters. This reduction
the degrees of freedom by approximately a factor of 10
lows Thomson’s problem to be tractable for thousands
charges.

It has been found numerically that the number of me
stable statesM increases withN as15

M'0.3823exp~0.0497N!,
in
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although this number may be reduced somewhat by the
strictions of symmetry we have imposed. As with the nu
ber of charges we are considering,M is extremely high, the
numerical optimization routine with arbitrary initial cond
tions will only find metastable states, and give little inform
tion on the properties of the ground state. To avoid use
searching of configuration space, we distribute the charge
some strategic initial configurations before allowing them
relax. These initial configurations fall into two classes: in t
first case we place the charges to form a regular triang
lattice around the disclinations; in the second case we per
some charges from a configuration in the first class, so a
induce the appearance of dislocations.

In the relaxation process we employ an algorithm ve
similar to that used by Erber and Hockney1 but we do not
simply move the charges in the direction of the electrosta
force. Instead each charge is moved tom new places around
the original position which lie on a cone of anglea whose
axis is the direction of the electrostatic force and the posit
with lowest energy is selected as the new position if its
ergy is lower than the original energy. If all of them places
have a higher energy than the original the charge is
moved. We usem56, having checked that the increase
this parameter does not change the results. When no cha
can be moved, the anglea is decreased and the process
repeated. The program finishes when the energy reduc
for every charge is less than a given number. Decreasing
size of that number increases the accuracy to which
knows the energy of the final state.

III. RESULTS

First, we have calculated the energy of the systems w
4002 and 5882 charges~which correspond toT5400 and
T5588) with full icosahedral symmetry~see Fig. 1 for the
case of 5882 charges!. We then perturbed the initial configu
ration by displacing some charges on the line that join t
disclinations. After relaxation, we found that the new sta
have less energy than those with full symmetry. We c

FIG. 1. 5882 charges with full icosahedral symmetry. The d
clinations, represented by larger spots, reside at the corners o
icosahedron. The energy isET517 049 766.73.
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observe the appearance of dislocations in Fig. 2. To un
stand what is happening, note that charges away from d
cations are in a less strained environment than in the cas
the icosahedral configuration. The disclination at the up
left side of Fig. 2 is one of the two fixed symmetry pol
mentioned in Sec. II and it is a center of fivefold rotation
symmetry. For this reason, the pattern of dislocations aro
it will always have a fivefold symmetry. The next five su
rounding disclinations~two of which can be seen clearly i
the figure! have not been imposed as symmetry axes, so
a different pattern of dislocations occurs around them:
interactions between dislocations disfavor five of such
jects being so close.

We have also calculated the energy forN52132 and
5792, with a special initial configuration. In this special co
figuration, we place the dislocations in a symmetric fashi
We put 5p (p an integer! dislocations around each disclina
tions on the lines that join disclinations~i.e., we put a total of
1235p dislocations, see Fig. 3! and let the system relax
With this initial configuration we obtain a new set o
pseudomagic numbers. We call them pseudomagic as
may not have ground states of lower energy than other n
bers, but they do have the possibility of arranging the dis
cations symmetrically. In Fig. 4 we show the final state o
tained after relaxation. We see that with these system s
the disclination-dislocation interaction energy is not clea
dominant and the repulsion between dislocations is la
enough to push the dislocations away from the line that jo
disclinations. While the system was relaxing the charge c
figuration was observed, and we could see how dislocat
moved over these lines. The reason that the final ener
seem to depend on the initial configurations lies in the di
culty of forming the energetically favorable dislocations o
of the regular lattice. The best we can do is to comp
energies between different final states with different numb
of dislocations.

The patterns formed by the dislocations may be comp
but the results predicted by Dodgson and Moore8 are seen to

FIG. 2. 5882 charges with dislocations. The dislocations
fivefold-sevenfold pairs and the sevenfold centers are represe
by the largest spots. The total energy is reduced
ET517 049 653.24.
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be emerging asN increases. With larger systems we susp
that the dislocation-disclination energy will dominate so th
the lines of dislocations will become straighter. We no
however, the possibility that a ‘‘cloud’’ of dislocations
rather than just five lines of these defects, is required aro
each disclination~see Fig. 7 of Ref. 11!. Larger simulations
may resolve which of these two possibilities occur.

IV. CONCLUSIONS

In this work, we found that the most symmetric states
not those with lowest energy in Thomson’s problem for lar
system sizes. This is because the introduction of additio
topological defects—dislocations—reduces the strain ene
away from the disclinations, and the interactions betwe
these defects allow for complex patterns. Our results sho
be valid for spherical systems with different interactions b
tween the particles. For example, if spherical viruses e

e
ted
o

FIG. 3. 5792 charges, initial symmetric configuration with d
locations.ET516 543 582.87.

FIG. 4. 5792 charges, final configuration. The more comp
arrangement of dislocations results in a lower total energy
ET516 530 072.09.
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with much larger numbers of protein units on the surfa
than has been found to date, similar patterns with dislo
tions should be present or the surface would be forced
deviate from that of a sphere. Dislocations in carbon na
tubes also play an important role as they determine t
radius and helicity, and therefore control the electrical a
mechanical properties of these new molecules.16,17
F.

A

e
a-
to
-
ir
d

ACKNOWLEDGMENTS

A.P.G. would like to acknowledge a grant and financ
support from the Direccio´n General de Investigacio´n Cientı́-
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3 A. Pérez-Garrido, M. Ortun˜o, E. Cuevas, and J. Ruiz, J. Phys.

29, 1973~1996!.
4 J. R. Morris, D. M. Deaven, and K. M. Ho, Phys. Rev. B53,

R1740~1996!.
5 F. D. M. Haldane, Phys. Rev. Lett.51, 605 ~1983!.
6 J. A. O’Neill and M. A. Moore, Phys. Rev. Lett.69, 2582~1992!;

Phys. Rev. B48, 374 ~1993!; H. H. Lee and M. A. Moore,ibid.
49, 9240~1995!.

7 M. J. W. Dodgson, J. Phys. A29, 2499~1996!.
8 M. J. W. Dodgson and M. A. Moore, Phys. Rev. B55, 3816
~1997!.
9 H. S. Seung and D. R. Nelson, Phys. Rev. A38, 1005~1988!.

10 S. Sachdev and D. R. Nelson, J. Phys. C17, 5473~1984!.
11 D. R. Nelson, Phys. Rev. B28, 5515~1983!.
12 C. J. Marzec and L. A. Day, Biophys. J.65, 2559 ~1993!, and

references therein.
13D. L. D. Caspar and A. Klug, Cold Spring Harbor Symp. Qua

Biol. 27, 1 ~1962!.
14 D. L. D. Caspar, Philos. Trans. R. Soc. London, Ser. A343, 133

~1993!.
15 T. Erber and G. M. Hockney, Phys. Rev. Lett.74, 1482~1995!.
16 S. Iijima, Nature~London! 354, 56 ~1991!.
17 B. I. Dunlap, Phys. Rev. B49, 5643~1994!.


