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Flux penetration into flat rectangular superconductors with anisotropic critical current
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Superconductors with anisotropic critical-current densityj c exhibit characteristic anisotropic flux-density
patterns during penetration of magnetic flux. We investigate this anisotropic flux penetration in detail by
observations using the magneto-optical Faraday effect and by first-principles calculations which describe the
superconductor as a nonlinear anisotropic conductor. Our samples are thin plates of DyBa2Cu3O72d into
which anisotropic pinning is introduced by oblique irradiation with 340-MeV Xe ions creating linear defects.
Excellent agreement between experiment and theory is obtained. In particular, we find that in rectangular plates
with j c anisotropy equal to the side ratio, the intrinsic and shape anisotropies maycompensatesuch that the
flux pattern looks like that in an isotropic square stretched to the rectangular shape. This means the current
streamlines are concentric rectangles which shrink to a point rather than to a line, and the discontinuity lines
where the current bends sharply, coincide with the diagonals of the rectangle rather than forming the usual
double-Y structure.@S0163-1829~97!08330-6#
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I. INTRODUCTION

Since the discovery of high-temperature superconduc
~HTSC’s! a great deal of effort has been made to investig
the influence of their strong anisotropy on their superc
ducting properties. The reported anisotropy of the superc
ducting order parameter in thea-b plane especially stimu
lated the still ongoing discussion abouts- and d-wave
superconductivity. However, many features which are
portant for applications are sufficiently characterized
macroscopicquantities like the critical-current densityj c and
the activation energyU. When the supercurrents reachj c ,
the vortices depin and start to move under the influence
the Lorentz force. This vortex drift induces an electric fie
E which causes a voltage drop along the specimen. Energ
thus dissipated at large current densitiesj . j c where the re-
sistivity r5E/ j becomes finite. In HTSC’s the vortices ma
also depin at low current densitiesj ! j c by thermally acti-
vated depinning, which is characterized by an activation
ergy U.

The strong dependence of nearly all physical quantitie
the HTSC’s on the crystalline orientation results from th
orthorhombic crystal structure, which leads to anisotro
electronic properties both in planes parallel and perpend
lar to the crystallinec axis. Since superconductivity take
place mainly perpendicular to thec axis, in the Cu-O planes
j c is typically much larger in thea-b plane than parallel to
the c axis. An informative method for investigating anis
tropic current distributions is the observation of the pene
tion of magnetic flux with high spatial resolution when a
external magnetic field is applied.

Flux penetration into type-II superconductors with flu
line pinning is well described by the Bean model1 and its
extensions2–6 in the case of infinitely extended cylinders
slabs with constantj c in a parallel magnetic field where de
magnetizing effects are negligible. The introduction of a d
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magnetizing factor accounts for these effects only in the c
of ellipsoidal samples without pinning~linear response!.
However, monocrystalline HTSC samples are available o
as thin films or monocrystalline platelets, which are usua
investigated in a perpendicular magnetic field to produ
larger signals. In this geometry one has to account for la
stray-field effects, and the original Bean model can be
plied only to thecritical state, in which the sample is com
pletely penetrated by magnetic flux and the shielding curr
has reached the critical valuej c in the entire
superconductor.7 Forkl and Kronmu¨ller8 successfully used
the Bean model to describe magneto-optically observed fl
density profiles at the flat surface of samples with fin
thickness in the critical state. The description of flux a
current distributions in thepartly penetratedstate is much
more complicated. A numerical method to calculate the c
rent distribution in thin circular disks from measured flu
density profiles was reported by Theusset al.9

Analytic expressions for the static magnetization and
flux and current profiles during flux penetration and exit a
available for the one-dimensional~1D! perpendicular Bean
model of long strips10–12 and circular disks13–15 and for thin
strips with a geometric edge barrier.16,17 These 1D theories
of thin long strips and circular disks have recently been
tended to the two-dimensional~2D! problems of thin super-
conductors with square, rectangular or arbitrary shape
perpendicular field.18–20 Recent magneto-optical studies21–25

demonstrate that the flux penetration and exit and the
creep are well described by model calculations using
current-voltage law, e.g., of the formE}( j / j c)

n, which con-
veniently interpolates between the Ohmic regime of th
mally activated flux flow (n51) and the classical Bea
model (n@1). HereE is the electric field and the exponen
n is determined by the activation energyU. The often ob-
served dependenceU( j )5Ucln(jc /j) indeed yields such a
power lawE( j )5Ecexp(2U/kT)5Ec(j/jc)

n with n5Uc /kT.
3413 © 1997 The American Physical Society



la
ic

tio

p
a

tr
n

et
ch
d
n

is

t i
in
b

n
it
th
ua
pic
al
o

ar
ul

d

m
e
ag
th
e
en
re
ct
-
r
e

i-
f
un

t
ch
t-
tr
in

l

by

mo-

g
ce.

n
ld,
the

-

er-
our
nd
tric
e.

3414 56SCHUSTER, KUHN, BRANDT, AND KLAUMÜNZER
The current distribution was calculated for thin rectangu
specimens from this model in Refs. 18 and 24 and n
agreement with the observed cushionlike flux penetra
was obtained. The electric fieldE was found to be maximum
along the boundaries wherej c changes abruptly24 in samples
with inhomogeneous critical-current densityj c(r ). A strong
enhancement of the electric field occurs at concave sam
corners, which even becomes infinite when the corners
sharp.25

In this paper we present an extension of the above iso
pic theory to samples with anisotropic critical-current de
sity. The obtained flux patterns are compared with magn
optically determined field distributions of samples in whi
an anisotropy ofj c in the a-b plane was induced by crosse
linear defects~LD’s! introduced by high-energy heavy-io
irradiation.26,27 Since samples with thec axis lying in the
plane of observation mostly exhibit macrodefects which d
turb the magneto-optically visualized flux patterns,28–30 we
investigate here features of the anisotropic critical curren
HTSC’s with irradiation-induced anisotropy rather than
samples with a natural critical-current anisotropy caused
intrinsic flux-line pinning at Cu-O planes.

This paper is organized as follows. The main equatio
used for the calculations are given in Sec. II together w
typical results for the current stream lines and profiles of
magnetic and electric fields during flux penetration into q
dratic and rectangular films with isotropic and anisotro
critical-current density. In Sec. III our magneto-optic
method and sample preparation are described, and the
served pictures of flux penetration into anisotropic films
presented. Finally, our theoretical and experimental res
are discussed and summarized in Sec. IV.

II. THEORY

A. Critical state in rectangular superconductors

Our computation reproduces the results of the Bean mo
for the particular choicesj c(H)5 const and n@1 in
E( j )5Ec( j / j c)

n. The current density attains its maximu
possible valuej 5u j u5 j c in the entire specimen when th
sample is in the critical state, i.e., fully penetrated by m
netic flux. In addition, the current density has to satisfy
continuity condition divj50 and has to flow parallel to th
surfaces. It follows from these conditions that the curr
stream lines have sharp bends in superconductors with
angular cross section; this is a characteristic feature of ve
fields with constant modulus.31 These sharp bends form dis
continuity lines (d lines! which divide the superconducto
into domains with uniform parallel current flow as discuss
in the review by Campbell and Evetts;2 see the upper plot in
Fig. 1. One distinguishes two types ofd lines:7 At d1 lines
the orientation ofj c changes discontinuously but the magn
tude of j c remains the same. Atd2 lines the magnitude o
j c changes, e.g., at the specimen surface or at inner bo
aries where regions of differentj c meet. The current stream
lines have to bend sharply in the critical state in order
satisfy the condition of continuous current flow at su
boundaries. Thed1 lines run along the bisection lines star
ing from the sample corners and on a section of the cen
line parallel to the longer side as shown in the lower plot
Fig. 1, when the superconductor is isotropic in thex-y plane.
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Characteristic features of thed1 and d2 lines are the
following.

~1! Whereas thed2 lines occur at internal and externa
boundaries of the sample~local sample geometry!, the d1

lines form in homogeneous regions and are determined
the shape of the sample.

~2! Flux lines cannot cross thed1 lines since during in-
crease or decrease of the applied magnetic field the flux
tion is directed towards or away from thed1 lines, respec-
tively. In contrast, thed2 lines can be crossed by movin
flux lines, e.g., when flux lines penetrate from the surfa
When the current does not flow parallel to thed2 line, a
strong flux motion is directed along thed2 line.

~3! The electric fieldE is largest at thed2 lines, whereas
we haveE50 at thed1 lines.24,19

~4! The d1 and thed2 lines do not change their positio
during lowering or reversal of the external magnetic fie
although the magneto-optically detected intensities of
d1 andd2 lines are reversed in the remanent state.

The d1 and d2 lines are clearly seen in thin type-II su
perconductors~thickness! lateral extension! because of the
logarithmic infinity of Bz at the sample surface.7

FIG. 1. Top: Stream lines of the current in a thin type-II sup
conductor of rectangular shape in the critical state. Middle: Cont
plot of the normal component of the magnetic field in and arou
the rectangle. Bottom: Contour plot of the magnitude of the elec
field inside the rectangle during field ramping in the critical stat
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56 3415FLUX PENETRATION INTO FLAT RECTANGULAR . . .
B. Basic equations

The equation of motion for the sheet curre
J(x,y,t)5 jd in a thin planar conductor or superconductor
thicknessd and arbitrary shape in a perpendicular fie
ẑHa(t) is derived in the following way.18–20,24We character-
ize the material byB5m0H and by a resistivityr5E/ j or
sheet resistivityrs5E/J5r/d, which may be nonlinear
e.g., r( j )5rc( j / j c)

n21, or linear, complex, and frequenc
dependent, r5rac(v)5r81 ir9. The sheet resistivity
rs(x,y) may depend on the positionr either directly~in a
nonuniform specimen! or implicitly via J(x,y) and
Bz(x,y).

Planar anisotropy of the resistivityr( j ), which becomes
now a tensor, can be incorporated into this theory if
resistivity is linear or if the currents mainly flow along th
principal axes of the anisotropy. The latter condition is s
isfied in homogeneous superconductors with the shape
rectangle with its edges along the anisotropy axes if the
sistivity is highly nonlinear, i.e., in the Bean-like case. O
should note that a more general theory for ‘‘arbitrary nonl
ear and anisotropic resistivity’’ presents fundamen
difficulties.32 As shown by Gurevich33,34 the assumption of
general anisotropic nonlinear resistivity may lead to an ins
bility of the current flow and to a spontaneous creation
cells of circular currents~‘‘macroturbulence’’!.

To obtain this equation of motion one first expresses
sheet current by a scalar functiong(x,y) as

J~x,y!52 ẑ3¹g~x,y!5¹3 ẑg~x,y!. ~1!

This substitution guarantees that divJ50 and that the curren
flows along the specimen boundary if one s
g(x,y)5const50 there. In general, the linesg(x,y)5 const
coincide with the current stream lines. The physical mean
of g(x,y) is the local magnetization or density of tiny curre
loops. Thus, the integral ofg(x,y) over the specimen are
yields the magnetic moment

m5
1

2E r3J~r !d2r 5 ẑE g~r !d2r . ~2!

Next, one determines the integral kernelQ(r ,r 8) (r5x,y)
which relates the perpendicular fieldHz(x,y) in the speci-
men planez50 to g(x,y) by

Hz~r !5Ha1E
A
Q~r ,r 8!g~r 8!d2r 8. ~3!

This may be inverted to give

g~r !5E
A
Q21~r ,r 8!@Hz~r 8!2Ha#d2r 8. ~4!

The integrals in Eqs.~2! and ~3! are over the specimen are
A and Q21 is the inverse kernel ofQ, defined by
*AQ21(r ,r 9)Q(r 9,r 8)d2r 95d(r2r 8).

Finding the 2D integral kernelQ is not a trivial task, since
when one performs the limit of zero thickness in the Bi
Savart law, the kernel becomes highly singul
Q521/4pur2r 8u3; this form of the kernel thus applies onl
when r lies outside the specimen, butinside the specimen
area~wherer5r 8 can occur! one should perform part of th
f
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integration~3! analytically to obtain a well-behaved kern
as described in Ref. 35. Alternatively, one may obtain t
kernel numerically for a small but finite heightz above the
specimen.36,37 Knowing that the field of a tiny current loop
~or magnetic dipole! of unit strength located atx5y5z50
with axis along z is Hz(x,y,z)5(1/4p)(2z22x2

2y2)/(x21y21z2)5/2, one obtains for the kernel~still for
arbitrary shape of the thin plate!

Q~r ,r 8!5
1

4p
lim
z→0

2z22r2

~z21r2!5/2
~5!

with r25(x2x8)21(y2y8)2. From Q Eq. ~5! the inverse
kernel Q21 may be obtained by Fourier transform or b
introducing a grid with positionsr i5(xi ,yi) and weights
wi , the vectorsHi2Ha5Hz(r i) andgi5g(r i), and the ma-
trix Qi j 5Q(r i ,r j )wj . The integrals~3! and~4! then are ap-
proximated by the sums Hi5( jQi j gj and
gi5( jQi j

21(H j2Ha) where Qi j
21 is the inverse matrix of

Qi j as described in the Appendix of Ref. 19.
As the last step, the equation of motion forg(x,y,t) is

obtained from the 3D induction law¹3E52Ḃ and from
the material lawsB5m0H and E5r j , valid inside the
sample wherej5J/d52 ẑ3(¹g)/d. Note that the required
z component Ḃz5 ẑḂ52 ẑ(¹3E)52( ẑ3¹)E
52 x̂]E/]y1 ŷ]E/]x does not depend on the~unknown! de-
rivative ]E/]z. With rs5r/d one may write inside the
sample E5r j5rsJ52rsẑ3¹g and thus Ḃz

5( ẑ3¹)(rsẑ3¹g)5¹•(rs¹g). Inserting this into Eq.~4!
one obtains the equation of motion forg(x,y,t) in the
form18–20,24

ġ~r ,t !5E Q21~r ,r 8!@ f ~r 8,t !2Ḣa~ t !#d2r 8. ~6!

For isotropicr( j ) the integrand in Eq.~6! is

f ~r ,t !5¹•~Ds¹g!, ~7!

with Ds5rs /m05r/dm0 the sheet diffusivity of flux. Equa-
tions ~6! and ~7! describe the two-dimensional diffusion o
magnetic flux. In the present perpendicular geometry,
diffusion is nonlocal, characterized by the integral kern
Q21(r ,r 8). In the simpler parallel geometry the flux diffu
sion is local, obeying a differential equation, since the ker
Q formally reduces to a delta functiond(r2r 8) times the
specimen thicknessd, and g(r ) then coincides with
Hz(r )2Ha .19 In general the diffusion isnonlinearand inho-
mogeneous since the flux diffusivityr/m0 may depend on
r , J, andHz .

When the resistivity is anisotropic, expressed by the t
functionsrxx5Ex /Jx and ryy5Ey /Jy , Eq. ~6! still applies
but with a modified integrandf ,

f ~r ,t !5¹x@~ryy /d!¹xg#1¹y@~rxx /d!¹yg#. ~8!

One can show that in the limit of a long strip or of a rec
angle with extreme anisotropyrxx@ryy the 2D Eq.~8! re-
duces to the corresponding 1D expressionf (x,t) for an infi-
nitely long strip.24
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C. Rectangular films and plates

In films or plates with rectangular shape, the bound
condition thatJ cannot cross the specimen boundary may
satisfied by expressingg(x,y) as a 2D Fourier series in
which each term vanishes at the edges. For a rectangle fi
the area 0<x<2a, 0<y<2b one writes18

g~x,y,t !5(
K

gK~ t !sinKxxsinKyy, ~9!

where theK are reciprocal-lattice vectors with the comp
nents Kx5(2m21)p/2a and Ky5(2n21)p/2b,
m,n51,2,3,. . . . The sum(K is over all m>1, n>1. A
similar Fourier series may be written for the fieldHz inside
the specimen area,

Hz~x,y,t !5(
K

HK~ t !sinKxxsinKyy. ~10!

From Eqs.~2!, ~9!, and~10! one obtains

HK~ t !5(
K8

QKK 8gK8~ t !, ~11!

where theQKK 8 are the 2D Fourier coefficients of the inte
gral kernelQ in Eq. ~2!,

Q~r ,r 8!5
1

ab(
KK 8

QKK 8sinKxxsinKyysinKx8x8sinKy8y8.

~12!

Explicitly one finds from Eqs.~4! and ~12! ~Refs. 18,19!

QKK 85
2

p2ab
E

0

`

dkx

KxKx8~11cos2akx!

~kx
22Kx

2!~kx
22K8x2!

3E
0

`

dkyk
KyKy8~11cos2bky!

~ky
22Ky

2!~ky
22Ky8

2!
. ~13!

Inspection reveals that the integrand in Eq.~13! is sharply
peaked atKx5Kx8 andKy5Ky8 . In fact, without the common
factork5(kx

21ky
2)1/2 the double integral~13! would separate

and would exactly equal12 dKK 8. Therefore, at largeK or
K8 one approximately hasQKK 85dKK 8K/2. This useful ap-
proximation allows us to write the inverse kernel explicit
as QKK 8

21
5dKK 82/K and to obtain approximate analytic e

pressions.
For rectangular plates or films in increasing, constant

cycled applied perpendicular fieldHa(t), the magnetization
g(x,y,t) may be computed by time-integrating the nonloc
diffusion equation~6! with the kernelQ Eqs.~12!, ~13! and
a material lawE5E( j ), or two lawsEx( j x) andEy( j y) in-
serted in Eqs.~7! or ~8!. Fromg(x,y,t) one obtains the shee
current J5 jd52 ẑ3¹g, the magnetic-field components
the specimen surfaceHz Eq. ~3!, Hx5Jy/2, Hy52Jx/2, and
the electric fieldE5E(J/d) Ĵ.

D. Nonlinear resistivity and scaling

In this paper we model the anisotropic pinning by tw
critical sheet current densitiesJc

a and Jc
b which enter the
y
e

ng

r

l

nonlinear resistivities rxx5Ex /Jx5(Ec /Jx)uJx /Jc
aun and

ryy5Ey /Jy5(Ec /Jy)uJy /Jc
bun if the anisotropy axes are

aix andbiy. Throughout this paper we use a constant cre
exponentn519, and constantJc5 j cd values, though our
computational method, in principle, allows for arbitrary d
pendences ofn(B) andJc(B) on the perpendicular compo
nent of the inductionB5m0H. For convenience we use th
specimen half widtha and the critical sheet currentJc

a as
units of length and magnetic field. We further setEc51 and
the ramp ratem0Ḣa5Ḃa51, which in real units means
Ḃa5Ec /a and a time unitt5m0Jc

aa/Ec . In these units, the
field of full penetrationHp , which logarithmically depends
on the specimen thicknessd or on our grid spacing, is
Hp'1.0. For a thin strip of width 2a@d one has45,38,39

Hp5(Jc /p)@11 ln(2a/d)#.
Due to our large creep exponentn519, which yields an

almost creep-free Bean-like example, the chosen ramp ra
not very relevant here. In fact, one can make the follow
useful statement. Any choice of the ramp rate is equival
and does not restrict the generality of the computati
Choosing the ramp rate larger by a factor ofA ~sayA510)
would yield identical results except that the obtain
B(r ,t) and J(r ,t) are larger by a constant factorA1/n ~here
A1/n5101/1951.13) and the time runs faster by a fact
A121/n ~here 1018/1958.86). This scaling law is derived an
discussed in more detail in Ref. 38. It applies to any pow
law E}Jn and states that the equations and their soluti
remain unchanged if one simultaneously changes the t
scale by a factor of 1/C ~or the frequency scale by a factor o
C) and the field and current units by a factor ofC1/(n21).

E. Sheet current and flux density

Figures 2–5 show the computed flux penetration in
squares (b/a51) and rectangles (b/a51.4) of supercon-
ductors with isotropic (Jc

b/Jc
a51) and anisotropic

(Jc
b/Jc

a51.4) pinning at three values of the applied fie
Ha . Note the qualitative similarities of the current strea
lines and contour lines of the magnetic field for the isotro
rectangle and anisotropic square, and for the anisotropic r
angle and the isotropic square, respectively. The depic
three states of penetration correspond toHa /Jc

a50.25, 0.55,
and 1.55~top to bottom!; in the latter case the penetration
complete. We used an exponentn519 and grids of
Nx3Ny525325 (30322, 22330, and 25325) equidistant
points, chosen such that in the fully penetrated~critical state!
all discontinuity lines run through grid points; this gri
choice strongly reduces the numerical noise, in particula
the electric fieldE5Jn. Note that the sheet current is finit
over the entire specimen area, even in regions where
perpendicular flux has not yet penetrated.

More detailed three-dimensional computations39 account-
ing for the finite thicknessd of the superconductor revea
that in the penetrated regions (BzÞ0) the current densityj is
constant over the entire thickness, with valuej c , thus the
sheet current isJ5 j cd5Jc there. In the nonpenetrated re
gion (Bz50) one hasj 5 j c near the two flat surfaces, an
j 50 in a current- and flux-free kernel which has appro
mately the shape of an ellipsoid, as assumed by Kras
et al.,3 but not exactly.39 During flux penetration, the flux-
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56 3417FLUX PENETRATION INTO FLAT RECTANGULAR . . .
and current-free kernel initially reaches the specimen sur
at the two verticesx5y50, z56d/2, where the thickness
of the two current carrying surface layers vanishes linea
not quadratically as for the ellipsoid. When the flux fro
comes close to the center~distancer'd/2), the flux-free
kernel starts to detach from the surface even at the two po
x5y50, z56d/2 and becomes completely isolated. T
closed surface layer around the entire superconductor
now finite thickness everywhere and carries a current den
of constant magnitudej c . Near the centerx5y50 one has a
circulating currentj5ŵ j c whose components exhibit a jum
of orientation as one crosses this central line. AsHa reaches
the field of full penetration the surface layer attains a thi
nessd/2 even on the linex5y50 and the flux-free kerne
shrinks to a point.

The left columns in Figs. 2–5 may be interpreted in thr
different ways: They show~a! the contour lines of the loca
magnetization or current-loop densityg(x,y), ~b! the stream
lines of the current flowing in the superconducting film, a
~c! they tell the intensity of the in-plane magnetic-field com

ponentBi at the film surface, sinceBi56 1
2 ẑ3J.

The right columns in Figs. 2–5 give the contour lines
the perpendicular magnetic fieldBz(x,y) close to the film

FIG. 2. The stream lines of the sheet currentJ ~left! and the
contour lines of the local magnetic-field componentHz(x,y) per-
pendicular to the specimen plane~right! computed for a thin square
shaped superconductor withisotropic pinning. The values of the
applied fieldHa areHa50.25, 0.55, and 1.55 in units of the critica
sheet currentJc . TheJc value and the creep exponentn519 in the
assumed lawE5Ec(J/Jc)

n are chosen as constants independen
H(x,y), and B5m0H was assumed. For this isotropic square t
discontinuity lines after full penetration (Ha>1.0Jc) form a cross
coinciding with the diagonals.
ce

,

ts

as
ity

-

e

f

f

FIG. 3. As Fig. 2 but for a square withanisotropiccritical sheet
currentJc

b/Jc
a51.4. The field unit is nowJc

a . Due to the intrinsic
anisotropy the discontinuity lines in the fully penetrated st
(Ha>1.0Jc

a) form a doubleY.

FIG. 4. As Fig. 2 but for a rectangular plate withisotropic
pinning. The side ratio isb/a51.4. The discontinuity lines star
from the corners and form an angle of 45° with the edges of
rectangle. In the fully penetrated state (Ha>1.0Jc) the discontinu-
ity lines form a doubleY.
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3418 56SCHUSTER, KUHN, BRANDT, AND KLAUMÜNZER
surface. The bold line is the contour lineBz(x,y)5Ba . This
contour line coincides with the ‘‘neutral line’’ which durin
flux flow in the critical state~lower row! separates the oute
region whereBz(x,y,t) decreases, from the inner region
whereBz increases.23

F. Electric field

Figures 6–9 show the magnitudeE of the electric field for
the same isotropic and anisotropic squares and rectan
and the sameHa values as in Figs. 2–5. Note thatE is
induced by the moving vortex lines, thusE5Bv is roughly
proportional to the vortex velocity when the local inductio
B5m0H is nearly constant. The orientation of the elect
field E coincides with the current stream lines, and the flu
flow velocity v is perpendicular toE andB. Before complete
flux penetration is reached,E(x,y) vanishes with approxi-
mately constant slope at the cushion-shaped flux front. In
the flux front one hasB50 and approximatelyE50. More
precisely, sinceE}Jn andJ}r 5(x21y2)1/2 near the speci-
men centerr 50, one has thereE}r n, which for n@1 is
vanishingly small compared with the typical valueaḂa of
E near the edges.

The maximum electric fieldEmax occurs in the middle of
the specimen edges. In the rectangle with isotropic pinn
this maximum is approximately the same at all four edg
Emax'Ḃal p wherel p5a2xp5b2yp'Ha /Jc is the penetra-
tion depth ~see Ref. 11 for a better value ofl p). For the
rectangle with anisotropic pinning,Emax is lower at the
longer edge, along which the larger critical-current dens
Jc

b51.4Jc
a flows, since there the penetration dep

l p
b'Ha /Jc

b is smaller.

FIG. 5. As Fig. 4 but for a rectangular plate with anisotrop
pinning,Jc

b/Jc
a5b/a51.4. Due to the compensation of the intrins

and shape anisotropies the discontinuity lines in the fully penetr
state (Ha>1.0Jc

a) form a cross, like with the isotropic square.
les

-

e

g,
s,

y

In the critical stateE is an exactly linear function ofx and
y since the current and its self-field have saturated and
thus time independent, therefore¹3E52Ḃ52Ḃa is con-
stant; on the discontinuity lines one then hasE50 and the
maximum ofE is alwaysEmax5aḂa except for Fig. 9~the
anisotropic rectangle! whereEmax5bḂa occurs at the points
x50, y56b. SinceE}Jn andE}s wheres!a is the dis-
tance from a discontinuity line, one findsJ}s1/n near all
discontinuity lines. See also the discussion ofE(x,y) in Ref.
19.

G. Flux-flow velocity

From the flux densityBz(x,y) and the magnitude of the
electric field E(x,y) one obtains the vortex spee
v(x,y)5uE/Bzu. The flux flow in the specimen planez50 is

d

FIG. 6. The profiles of the magnitude of the electric fieldE
during flux penetration for the isotropic square and the sameHa

values as depicted in Fig. 2.
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directed perpendicular to the sheet currentJiE52v3 ẑBz ,

thusv5E3 ẑ/Bz . The magnitudev of the flux-flow velocity
during flux penetration is depicted in Fig. 10~3D plot! and
Fig. 11 ~contour lines! for the isotropic and anisotropic rec
angle in increasing applied field atHa /Jc50.55 and 1.55 for
the same cases depicted in Figs. 2–9. Remember that
penetration is reached whenHa5Hp'Jc5 j cd. The velocity
field in the anisotropic rectangle is qualitatively similar to t
electric field discussed in Sec. II F.

For incomplete penetration one hasBz50 and E50 in
the nonpenetrated region; to avoid division by zero we t
usedv'E/(Bz10.03) (Bz in units m0Jc). Note in Fig. 10
that the velocity at the flux front abruptly jumps from
nearly constant value to zero, whileE andB both vanish as
the square root of the distance to the front. The consta
and abrupt vanishing ofv means that near the flux front th
vortex lattice penetrates almost as a solid. More precis
with increasing penetration,v first increases monotonicall

FIG. 7. The profiles of the magnitude of the electric fieldE
during flux penetration into the anisotropic square depicted in F
3.
ull

s

cy

y,

towards the flux front, but after a certain depth of order
0.5a, v reaches a maximum in the penetrated region a
decreases towards the front.

When full penetration is reached,Ha5Hp , the jump in
the velocity disappears andv vanishes almost linearly at th
specimen center. WhenHa is increased further,Bz(x,y) be-
comes more and more constant,Bz(x,y;Ha.Hp)
5Bz(x,y;Ha5Hp)1m0(Ha2Hp), and the velocity field
looks more and more like the profiles ofuE(x,y)u depicted in
Figs. 6–9. Therefore,v(x,y)5uE/Bu becomes almost linea
in x and y, which means the vortex lattice is compress
nearlyuniformly at Ha.Hp .

To illustrate the qualitative behavior of the speed of pe
etrating flux, we give the analytic expressions for a long th
superconductor strip in perpendicularHa . The profiles of
Jy , Bz , Ey , and vx for a strip with width 2a and
Jc5 j cd5const~Bean model! look very similar to the corre-

.

FIG. 8. The profiles of the magnitude of the electric fieldE
during flux penetration into the isotropic rectangle depicted in F
4.
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sponding profiles of a thin rectangle withb/a>1.4 taken
along thex axis. These profiles, measured in the specim
planez50 ~or uzu!a), are as follows:19

The position of the two flux fronts isx56xp with
xp5a/cosh(pHa /Jc), or inverted,Ha5(Jc /p)acosh(a/xp).
The vortex velocity isvx(x)5Ey(x)/Bz(x). In the nonpen-
etrated central zone uxu,xp one has
Bz(x)5Ey(x)5vx(x)50 and the sheet current

Jy~x!52
2Jc

p
arctanu. ~14!

In the penetrated zonexp<uxu<a the profiles are

Jy~x!52Jcsgn~x!, ~15!

Bz~x!5
m0Jc

lnU12uU, ~16!

FIG. 9. The profiles of the magnitude of the electric fieldE
during flux penetration into the anisotropic rectangle depicted
Fig. 5.
2p 11u
n

Ey~x!52Ḃa~x22xp
2!1/2sgn~x!, ~17!

vx~x!52
2pḢa

Jc

~x22xp
2!1/2

lnu~12u!/~11u!u
sgn~x!. ~18!

Here u5cx/uxp
22x2u1/2 and c5(12xp

2/a2)1/2

5tanh(pHa /Jc). These profiles are depicted in Fig. 12 f

n

FIG. 10. The profiles of the magnitude of the flux veloci
v5uE/Bu during flux penetration into the isotropic~upper two
plots! and anisotropic~lower two plots! rectangle depicted in Figs
8 and 9. Shown are two valuesHa50.55 and 1.55~in units Jc).
Note the abrupt jump to zero of the velocity at the flux front befo
complete penetration is reached.
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56 3421FLUX PENETRATION INTO FLAT RECTANGULAR . . .
xp /a50.95, 0.9, 0.8,. . . , 0.1, 0.05, 0.02, and 0.001 corre
sponding toHa50.32, 0.47, 0.69, 0.90, 1.10, 1.32, 1.5
1.87, 2.29, 2.99, 3.69, 4.61, and 7.60. Expression~16! for
Bz(x) is valid also outside the specimen and exhibits
known logarithmic infinityBz(x)} lnuuxu2au at the edges.

Note the nontrivial velocity profile~18!: v(x)5uvxu is
constant near the flux front, then goes through a maxim
and becomes nearly linear whenxp→0. This behavior is
different from the velocity of the vortices in a Bean slab

FIG. 11. The contour lines of the velocity fields depicted in F
10.
e

,

same width 2a in longitudinal field Ha , which is

v(x)5Ḣa / j c5const for Ha,Hp5a jc and
v(x)5(Ha / j c)x/(x1x0) with x05Ha / j c2a.0 for
Ha>Hp . In particular, the velocity at the flux frontv(xp)
during flux penetration is constant for parallel geometry, b
for perpendicular geometryv(xp) goes through a maximum
and becomes zero whenHa5Hp5(Jc /p)@11 ln(2a/d)# is
reached. AtHa.Hp , thev(x) in the strip is an almost linea
function ofx. Interestingly, if finiteHc1 is accounted for, the
profiles in parallel geometry become more similar to the p
files of the perpendicular geometry.

III. EXPERIMENTS

A. Faraday effect

We visualize the magnetic-field distribution of a supe
conductor by magneto-optics. Since the HTSC’s themse

.

FIG. 12. Magnitude of the sheet currentJy Eqs.~14! and ~15!,
flux densityBz Eq. ~16!, electric fieldEy Eq. ~17!, and flux velocity
vx5Ey /Bz Eq. ~18! for a thin strip of width 2a in increasing per-
pendicular field Ha . Shown are the profiles for value
Ha /Jc50.32 to 7.60~see text! corresponding to flux-front positions
xp /a50.95, 0.9, 0.8,. . . , 0.1, 0.05, 0.02, and 0.001.
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have no significant magneto-optical effect, the sample s
faces have to be covered by a magneto-optically active
terial. For our investigations we use the magneto-optical F
aday effect. The flux penetration is imaged by detecting
rotation of the polarization plane when linearly polariz
light passes a magneto-optically active layer exposed to
magnetic field of the underlying superconductor. The ligh
reflected from flux-free regions without rotation of the pola
ization plane; this light thus cannot pass an analyzer whic
set in a crossed position with respect to the polarizer. In
way the Shubnikov phase~with a flux-line lattice! will be
imaged as bright areas, whereas the flux-free Meissner p
remains dark. For the experiments presented in this pape
used ferrimagnetic iron-garnet films with an in-plane anis
ropy as magneto-optical indicators.

The iron garnet film was grown by liquid phase epita
onto a gallium-gadolinium substrate with a thickness
about 3.5mm ~commercial firm Gamma Scientific Produ
tion, Russia!.40 This kind of indicator allows the flux pen
etration into HTSC samples to be observed directly in
whole temperature regime of superconductivity with a m
netic sensitivity of about 1 mT and a spatial resolution
about 4mm.

The external magnetic field is generated by a copper
lenoid coil, which is cooled with liquid nitrogen and pro
duces a maximum field of 0.55 T. The observations w
performed in the optical cryostat described in Refs. 41 a
42. All images can be observed directly via the microsco
or be transferred to an image processing system
analyzing.43 The image processing system allows one to
termine the gray level pixel by pixel along a user-defin
line.

B. Sample preparation

We use DyBa2Cu3O72d ~DBCO! single crystals pre-
pared as described in Ref. 44 with dimensions of ab
10003685315 mm3 and with Tc'88 K as measured by
the Meissner effect using superconducting quantum inter
ence device magnetometry. All crystals have a distinct tw
structure, which was revealed by polarized light microsco

Crossed LD’s were introduced by irradiation with 34
MeV Xe ions at room temperature at the ISL accelera
~Hahn-Meitner-Institut, Berlin, Germany!. The samples were
glued on copper sample holders and mounted at the
anglesw5645° between the ion beam and the surface n
mal, i.e., thec axis of the sample. The total fluence w
about ft5231010 ions/cm2 and the inclination direction
was set parallel to the longer crystal edges. The range o
projectiles in the target material is larger than the sam
thickness. The heavy-ion bombardment reducesTc by less
than 1 K at thefluence used.

C. Measured flux-density patterns

Figure 13 shows the flux distribution in a rectangu
DBCO single crystal with irradiation-induced critical-curre
anisotropy. The sequence shows the flux penetration du
increase of the perpendicular applied magnetic field fr
m0Ha50 to 41, 82, and 123 mT~from top to bottom! at
temperatureT575 K. In these pictures the regions pe
etrated by the normal field component are white, while
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flux-free Meissner phase remains dark. The measured
patterns nicely agree with the calculations shown in Fig.
The smaller critical current densityj c

a flows along the short
sample edges, as can be seen from the faster flux penetr
there. In the critical state~bottom image! the d1 lines run
along the diagonals. This means that the current anisotr
j c
b/ j c

a exactly compensates the deviation from unity of t
side ratiob/a of our rectangle, like in the calculated ex
ample.

Figure 14 shows the flux penetration into the same sam
as in Fig. 13 but at lower temperatureT560 K (Ha5233
mT!, where the pinning anisotropy is lower, and at high
temperatureT580 K (Ha550 mT!, where j c

b/ j c
a is larger

than atT575 K. In both cases the diagonal cross whi
appeared atT575 K after full penetration, deforms into
double Y, but the orientation of the short central line of t
double Y for T560 is along the longer side, like in th
isotropic rectangle, but along the shorter side forT580 K.
At temperatures above 80 K, the anisotropy increases fur
but the contrast in our magneto-optical images diminis
due to decreasing penetration fieldHp . At temperatures be-

FIG. 13. Magneto-optical picture of the penetrating perpendi
lar flux density at the surface of a rectangular platelet of s
10003685315 mm3, a DBCO monocrystal withTc588 K, mea-
sured atT575 K. The values of the applied field are~from top to
bottom! 41, 82, and 123 mT. At this temperature the shape ani
ropy 1000:685 just compensates the radiation-induced anisotrop
the critical-current density in thea-b plane. The discontinuity lines
in the fully penetrated critical state thus form a cross.
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low 60 K, Hp is higher than the maximum field of our ex
perimental setup and thus the critical state is not reache

FIG. 14. The same specimen as in Fig. 13 but at lower temp
ture T560 K ~top, Ha5233 mT! and higherT580 K ~bottom,
Ha550 mT!. At the lowerT560 K, the anisotropy of the critica
current density is lower; the discontinuity lines in the critical sta
thus form a doubleY, which is located between the doubleY of the
isotropic rectangle and the diagonal cross of the more anisotr
rectangle shown in Figs. 5 and 10. At the higher tempera
T580 K, the anisotropy ofj c is higher; the discontinuity lines in
the critical state then form a doubleY which is at a right angle to
the doubleY of the isotropic rectangle shown in Fig. 4.
C

nd
IV. CONCLUSION

In this paper we presented patterns of electric and m
netic fields and current densities during the penetration
magnetic flux into flat type-II superconductors with an anis
tropic critical-current density. Our previous numeric
method to calculate currents and electric and magnetic-fi
patterns from first principles was extended to anisotro
critical currents for the case that these critical currents fl
parallel to the sample edges. This computation method tr
the superconductor as a highly nonlinear conductor with t
nonlinear resistivitiesrxx( j x) and ryy( j y). The method, in
principle, allows one to consider arbitrary dependences
these two resistivities on the normal field componentBz ,
e.g., by using creep exponentsn(Bz) and critical-current
densitiesj c(Bz). Qualitative similarities between the curre
stream lines and the magnetic-field lines are found for
isotropic square and the anisotropic rectangle with anis
ropy j c

a/ j c
b5a/b, and for the isotropic rectangle and the a

isotropic square.
The good agreement of the calculated field patterns w

those obtained by magneto-optics on a rectangular DB
single crystal with irradiation-induced critical-current aniso
ropy demonstrates the applicability of our computation
method, in which anisotropic pinning is modeled by tw
nonlinear resistivities. In addition, we have derived the flu
flow velocity during flux penetration and discussed the qu
tative differences of these velocities in parallel and perp
dicular geometries.
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