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Effect of Landau-level mixing for electrons in a random magnetic field
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An effective Hamiltonian approach is used to study the effect of Landau-level mixing on the energy
spectrum of electrons in a smooth but random magnetic fieldB(r ) with a finite uniform componentB0. It is
found that, as opposed to electrostatic disorder, the energy levels of localized electrons shiftupwardwith a rate
of orderO(B0

21) whenB0 is decreased, while the extended states remain static at the same order. Therefore,
there is no indication that the extended states will float out of the Fermi energy and induce a metal-insulator
transition as the magnetic disorder is increased. We also find that the Zeeman term may have a significant
effect on the spectral shift of low-lying Landau levels.@S0163-1829~97!03532-7#
o
e
b-
m
r

in
le
t
n

ro
hi

re

on
u
ic

al
g
a
ca
c-

a
or
th

ca

ei
as
it
d
er

za-

ndau
be
ro-
up

ally
its
a

s a
n

F

a
ell-

a
ex-
rela-
tic
-

ter
of

ex-
ose

this
ill
Recently, there is intensive interest in the problem of tw
dimensional electron gas in a static random magnetic fi
~RMF!. First, this problem is related to the localization pro
lem for the ‘‘composite fermions’’ in the fractional quantu
Hall effect.1 In the mean-field treatment, the composite fe
mions move in a weak effective magnetic field that conta
a random component induced by the inhomogeneous e
tron density. Second, the study of RMF may be applied
high-Tc superconductivity systems, where the RMF is co
sidered as a limiting case of the gauge field.2 Third, recent
experiments that measured transport properties of elect
in a static RMF also add considerable interest to t
subject.3

Most theoretical studies in the literature focused on f
electrons in a RMF with azero mean value. A central issue is
whether all the electrons are localized in such an envir
ment. The results are rather controversial. Analytically, d
to the zero average of the magnetic field, the field-theoret
description corresponds to a nonlinears model of the unitary
class without a topological term, which predicts that
states are localized,4 according to the conventional scalin
theory.5 However, Zhang and Arovas6 have suggested that
long-range logarithmic interaction between the topologi
densities~due to the local fluctuations of the Hall condu
tance! may lead to delocalization. The numerical works on
finite lattice only add more conflicting results. Some auth
claim that there may exist the mobility edge separating
localized states from the extended states;7,8 however, other
authors, while observing a strong enhancement of the lo
ization length, find no true transition.9,10 The controversy in
the numerical works arises from the interpretation of th
data. Because the localization length increases rapidly
function of energy when the band center is approached,
hard to distinguish whether the states are really extende
weakly localized with the localization length much long
than the sample size.
560163-1829/97/56~7!/3602~4!/$10.00
-
ld

-
s
c-
o
-

ns
s

e

-
e
al

l

l

s
e

l-

r
a

is
or

On the other hand, our understanding of electron locali
tion in a random electric potential is more complete.11 It is
known that there are extended states at the centers of La
bands in a strong uniform magnetic field. In order to
consistent with the conventional scaling theory for the ze
field case,5 it is argued that the extended states will float
in energy if the magnetic field strength is reduced~or equiva-
lently, if the strength of disorder is increased!,12 and there-
fore all the states below the Fermi energy are eventu
localized. Although this levitation scenario is appealing,
microscopic foundation is not clear. Recently, by using
simple perturbative approach, Haldane and Yang13 show that
the levitation of the extended states can be explained a
result of Landau-level mixing, thus support the levitatio
scenario.

Motivated by the work of Haldane and Yang,13 we study
the spectral shift of the two-dimensional electrons in a RM
B(r )5B01b(r ) when its spatial averageB0 is reduced. As
pointed out by Kalmeyeret al.8 ~see also Ref. 14!, when
B0Þ0 andb(r )!B0, the random fluctuation behaves like
random scalar potential. In this case, one recovers the w
studied problem of electrons in a random potential and
uniform magnetic field, thus it is expected that there are
tended states at the centers of Landau bands. If the cor
tion length of the disorder is much longer than the magne
length l 5A\/eB0, the motion of electrons can be decom
posed into a fast cyclotron motion and a slow guiding-cen
motion.10 The guiding centers move along the contours
b(r ) with the local drift velocity Vd5(ej2/2m)¹b3 ẑ,
wherej is the cyclotron radius andm is the electron mass.15

~See Fig. 1.! Around hills or valleys ofb(r ), the contours are
closed and the corresponding states are localized. The
tended states occur only at the percolation contour wh
energy is determined by the saddle points ofb(r ), similar to
the semiclassical theory for electrostatic disorder. Due to
similarity, Leeet al.10 propose that the extended states w
3602 © 1997 The American Physical Society
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56 3603BRIEF REPORTS
levitate in energy with decreasingB0, and hence all state
below the Fermi energy should be localized whenB050.
However, by using the same perturbative approach use
Ref. 13, we find that the leading term of the effective Ham
tonian will cause thelocalized states, rather than the ex-
tended states, to float up in energy asB0 decreases. Thus, th
levitation scenario of extended states in the RMF case hano
firm support, and, therefore, givesno implication to electron
localization in a RMF. Furthermore, we show that the Ze
man term may have a significant effect on the spectral s
of low-lying Landau levels.

For the two-dimensional electron gas in a RMF with
nonzeroaverage, the HamiltonianH is composed of three
parts,

H05
1

2m
~p1eA!2, ~1!

H15
e

2m
@~p1eA!•a1a•~p1eA!#, ~2!

H25
e2

2m
a2, ~3!

whereA anda are the vector potentials forB0ẑ andb(r ) ẑ,
respectively. Using the Coulomb gauge for the fluctuat
vector potential, we can write

a~r !5
1

A(
qÞ0

iq3 ẑ
b~q!

q2
eiq•r, ~4!

whereb(q) is the Fourier components ofb(r ), and~quasi-!
periodic boundary condition is imposed on the areaA that
contains an integer number of magnetic flux quanta. Fo
smooth and weak disorder, it is convenient to decompose
position of an electron into a fast cyclotron motionr2R and
a slow guiding-center motion R5(x2Py /eB0) x̂
1(y1Px /eB0) ŷ, where P5p1eA is the canonical mo-
mentum operator. It can be shown that the fast and the s
parts commute with each other and decouple nicely.16 The
velocity of the guiding center at thenth Landau level can be
obtained by the Heisenberg equation of motion. To low
order, the result is

FIG. 1. Schematic diagram of the guiding-center orbits of el
trons circling around the hill and valley of the random magne
field. Note that the sense of rotation is opposite for the two path
the figure.
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^nuRun&5

1

i\
^nu@R,H#un&.

e

mS n1
1

2D l 2^nu¹b3 ẑun&.

~5!

This form coincides with the classical expressi
(ej2/2m)¹b3 ẑ, since the cyclotron radiusj at the nth
Landau-level is given byA^nu(r2R)2un&5A2n11l .

In the presence of the random fieldb(r ), the Landau-level
index n is no longer a good quantum number and differe
levels couple with each other. If the magnetic fieldB0 is very
strong, we need only consider the projected Hamiltonian
the subspace of a given Landau level. However, in gene
~virtual! transitions between different Landau levels w
renormalize the potential seen by the electrons in this Lan
level. By the perturbative renormalization in terms of powe
of a, the effective Hamiltonian for electrons in thenth Lan-
dau band can be written as

^nuHeff
~n!~r !un&5S n1

1

2D\V1 (
k>1

^nuVk
~n!~r !un&, ~6!

where\V5\eB0 /m is the cyclotron energy andun& is the
eigenstate ofH0. The effective potential propotional toa is

^nuV1
~n!~r !un&5^nuH1un&, ~7!

and the correction that is quadratic ina is given by

^nuV2
~n!~r !un&5^nuH2un&1 (

n8Þn

^nuH1un8&^n8uH1un&
\V~n2n8!

.

~8!

To first order, a direct calculation yields8,14,17

V1
~n!~r !52

e\

ml 2

1

A(
qÞ0

b~q!

q2
g~n!~q!eiq•r, ~9!

where

g~n!~q!5

]

]l
Unn~ql!ul51

Unn~q!
, ~10!

in which Unn(q) is the diagonal part of
Unn8(q)5^nueiq•(r2R)un8&. For brevity, the projection by
un& and its adjoint will be neglected from now on. Bear
mind that the equality holds only in the projected subsp
of the nth Landau level. For the slowly varyingb(r ) ~com-
pared to the magnetic length!, only the smallq components
in Eq. ~9! make a significant contribution, hence one c
expandg(n)(q) into a power series inql . Up to the order of
(ql )4 for g(n)(q), V1

(n)(r ) can be written as18

V1
~n!~r !.S n1

1

2D\e

m
b~r !2

n~n11!

4

\e

m
l 2¹2b~r !.

~11!

Both terms in Eq.~11! lead to broadening of the Landa
levels: The first term lifts the energy degeneracy for el
trons drifting along different contours ofb(r ); the second
term gives a positive~negative! contribution to energy for
electrons drifting along the hills~valleys! of b(r ), which
have a negative~positive! curvature ofb(r ), thus broadening

-
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3604 56BRIEF REPORTS
the level further. However, neither gives a net shift to t
overall profile of the density of states.

By using the algebra ofP, the second term ofV2
(n)(r ) can

be expressed as

e2

ml 2

1

A2 (
qÞ0,q8Þ0

b~q!

q2

b~q8!

q82
f ~n!~q,q8!ei ~q1q8!•r, ~12!

where

f ~n!~q,q8!5
e2 i ẑ•q3q8l 2/2

Unn~q1q8!

3 (
n8Þn

]

]l
Unn8~ql!U

l51

]

]l
Un8n~q8l!U

l51

n2n8
.

~13!

The expansion off (n)(q,q8) in powers ofql is given by

f ~n!~q,q8!5
q•q8

2
l 22S n1

1

2Dq•q8

2
~q21q82!l 4

1O~q6l 6!. ~14!

The first term in Eq.~14! gives 2(e2/2m)a2 to V2
(n)(r ),

which is negative for all states and cancels the first term
Eq. ~8!. Thus, up to the order of (ql )4 for f (n)(q,q8),

V2
~n!~r !.

e2

mS n1
1

2D l 2a•¹b3 ẑ. ~15!

Notice that the effective potentialV2
(n)(r ) is not mani-

festly gauge invariant.19 However, this lack of gauge invari
ance does not appear in the energy expectation value o
electronic states. Under the semiclassical approximation
electrons circling a closed orbitC with a constant energyE,
the energy expectation value altered byV2

(n)(r ) is propor-
tional to the following integral:

^V2
~n!&}E d2rd@E~n!~r !2E#

e2

mS n1
1

2D l 2a•¹b3 ẑ

5 R
C

dl

u¹E~n!~r !u

e2

mS n1
1

2D l 2a•¹b3 ẑ.
1

B0
R
C
dl•a,

~16!

where we have used the fact that the local energy of
nth Landau band E(n)(r ).(n11/2)\V1(n
11/2)(\e/m)b(r ) @see Eqs.~6! and ~11!#, anddl is in the
direction of Vd . That is,^V2

(n)& is proportional to the mag
netic flux of b(r ) enclosed byC and ispositive for both of
the orbits circling the hill and the valley.~See Fig. 1.! Hence
^V2

(n)& is gauge invariant~as it should be! and gives anup-
ward shift in energy for the localized states. For the extend
states, the shift is determined by the saddle points
b(r ),10 where¹b(r )50. Therefore,V2

(n)(r ) vanishes~thus
also gauge invariant!, and the energy of the extended sta
remains static at this order.
n
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It is quite interesting to compare our result with that of t
electrostatic disorder case.13 For electrostatic disorder, it is
found that the energies of the localized states shift downw
and that of the extended states is static at orderO(B0

22).13

The downward movement is a manifestation of the gene
‘‘level-repulsion’’ effect at the second order perturbation.
the order ofO(B0

23), which is from the (ql )4 term of the
second order perturbation, the energy of the extended s
shifts upward in stronger disorder and this behavior supp
the levitation scenario12 to explain the metal-insulator trans
tion. However, the spectral shift in the RMF case is ve
different: the energies of the localized states shiftupward,
and that of the extended states remains static at the s
order. In a relative sense, the extended states move do
ward with respect to the other states. Therefore, it see
unlikely that the extended states will float out of the Fer
energy at strong disorder and induce a metal-insulator t
sition. It might appear that the result presented here con
dicts the generic level-repulsion effect, which would result
lowering of the levels~especially the lowest Landau level!.
This is not so. The level-repulsion effect due to the lev
mixing should come from the second term in Eq.~8!. As
indicated in Eq.~14!, the leading contribution2(e2/2m)a2

indeed contributes to downward movement. However, t
downward movement is canceled by the diamagnetic te
(e2/2m)a2 that comes from the first term in Eq.~8!. This
cancellation is unique in the magnetic disorder problem.

In the following, we would like to discuss briefly the in
fluence of the Zeeman term on the spectral shift. Besi
contributing a constant shift in energy,6(g/4)\V (g is the
electrong factor!, as it does for the electrostatic disord
problems, the Zeeman term adds ab(r )-dependent part
Hz52(g\e/4m)s3b(r ) to Eq. ~2!, wheres3 is the Pauli
matrix. Consequently, the inclusion of the Zeeman te
leads to the following changes in the perturbati
calculation:20 for the first order calculation, we get an ext
term 2(g\e/4m)s3b(r ) to V1

(n)(r ); while the additional
contribution toV2

(n)(r ) is given by

(
n8Þn

H ^nuH1un8&^n8uHzun&
\V~n2n8!

1H.c.J
1 (

n8Þn

^nuHzun8&^n8uHzun&
\V~n2n8!

. ~17!

A straightforward calculation shows that the first term in t
equation above contributes2(ge2/4m)s3a•¹b3 ẑ to Eq.
~15!; while the second term is of a higher order inql and
can be neglected. Note that, apart from a multiplicative c
stant, this term has the same form as the term in Eq.~15!.
Consequently, the conclusion that the extended states ar
shifted, because¹b(r )50 at the saddle points, remain
valid. Also note that the additional contribution is depende
on spin but independent ofn. Therefore, the spectrum ma
shift differently between low-lying states and higher leve
for Landau levels with (n11/2).g/4, the localized states
always move upward, but it may becomedownward for
spin-up electrons, if (n11/2),g/4. In particular, for spin-up
electrons at the lowest Landau level~LLL !, if g52, then the
b(r )-dependent effective potentials in Eqs.~11! and~15! are
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canceled by these extra terms due to the Zeeman term
fact, it is not difficult to prove that the cancellation is exact
all orders ofql in V1

(n)(r ) andV2
(n)(r ). This cancellation is

consistent with the Aharonov-Casher theorem,21 which states
that the LLL of spin-up electrons withg52 will not be
broadened by magnetic disorder, no matter how strong
disorder is.

Finally, some comments are in order: First, our res
seems to be against the proposal that all states below
Fermi energy are localized whenB050.4,9,10However, since
our perturbative approach is valid only for weakb(r ) ~com-
pared toB0), it is not sufficient to predict whether the ex
tended states will remain static whenB0→0 and become the
delocalized states suggested in Refs. 6–8. Therefore, to s
down the localization problem for theB050 case, an alter-
tt
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native approach that is applicable to theB0!1 limit is ur-
gently needed. Second, the calculation presented here
be related to the 1/3→1/2 transition of the quantum Hal
systems~i.e., the 1→0 transition of the composite fermions!
by tuning the external field at a given magnetic disorder —
the ubiquitous electrostatic disorder in real systems does
dominate the spectral shift. As mentioned above, depend
on the magnitude of theg factor, the Zeeman term may lea
to a different spectral shift between spin-up and spin-do
electrons. It would be interesting to observe this subtle
havior in future experiments.
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