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Quantitative theory of diffraction by carbon nanotubes
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Département de Physique, Faculte´s Universitaires Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium

~Received 15 April 1997!

A quantitative theory of the kinematical diffraction of a plane wave by a carbon nanotube is developed. The
formalism is based on the Cochran, Crick, and Vand theory of the diffraction by helical molecules. This leads
to a closed-form expression of the diffracted amplitude produced by a single-wall tubule of arbitrary helicity,
applicable to both X rays and high-energy electrons. The theory, which can be used to simulate the diffraction
pattern of any multilayer nanotube, is illustrated on the case of a crystalline rope of carbon nanotubes.
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The investigation of the diverse physical properties of c
bon nanotubes, as well as the prospect of their potential t
nological use are intense fields of current research.1,2 A com-
plete characterization of a multiwall nanotube would
achieved by sequencing the chiral vectors (L,M ) of the suc-
cessive layers, but determining these helical parameters
mains a challenge, even for single-wall tubules packed
crystalline ropes.3–5 High-resolution transmission electro
microscopy~TEM! is the most direct way of measuring th
geometrical parameters of a nanotube.6–9 However, only in
certain favorable circumstances can the helicities of the
bule layers be estimated by TEM,10 and this becomes almos
impossible with single-wall tubules.

Geometrical constructions in the reciprocal space sh
that the helicity of a single-wall nanotube can in principle
read directly from the diffraction pattern it produces.11,12 In
this geometrical interpretation, the presence or absenc
intensity in a given diffraction direction is discussed in term
of the corresponding pattern of a flat graphite network s
ably rolled up into a circular cylinder. The kinematic
theory of plane wave diffraction by a nanotube, which is t
subject of the present report, can be used to predict the
tive intensities of the diffraction spots, and this should c
tainly help with the interpretation of experimental data.

Given that a carbon nanotube can be constructed wi
finite set of helices, the diffraction patterns produced can
calculated13,14 by the application of the CCV theory deve
oped by Cochran, Crick, and Vand to account for the x-
pictures of biological helical molecules.15 The diffraction in-
tensities computed from a first implementation of th
theory14 for a seven-layer nanotube was found in good agr
ment with the observations.6 In the present paper the inten
sities of diffraction spots produced by a carbon nanotube
derived in a more complete formulation than in Ref. 1
Generalizations of the present formalism to BCN and me
dichalcogenides nanotubes16 are straightforward.

Most generally, a carbon nanotube is composed of sev
concentric, single-wall tubules whose radii increase by st
of 0.34 nm. The first Born approximation simply needs ad
ing the complex amplitudes of the waves scattered by
successive layers, and these are given by

S~kW !5 f ~kW !(
j

exp~ ikW•rW j !, ~1!
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wherekW is the wave-vector transfer,f (kW ) is the atomic form
factor of carbon, and the sum runs over the atomic coo
nates. The intensity of the wave diffracted in the directi
specified bykW is the square modulus ofS(kW ). It will prove
useful in the following to decomposekW into its components
kW' and kz , respectively, perpendicular and parallel to t
tubule axis, and specifying the azimuth anglefk of kW' in the
(x,y) plane.

A tubule is characterized by the two componentsL and
M of its wrapping vector on the honeycomb lattice, whe
L.0 and 2L/2<M<L.17 The (L,M ) tubule with M>0
~respectively,M,0) can be viewed as composed ofL ~re-
spectively,L2uM u) pairs of right-handed~respectively, left-
handed! helices which project along zig-zag carbon cha
on the planar development of the structure~see Fig. 1!. Let
us first consider the structure factor of a monoatomic, rig
handed helix as obtained from the CCV theory. The res
is18

S~kW !5 f ~kW !
2p

pz
(
n,m

Jn~k'r !ein~fk2f01p/2!eikzz0

3d~kz2n2p/P2m2p/pz!. ~2!

In Eq. ~2!, Jn is the cylindric Bessel function of ordern, r is
the tubule radius,f0 andz0 are the azimuth angle and axia
position of a reference site of the helix,pz is the distance
along z between two successive sites of the helix of whi
P is the pitch. These latter two quantities are related to
geometrical parametersC ~circumference 2pr ) anda ~chi-
ral angle indicated in Fig. 1! of the tubule through
P5C/tan(p/61a) and pz5acos(p/61a), with a the lat-
tice parameter of graphite.P andpz are always commensu
rate so thatn/P1m/pz5 l /T, with l an integer andT, the
least common multiple ofP andpz , is the true period of the
helix. As a result, the diffraction pattern of a single su
helix in the reciprocal space is composed of equidist
planes normal to thez axis:

S~kW !5 f ~kW !(
l

sl~kW !d~kz2 l2p/T!, ~3!

where
3571 © 1997 The American Physical Society
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sl~kW !5eil 2pz0 /T
2p

pz
(
m,n

Jn~k'r !ein~fk2f01p/2!

3dnT/P1mT/pz ,l . ~4!

The structure factor of the second helix that makes a
is obtained from Eq.~4! by translating the reference site fro
(f0 ,z0) to @f01(2p/C)dsina, z01dcosa], with d5a/A3
being the C-C nearest-neighbor distance. Still assum
M>0, the L pairs of helices which the (L,M ) tubule is
made from correspond to one another by application o
rotation Df5(2p/C)acosa and a translation
Dz52asina. Adding the structure factors of all these he
ces leads after some algebra to

sl~kW !5eil 2pz0 /T
2p

pz
(
m,n

Jn~k'r !ein~fk2f01p/2!dnT/P1mT/pz ,l

3~11ei2p$@n1~2L1M !m#3L%! (
j 50

L21

ei j 2p@~n1mM!/L#. ~5!

Clearly the last factor of this equation is zero, unle
n1mM5sL with s an integer. This condition combine
with l /T5n/P1m/pz implies l /T5s(L12M )/A3C
1m(2L1M )/A3C after P and pz have been replaced b
their expressions. From this,T can be set to the true Brava

FIG. 1. The zig-zag chain visualized by thicker lines in t
planar development~top! becomes a helix on the rolled-up structu
~bottom! illustrated here for the~10,4! tubule. The helix is decom-
posed into two monoatomic helices~open and black circles! and ten
pairs of such helices are used to construct the full structure of
nanotube.
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period of the tubule19 T5A3C/N with N 5 h.c.d.
(2L1M ,2M1L), and the layer-line indexl must satisfy the
selection rulel 5s(L12M )/N1m(2L1M )/N wheres and
m are two integers. The layer-line structure of the diffracti
pattern is the consequence of the honeycomb lattice havi
well-defined parameter in the direction parallel to the tub
axis. In the direction perpendicular to the axis, the latt
parameter seen by the electrons decreases from the c
towards the edges of the tubule, as a consequence of cu
ture. For these reasons, the diffraction spots are sharply
fined alongz but are elongated in the perpendicular dire
tion. The Jn(k'r ) Bessel function gives rise to a firs
maximum of intensity atk';n/r , followed by secondary
maxima with decreasing intensities away from the tub
axis.

The (L,M ) tubule with a negativeM is equivalent to the
(L1M ,2M ) one, except for the handedness which chan
from left to right. Exploiting this relation allows one to gen
eralize the above results to all cases. The amplitude along
l th layer line of the wave diffracted by a single-wa
(L,M ) tubule, as defined in Eq.~3!, is as follows:

sl~kW !5eil 2pz0 /T
4pC

A3a2(s,m
JsL82mM8~k'r !

3ei ~sL82mM8!~sfk2sf01p/2!~11ei ~2p/3! ~s12m!!

3ds~L812M8!/N1m~2L81M8!/N,l , ~6!

where L85L, M 85M , s511 when M>0, and
L85L1M , M 852M , s521 whenM,0, and

T5
A3C

N
, ~7!

N5 h.c.d.~2L81M 8,2M 81L8!, ~8!

C5aAL21M21LM . ~9!

The two terms in the factor (11ei2p(s12m)/3) in Eq. ~6!
come from the two carbons that compose the diatomic h
shown in Fig. 1. For a BN nanotube, one simply needs
multiply these two terms by the atomic factors of the B a
N atoms@and remove the prefactorf (kW ) from the front of the
Eq. ~3!#. This already shows that BN and C nanotubes ha
the same diffraction pattern, except for possible small va
tions of the intensities. Note that the small buckling of t
bonds predicted for BN nanotubes20 can be taken into ac
count by giving different radii to the B and N helices.

The diffraction pattern produced by an arbitrary collecti
of oriented single-wall tubules can be simulated on the co
puter by summing the amplitudesSI(kW ) of the individual
tubules (I 51•••N) multiplied by the phase factor
exp(ikW'•rWI) arising from the positions of their axes in th
(x,y) plane, and by giving appropriate values to the coor
nates of the origin atomrW0I of each tubule. The diffraction
intensity is the square of the modulus of the complex am
tude so obtained. This of course includes the case o
multilayer nanotube for which all therW I ’s take the same
value.
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FIG. 2. Diffraction intensities computed for
crystalline rope of 37 single-wall carbon nano
tubes~one nanotube surrounded by three shells
6, 12, and 18 nanotubes!. The intensities were
saturated so as to reveal weak features. All t
nanotubes in~a! were ~10,10! nonchiral tubules.
The rope~b! was a random mixture of 18~10,10!,
11 ~11,9!, and 8~12,8! tubules. In both cases, th
diffraction wave vector varied from 0~at the cen-
ter! to 7.0 Å21 along the N, S, W, and E direc
tions, with the S-N line parallel to the axis of th
nanotubes.
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As an application of this formalism, we have comput
the diffraction pattern produced by a close-packed array
37 single-wall nanotubes, for which we used the tw
dimensional lattice parameterah 5 1.695 nm measured re
cently in the ropes produced by laser ablation of graphi3

No coherence was assumed between the neighboring n
tubes: The coordinatesf0 andz0 of the reference atoms in
the tubules were chosen at random. The diffraction patte
shown in Fig. 2 were computed using the atomic form fac
of C for electrons given in the literature.21 The electron
beam, which we supposed much larger then the diameter~10
nm! of the rope, was taken normal to the nanotube ax
along a@100# direction of the rope. Figure 2~a! shows the
intensity obtained for a homogeneous system composed
clusively of ~10,10! nanotubes. The central, horizontal line
the l 50 layer line, dominated at the center by aJ0 Bessel
function. Above and below the central line are thel 561
layer lines, dominated byJ610 whose principal maxima are
positioned at 1 and 11 o’clock from the center of the ima
Next come thel 562 lines on the top and the bottom of th
image. In Fig. 2~b! the rope was a random mixture o
~10,10!, ~11,9!, and ~12,8! single-wall nanotubes, with ap
proximate proportions 5:3:2.5 The most important effect o
mixing the nanotubes is a somewhat diffuse structure of
layer lines which is due to the coexistence of three helicit

In order to compare the calculations with available x-r
diffraction ~XRD! data, the intensities were plotted again
the modulus of the exchanged wave vectork54psinu/l,
using the appropriate atomic factor21 of C. Figure 3 shows
the diffraction profiles scanned in the regions indicated
the vertical bars in Fig. 2 around~a! kz 5 0—the central-
layer line—and~b! kz52p/a—the first-layer line of the
~10,10! nanotubes. The diffraction intensity of the inhom
geneous rope has been represented with positive value
Fig. 3 where it is compared to that of the homogeneous r
represented with negative values. In both regions~a! and~b!,
there is not much difference between the two ropes, mea
that it would be hard to decide the actual composition of
rope from raw XRD profiles.

The dashed curves in Fig. 3 show the x-ray profile o
single ~11,9! nanotube~positive ordinates! and that of a
single~10,10! nanotube~negative ordinates! in the central~a!
region. By comparison, the diffraction profiles of the rop
are hatched by the rapidly oscillating structure factor of
two-dimensional close-packed array. With the Cu Ka wave-
length ~1.5406 Å! used in the calculations, and for the a
of
-

.
no-

ns
r

s,

x-

.

e
s.

t

y

in
e

ng
e

a

e

sumed@100# incidence direction, the rope has two inten
Bragg spots occuring in region~a! at k 5 0.43 and 3.00
Å 21. The first spot,~0,1!, is undoubtedly present in the ex
perimental XRD data and the second might mix with a bro
structure at 3.1 Å21 attributed to Co-Ni~100!.3 It is this

FIG. 3. Scan of the diffraction intensities in twokz interval
around~a! kz 5 0.0 and~b! kz 5 2.55 Å21 indicated by the vertical

bars between Fig. 2~a! and Fig. 2~b!, and plotted againstukW u. Nega-
tive ~respectively, positive! ordinates have been used for the ro
made of 37~10,10! nanotubes@respectively, the random mixing o
~10,10!, ~11,9!, and ~12,8! tubules#. The dashed curves show th
diffraction profile of a single~10,10! ~negative ordinates! and~11,9!
~positive ordinates! nanotube.
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latter Bragg spot of the rope,~5,23!, that is responsible for
the peaks atk 5 3 Å 21 in Fig. 3~a!. An isolated~10,10!
nanotube has more intensity there than the~11,9! or ~12,8!
chiral tubules because of positive interferences between
dominantJ0 Bessel function and the emergingJ20 function.
This explains why the peak at 3 Å21 is more intense for the
homogeneous rope than for the mixed system. Indeed
l 50 line of the chiral tubules is only composed ofJ0 ~at
least for any reasonablek). The J20 function arises in the
l 561 lines and yields the weak spots immediately abo
and below the central line in Fig. 2~b!. As a consequence
their intensities simply add together when scanning the
gion ~a!. By contrast, the positive interference realized in t
l 50 line of the armchair~10,10! nanotube yields an intensit
larger than the simple sum of the individual intensities set
by theJ0 andJ20 functions.
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To conclude, there are only weak differences between
diffraction pattern of an homogeneous rope of~10,10! single-
wall nanotubes and the one produced by mixing~10,10!,
~11,9! and ~12,8! tubules, which all have about the sam
diameter. Nevertheless, differences of that sort have b
emphasized by nanodiffraction experiments across a r
that probe small amount of nanotubes.5 The intensity of
Bragg spots probing the central-layer line neark 5 3 Å 21

could reveal the proportion of armchair nanotubes.

It is a pleasure to thank Professor S. Amelinckx and
Bernaerts for many discussions and for their constant inte
in this work. This work has been performed under the a
pices of the Belgian State Interuniversity Research Prog
on reduced dimensionality systems~PAI/IUAP No 4/10!.
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