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Violation of particle number conservation in the GW approximation
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We present a nontrivial model system of interacting electrons that can be solved analyticallyGiwthe
approximation. We obtain the particle number from @& Green’s function strictly analytically, and prove
that there is a genuine violation of particle number conservation if the self-energy is calculated non-self-
consistently from a zeroth order Green'’s function, as done in virtually all practical implementations. We also
show that a simple shift of the self-energy that partially restores self-consistency reduces the numerical
deviation significantly[S0163-18207)00931-4

INTRODUCTION of electrons contained in the system, a condition frequently
used to determine the numerical accuracy in practical imple-
Many-body perturbation theory for condensed-mattermentations. However, while the fully self-consiste@W

physics allows the Green’s function of a system of interactscheme is known to conserve the exact particle nurbes,
ing electrons to be formulated in a picture of independensame, while tacitly assumed, has never actually been proven
quasiparticles moving in an effective potential. The keyfor the approximation used in practice, in which the self-
quantity that incorporates the contributions of dynamic ex-energy is calculated from a zeroth order Green’s function.
change and correlation to this effective potential is the self\ymerical simulations appeared to corroborate this positive
energy operatol, which in general is both nonlocal and 555umption, with deviations below one percent fully within
energy dependent. It is itself a functional of the Green'sihe range expected due to systematic numerical errors, and
function that can formally be expressed through an infinitepis has already prompted occasional confirmative conjec-
series of Feynman diagrams. In practice, however, approxigres in the literatur& However, in this paper we shall show
mations for the functional form are required, of which the yha¢ ypon elimination of these errors, which arise from nu-
most 1popylar is theGW approximation introduced by erical integration, transformation to Fourier space with a
Hedin:" This approach replaces the infinite series of Feyntinite proadening of the quasiparticle peaks, alignment of the
man diagrams for the self-energy operator by a single Fockehemical potentials only within second order perturbation
like diagram that is the product of the Green's functlBn  theory, etc., there still remains a genuine albeit numerically
and the dynamically screened Coulomb interactdhence  sma|l violation of particle number conservation, as was pre-
the name of the scheme. Originally tBW approximation  yjously demonstrated by accurate molecular calculations for
was devised to be applied self-consistently on an equal foothe analogous scheme based on time-dependent Hartree-
ing with the Hartree and Hartree-Fock approximations, in the=gck rather than Hartree theory that is frequently employed
sense that the Green’s function used to generate the seffy quantum chemistri We also demonstrate that restoring a
energy be identical to that obtained from it, but the compu-egree of self-consistency by means of an appropriate shift
tational cost proved prohibitive. ThUBW self-energies are iy the zeroth order Green’s function, which in practice is
traditionally calculated from a zeroth order Hartree or LDA often omitted because of its negligible influence on the band
Green'’s function, although a small degree of self-consistencytrycture, further significantly reduces the deviation. The sig-
is sometimes introduced by rigidly shifting the zeroth ordernificance of this result is that it provides a way to minimize
Green’s function on the energy axis in such a way that itgne fundamental limit on the accuracy with which quantities

chemical potential agrees with that of BV Green's func-  sych as the charge density or the total energy can be calcu-
tion derived from it. Itis in this fashion that tf@W approxi-  |ated in theG W approximation.

mation has in the past been successfully applied to a wide

range of materials including semiconduct®rs,simple

metals? and transition metaSThe first fully self-consistent

GW calé:%nanons for model systems were reportc_—:‘d only DESCRIPTION OF MODEL SYSTEM

recently,"’ but these consistently showed an undesired loss

of structural features in the Green'’s function in disagreement For our proof we consider as an analytically solvable

with experiment counter-example a four-site Hubbard cluster with tetrahedral
As future GW calculations for realistic materials are symmetry, populated by two electrons. To the best of our

therefore unlikely to adopt a fully self-consistent approachknowledge this is in fact the first model system forwarded in

the question of particle number conservation, long since ghe literature for which the Green’s function and particle

subject of debate in this context, has gained renewed signifaumber in theGW approximation can be calculated strictly

cance. Since the imaginary part of the Green’s function isanalytically, without any numerical errors. Its significance

directly related to the density of states as well as to the realfor theoretical investigations therefore stretches beyond the

space charge density, it must integrate to the correct numbe@bjective of this paper, and for the benefit of the reader we
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will thus present all derivations in sufficient detail. The

i s
Hamiltonian is S (w)=5— 5 Gl (w— 0 )WEN w')el % do’
U 3eU? (R|0)(O|R")
- A - 1ot = - ’ T
H= (6 )2 NRrs thv CRO'CR UE nRTnRL 4 aRR + 87 w—7— €+|7]
(o
wherec},, andcg, are the creation and annihilation opera- + 87 1}21 (RI»)(vIR")
tors for an electron at siteR with spin o, and
NRy=Ck,Cr,. We sete=4t andt=1 while leaving the on- y 2 N 1 5
site interaction strength) variable. To construct th&W w—2—€t+in wtz—ign|’

self-energy we start from a zeroth order Green’s function in

the Hartree approximation, noting that the exchangewhere 5 denotes a positive infinitesimal. We have written
correlation potential in a corresponding density-functionals ¢V in such a way as to emphasize that it is diagonal in the
treatment is a mere constant due to spatial symmetries arglgenvectorgv) of the initial Hartree system. On the other
would not affect the following arguments. Spatial symme-hand, diagonalization of the full Hamiltonian including the
tries and degeneracy i also require a uniform fractional self-energy vyields the quasiparticle states of the interacting
site occupation of one half and accordingly a Hartree potenelectron system, so for our model the two are in fact identi-
tial of U/2 on all sites. Analytlc diagonalization of the Har- cal, although the corresponding energy eigenvalues are not.
tree 4<4 Hamiltonian matanRR, edgr' —t for each spin  In this way we can calculate the chemical potentiabf the
orientation then yields a nondegenerate ground state at zeiteracting electron system exactly from its true quasiparticle
energy and a threefold degenerate excited state at emergy properties. By definition the chemical potential is identical to
With the electrons in the ground stdi@) the zeroth order the energy eigenvalue of the highest occupied quasiparticle

Green’s function becomes state, which is zero for the original Hartree system, and at the
GW level is given implicitly through the self-energy correc-
(RIOXOIR") % (RIV)PIR') on,
Ghg (@)= . @

w—in ,,:1 w—€e+in
p=0+37Y(u—w). )

where we have omitted the spin index.denotes a positive

infinitesimal. Using the relatioR|0)(0|R")=1/4 for the  Here we have allowed for the possibility of using a self-

components of the ground-state vector we proceed to calcnergy derived from a zeroth order Green’s function whose

lating the polarization propagator in the random-phase apzpemical potential has been shifted yon the energy axis.
proximation(RPA), defined through

To simulate the effect of a self-consistent calculation we de-
. termine the shift by requiring the chemical potentials of the
| H il H ’
pRPA H 1\ ~H , shifted zeroth order Green’s function and B&V Green’s
(w)=—2-— (w+w e(w)do . . : ) ; . . .
Preo(©) 27Tf rre( JCril@) function obtained from it to be identical. While this equation
is usually solved within second order perturbation theory, the

3
:EZ (RIv)(v|R') 1 simple form of the self-energy for our mod@) allows us to
2= w—€etinp owte—in|’ derive the exact analytic solution
)
~ U 3eU?
including a factor 2 for the spin summation. The polarization T4 Bzzre) @)

propagator is diagonal in eigenvector space, and can thus be

analytically inverted to yield the screened interaction which correctly approaches zero ds—0. Accordingly we

solve Dyson’s equation
2;’,*((0)=U5RR,+UEH PR @) Wa, () ~
GW(w)=G"(0)+GNw)2Mw—w)GWY(w) (8

- U5RR’+ 2 (RIv)(vIR") in eigenvector space both for=0 andw as in Eq.(7), and
compare the results. In this diagonal form Dyson’s equation

v 1 B 1 7 is analytically solvable. For=0 the self-energys) contains
w—z+inp ot+tz—ip|’ one pole, which adds a satellite to the quasiparticle peak of

the Hartree Green'’s function and yields a quadratic equation
with z=[ e(e+U)]"2 A similar analytic expression for the for the positions of the poles d&¢"Y. Similarly the quasi-
screening in a related model system was previously given iparticle and satellite structure of the>0 matrix elements is
Ref. 11. The self-energy in th@ W approximation is a con- obtained from the zeroes of a third order polynomial, reflect-
volution of the zeroth order Green’s function and the RPAing the richer spectrum in the self-energy. TG&V Green’s
screened interaction, function therefore takes the analytic form
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GW ~
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where we have defined the symbols 195 ‘ ‘ o5
0.0 2.0 4.0 6.0 8.0
U U 2 Interaction strength U
Zte—o— o Ztetot o 3eU? FIG. 1. Analytically calculated particle number in t@&W ap-
Xl,ZZf ¥ > + 87 proximation for our two-electron model system as a function of the

(10 interaction strengtiJ. Applying a rigid shift to the zeroth order
Green’s function such as to align its chemical potential self-

together withy,=—(b/3)—2rcos@/3) andy,s=—(b/3)  consistently with that of th&W Green’s function significantly re-

+2rcod(mT#)/3] as well as the auxiliary quantities duces the violation of particle number conservation, but fails to

r=+[p[, é=arccos/r’), q=b3/27—bc/6+d/2, '€MOVe it completely.

p=(3c—b?)/9, and the polynomial coefficients

conservation in th&W approximation as usually applied. In

~ U absolute terms, however, we find that the discrepancy is
b=—-2e+tw+ 4’ (113 much reduced when the chemical potentials are aligned in
the prescribed way, and that it depends only very weakly on
U\ 3eU? the interaction strength up to high valuedbfFor a medium
c=—2z(z+ €)+E( €E-w— Z) T8z (11b correlation ofU=4 the numerical deviation amounts to an
underestimation of merely 0.21% of the true particle number.
_ U| (e-2)eU? A comparison of the vyeight factors &% with those qf
d=z(z+¢€)| e—w— Z) + —a (119 the exact Green’s function, calculated by numerical diago-
nalization of the Hamiltonian matrix, shows that in the ab-

sence of the self-consistency shift the main error inN
stems from a serious overestimation of the satellite spectrum,
RESULTS while the weight of the quasiparticle peak xt deviates
relatively little from the correct value up to high correlation
From the Green’s function in th& W approximation(9)  strength. When the self-consistency shift is applied the sat-
the particle number may be obtained by an analytic contoug|jites are also overestimated, although by a lesser amount.
integration along a path closed across the upper half plane, {§ this case, however, this is the result of a balanced weight
sample all occupied states below the chemical potential. By,ansfer from the quasiparticle peaks that has little influence
inspection we note that these are the stateg @ndy,. For 4 the integrated spectral weight and yields a total particle
the total particle number we thus obtain number in much better agreement with the correct value.

1 .
N=2; z—mJ G (w)e'*dw

_20xq—2z—¢€)  6(y1—Z—€)(y112) SUMMARY

X1— X2 (Yi=Y2)(Y1—Y3) '

(12 In summary, we have presented a two-electron model sys-

tem for which the particle number from the Green'’s function
including a factor 2 for spin summation. If the particle num- jn the G\W approximation can be derived strictly analytically,
ber in theGW approximation was conservel, would have  without any additional inaccuracies that have previously be-
to be a constant with a value of two. In particular, it would set numerical calculations. Through an analysis of this model
also have to be independent of the interaction stretfjth system we have demonstrated that there is a genuine viola-
which so far we have not specified, but an analysis of thgjon of particle number conservation in t&W approxima-
expression(12) confirms that this is not the case. In Fig. 1 tion as it is usually applied, i.e., with the self-energy calcu-
we show the calculated particle number as a functiolof |ated non-self-consistently from a zeroth order Green's
both with and without applying the shifb in the zeroth  function. However, we also find that the numerical deviation
order Green'’s function. In either case the growing deviatiorfrom the exact particle number can be kept low even for an
from the true value ab increases is clearly visible, evidence extremely strong correlation by introducing a small degree of
of a genuine and fundamental violation of particle numberself-consistency in the form of a simple rigid shift of the
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