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Magnetoplasmons in two-dimensional circular sheets of4He1 ions

P. L. Elliott, S. S. Nazin,* C. I. Pakes, L. Skrbek,† W. F. Vinen, and G. F. Cox
School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT, United Kingdom

~Received 27 March 1997!

We report the results of recent experiments on magnetoplasma modes in circular sheets of4He1 ions
trapped below the surface of superfluid helium at a low temperature. The modes we observe include bulk
modes, conventional edge modes, multipole edge modes, and extra satellites of unknown origin. The results are
compared with earlier observations of bulk and conventional edge modes. Theories of the modes are reviewed
and extended, and a detailed comparison with experiment is carried out.@S0163-1829~97!02630-1#
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I. INTRODUCTION

That a two-dimensional sheet of classical charged p
ticles can support plasma waves has been known for m
years. The form of the dispersion relation for plasma wa
propagation in an unbounded system of this type with c
stant equilibrium density depends on the screening ass
ated with any confining electrodes and is well understood
terms of a Drude model for the charged particle dynamics
a bounded system a discrete set of plasma modes exists
frequencies of which depend on the boundary conditio
~Throughout this paper we shall assume that the pla
modes are in the ‘‘collisionless limit’’, i.e., that the mod
frequency and the relaxation time associated with a fin
particle mobility satisfy the inequalityvt@1.! A reasonably
simple case is one in which the charged particles are c
fined to a circular disc of radiusR, situated midway between
closely spaced electrodes~spacing 2d; R@d!, with a guard
~‘‘wall’’ ! electrode concentric with the sheet and of rad
greater thanR, as shown in Fig. 1. The equilibrium numbe
density as a function of radius@n0(r )# is then approximately
constant except in a small region of widthd adjacent to the
edge of the disc~Fig. 1!. A qualitatively correct description
of most of the plasma modes can then be given on the b
of three assumptions: that the density profilen0(r ) is the step
function n0@12Q(r 2R)#, that perturbations in the densit
are related to those in the potential in the same way as is
case in an unbounded sheet of charge, and that the boun
of the disc remains fixed~‘‘rigid’’ boundary condition!.
However, a theoretical treatment that does not make th
assumptions is not straightforward, as we shall explain,
that a more exact description is harder to give.

The effect of a magnetic field (B), applied normal to the
plane of the disc, has turned out to be of considerable in
est. In a simplified treatment corresponding to that alre
described, the magnetoplasma modes have associated
them perturbations in the electrostatic potential in the pl
of the disc that have the form

f5fm,nJm~km,nr !exp$ i ~mu2vm,nt !%. ~1!

The allowed wave numberskm,n (n51,2,3,. . . ) aredeter-
mined by the rigid boundary condition at the edge of t
disc, which can be shown to read
560163-1829/97/56~6!/3447~10!/$10.00
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vkRJumu8 ~kR!1mvcJumu~kR!50, ~2!

where the prime represents differentiation of the Bessel fu
tion with respect to its argument, and the eigenfrequenc
are given by

vm,n
2 5vc

21
n0e2km,n

2«0m*
tanh~km,nd!, ~3!

FIG. 1. Schematic diagram of the experimental cell used in
study of the ion sheets. The graph shows a typical ionic areal d
sity @n0(r )# plotted against radiusr .
3447 © 1997 The American Physical Society
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where m* is the effective mass of a charged particle a
vc is the cyclotron frequencyeB/m. In the case of axisym-
metric modes (m50) the wave vectors allowed by th
boundary conditions are independent of magnetic field,
Eq. ~3! then leads to an increasing frequency with increas
field. For nonaxisymmetric modes the situation is more co
plicated. In zero field each mode with a givenumu is doubly
degenerate (m56umu), and the degeneracy is removed
the magnetic field. The wave vectors allowed by the bou
ary conditions are no longer independent ofB, so that the
field dependence of the eigenfrequencies implied by Eq.~3!
is no longer straightforward. The casen51 ~smallest wave
number for a givenm! is particularly interesting. Ifm is
positive the frequency increases with increasingB, but if
m is negative it decreases. In the latter case it eventually f
belowvc , a situation that must obviously be associated w
an imaginary value of the wave numberkm,n . In its depen-
dence on radius the mode then becomes evanescent and
increasingB, it becomes more and more strongly localiz
near the edge of the disc~an edge mode!.

These effects associated with a magnetic field were
served and explained in 1985 by Glattliet al.,1 and a less
complete study was published by Mastet al.2 The experi-
mental system used by these authors was a sheet of elec
trapped above the surface of superfluid4He. ~Strictly
speaking, effects of this type were first observed in an ar
of small samples of a two-dimensional electron gas in
GaAs/AlGaAs heterojunction.3! More recently4 the effects
have been studied by our group in a two-dimensional sh
of ions trappedbelow the surface of superfluid4He. An in-
teresting theoretical development occurred in 1988 when
zin and Shikin5 showed that, if proper account is taken of t
smooth falloff in the density profile near the edge of t
sheet, extra~‘‘multipole’’ ! edge modes ought to appear
the presence of a magnetic field, and this prediction w
verified in a semiquantitative way for the ion sheets by
liott et al.6 Subsequently, it has been recognized that the n
modes had been seen in the electron system by Kiric
et al.7 Edge modes associated with a step from one den
n0 to another have been observed by Sommerfeldet al.8 in
the electron sheets. Magnetoplasmons of the type we
describing are important and interesting also in the contex
semiconductor heterostructures~see, for example, the recen
studies of Ernstet al.9!, including quantum dot structure
~see, for example, Demelet al.10!.

This paper has two purposes. First, we report our la
experimental results on the observation of magnetopla
modes in the sheets of ions. Secondly, we review and ex
our theoretical interpretation of these modes, concentra
on our physical understanding of them and on the exten
which theory and experiment are in quantitative agreeme

Sheets of ions have some advantages over sheets of
trons in the experimental studies. Mode frequencies are t
cally in the convenient range up to a few hundred kilohe
a factor of a thousand times less than for the electrons.
teresting effects due to the magnetic field take place in
convenient range up to a few Tesla. At low temperatu
both the ion system and the electron system undergo cry
lization ~at temperatureTm!, which leads to complications
due to distortion of the helium surface~dimple formation!;11

the effect on the electron system can be large, but the e
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on the much heavier ions is negligible. The only significa
effect of the surface on the ion system is to introduce
contribution to the inverse mobility due to ripplo
scattering.12 Crystallization can also lead to the existence
well-defined shear modes, which, as we shall explain, m
be distinguished from the plasma modes with which this
per is concerned.

The paper is organized as follows. In Sec. II we descr
briefly the experimental techniques for study of the i
sheets and in Sec. III we summarize our experimental res
Section IV is concerned with the theory and comparison w
experiment. We summarize in Sec. V.

II. EXPERIMENTAL TECHNIQUES

Our experimental techniques have been described in
tail in previous publications,12,13,4 to which we refer for de-
tails. In brief the ions are trapped below the helium surfa
by the combined interaction with their images in the surfa
and a vertical external electric fieldE0 . The trapping depth
(z0) depends onE0 and is typically 60 nm. The trapping
electric field is provided by a system of electrodes in t
shape of a circular pill box, as shown schematically in Fig
The surface of the liquid helium lies midway between t
two circular electrodes forming the top and bottom of the p
box; these electrodes are separated by distance 2d ~53 mm!,
and they provide the trapping fieldE0 . A potential applied to
a ‘‘wall electrode’’ formed from the side of the pill box
~internal radiusRw515 mm! serves to confine the trappe
ions to a circular disc of radiusR. The positive ions used in
most of this work are produced by field ionization at a sha
tungsten tip immersed in the helium, and each consists
He1 ion embedded in a small volume of solid helium with
total effective mass of about 35 helium atomic masses.~A
few experiments have been carried out with ‘‘negativ
ions, which are produced by field emission at a sharp tip,
which consist of single electrons trapped in helium bubble!
The equilibrium density profile@n0(r )# in the ion disc is
determined by the magnitude of the total charge injected
the surface, by the geometry of the electrode system, an
the potentials applied. Its form can be found from the m
sured total charge by numerical methods, or in special ca
by an analytical technique described by Glattliet al.1 The
experimental cell is attached to the mixing chamber o
dilution refrigerator providing temperatures down to abo
20 mK.

The plasma modes are excited by applying an alterna
potential to the wall electrode. Axisymmetric modes are d
tected by the current induced in a circular central part of
upper confining electrode; the current is passed into a cur
preamplifier, the output of which is measured with a lock
detector. It appears at first sight that the circular cell geo
etry is ill suited to the study of modes that lack axisymmet
since such modes ought not to be either excited or dete
in the arrangement that we have described. A cell that la
circular symmetry to a substantial extent would appear to
better, but a theoretical analysis of the plasma modes
such a cell would be more complicated. We have theref
continued to pursue the approach described in an ea
publication:4 a circular cell is employed; the nonaxisymme
ric modes are excited by applying a large drive to the w
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56 3449MAGNETOPLASMONS IN TWO-DIMENSIONAL CIRCULAR . . .
electrode and detection is achieved through a nonlinear
pling of the excited mode with the lowest axisymmet
@(m,n)5(0,1)# plasma mode. The exciting drive needs to
some thousand times larger than is necessary for the ex
tion of an axisymmetric plasma mode, and it presuma
relies on small departures from symmetry in the real c
arising from machining errors, lack of exact levelling, a
perhaps variations of contact potential from place to place
the electrodes. Detection through nonlinear coupling
achieved as follows. The~0,1! plasma mode is driven at
relatively small amplitude slightly off resonance. When a
other mode is driven simultaneously with relatively lar
amplitude a nonlinear coupling gives rise to~primarily! a
small shift in the~0,1! resonant frequency, with a resultin
change in the observed response to the~0,1! drive. The de-
tails of this double-drive technique need not concern us h
where we are interested only in resonant mode frequenc
they were described in greater detail in Ref. 4, and they
be described in further detail in a forthcoming publicatio
concerned with applications where line widths as well
resonant frequencies need to be measured and where t
fore the technique needs to be used and analyzed with
ticular care.

III. EXPERIMENTAL RESULTS

A typical spectrum obtained by the double-drive tec
nique is shown in Fig. 2, where we plot the in-phase co
ponent of the current induced in the center portion of
upper electrode at the frequency of the~0,1! detecting drive
against the frequency of the second drive, which will
exciting the modes of interest. Spectra of this type have b
observed to contain four different families of modes, whi

FIG. 2. Typical in-phase response of the fundamental axis
metric plasma mode, driven at small amplitude, when a sec
drive at relatively large amplitude is swept through the freque
range up to 50 kHz. Upper spectrum:T5109.5 mK, lower
spectrum: T5145.0 mK. B51.41 T, R512.14 mm, n0(0)
52.8931011 m22, z0553.77 nm,Tm5122.5 mK.
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can be distinguished by the range of frequency in which th
occur, by their dependence on magnetic field and on the le
of the second drive.

Consider first the spectral features that appear in the
quency range above about 10 kHz. At relatively low seco
drive levels~in the range 1–10 mV rms applied to the wa
electrode! the only features present are those indicated b
heavy vertical arrow and they can be identified as~nonaxi-
symmetric! conventional bulk and edge magnetoplasm
modes. At higher drive levels other~‘‘satellite’’ ! features
appear, as indicated by the small closed arrows. As can
seen, one~at least! of these satellites is split by about 100 H

At frequencies below about 10 kHz the situation is mo
complicated and depends on the temperature. Above
melting temperature, and at a low drive~up to typically 50
mV rms! the only visible spectral feature is very broad, wi
its peak~trough! slightly below 1 kHz~this feature is prob-
ably due to the excitation of transverse viscous modes in
fluid!. With increasing drive, however, sharp spectral fe
tures appear on top of this broad feature, as shown by
open arrows in Fig. 2. These new features turn out to be
multipole edge modes predicted to exist by Nazin a
Shikin.5

Below the melting temperature the situation is rende
even more complicated by the existence of lightly damp
shear modes. Such shear modes can be generated by d
the wall electrode in the presence of a magnetic field, wh
serves to induce a small coupling between the shear
plasma modes,14–16 and they can be observed in the fr
quency range up to a few kHz, at relatively small drives,
the double-drive technique described here.15,16 At larger
drives the linewidths of the shear modes increase, either
versibly or, at the highest drives, irreversibly, in the sen
that the linewidth remains large, for a significant time, ev
when the drive is reduced to a low level. This irreversib
increase in linewidth is interpreted as due to damage to
crystal, the long recovery time being identified with an a
nealing process.17 It is found that the multipole edge mode
can be observed in the crystal phase only at drive levels s
that the shear modes are broadened to the extent that
cannot be seen, but the shear modes do not need to be b
ened to such an extent that the crystal has suffered dam
The observed frequencies of the multipole edge modes
slightly with increasing drive, the fall being by about 10%
the very highest drive used~of order 500 mV rms!.

Figure 3 shows how the frequencies of the conventio
magnetoplasma modes for one particular sheet vary w
magnetic field in the range of fairly small magnetic fields
to 1.2 T. Figure 4 relates to a different sheet, to a larger ra
of magnetic field, and to frequencies up to only 10 kHz; t
modes with frequencies that fall monotonically with increa
ing field are the conventional edge modes; those with
quencies that rise from zero and pass through a maxim
are the multipole edge modes, as we shall see in Sec. IV

Figure 5 shows the behavior of the ‘‘satellite’’ mode
They have a frequency dependence very similar to that of
conventional edge modes, but their amplitude relative to
conventional edge modes makes them observable only ov
range of intermediate magnetic fields, as can be seen f
the inset to Fig. 5. The relative amplitude is a maximum
the field required to localize the conventional edge mode
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3450 56ELLIOTT, NAZIN, PAKES, SKRBEK, VINEN, AND COX
a strip of width comparable to the electrode spacing. T
satellite modes have been observed at all temperature
several different ion sheets and with both species of ion
should be added that the axisymmetric plasma modes
very strongly excited at the drives required to excite a
detect the nonaxisymmetric modes. These axisymme
modes lie at frequencies much greater than those show
Fig. 4. It turns out that in practice the axisymmetric mod
are weakly excited when driven at subharmonics of th
resonant frequencies, presumably because the drive s
contains weak harmonics of its fundamental. Such sub
monics of the axisymmetric modes are easily recognized
the fact that their frequencies are submultiples of the kno
axisymmetric mode frequencies, and they have been
cluded from the presentation of our experimental results.
satellite modes do not arise in this way.

There are predicted to be different families of multipo
edge modes, which differ according an integerM , equal to
the number of radial nodes in the perturbed electrostatic
tential near the edge of the sheet.5,18 Modes corresponding to
values ofM equal to both 1 and 2 have been observed
shown in Fig. 6. However, excitation of theM52 modes
requires a very high drive on the wall electrode, compara
in magnitude with the static holding voltage on that ele
trode. Such a large drive will lead not only to excitation
the M52 mode but also to a substantial periodic change
the quasistatic pool radius, so that a linear theory of the t
described in the next section can hardly be quantitativ
correct. Nevertheless the frequencies of the observedM51
andM52 modes are observed to be in the ratio of appro
mately three, as required by the theory.

A quantitative comparison of any observed mode f
quency with theory requires a knowledge of the ion dens

FIG. 3. Measured mode frequencies~.10 kHz!, plotted
against magnetic field. T537 mK, R513.93 mm, n0(0)
56.56331011 m22 ~from the measured average Shikin frequen
during the observations!, z0536.53 nm, Tm5189.0 mK. Broken
lines: simple theory with rigid boundary condition, solid line
simple theory with movable boundary~a51!. The solid straight line
is the value ofvc .
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in the sheet. In our earlier work12 we obtained this density
from a destructive measurement of the total charge in
pool, as explained in Sec. II. However, the total charge
be measured in this way only with an accuracy of ab
10–20%, so that ion densities are then not known with s
ficient precision to allow accurate tests of the theory. Ve
recently we have perfected a technique by which we
make an accurate determination in the crystal phase of
Shikin frequency,13,19 which is directly related to the magni
tude of the smallest reciprocal lattice vector of the crys
and therefore to the ion density at the center of the discs.
use that we have made of this approach will be descri
when we compare theory and experiment in the next sect

We have not so far been able to carry out a really accu
determination of the temperature dependence of the m
frequencies. At the time when we attempted to do so we
not have available the new technique for measurement
monitoring of the ion density. This would not have matter
if the ion density had remained constant over the long per
required to measure the temperature dependence. In pra
however, there is usually a steady loss of ions from the s
tem ~of order 0.5% per day!, and there is an occasiona
abrupt loss during a helium transfer. It is true that the to
loss of ions during the course of an experiment can be m
sured by measuring a particular mode frequency at the s
temperature both at the start and at the end of the exp
ment. However, the loss of ions is to some extent irregu

FIG. 4. Measured mode frequencies~,10 kHz!, plotted against
magnetic field. Shear modes have been excluded.T555 mK, R
511.87 mm, n0(0)58.0031010 m22, z0554.04 nm, Tm

566.3 mK. The solid circles are conventional edge modes,
solid diamonds are multipole edge modes withM51, the open
diamonds are multipole edge modes withM52, the open circles
are satellites. The solid lines are derived from the theory of S
IV B. The broken line is the value ofvc .
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56 3451MAGNETOPLASMONS IN TWO-DIMENSIONAL CIRCULAR . . .
FIG. 5. Measured mode frequencies plotted against magn
field. The solid symbols show the first three conventional ed
magnetoplasma modes, the open symbols show satellites o
known origin. The inset shows the amplitude of the satellites re
tive to that of the conventional modes.T560 mK, R512.68 mm,
n0(0)51.2431011 m22, z0559.14 nm,Tm580.27 mK. The lines
are guides to the eye.

FIG. 6. Measured mode frequencies for multipole ed
modes ~M51 and M52!, plotted against mode numbe
B51.2 T, T5133 mK, R512.86 mm, n0(0)53.8431011 m22,
z0553.85 nm,Tm5141.1 mK.
especially if helium transfers are required. Therefore it
difficult to determine the temperature dependence of
plasma mode frequencies with great precision~better than a
few percent!. However, with this proviso, we can state th
there appear to be no anomalies at the melting tempera
and that any temperature dependence is not significa
greater than that expected from the known temperature
pendence of the effective mass of the positive ion in liqu
helium. This is true for all the observed modes, including
‘‘satellite’’ modes.

IV. THEORETICAL DISCUSSION AND COMPARISON
WITH EXPERIMENT

A. Conventional magnetoplasma modes
at fields less than about 1.2 T

We consider first the theory underlying the data on co
ventional magnetoplasma modes in relatively small magn
fields shown in Fig. 3 and repeated for ease of compari
with theory in Fig. 7. For these experimental data the
density was known to within 2%, since it had been obtain
from the measured value of the Shikin frequency.

The simplest theoretical model described in Sec. I yie
the broken lines in Fig. 3. There is only qualitative agre
ment with experiment, the predicted frequencies being
high, although the essential physics of the conventional m
netoplasma modes is correctly described. An improvem
might be achieved by recognizing that the rigid bounda
condition is unrealistic. In reality the boundary must mov
and we argue in Appendix A that the boundary condition~2!
could reasonably be replaced by one of the form

vkRJumu8 ~kR!1mvcJumu~kR!2
vkR

a
tanh~kd!Jumu~kR!50,

~4!

tic
e
n-
-

e

FIG. 7. The experimental data of Fig. 3. The solid lines a
based on the theory of Ref. 4, the broken lines are based on
theory of Appendix B.
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where the parametera is equal to 1. As is to be expecte
this relaxation of the rigid boundary condition leads to
reduction of the mode frequencies, as shown by the s
lines in Fig. 3, but the predicted frequencies are now too lo
Nevertheless, as we shall explain, this model is useful
pedagogic purposes.

A more accurate model, incorporating the correct den
profile and taking proper account of the screening by
actual electrode system, was developed by Glattliet al.1 for
the geometry used in our experiments. In the limit of sm
d/Rw and kd<1 they find that mode frequencies are giv
by Eq. ~3! with an effective boundary condition that is sim
lar to, but rather more complicated than, our Eq.~4! @see
their Eq. ~4!#. Their analysis is not valid ifuvc2vu/vc
!d/Rw , but in this case they use a different approach. U
fortunately the details of this theory have not been publish
although the authors report good agreement with their o
experiments on electron sheets. We find that there is g
agreement with our own experimental results in the case
all modes with frequencies significantly greater than the
clotron frequency, but the agreement tends to be poor for
edge modes (v!vc), even whenkd<1, except perhaps fo
the ~21,1! edge mode in not too large a magnetic field. W
do not understand why agreement seems less good fo
ion sheets than for the electron sheets.

The models that we have so far discussed can handle
modes for whichkd,1. This condition must fail for conven
tional edge modes in a sufficiently high magnetic field, an
fails for all the multipole edge modes. Indeed these la
modes cannot be described at all by these models. There
we require a more general approach to finding the eigen
quencies of the compressional modes of the system: it m
take proper account of both the real density profile and of
screening by the real electrode system, although it can
be based on a Drude model for the electron or ion dynam

At first sight this task is made difficult by the fact tha
strictly speaking, the problem is always nonlinear. This
because any movement of the edge of the ion sheet m
necessarily involve changes in the ion density (dn) very near
the edge that are not small in comparison with the lo
equilibrium density@n0(r )#. However, for sufficiently small
mode amplitudes the width of the band along the edge of
sheet where the conditiondn/n0!1 is violated can be arbi
trarily small. Therefore it is possible to argue that an eig
frequency obtained within a linear approximation cor
sponds to the leading term in an expansion of the ex
frequency in powers of the mode amplitude. Confirmation
the validity of this approach is provided by theoretical stu
of a sheet of electrons that is held in a parabolic exter
potential, where the equilibrium density profile has the fo
of an ellipse.18 In this case exact analytical solutions can
obtained for the (m,n)5(0,1) mode in zero magnetic fiel
and for the ~61,1! modes in an arbitrary magnetic field
Comparison of the exact solutions with those obtained in
linear approximation shows that in the case of the~61,1!
modes there is full agreement at all amplitudes.@In the
~61,1! modes the electron sheet is shifted as a whole from
equilibrium position and simply rotates with the singl
particle Zeeman frequencies, which is a manifestation of
Kohn theorem.# In the case of the~0,1! mode the exact fre-
quency does depend on mode amplitude, but in the limi
id
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small amplitude it agrees with that obtained in the line
approximation. It should be explained that in the linear a
proximation the density perturbation is found to diverge
the edge of the sheet according to the equation

dn5
const

~R2r !1/2, ~5!

confirming a formal failure of the approximation at the ed
of the sheet. At the same time it can be shown1 that the
equilibrium densityn0 goes to zero near the edge of the sh
as (R2r )1/2. We see, therefore, that the square root sin
larity ~5! is consistent simply with a small movement of th
edge of the sheet, as suggested in Appendix A.

In brief the general problem that we must solve involv
in essence a search for self-consistent solutions of the e
trostatics, represented by a nonlocal relationship between
perturbed charge densityr(r )5edn(r ) and the perturbed
potential in the plane of the sheet

f~r !5E K~r ,r 8!r~r 8!d2r 8, ~6!

and the continuity equation

]r

]t
1divj50, ~7!

the currentj being related to the electric field through a ma
netoconductivity tensor based on the Drude model. The e
trostatic Green functionK(r ,r 8) must take account of the
actual electrode configuration, including the wall electrod
The equilibrium density profilen0(r ) can be found by the
method described by Glattliet al.,1 applicable ifRw@d.

For the equilibrium density profile relevant to the expe
ments described in this paper it is not possible in genera
determine analytically the eigenfrequencies of all the mod
including the multipole edge modes, for which there is
rapid spatial variation in the perturbation in the potential
a length scale comparable or less thand. It is therefore nec-
essary to resort to numerical methods. One such method
described in an earlier publication of our group.4 To set up a
suitable trial function describing the radial variation of th
perturbationr(r ) in the charge density, the sheet is divide
into a large numberN of annuli, andr(r ) is taken to have
the form

r~r !5 (
l 51

N11

ulr
mBl~r !, ~8!

where Bl(r ) is a linear B spline within the (l 21)th and
l th annuli. Better convergence is obtained by replacing
final B spline by a term of the form~5!. The problem is then
reduced to the determination of the eigenvalues and eig
functions of an (N11)3(N11) matrix. The results of this
procedure, applied to the conventional modes relevant to
3, are shown by the solid lines in Fig. 7, and we see t
there is good agreement with experiment. At least for
lower modes, the agreement is within the experimental e
involved in the determination from the observed Shikin fr
quency of the equilibrium ion density at the centre of t
sheet.
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Another general method can be based on an expansio
the perturbation in the potential in the plane of the shee
terms of a suitable set of orthonormalized functions, so t
the problem can again be reduced to a matrix form. T
approach becomes practicable if sufficient accuracy can
achieved by retaining only a relatively small number
terms in the expansion, which requires an appropriate ch
of the basis function set. Ideally, for the case of edge mod
one should choose function sets that depend on magn
field as a single parameter, the field dependence reflectin
increasing localization near the edge of the sheet with
creasing magnetic field.1,4,5 Unfortunately, we have no
found such a family of function sets for the case of a circu
geometry, and we have therefore used the set of funct
derived for an elliptical pool in the linear approximation.18

The details are given in Appendix B.
The results obtained by this method for the conventio

edge magnetoplasma modes are shown by the broken lin
Fig. 7. We see that there is good agreement with experim
the agreement being again within the experimental error
volved in the determination from the observed Shikin f
quency of the equilibrium ion density at the center of t
sheet.

B. Low-frequency edge magnetoplasma modes:
Conventional modes in high magnetic fields

and multipole edge modes

At the low frequencies for which experimental data a
shown in Fig. 4 there are three groups of modes~other than
the shear modes!: the conventional edge magnetoplasm
modes at high magnetic fields, the frequencies of which
monotonically with increasing field; the modes with freque
cies that pass through a maximum with increasing field;
the ‘‘satellite modes,’’ which are shown more clearly for
different ion sheet in Fig. 5.

The general theoretical approach that we outlined at
end of Sec. IV A~and in Appendix B! ought to describe al
these modes.~We have not so far succeeded in describ
multipole edge modes by the method of Ref. 4.! The experi-
mental data presented in Figs. 4 and 5 were obtained be
we had developed the method of density measurement b
on the Shikin frequency, and therefore we have for them
reliable independent measurement of the ion density at
center of the sheet. We have therefore determined this
sity by fitting the observed frequency of the~21,1! conven-
tional edge mode to the general theory at a field of 1 T. T
theory is then used to predict the solid lines shown in Fig
We see that there is good agreement with experiment,
both the conventional edge modes~at least at lowm! and
those that exhibit a maximum frequency with increas
field. The latter modes are the multipole edge modes,
predicted to exist for the case of a semi-infinite sheet
charges by Nazin and Shikin.5 The experimental result
therefore provide excellent evidence that these latter mo
do indeed exist, and that the theory underlying them is c
rect.

The theory provides no explanation for the existence
the ‘‘satellite modes.’’ The suggestion has been made
Monarkha7,20 that these modes may be ‘‘magnetoripplons
i.e., modes in which the edge of the sheet oscillates in p
tion in a way analogous to the motion of the surface o
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liquid in the presence of a capillary wave. As we have
ready explained, the edge of the sheet does indeed mov
the modes that we understand. We believe that the free
of the edge to move does not introduce any new lo
frequency modes, although it does reduce the frequencie
the old modes. In this connection it is interesting to exam
on the basis of the boundary condition~4! how the modes of
the system evolve as the value ofa is gradually reduced,
corresponding to a less and less rigid boundary. The frequ
cies and radial wave vectors fall continuously, but no n
low-frequency modes appear.

V. CONCLUSIONS

We have reported measurements on magnetopla
modes that can be excited in a two-dimensional circu
sheet of4He1 ions trapped below the surface of superflu
helium at a low temperature. As in earlier work on a varie
of systems, by other authors and by ourselves, we have
served both bulk modes and conventional edge modes. H
ever, we have also observed and studied multipole e
modes of the type predicted to exist by Nazin and Shiki5

and we have reported the existence of other ‘‘satellit
modes, the origin of which we do not yet understand. W
have reviewed the theory underlying these modes, and
have shown that theories that take proper account of both
surrounding electrodes and the correct density profile in
sheet yield predictions that are in good agreement with
periment. Although our work is related specifically to a tw
dimensional sheet of ions, the theory is relevant also to tw
dimensional electron systems, either on the surface of hel
or in semiconducting structures.
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APPENDIX A: A SIMPLIFIED BOUNDARY CONDITION
FOR THE EDGE OF THE ION-SHEET

In this appendix we shall show that for the model
which the equilibrium density profile is a step function th
edge of the sheet must move in the presence of a pla
mode, and we shall derive the effective boundary condit
that then applies. In general the relationship between the
turbation edn in the charge density and the perturbati
f(r ,u,t) in the potential in the plane of the charged partic
is nonlocal, the range of the nonlocal relationship being
orderd. This range is necessarily equal to the distance o
which the equilibrium densityn0(r ) falls to zero at the edge
of the sheet. For consistency, therefore, a model in which
density profile is taken as a step function must be taken
involve a local relationship betweenedn andf. In this case
the perturbation in the potential given by Eq.~1! will apply
only for r ,R, the perturbation forr .R being zero. It fol-
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lows that if the ‘‘rigid boundary condition’’~2! were to ap-
ply accurately, the perturbationf in the potential would re-
sult in a discontinuity in the total potential atr 5R. The edge
of the sheet must therefore move in such a way that it ex
riences a change in the potentialfext due to the electrode
that is exactly equal to the perturbationf. Therefore the
displacementz(u,t) of the edge must be given by

f~R,u,t !5fext@R1z~u,t !#52Eext~R!z~u,t !

5E~R!z~u,t !, ~A1!

whereEext(R) andE(R) are the electric fields at the edge
the sheet due, respectively, to the electrodes and the equ
rium distribution of charged particles, and where we ha
assumed thatz(u,t) is small. We have made use of the fa
that the fieldsEext(R) andE(R) must cancel, if the sheet i
to be in equilibrium. The fieldE(R) must be of the form

E~R!5~6 !
an0~0!e

2«0
, ~A2!

wherea is a numerical factor and the sign depends on
type of ion. For a strict step function density profile th
factor is logarithmically divergent, but we can obtain a fin
value by calculating it for a realistic profile, as we sho
later.

Differentiating Eq.~A1! with respect to time yields the
boundary condition

S ]f

]t D
r 5R

5En r~R,u,t !5~6 !
an0~0!e

2e0
n r~R,u,t !,

~A3!

wheren r(r ,u,t) is the radial component of the velocity fiel
in the plasma mode.

In order to obtain the plasma mode frequencies with
new boundary condition we note first that the radial com
nent of the drift velocity is given in terms of the potenti
and the conductivity tensor by

n r5~7 !
1

n0eS s rr

]f

]r
1s ru

1

r

]f

]u D . ~A4!

Within the Drude approximation the relevant components
the conductivity tensor are given by

s rr 5
ivn0e2

m* ~v22vc
2!

; s ru5
vcn0e2

m* ~v22vc
2!

. ~A5!

With a potential of the form of Eq.~1!, i.e.,

f5f0Jumu~kr !exp$ i ~mu2vt !%, ~A6!

we find

n r~r 5R!5~7 !
ief0

m* R~v22vc
2!

3$vkRJumu8 ~kR!1mvcJumu~kR!%. ~A7!

Substituting Eq.~A7! into Eq. ~A3! we obtain
e-

ib-
e

e

e
-

f

vkRJumu8 ~kR!1mvcJumu~kR!

2
2v«0m* R~v22vc

2!

an0e2 Jumu~kR!50. ~A8!

Using the dispersion relation~3!, we can transform Eq.~A8!
into the form

vkRJumu8 ~kR!1mvcJumu~kR!2
vkR

a
tanh~kd!Jumu~kR!50,

~A9!

which is the same as Eq.~4!.
The numerical factora can be evaluated in the case of

half-plane geometry@described by Cartesian coordinat
(x,y,z)#, where the semi-infinite ion sheet (x.0) is situated
midway between ideally conducting plane electrodes pla
at z56d, its lateral extent being controlled by a third~wall!
electrode atx52s. For this geometry the equilibrium
charge density profile was obtained by Glattli1,21 as

n~x!5n0F tanhpx/2d~ tanhp~x1s!/2d1tanhps/2d!

tanhps/2d tanhpx/2d11 G1/2

.

~A10!

It is easy to show that the electric fieldE(x,x8) at the point
x created by an infinite charged filament of unit linear cha
density placed atx8 in the planez50 is given by

E~x,x8!5
p

d F 1

sinhpu~x82x!u/2d
1

1

sinhp~x81x12s!/2dG .
~A11!

The electric field at the edge of the sheet then becomes

E~R!5eE
0

`

n~x!E~0,x!dx, ~A12!

which leads finally to the value ofa,

a5
1

p E
0

`F tanhx$tanh~x1s!1tanhs%

tanhx tanhs11 G1/2

3H 1

sinh x
1

1

sinh~x12s!J dx. ~A13!

Numerical integration of this expression shows thata51 to
within 1025 for 0<s<`, as stated in Sec. IV.

APPENDIX B: DERIVATION OF MODE FREQUENCIES

The integral equation for the perturbation in the poten
associated with the magnetoplasma wave has already
written down as Eq.~6!, where the perturbed charge dens
is obtained from the continuity equation~7!. As usual, and in
accord with the symmetry of the problem, we write the p
turbed potential in the form

f~r ,t !5fm~r !exp$ i ~mu2vt !%, 0<r<R. ~B1!

We expandfm(r ) in a complete set of functions

Sk
~m!~r !5NkmS r

RD m

Pk
~m,21/2!H 122S r

RD 2J ; ~B2!
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where

Nkm5F4k12m11

R H G~k11!

G~k11/2!

G~m1k11/2!

G~m1k11! J G1/2

,

~B3!

and Pk
(a,b)(x) are the Jacobi polynomials. For fixedm the

functionsSk
(m)(r ) are normalized in the interval (0,R) with

the weightr /(R22r 2)1/2. Thus

fm~r !5 (
k50

`

akSk
~m!~r !. ~B4!

Measuring all lengths in units ofd ~generally an arbitrary
length scale which in the case of symmetric screening
naturally be taken to be the distance of the ion sheet from
screening planes! and all frequencies in units ofv0
5(n0e2/4p«0md)1/2, and puttingn(r )5n0s(r ), we find the
following expression for the radial dependence of the p
turbed charge density:

r~r !52
1

~v22vc
2!v

~vL̂1
~m!1vcL̂2

~m!!fm~r !, ~B5!

where the operatorsL̂ are defined by

L̂1
~m!fm5

ds

dr

dfm

dr
1

s

r H d

drS r
dfm

dr D2
m2

r
fmJ ;

L̂2
~m!fm5

ds

dr

m

r
fm . ~B6!

We use the expansion of the Green function

K~r ,r 8!5
1

2p (
m52`

`

Km~r ,r 8!exp$ im~u2u8!%, ~B7!

where

Km~r ,r 8!54p (
n50

` F I m~knr ,!Km~knr .!

2I m~knr ,!I m~knr .!
Km~knRw!

I m~knRw! G ~B8!

and
n
e

r-

kn5
p

d S n1
1

2D , r ,5min~r ,r 8!, r .5max~r ,r 8!.

Multiplying both sides of Eq.~6! by

rSi
~m!~r !~v22vc

2!v

~R22r 2!1/2 , ~B9!

and integrating it from 0 toR, we obtain the set of equation

Mikak50, ~B10!

where

Mik5vAik
~1!1vcAik

~2!1~v22vc
2!vd ik , ~B11!

Aik
~g!5E E Si

~m!~r !r dr

~R22r 2!1/2 Km~r ,r 8!L̂gSk
~m!~r 8!dr8.

~B12!

To find the magnetoplasma mode frequencies we reta
finite numberN of terms in Eq.~B4! and require that

detM50. ~B13!

It is very difficult to find the multipole modes directly from
Eq. ~B13!, since they correspond toN roots closely spaced in
the neighborhood of zero frequency. Therefore Eq.~B13!
can as a rule be used only for the conventional magn
plasma modes. However, for the casev!vc , we can ne-
glect v2 compared withvc

2 in Eq. ~B11! and reduce the
problem to the generalized eigenvalue problem

Ax5lBx, ~B14!

where A5vcA
(2), B52vc

2I 1A(1), and l5v, which can
easily be solved numerically.
.
n,

.

.
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