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Magnetoplasmons in two-dimensional circular sheets ofHe* ions
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We report the results of recent experiments on magnetoplasma modes in circular sh&ides dbns
trapped below the surface of superfluid helium at a low temperature. The modes we observe include bulk
modes, conventional edge modes, multipole edge modes, and extra satellites of unknown origin. The results are
compared with earlier observations of bulk and conventional edge modes. Theories of the modes are reviewed
and extended, and a detailed comparison with experiment is carriefS@1163-18207)02630-1

l. INTRODUCTION wkR I (KR) + M m(KR) =0, 2

That a two-dimensional sheet of classical charged par-
ticles can support plasma waves has been known for manyhere the prime represents differentiation of the Bessel func-
years. The form of the dispersion relation for plasma waveion with respect to its argument, and the eigenfrequencies
propagation in an unbounded system of this type with conare given by
stant equilibrium density depends on the screening associ-
ated with any confining electrodes and is well understood in n-e?k
terms of a Drude mode_l for the charged particle dynam'|cs. In wﬁq = w§+ 0_“1” tanh(K,, ,d), 3)

a bounded system a discrete set of plasma modes exists, the ’ 2gom ’

frequencies of which depend on the boundary conditions.
(Throughout this paper we shall assume that the plasma
modes are in the “collisionless limit”, i.e., that the mode
frequency and the relaxation time associated with a finite D Liquid *He

I Ion Pool Current Preamplifier

Output
particle mobility satisfy the inequality1.) A reasonably Electrodes Lock-In >
simple case is one in which the charged particles are con- Amplifier
fined to a circular disc of radiuR, situated midway between
closely spaced electrodéspacing 2I; R>d), with a guard 2nd Drive Lst Drive

(“wall” ) electrode concentric with the sheet and of radius
greater tharR, as shown in Fig. 1. The equilibrium number
density as a function of radilisi,(r)] is then approximately ) \
constant except in a small region of widihadjacent to the : - - —
edge of the dis¢Fig. 1). A qualitatively correct description : ' ' :
of most of the plasma modes can then be given on the basis ‘ -~
of three assumptions: that the density profijér) is the step - '
function ng[ 1—- O (r —R)], that perturbations in the density
are related to those in the potential in the same way as is the —i_
case in an unbounded sheet of charge, and that the boundar ;

of the disc remains fixedrigid” boundary condition).
However, a theoretical treatment that does not make these

assumptions is not straightforward, as we shall explain, so 1.2
that a more exact description is harder to give. ) ¢ d}
The effect of a magnetic fieldg), applied normal to the O 1.0

plane of the disc, has turned out to be of considerable inter- ‘g 0.8
est. In a simplified treatment corresponding to that already = ¢ +
described, the magnetoplasma modes have associated wit i~

them perturbations in the electrostatic potential in the plane E 0.4
of the disc that have the form =02
= 0.0 | 1 1 1 1 | L 1 | | 1 |
b= ¢m,n‘]m(km,nr)exp{i(ma_wm,nt)}- ) 0 2 4 6 8§ 10 12 14
r (mm)

The allowed wave numbets, , (n=1,2,3,...) aredeter- FIG. 1. Schematic diagram of the experimental cell used in the
mined by the rigid boundary condition at the edge of thestudy of the ion sheets. The graph shows a typical ionic areal den-
disc, which can be shown to read sity [ng(r)] plotted against radius.
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where m* is the effective mass of a charged particle andon the much heavier ions is negligible. The only significant
o, is the cyclotron frequencgB/m. In the case of axisym- effect of the surface on the ion system is to introduce a
metric modes H=0) the wave vectors allowed by the contribution to the inverse mobility due to ripplon
boundary conditions are independent of magnetic field, angcattering? Crystallization can also lead to the existence of
Eq. (3) then leads to an increasing frequency with increasingvell-defined shear modes, which, as we shall explain, must
field. For nonaxisymmetric modes the situation is more combe distinguished from the plasma modes with which this pa-
plicated. In zero field each mode with a givien| is doubly ~ Per is concerned. . .
degenerateri= =|m|), and the degeneracy is removed by _The paper is organlzed as fqllows. In Sec. Il we descpbe
the magnetic field. The wave vectors allowed by the boundPriefly the experimental techniques for study of the ion
ary conditions are no longer independentByf so that the shee_ts and_ln Sec. Ill we summarize our experiment_al resqlts.
field dependence of the eigenfrequencies implied by(Bx. Secthn IV is concerned v_wth _the theory and comparison with
is no longer straightforward. The case=1 (smallest wave €xperiment. We summarize in Sec. V.
number for a giverm) is particularly interesting. Ifim is
po;itive th.e f(equency increases with incrgasBug but if Il. EXPERIMENTAL TECHNIQUES
m is negative it decreases. In the latter case it eventually falls
below w,, a situation that must obviously be associated with Our experimental techniques have been described in de-
an imaginary value of the wave numbey, ,. In its depen-  tail in previous publication§>***to which we refer for de-
dence on radius the mode then becomes evanescent and, wiils. In brief the ions are trapped below the helium surface
increasingB, it becomes more and more strongly localizedby the combined interaction with their images in the surface
near the edge of the digan edge mode and a vertical external electric field,. The trapping depth
These effects associated with a magnetic field were obtzy) depends orE, and is typically 60 nm. The trapping
served and explained in 1985 by Glatti al,! and a less electric field is provided by a system of electrodes in the
complete study was published by Mastal? The experi- shape of a circular pill box, as shown schematically in Fig. 1.
mental system used by these authors was a sheet of electroRise surface of the liquid helium lies midway between the
trapped above the surface of superfluftHe. (Strictly  two circular electrodes forming the top and bottom of the pill
speaking, effects of this type were first observed in an arrafox; these electrodes are separated by distadde=3 mm),
of small samples of a two-dimensional electron gas in aand they provide the trapping fiek,. A potential applied to
GaAs/AlGaAs heterojunctiof). More recentl§ the effects a “wall electrode” formed from the side of the pill box
have been studied by our group in a two-dimensional shedinternal radiusR,=15 mm) serves to confine the trapped
of ions trappedelowthe surface of superfluidHe. An in-  ions to a circular disc of radiuR. The positive ions used in
teresting theoretical development occurred in 1988 when Namost of this work are produced by field ionization at a sharp
zin and Shikif showed that, if proper account is taken of the tungsten tip immersed in the helium, and each consists of a
smooth falloff in the density profile near the edge of theHe™ ion embedded in a small volume of solid helium with a
sheet, extrg“multipole” ) edge modes ought to appear in total effective mass of about 35 helium atomic masgas.
the presence of a magnetic field, and this prediction wagew experiments have been carried out with “negative”
verified in a semiquantitative way for the ion sheets by El-ions, which are produced by field emission at a sharp tip, and
liott et al® Subsequently, it has been recognized that the newvhich consist of single electrons trapped in helium bubbles.
modes had been seen in the electron system by KiricheKhe equilibrium density profildng(r)] in the ion disc is
et al.” Edge modes associated with a step from one densitgetermined by the magnitude of the total charge injected into
no to another have been observed by Sommeréldl® in  the surface, by the geometry of the electrode system, and by
the electron sheets. Magnetoplasmons of the type we athe potentials applied. Its form can be found from the mea-
describing are important and interesting also in the context a$ured total charge by numerical methods, or in special cases
semiconductor heterostructuresee, for example, the recent by an analytical technique described by Glattial® The
studies of Ernstet al®), including quantum dot structures experimental cell is attached to the mixing chamber of a
(see, for example, Demet al1%). dilution refrigerator providing temperatures down to about
This paper has two purposes. First, we report our lates20 mK.
experimental results on the observation of magnetoplasma The plasma modes are excited by applying an alternating
modes in the sheets of ions. Secondly, we review and extengbtential to the wall electrode. Axisymmetric modes are de-
our theoretical interpretation of these modes, concentratintected by the current induced in a circular central part of the
on our physical understanding of them and on the extent topper confining electrode; the current is passed into a current
which theory and experiment are in quantitative agreementpreamplifier, the output of which is measured with a lock-in
Sheets of ions have some advantages over sheets of elatetector. It appears at first sight that the circular cell geom-
trons in the experimental studies. Mode frequencies are typetry is ill suited to the study of modes that lack axisymmetry,
cally in the convenient range up to a few hundred kilohertz since such modes ought not to be either excited or detected
a factor of a thousand times less than for the electrons. Inin the arrangement that we have described. A cell that lacks
teresting effects due to the magnetic field take place in theircular symmetry to a substantial extent would appear to be
convenient range up to a few Tesla. At low temperaturedetter, but a theoretical analysis of the plasma modes for
both the ion system and the electron system undergo crystaduch a cell would be more complicated. We have therefore
lization (at temperaturel,,,), which leads to complications continued to pursue the approach described in an earlier
due to distortion of the helium surfa¢dimple formation;**  publication? a circular cell is employed; the nonaxisymmet-
the effect on the electron system can be large, but the effecic modes are excited by applying a large drive to the wall
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— 8.0 can be distinguished by the range of frequency in which they
*é occur, by their dependence on magnetic field and on the level
s 70 of the second drive.
¥at W—\V‘Y\\ Consider first the spectral features that appear in the fre-
5 6.0 guency range above about 10 kHz. At relatively low second
2 drive levels(in the range 1-10 mV rms applied to the wall
g 50 electrode the only features present are those indicated by a
% % heavy vertical arrow and they can be identified(asnaxi-
o 4.0 symmetrig conventional bulk and edge magnetoplasma
g /I\ ? modes. At higher drive levels othdf'satellite”) features
g 3.0 * appear, as indicated by the small closed arrows. As can be
g f seen, ongat leas} of these satellites is split by about 100 Hz.
2 2.0 At frequencies below about 10 kHz the situation is more
~ ? complicated and depends on the temperature. Above the
~ 10 r T melting temperature, and at a low drigep to typically 50
= mV rms) the only visible spectral feature is very broad, with
~ 0.0 ' ' L L its peak(trough slightly below 1 kHz(this feature is prob-
0 10 20 30 40 50 ?ltb]y due_to tlhe exci.tation _of transverse viscous modes in the
uid). With increasing drive, however, sharp spectral fea-
Frequency (kHz) tures appear on top of this broad feature, as shown by the

open arrows in Fig. 2. These new features turn out to be the

FIG. 2. Typical in-phase response of the fundamental aXiSymmuItipole edge modes predicted to exist by Nazin and
metric plasma mode, driven at small amplitude, when a secondpikin 5
drive at relatively large amplitude is swept through the frequency ggjow the melting temperature the situation is rendered
range up to 50 kHz. Upper spectrum=109.5 mK, lower  oyen more complicated by the existence of lightly damped
S_pemrum'ol;r:,lfg"o_ml(' B=141T, R=12.14mm, no(0)  ghear modes. Such shear modes can be generated by driving
=2.89<107m %, 29=53.77 nm, Ty =122.5 mK. the wall electrode in the presence of a magnetic field, which

o _ _ serves to induce a small coupling between the shear and
elgctrode and def[ectlon is ach!eved through a n(_)nlmear COYsiasma mode¥' ¢ and they can be observed in the fre-
pling of the excited mode with the lowest axisymmetric guency range up to a few kHz, at relatively small drives, by
[(m,n)=(0,1)] plasma mode. The exciting drive needs to bethe double-drive technique described hEY&¥ At larger
some thousand times larger than is necessary for the excitgrjves the linewidths of the shear modes increase, either re-
tion of an axisymmetric plasma mode, and it presumablyersibly or, at the highest drives, irreversibly, in the sense
relies on small departures from symmetry in the real celknat the linewidth remains large, for a significant time, even
arising from machining errors, lack of exact levelling, andwnen the drive is reduced to a low level. This irreversible
perhaps variations of contact potential from place to place Ofhcrease in linewidth is interpreted as due to damage to the
the electrodes. Detection through nonlinear coupling igyystal, the long recovery time being identified with an an-
achieved as follows. Th€0,1) plasma mode is driven at a nealing proces¥’ It is found that the multipole edge modes
relatively small amplitude slightly off resonance. When an-can pe observed in the crystal phase only at drive levels such
other mode is driven simultaneously with relatively largeinat the shear modes are broadened to the extent that they
amplitude a nonlinear coupling gives rise orimarily) a  cannot be seen, but the shear modes do not need to be broad-
small shift in the(0,1) resonant frequency, with a resulting ened to such an extent that the crystal has suffered damage.
change in the observed response to (hd) drive. The de-  The observed frequencies of the multipole edge modes fall
tails of this double-drive technique need not concern us her%"ghﬂy with increasing drive, the fall being by about 10% at
where we are interested only in resonant mode frequencieg;e very highest drive use@f order 500 mV rms
they were described in greater detail in Ref. 4, and they will Figure 3 shows how the frequencies of the conventional
concerned with applications where line widths as well aspagnetic field in the range of fairly small magnetic fields up
resonant frequencies need to be measured and where thetg- 2 T. Figure 4 relates to a different sheet, to a larger range
fore the technique needs to be used and analyzed with pagf magnetic field, and to frequencies up to only 10 kHz; the
ticular care. modes with frequencies that fall monotonically with increas-
ing field are the conventional edge modes; those with fre-
guencies that rise from zero and pass through a maximum
are the multipole edge modes, as we shall see in Sec. IV.

A typical spectrum obtained by the double-drive tech- Figure 5 shows the behavior of the “satellite” modes.
nique is shown in Fig. 2, where we plot the in-phase com-They have a frequency dependence very similar to that of the
ponent of the current induced in the center portion of theconventional edge modes, but their amplitude relative to the
upper electrode at the frequency of ttfel) detecting drive  conventional edge modes makes them observable only over a
against the frequency of the second drive, which will berange of intermediate magnetic fields, as can be seen from
exciting the modes of interest. Spectra of this type have beethe inset to Fig. 5. The relative amplitude is a maximum at
observed to contain four different families of modes, whichthe field required to localize the conventional edge modes to

Ill. EXPERIMENTAL RESULTS



3450 ELLIOTT, NAZIN, PAKES, SKRBEK, VINEN, AND COX 56

200
N 150
2
s
% 100 @
& >
= 2
D
50 4 =
O
]
&
0
0 02 04 06 08 1 12 14
Magnetic field (T)
FIG. 3. Measured mode frequencigs>10 kH2z), plotted 0 \ N \ .
against magnetic field. T=37 mK, R=13.93 mm, ngy(0) 0 1 2 3 4 5
=6.563x 10" m2 (from the measured average Shikin frequency
during the observatiofs zo=36.53 nm, T,,=189.0 mK. Broken Magnetic field (T)
lines: simple theory with rigid boundary condition, solid lines:
simple theory with movable boundafy=1). The solid straight line FIG. 4. Measured mode frequencies10 kH2), plotted against
is the value ofw, . magnetic field. Shear modes have been excluded55 mK, R

=11.87 mm, ny(0)=8.00x10""m™2,  z,=54.04nm, T,

a strip of width comparable to the electrode spacing. The-66.3 mK. The solid circles are conventional edge modes, the
satellite modes have been observed at all temperatures #slid diamonds are multipole edge modes with=1, the open
several different ion sheets and with both species of ion. Itiamonds are multipole edge modes wih=2, the open circles
should be added that the axisymmetric plasma modes akge satellites. The solid lines are derived from the theory of Sec.
very strongly excited at the drives required to excite andV B. The broken line is the value ab. .
detect the nonaxisymmetric modes. These axisymmetric
modes lie at frequencies much greater than those shown in the sheet. In our earlier wotkwe obtained this density
Fig. 4. It turns out that in practice the axisymmetric modesfrom a destructive measurement of the total charge in the
are weakly excited when driven at subharmonics of theipool, as explained in Sec. Il. However, the total charge can
resonant frequencies, presumably because the drive signiaé measured in this way only with an accuracy of about
contains weak harmonics of its fundamental. Such subhart0—-20%, so that ion densities are then not known with suf-
monics of the axisymmetric modes are easily recognized bficient precision to allow accurate tests of the theory. Very
the fact that their frequencies are submultiples of the knowmecently we have perfected a technique by which we can
axisymmetric mode frequencies, and they have been exnake an accurate determination in the crystal phase of the
cluded from the presentation of our experimental results. Th&hikin frequency:>*°which is directly related to the magni-
satellite modes do not arise in this way. tude of the smallest reciprocal lattice vector of the crystal,

There are predicted to be different families of multipole and therefore to the ion density at the center of the discs. The
edge modes, which differ according an inted#r equal to  use that we have made of this approach will be described
the number of radial nodes in the perturbed electrostatic poxhen we compare theory and experiment in the next section.
tential near the edge of the shéét Modes corresponding to We have not so far been able to carry out a really accurate
values ofM equal to both 1 and 2 have been observed asletermination of the temperature dependence of the mode
shown in Fig. 6. However, excitation of thHd =2 modes frequencies. At the time when we attempted to do so we did
requires a very high drive on the wall electrode, comparabl@ot have available the new technique for measurement and
in magnitude with the static holding voltage on that elec-monitoring of the ion density. This would not have mattered
trode. Such a large drive will lead not only to excitation of if the ion density had remained constant over the long period
the M =2 mode but also to a substantial periodic change imequired to measure the temperature dependence. In practice,
the quasistatic pool radius, so that a linear theory of the typ&owever, there is usually a steady loss of ions from the sys-
described in the next section can hardly be quantitativelfem (of order 0.5% per dgy and there is an occasional
correct. Nevertheless the frequencies of the obsektedlL abrupt loss during a helium transfer. It is true that the total
andM =2 modes are observed to be in the ratio of approxidoss of ions during the course of an experiment can be mea-
mately three, as required by the theory. sured by measuring a particular mode frequency at the same

A guantitative comparison of any observed mode fre-temperature both at the start and at the end of the experi-
guency with theory requires a knowledge of the ion densityment. However, the loss of ions is to some extent irregular,
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FIG. 7. The experimental data of Fig. 3. The solid lines are
0 L . ' ' based on the theory of Ref. 4, the broken lines are based on the
0 03 06 09 12 15  theoryofAppendix B.

Magnetic field (T) especially if helium transfers are required. Therefore it is
FIG. 5. Measured mode frequencies plotted against magnetigifficult to determine the temperature dependence of the
field. The solid symbols show the first three conventional edgePlasma mode frequencies with great precisibetter than a
magnetoplasma modes, the open symbols show satellites of ufiew percent However, with this proviso, we can state that
known origin. The inset shows the amplitude of the satellites relathere appear to be no anomalies at the melting temperature,
tive to that of the conventional modeb=60 mK, R=12.68 mm, and that any temperature dependence is not significantly
no(0)=1.24x 10" m™2, z,=59.14 nm,T,=80.27 mK. The lines greater than that expected from the known temperature de-
are guides to the eye. pendence of the effective mass of the positive ion in liquid
helium. This is true for all the observed modes, including the
“satellite” modes.

7.0 IV. THEORETICAL DISCUSSION AND COMPARISON
WITH EXPERIMENT

A
[e)
T

M=1 A. Conventional magnetoplasma modes
at fields less than about 1.2 T

bl
[
T

We consider first the theory underlying the data on con-
M=2 ventional magnetoplasma modes in relatively small magnetic
fields shown in Fig. 3 and repeated for ease of comparison
with theory in Fig. 7. For these experimental data the ion
density was known to within 2%, since it had been obtained
from the measured value of the Shikin frequency.

The simplest theoretical model described in Sec. | yields
the broken lines in Fig. 3. There is only qualitative agree-
ment with experiment, the predicted frequencies being too
high, although the essential physics of the conventional mag-
netoplasma modes is correctly described. An improvement
L L might be achieved by recognizing that the rigid boundary

condition is unrealistic. In reality the boundary must move,
0 5 10 15 and we argue in Appendix A that the boundary conditi@n
Mode number, m could reasonably be replaced by one of the form

Frequency (kHz)
WA
o o
T T

g
=)
T

-
o
T

<@
o

FIG. 6. Measured mode frequencies for multipole edge KR
w

modes (M=1 and M=2), plotted against mode number. KRI- (KR + Mw-Ji—(kR) — tanHkd)Ji—(KR) =0
B=1.2 T, T=133mK, R=12.86 mm, ny(0)=3.84x 10" m2, Jr (KR) +Mecd;m(kR) = = (k) Jjm (kR)=0,

2,=53.85 nm, T,,=141.1 mK. (4)
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where the parameter is equal to 1. As is to be expected, small amplitude it agrees with that obtained in the linear
this relaxation of the rigid boundary condition leads to aapproximation. It should be explained that in the linear ap-
reduction of the mode frequencies, as shown by the soligroximation the density perturbation is found to diverge at
lines in Fig. 3, but the predicted frequencies are now too lowthe edge of the sheet according to the equation
Nevertheless, as we shall explain, this model is useful for

; const
pedagogic purposes. Sn= 5
A more accurate model, incorporating the correct density (R—r)t* ©

profile and taking proper account of the screening by th
actual electrode system, was developed by Glatthl?! for
the geometry used in our experiments. In the limit of small
d/R, andkd=1 they find that mode frequencies are given
by Eq.(3) with an effective boundary condition that is simi-
lar to, but rather more complicated than, our E4) [see
their Eq. (4)]. Their analysis is not valid iffw.— o|/w,
<d/R,,, but in this case they use a different approach. Un

eCOnfirming a formal failure of the approximation at the edge
of the sheet. At the same time it can be shbwimat the
equilibrium densityng goes to zero near the edge of the sheet

s R—r)Y2 We see, therefore, that the square root singu-
larity (5) is consistent simply with a small movement of the
edge of the sheet, as suggested in Appendix A.

In brief the general problem that we must solve involves

in essence a search for self-consistent solutions of the elec-

fortunately the details of this theory have not begn pubI_ishe rostatics, represented by a nonlocal relationship between the
although the authors report good agreement with their Owrberturbed charge density(r)=esn(r) and the perturbed
experiments on electron sheets. We find that there is go?ﬁotential in the plane of the sheet

agreement with our own experimental results in the case
all modes with frequencies significantly greater than the cy-
clotron frequency, but the agreement tends to be poor for the q’>(r)=f K(r,r")p(r"d?r’, (6)
edge modes¢<w.), even wherkd<1, except perhaps for
the (—1,1) edge mode in not too large a magnetic field. Weand the continuity equation
do not understand why agreement seems less good for the
ion sheets than for the electron sheets. ap .

The models that we have so far discussed can handle only ¢ Tdvi=0, @
modes for whichkd< 1. This condition must fail for conven-
tional edge modes in a sufficiently high magnetic field, and itthe curren{ being related to the electric field through a mag-
fails for all the multipole edge modes. Indeed these lattefetoconductivity tensor based on the Drude model. The elec-
modes cannot be described at all by these models. Therefoté@static Green functiorK(r,r') must take account of the
we require a more general approach to finding the eigenfreactual electrode configuration, including the wall electrodes.
quencies of the compressional modes of the system: it mudthe equilibrium density profileng(r) can be found by the
take proper account of both the real density profile and of thénethod described by Glattét al.' applicable ifR,>d.
screening by the real electrode system, although it can still For the equilibrium density profile relevant to the experi-
be based on a Drude model for the electron or ion dynamicgnents described in this paper it is not possible in general to

At first sight this task is made difficult by the fact that, determine analytically the eigenfrequencies of all the modes,
strictly speaking, the problem is always nonlinear. This isincluding the multipole edge modes, for which there is a
because any movement of the edge of the ion sheet mugapid spatial variation in the perturbation in the potential on
necessarily involve changes in the ion densiig) very near ~ a length scale comparable or less tltanit is therefore nec-
the edge that are not small in comparison with the locaEssary to resort to numerical methods. One such method was
equilibrium density ny(r)]. However, for sufficiently small described in an earlier publication of our grotifo set up a
mode amplitudes the width of the band along the edge of théuitable trial function describing the radial variation of the
sheet where the conditiofn/ny<1 is violated can be arbi- perturbationp(r) in the charge density, the sheet is divided
trarily small. Therefore it is possible to argue that an eigeninto a large numbeN of annuli, andp(r) is taken to have
frequency obtained within a linear approximation corre-the form
sponds to the leading term in an expansion of the exact
frequency in powers of the mode amplitude. Confirmation of
the validity of this approach is provided by theoretical study p(r)= Z’l uyr™B(r), ®
of a sheet of electrons that is held in a parabolic external
potential, where the equilibrium density profile has the formwhere B,(r) is a linearB spline within the (—1)th and
of an ellipse*® In this case exact analytical solutions can belth annuli. Better convergence is obtained by replacing the
obtained for the if),n)=(0,1) mode in zero magnetic field final B spline by a term of the forn(6). The problem is then
and for the(=1,1) modes in an arbitrary magnetic field. reduced to the determination of the eigenvalues and eigen-
Comparison of the exact solutions with those obtained in thdunctions of an N+ 1) X (N+1) matrix. The results of this
linear approximation shows that in the case of thel,l) procedure, applied to the conventional modes relevant to Fig.
modes there is full agreement at all amplitudgi® the 3, are shown by the solid lines in Fig. 7, and we see that
(%£1,1) modes the electron sheet is shifted as a whole from itshere is good agreement with experiment. At least for the
equilibrium position and simply rotates with the single- lower modes, the agreement is within the experimental error
particle Zeeman frequencies, which is a manifestation of thénvolved in the determination from the observed Shikin fre-
Kohn theoren|. In the case of th€0,1) mode the exact fre- quency of the equilibrium ion density at the centre of the
qguency does depend on mode amplitude, but in the limit oSheet.

N+1
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Another general method can be based on an expansion 6fjuid in the presence of a capillary wave. As we have al-
the perturbation in the potential in the plane of the sheet imeady explained, the edge of the sheet does indeed move in
terms of a suitable set of orthonormalized functions, so thathe modes that we understand. We believe that the freedom
the problem can again be reduced to a matrix form. Thi®of the edge to move does not introduce any new low-
approach becomes practicable if sufficient accuracy can bieequency modes, although it does reduce the frequencies of
achieved by retaining only a relatively small number ofthe old modes. In this connection it is interesting to examine
terms in the expansion, which requires an appropriate choicen the basis of the boundary conditiéf how the modes of
of the basis function set. Ideally, for the case of edge modeshe system evolve as the value efis gradually reduced,
one should choose function sets that depend on magnettorresponding to a less and less rigid boundary. The frequen-
field as a single parameter, the field dependence reflecting ares and radial wave vectors fall continuously, but no new
increasing localization near the edge of the sheet with inlow-frequency modes appear.
creasing magnetic fiefi*> Unfortunately, we have not
found such a family of function sets for the case of a circular
geometry, and we have therefore used the set of functions V. CONCLUSIONS

derived for an elliptical pool in the linear approximatith. We have reported measurements on magnetoplasma

Th%:jetalls ﬁ‘re %‘t"9” g?ptpk?ndlx?ﬁ d for th i odes that can be excited in a two-dimensional circular
€ results obtained by this method for the convenlionay o o4 or4pet jons trapped below the surface of superfluid

edge magnetoplasma modes are shown by the broken lines Hlium at a low temperature. As in earlier work on a variety

Fig. 7. We see that there is good agreement with experimen&f systems, by other authors and by ourselves, we have ob-

the agrgement being again within the expenmental'e'rror 'Nserved both bulk modes and conventional edge modes. How-
volved in the determination from the observed Shikin fre-

qguency of the equilibrium ion density at the center of theever, we have also ob_served anq studied .mult|pole gdge
sheet modes of the type predicted to'eX|st by Nazin and Sh?lgm,

: and we have reported the existence of other “satellite”
modes, the origin of which we do not yet understand. We
have reviewed the theory underlying these modes, and we
have shown that theories that take proper account of both the
surrounding electrodes and the correct density profile in the

At the low frequencies for which experimental data aresheet yield predictions that are in good agreement with ex-
shown in Fig. 4 there are three groups of mo¢ither than  periment. Although our work is related specifically to a two-
the shear modgsthe conventional edge magnetoplasmadimensional sheet of ions, the theory is relevant also to two-
modes at high magnetic fields, the frequencies of which faldimensional electron systems, either on the surface of helium
monotonically with increasing field; the modes with frequen-or in semiconducting structures.
cies that pass through a maximum with increasing field; and
the “satellite modes,” which are shown more clearly for a
different ion sheet in Fig. 5. ACKNOWLEDGMENTS
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on the Shikin frequency, and therefore we have for them no
reliable independent measurement of the ion density at the
center qf Fhe sheet. We have therefore determined this denppenDIX A: A SIMPLIFIED BOUNDARY CONDITION
sity by fitting the observed frequency of tkie 1,1) conven- FOR THE EDGE OF THE ION-SHEET
tional edge mode to the general theory at a field of 1 T. The
theory is then used to predict the solid lines shown in Fig. 4. In this appendix we shall show that for the model in
We see that there is good agreement with experiment, fowhich the equilibrium density profile is a step function the
both the conventional edge modést least at lowm) and  edge of the sheet must move in the presence of a plasma
those that exhibit a maximum frequency with increasingmode, and we shall derive the effective boundary condition
field. The latter modes are the multipole edge modes, firsthat then applies. In general the relationship between the per-
predicted to exist for the case of a semi-infinite sheet ofurbation eén in the charge density and the perturbation
charges by Nazin and ShikihThe experimental results ¢(r,6,t) in the potential in the plane of the charged particles
therefore provide excellent evidence that these latter modes nonlocal, the range of the nonlocal relationship being of
do indeed exist, and that the theory underlying them is corerderd. This range is necessarily equal to the distance over
rect. which the equilibrium densityg(r) falls to zero at the edge

The theory provides no explanation for the existence obf the sheet. For consistency, therefore, a model in which the
the “satellite modes.” The suggestion has been made bylensity profile is taken as a step function must be taken to
Monarkhd?° that these modes may be “magnetoripplons”; involve alocal relationship betweeesn and ¢. In this case
i.e., modes in which the edge of the sheet oscillates in posithe perturbation in the potential given by Ha) will apply
tion in a way analogous to the motion of the surface of aonly for r <R, the perturbation for >R being zero. It fol-



3454 ELLIOTT, NAZIN, PAKES, SKRBEK, VINEN, AND COX 56

lows that if the “rigid boundary condition’(2) were to ap- wkR I (KR) + Mwcd|m (KR)
ply accurately, the perturbatios in the potential would re- )
sult in a discontinuity in the total potential e+ R. The edge 2weoM* R(w?— 0f)

of the sheet must therefore move in such a way that it expe- N ange? Imi(kKR)=0. (A8)

riences a change in the potential,; due to the electrodes ) ) ) i
that is exactly equal to the perturbatiah Therefore the Using the dispersion relatioi®), we can transform Eq(A8)

displacement (6,t) of the edge must be given by into the form
$(R,0,1)= dod R+ {(6,0)]= ~Eex(RIZ(,1) oKR Yy (KR) + Mwe|m (KR) - # tanh(kd)J; (kR)=0,
=E(R){(6,1), (A1) (A9)

whereE.(R) andE(R) are the electric fields at the edge of Which is the same as E§).

the sheet due, respectively, to the electrodes and the equilib- The numerical factor can be evaluated in the case of a
rium distribution of charged particles, and where we havehalf-plane geometry{described by Cartesian coordinates
assumed thaf(,t) is small. We have made use of the fact (X,¥,2)], where the semi-infinite ion sheet*0) is situated
that the fieldsE,(R) andE(R) must cancel, if the sheet is midway between ideally conducting plane electrodes placed

to be in equilibrium. The fiel&E(R) must be of the form atz=*d, its lateral extent being controlled by a thirdall)
electrode atx=-—s. For this geometry the equilibrium
ang(0)e charge density profile was obtained by Glattfias
E(R)=(2) 55— (A2)

tanhmx/2d(tanhm(x+ s)/2d + tanhms/2d) |2
n(x)=nq .

where « is a numerical factor and the sign depends on the tanhms/2d tanhmx/2d + 1
type of ion. For a strict step function density profile this (A10)
factor is logarithmically divergent, but we can obtain a finite
value by calculating it for a realistic profile, as we show
later.

Differentiating Eqg.(Al) with respect to time yields the

It is easy to show that the electric fiek{x,x’) at the point
X created by an infinite charged filament of unit linear charge
density placed ax’ in the planez=0 is given by

boundary condition - 1 1
EOX) = G| sinl(x —x)172d T sinhr(x + X+ 25)/2d}'
=t =Ev,(R,0,t)=(*) e (R, 0,1),
r=R 0 (A3) The electric field at the edge of the sheet then becomes
wherev,(r, 6,t) is the radial component of the velocity field E(R)=ejwn(x)E(Ox)dx (A12)
in the plasma mode. 0 I

In order to obtain the plasma mode frequencies with the

new boundary condition we note first that the radial compoVhich leads finally to the value af,

nent of the drift velocity is given in terms of the potential

o 1/2
and the conductivity tensor by a= i f tanhx{tanh(x+s) + tanfs}
7 Jo tantx tants+1
1 d¢ 1d¢
=) nee I +U”’r 0" (A4) { dx. (A13)

x sinh x * sinh(x+2s)

Within the Drgde approximat?on the relevant components OfNumerical integration of this expression shows thatl to
the conductivity tensor are given by within 1075 for 0<s<w, as stated in Sec. IV.

i wnge? wNoe? _
O-”:m*(w—z—w5; O—"’:rn*(w—z—wcr)' (A5) APPENDIX B: DERIVATION OF MODE FREQUENCIES

The integral equation for the perturbation in the potential
With a potential of the form of Eq.l), i.e., associated with the magnetoplasma wave has already been

written down as Eq(6), where the perturbed charge density

b= o |m|(kr)expli(mo—wt)}, (AB6) is obtained from the continuity equatiér). As usual, and in
) accord with the symmetry of the problem, we write the per-
we find turbed potential in the form
B iedg o(r,t)y=on(r)expi(mé—owt)}, 0<sr<R. (Bl
r(r=R)=(%)

m* R(w?— wg)

X {wkR (KR +Mocdjm(kR)}Y. (A7)

We expandg,(r) in a complete set of functions

m 2
S™ (1) =Ny rﬁ) P&m"l’”[l—z(rﬁ) ]; (B2)

Substituting Eq(A7) into Eg. (A3) we obtain
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} 12

and P(k“'ﬂ)(x) are the Jacobi polynomials. For fixed the

where 1

2

o
Kn=—

dn+

, r=min(r,r’), r-=maxr,r’).

N = 4k+2m+1[ I'(k+1) I'(m+k+1/2)
km™ R |T(k+1/2) T(m+k+1)

(83)  Multiplying both sides of Eq(6) by

functionsS{™(r) are normalized in the interval () with rS{™(r)(w?—wd)w (B9)
the weightr/(R>—r?)¥2. Thus (RZ—r2)12
bn(1)=2, a,SM(r). (B4)  and integrating it from O t&, we obtain the set of equations
k=0
Measuring all lengths in units af (generally an arbitrary M, a,=0 (B10)

length scale which in the case of symmetric screening can

naturally be taken to be the distance of the ion sheet from the

screening plangsand all frequencies in units ofwg where

=(nge®l4me,md)2 and puttingn(r) =nyo(r), we find the

Iﬁlrlt?(\eﬂ:jmgh;;(gperedsjrl]osliqt;'m the radial dependence of the per- M.k—wA(l)er A(2)+(w —» )w5|k, (B11)

1 ~ ~ (m)
- = (m) (m) S™(r)r dr
p(l’) (wz_wg)w (le +wcL2 )d’m(r)y (BS) JJ — )1 K (I’ r )L m)(r/)dr/
where the operatorts are defined by (B12)
|“_<m>¢ zd_‘f dém a i ] oo _12 . To find the magnetoplasma mode frequencies we retain a
™ odr dr r|dr\ dr roome finite numberN of terms in Eq.(B4) and require that
N dom
Lg“)dbm:E + b (B6) detM=0. (B13)

We use the expansion of the Green function It is very difficult to find the multipole modes directly from

Eq.(B13), since they correspond o roots closely spaced in
K(r,r )_ 2 Ko(r,r)explim(6—6")}, (B7) the neighborhood of zero frequency. Theref_ore B3

can as a rule be used only for the conventional magneto-
plasma modes. However, for the casew,, we can ne-
glect w?> compared withw§ in Eq. (B11) and reduce the
problem to the generalized eigenvalue problem

where

Kin(r,r ) =472 | 1n(Kaf <) K (Kol =)
n=0

Ax=\BXx, (B14)
Km(knRw)
= Im(Knr ) m(Kar >) T kR, (B8)
miEnFw where A= 0w A®), B=—w?l+A®, and \=w, which can
and easily be solved numerically.
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