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Influence of dislocations in Thomson’s problem
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We investigate Thomson’s problem of charges on a sphere as an example of a system with complex
interactions. Assuming certain symmetries we can work with a larger number of charges than before. We found
that, when the number of charges is large enough, the lowest energy states are not those with the highest
symmetry. As predicted previously by Dodgson and Moore, the complex patterns in these states involve
dislocation defects which screen the strains of the 12 disclinations required to satisfy Euler's theorem.
[S0163-182697)03328-9

I. INTRODUCTION strains associated with the disclinations. The inclusion of dis-
locations allows the same thermodynamic limit to be recov-
The properties of real systems are often determined by &red, as they may screen these long range strains. The idea of
large number of interacting entities. Progress in understandlislocations screening the strains due to curvature eftécts,
ing such systems relies on the astute combination of analyt®" oa d|scl'|nat|or11, ha? peen discussed before.
cal and numerical tools. This paper presents numerical stud- The continuum elasticity theory allows the number of de-
ies on Thomson’s problem for numbers of particles muc rees of freedom to be redqceq frpm the tof[al number of
larger than have been studied in the past. Thomson's pro _artlcles to t.he numbe( of dlscl|nat|on and d'|slo'cat|'on de-
ects. Following Ref. 8, if we consider the 12 disclinations to

lem is to find the lowest energy &f Coulomb charges dis- o fived at the corners of an icosahedron, the total elastic
tributed on the surface of a unit sphere. Although the prOb'energyEtot of the system can be written as

lem is simple to state, its solution is nontrivial, and
numerical means are required to treat the interplay of frus-
tration with orderingt™* On a local scale, the charges are Etot= E12+ NgEq+ 21 le Esd+le > Egu.
best distributed as a triangular lattice with six neighbors to i Thd>d
each charge. Over the whole sphere, however, Euler's thedthereEy; is the interaction and self-energy of the 12 discli-
rem dictates that there must exist 12 disclinations—chargeRations, Eq is the self-energy of a dislocation and the
with only five nearest neighbors. disclination-dislocation and dislocation-dislocation pairwise
The problem of constructing a latticelike structure over alnteractions are given bisq and Eq/4 respectively. These
spherical surface has attracted attention in other contexts. AN€[gi€s vary in a nontrivial manner with the rafl,
model with a spherical geometry of a two-dimensional elecN "> whereR is the radius of the sphere ahgis the mean
tron system in a perpendicular magnetic field has been usdgttice spacing. Summing up the results of Ref.Bgy in-
to study the quantum Hall effécand vortices in a thin-film  creases more rapidly withi than the self-energy and the
superconductot-® The magnetic field is due to a Dirac q'frl.%i/ag?srg%gl?lcezt;ir\]/:l%r%%a?gigfoncﬂggn?ctgagrf;?vt:r“?hné
mono_pole at the center of the sphgre. Using r_lumerlcal W.ortgotal energy of the system. The energy landscape of a single
on this model for vortices, along with the continuum eI"J‘St'c'dislocation has minima along the lines that join the disclina-
ity theory of topological defects on a curved surfadeee .

; : : . : . ons.
Ref. 9, it was claimed in Ref. 8 that including additional ~ tha yalues ofN with the most stable ground states are

defects to the necessary 12 disclinations could lower the efpse which are compatible with icosahedral symmétie

ergy of configurations on the sphere. These defects are digyyctures of protein&capsomeresin the shells(capsids of
locations(essentially bound pairs of fivefold and sevenfold spherical viruses are known to display icosahedral
disclinationsg with a particular orientation. This improved on symmetry%z and it was in this context that these compatible
the work of Ref. 7 where only the 12 disclinations were numbers were predicted. Each possible structure is defined
included, with the result that the energy per particle of aby the translations along the triangular lattice vectors be-
lattice on a sphere was greater than for a flat plane even itween each disclinationh(,kf), which gives a “magic”

the thermodynamic limit ol — c, because of the long range number ofN=10Pf+2 particles wher®®=h?+k?+hk (h

12 Ny Ng Ng
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andk are integers without common factoffsjs an integer,
and Pf is the triangulation number denoted Hyin the
literature.*>* The same numbers and structures observed in
nature(in particular,N=72 and 132) were found in the nu-
merical work of Ref. 7, and are also found in Thomson’s

problem.

As Thomson’s problem involves a simpler interaction
than the model of vortices over a sphere, we have chosen it
for numerical studies of ground states on a sphere with large
N. Both the numerical and analytical results of Ref. 8 sug-
gested that sizes witN of order 16 must be reached before
the dislocations will be energetically favorable. This explains
why they have not been seen in previous work on Thomson’s
problem, which has concentrated on finding the ground states
for smaller system sizes to very high accuracy. We will not
be so concerned with locating the absolute ground state, but
rather we will look for the general features of the low energy
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configurations, especially the influence of dislocations on the

total energy.

IIl. NUMERICAL METHOD

To treat systems of charges wikh~ 103, a different ap-
proach is developed from earlier work on Thomson’s prob
lem. The highest number used in this problem before wa
N= 200 using a genetic algorithfriTo reduce the number of
degrees of freedom, we imposed certain symmetries on t
system: fivefold rotational symmetry about a given axis an

FIG. 1. 5882 charges with full icosahedral symmetry. The dis-

clinations, represented by larger spots, reside at the corners of an
icosahedron. The energy I5,=17 049 766.73.

although this number may be reduced somewhat by the re-
strictions of symmetry we have imposed. As with the num-
Per of charges we are considerind, is extremely high, the
numerical optimization routine with arbitrary initial condi-
&?ons will only find metastable states, and give little informa-

[

on on the properties of the ground state. To avoid useless

a twofold rotational symmetry about a perpendicular axisseching of configuration space, we distribute the charges in

(these are symmetries possessed by an icosahedrbis
limitation to a reduced part of phase space is in part justifie

ome strategic initial configurations before allowing them to
elax. These initial configurations fall into two classes: in the

by the fact that the 12 disclinations, with their strong repul—ﬁrst case we place the charges to form a regular triangular

sions, will be most favorably situated at the corners of al
icosahedron. Although the true ground state may be e
cluded, this restriction still allows us a good view of the

Nattice around the disclinations; in the second case we perturb
*Some charges from a configuration in the first class, so as to

induce the appearance of dislocations.

interplay between dislocations and disclinations. To perform |, the relaxation process we employ an algorithm very

this restriction, we first keep two charges fixed on the pole
of the sphere. We then impose the symmetries by placin
clusters of ten charges, represented{ By, ¢;}, at the polar
coordinates §;,¢;+n2x/5) and (m— 6;,— ¢; +n2=/5) for

n=0,1,2,3,4.

The energyE of the system is given by the relation

N¢ N
ET: Ep+z Epi+
|

C NC
Ei+> Ej.
i>]

Similar to that used by Erber and Hockddyut we do not
gimply move the charges in the direction of the electrostatic

force. Instead each charge is movedrtaew places around

the original position which lie on a cone of anglewhose

axis is the direction of the electrostatic force and the position
with lowest energy is selected as the new position if its en-
ergy is lower than the original energy. If all of time places

have a higher energy than the original the charge is not
moved. We usan=6, having checked that the increase of
this parameter does not change the results. When no charges

The first term is the potential energy of the two charge_s ortan be moved, the angle is decreased and the process is
the poles(always equal tc; for a unit sphere; the potential repeated. The program finishes when the energy reduction

energy of two unit charges separated by a distahisegiven

for every charge is less than a given number. Decreasing the

by 1/d), the first sum is the potential energy of each clustersize of that number increases the accuracy to which one
with the poles, the second sum is the potential energy of thknows the energy of the final state.
charges in the same cluster, and the last term is the energy of

interaction of clusters with each

N.=(N—2)/10 is the number of clusters. This reduction of

Ill. RESULTS

the degrees of freedom by approximately a factor of 10 al- First, we have calculated the energy of the systems with
lows Thomson’s problem to be tractable for thousands o#002 and 5882 charggsvhich correspond tdor =400 and

charges.

T=588) with full icosahedral symmetrisee Fig. 1 for the

It has been found numerically that the number of meta-case of 5882 charggsVe then perturbed the initial configu-

stable state®/ increases wittN as®

M=0.382< exp(0.049°N),

ration by displacing some charges on the line that join two
disclinations. After relaxation, we found that the new states
have less energy than those with full symmetry. We can
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FIG. 2. 5882 charges with dislocations. The dislocations are |G, 3. 5792 charges, initial symmetric configuration with dis-

fivefold-sevenfold pairs and the sevenfold centers are representggcations.E

The total energy is reduced to

spots.

the largest

by
Er

be emerging abl increases. With larger systems we suspect
that the dislocation-disclination energy will dominate so that

observe the appearance of dislocations in Fig. 2. To undethe lines of dislocations will become straighter. We note,

17 049 653.24.

stand what is happening, note that charges away from dislthowever, the possibility that a “cloud” of dislocations,
cations are in a less strained environment than in the case gither than just five lines of these defects, is required around
the icosahedral configuration. The disclination at the uppegach disclinatior(see Fig. 7 of Ref. 1)1 Larger simulations
left side of Fig. 2 is one of the two fixed symmetry poles may resolve which of these two possibilities occur.

Il and it is a center of fivefold rotational

symmetry. For this reason, the pattern of dislocations around
it will always have a fivefold symmetry. The next five sur-

rounding disclinationgtwo of which can be seen clearly in

mentioned in Sec.

IV. CONCLUSIONS

In this work, we found that the most symmetric states are

the figure have not been imposed as symmetry axes, so thdtot those with lowest energy in Thomson’s problem for large
a different pattern of dislocations occurs around them: théystem sizes. This is because the introduction of additional
interactions between dislocations disfavor five of such oblopological defects—dislocations—reduces the strain energy

away from the disclinations, and the interactions between
these defects allow for complex patterns. Our results should
-be valid for spherical systems with different interactions be-

jects being so close.

We have also calculated the energy fde=2132 and
5792, with a special initial configuration. In this special con

he particles. For example, if spherical viruses exist

figuration, we place the dislocations in a symmetric fashiontween t

We put 5 (p an integey dislocations around each disclina-
tions on the lines that join disclinatioffise., we put a total of

)3and let the system relax.
configuration we obtain a new set of

pseudomagic numbers. We call them pseudomagic as they
may not have ground states of lower energy than other num-
bers, but they do have the possibility of arranging the dislo-

see Fig

12X 5p dislocations

With this initial
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tained after relaxation. We see that with these system sizes,
the disclination-dislocation interaction energy is not clearly

dominant and the repulsion between dislocations is large
enough to push the dislocations away from the line that joins
disclinations. While the system was relaxing the charge con-
figuration was observed, and we could see how dislocations

cations symmetrically. In Fig. 4 we show the final state ob-
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moved over these lines. The reason that the final energies

seem to depend on the initial configurations lies in the diffi-
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energies between different final states with different numbers

of the regular lattice. The best we can do is to compare
of dislocations.

culty of forming the energetically favorable dislocations out

FIG. 4. 5792 charges, final configuration. The more complex

The patterns formed by the dislocations may be complexarran
but the results predicted by Dodgson and M8ane seento  E;

gement of dislocations results in a lower total energy of

16 530 072.09.
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