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Superconductors with anisotropic critical-current dengityexhibit characteristic anisotropic flux-density
patterns during penetration of magnetic flux. We investigate this anisotropic flux penetration in detail by
observations using the magneto-optical Faraday effect and by first-principles calculations which describe the
superconductor as a nonlinear anisotropic conductor. Our samples are thin plates giCDyBa_ 5 into
which anisotropic pinning is introduced by oblique irradiation with 340-MeV Xe ions creating linear defects.
Excellent agreement between experiment and theory is obtained. In particular, we find that in rectangular plates
with j. anisotropy equal to the side ratio, the intrinsic and shape anisotropieseongyensatsuch that the
flux pattern looks like that in an isotropic square stretched to the rectangular shape. This means the current
streamlines are concentric rectangles which shrink to a point rather than to a line, and the discontinuity lines
where the current bends sharply, coincide with the diagonals of the rectangle rather than forming the usual
double-Y structure[S0163-18207)08330-9

I. INTRODUCTION magnetizing factor accounts for these effects only in the case
of ellipsoidal samples without pinninglinear response

Since the discovery of high-temperature superconductorslowever, monocrystalline HTSC samples are available only
(HTSC’9 a great deal of effort has been made to investigates thin films or monocrystalline platelets, which are usually
the influence of their strong anisotropy on their superconinvestigated in a perpendicular magnetic field to produce
ducting properties. The reported anisotropy of the superconarger signals. In this geometry one has to account for large
ducting order parameter in the-b plane especially stimu- stray-field effects, and the original Bean model can be ap-
lated the still ongoing discussion abost and d-wave plied only to thecritical state in which the sample is com-
superconductivity. However, many features which are im-pletely penetrated by magnetic flux and the shielding current
portant for applications are sufficiently characterized byhas reached the critical valuej, in the entire
macroscopiguantities like the critical-current densityand  superconductof. Forkl and Kronmiler® successfully used
the activation energy). When the supercurrents reagh, the Bean model to describe magneto-optically observed flux-
the vortices depin and start to move under the influence oflensity profiles at the flat surface of samples with finite
the Lorentz force. This vortex drift induces an electric field thickness in the critical state. The description of flux and
E which causes a voltage drop along the specimen. Energy turrent distributions in thgartly penetratedstate is much
thus dissipated at large current densitiesj . where the re- more complicated. A numerical method to calculate the cur-
sistivity p=E/j becomes finite. In HTSC's the vortices may rent distribution in thin circular disks from measured flux-
also depin at low current densiti¢s<j. by thermally acti- density profiles was reported by Theustsal®
vated depinning, which is characterized by an activation en- Analytic expressions for the static magnetization and for
ergyU. flux and current profiles during flux penetration and exit are

The strong dependence of nearly all physical quantities oévailable for the one-dimensionélD) perpendicular Bean
the HTSC's on the crystalline orientation results from theirmodel of long strip®~*?and circular disks*°and for thin
orthorhombic crystal structure, which leads to anisotropicstrips with a geometric edge barr#ér'’ These 1D theories
electronic properties both in planes parallel and perpendicusf thin long strips and circular disks have recently been ex-
lar to the crystallinec axis. Since superconductivity takes tended to the two-dimension&D) problems of thin super-
place mainly perpendicular to theaxis, in the Cu-O planes, conductors with square, rectangular or arbitrary shape in a
j. is typically much larger in th@-b plane than parallel to perpendicular field®=2° Recent magneto-optical studfés™
the ¢ axis. An informative method for investigating aniso- demonstrate that the flux penetration and exit and the flux
tropic current distributions is the observation of the penetracreep are well described by model calculations using a
tion of magnetic flux with high spatial resolution when an current-voltage law, e.g., of the forBe<(j/j.)", which con-
external magnetic field is applied. veniently interpolates between the Ohmic regime of ther-

Flux penetration into type-ll superconductors with flux- mally activated flux flow f=1) and the classical Bean
line pinning is well described by the Bean modehd its model (1>1). HereE is the electric field and the exponent
extensiond ™ in the case of infinitely extended cylinders or n is determined by the activation energy. The often ob-
slabs with constant. in a parallel magnetic field where de- served dependendd(j)=Uc.In(j./j) indeed yields such a
magnetizing effects are negligible. The introduction of a depower lawE(j) =E.exp(—U/KT)=E4j/jo)" with n=U_/KT.

0163-1829/97/5@®)/341312)/$10.00 56 3413 © 1997 The American Physical Society



3414 SCHUSTER, KUHN, BRANDT, AND KLAUMUNZER 56

The current distribution was calculated for thin rectangular
specimens from this model in Refs. 18 and 24 and nice
agreement with the observed cushionlike flux penetration

was obtained. The electric fiell was found to be maximum
along the boundaries whejg changes abruptf in samples
with inhomogeneous critical-current densjty(r). A strong
enhancement of the electric field occurs at concave sample
corners, which even becomes infinite when the corners are
sharp?®

In this paper we present an extension of the above isotro-
pic theory to samples with anisotropic critical-current den-
sity. The obtained flux patterns are compared with magneto-
optically determined field distributions of samples in which
an anisotropy of in thea-b plane was induced by crossed
linear defects(LD’s) introduced by high-energy heavy-ion
irradiation?%?” Since samples with the axis lying in the
plane of observation mostly exhibit macrodefects which dis-
turb the magneto-optically visualized flux patteffis®® we
investigate here features of the anisotropic critical current in
HTSC’s with irradiation-induced anisotropy rather than in
samples with a natural critical-current anisotropy caused by
intrinsic flux-line pinning at Cu-O planes.

This paper is organized as follows. The main equations
used for the calculations are given in Sec. Il together with
typical results for the current stream lines and profiles of the
magnetic and electric fields during flux penetration into qua-
dratic and rectangular films with isotropic and anisotropic
critical-current density. In Sec. Ill our magneto-optical
method and sample preparation are described, and the ob-
served pictures of flux penetration into anisotropic films are
presented. Finally, our theoretical and experimental results
are discussed and summarized in Sec. IV.

—

Il. THEORY
FIG. 1. Top: Stream lines of the current in a thin type-Il super-
conductor of rectangular shape in the critical state. Middle: Contour
Our computation reproduces the results of the Bean modgliot of the normal component of the magnetic field in and around
for the particular choicesj(H)= const andn>1 in the rectangle. Bottom: Contour plot of the magnitude of the electric
E(j)=E(j/jc)". The current density attains its maximum field inside the rectangle during field ramping in the critical state.

possible valugj=|j|=j. in the entire specimen when the - N .
sample is in the critical state, i.e., fully penetrated by mag'follg\t]vziir:gaens“c features of thé” andd" lines are the

netic flux. In addition, the current density has to satisfy the (1) Whereas thal~ lines occur at internal and external

continuity condition diy=0 and has to flow parallel to the boundaries of the sampkéocal sample geometyythe d*

surfaces. It follows from these conditions that the current; < torm in homogeneous regions and are determined by
stream lines have sharp bends in superconductors with reglq shape of the sample.

e.mgular.cross section; this is a characteristic feature of vector (2) Flux lines cannot cross thé" lines since during in-
fields with constant moduluS. These sharp bends form dis- crease or decrease of the applied magnetic field the flux mo-
continuity lines @ lines) which divide the superconductor tion s directed towards or away from th lines, respec-
into domains with uniform parallel current flow as discussedvely. In contrast, thed~ lines can be crossed by moving
in the review by Campbell and Eveftsee the upper plotin flux lines, e.g., when flux lines penetrate from the surface.
Fig. 1. One distinguishes two types dflines’ At d* lines  When the current does not flow parallel to tHe line, a

the orientation of . changes discontinuously but the magni- strong flux motion is directed along tiE line.

tude of j. remains the same. At~ lines the magnitude of (3) The electric fieldE is largest at thel™ lines, whereas

jc changes, e.g., at the specimen surface or at inner boundwe haveE=0 at thed™" lines?*1°

aries where regions of different meet. The current stream (4) Thed™ and thed™ lines do not change their position
lines have to bend sharply in the critical state in order toduring lowering or reversal of the external magnetic field,
satisfy the condition of continuous current flow at suchalthough the magneto-optically detected intensities of the
boundaries. The* lines run along the bisection lines start- d* andd™ lines are reversed in the remanent state.

ing from the sample corners and on a section of the central Thed™ andd™ lines are clearly seen in thin type-Il su-
line parallel to the longer side as shown in the lower plot inperconductorsthickness< lateral extensionbecause of the
Fig. 1, when the superconductor is isotropic in #ag plane.  logarithmic infinity of B, at the sample surface.

A. Critical state in rectangular superconductors
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B. Basic equations integration(3) analytically to obtain a well-behaved kernel
The equation of motion for the sheet current?2S described in Ref. 35. Alternatively, one may obtain this

J(x,y,t)=jd in a thin planar conductor or superconductor of KeMel nLrJ?rQ%rically for a small but finite heightabove the
thicknessd and arbitrary shape in a perpendicular field SPECimen.Knowing that the field of a tiny current loop
- . . . . 8-20.24 (or magnetic dipolgof unit strength located at=y=z=0
ZH(t) is derived in the following way®-2°**We character- : : : _ 2 2
e the material bvB= u-H and b istivitvo = E/ i with axis along z is H,(X,y,z)=(1/4m)(2z°—X

e the material by8=uoH and by a resistivityy =E/} or —y2)/(x*+y?+2%)%2, one obtains for the kerndktill for
sheet resistivityp,=E/J=p/d, which may be nonlinear, ; ;

AR ; arbitrary shape of the thin plate

e.g.,p(j)=pc(iljo)" *, or linear, complex, and frequency
dependent, p=p,(w)=p'+ip”. The sheet resistivity 1 22— 2
ps(X,y) may depend on the positian either directly(in a Q(r,r')= —Iimi (5)
nonuniform specimen or implicitly via J(x,y) and Am, o2+ p?)5?
B.(X,y). _ _

Planar anisotropy of the resistivigy(j), which becomes With Pzzji(—x’)2+(y—Y’_)2- From Q Eq. (5) the inverse
now a tensor, can be incorporated into this theory if thekernel Q™= may be obtained by Fourier transform or by
resistivity is linear or if the currents mainly flow along the introducing a grid with positions;=(x;,y;) and weights
principal axes of the anisotropy. The latter condition is satW; . the vectorsH; —H,=H,(r;) andg;=g(r), and the ma-
isfied in homogeneous superconductors with the shape of tix Qij=Q(ri,r)w;. The integral{3) and(4) then are ap-
rectangle with its edges along the anisotropy axes if the reproximated by  the  sums H;=%;Q;9; and
sistivity is highly nonlinear, i.e., in the Bean-like case. Onegi=2jQi_jl(Hj—Ha) where Qi_jl is the inverse matrix of
should note that a more general theory for “arbitrary nonlin-Q;; as described in the Appendix of Ref. 19.
ear and anisotropic resistivity” presents fundamental As the last step, the equation of motion fgfx,y,t) is
difficulties®* As shown by Gurevich*the assumption of obtained from the 3D induction laW X E=—B and from
general anisotropic nonlinear resistivity may lead to an instathe material lawsB=pu,H and E=pj, valid inside the

bility of the current flow“and to a spontapeous creation Ofsample wherg=J/d= — 2x (Vg)/d. Note that the required
cells of circular current$‘macroturbulence’). A - -
component B,=zB=—2z(VXE)=—(zXV)E

To obtain this equation of motion one first expresses thé

sheet current by a scalar functigigx,y) as = —xdE/ 9y +yaIE/ x does not depend on tifenknown de-
A A rivative dE/dz. With ps=p/d one may write inside the
J(X,y)=—zXVg(x,y)=VXzg(X,y). (1) sample E=pj=pJ=-pzxVg and thus B,

This substitution guarantees that #iv0 and that the current = (2X V)(pszX Vg)=V-(p.Vg). Inserting this into Eq(4)
flows along the specimen boundary if one setsOne lggglzgs the equation of motion fay(x,y,t) in the
g(x,y)=const=0 there. In general, the linegx,y)= const form ’

coincide with the current stream lines. The physical meaning

of g(x,y) is the local magnetization or density of tiny current o(r :f L PO ) = Ho(0)1d2r ! 6
loops. Thus, the integral ai(x,y) over the specimen area 9(r.t) QRO =Ha () ]dr ©)

yields the magnetic moment For isotropicp(j) the integrand in Eq(6) is

1 -
mZEJ rxJ(r)erzzJ g(r)d?r. 2 f(r,t)=V-(DsVQ), @)

Next, one determines the integral kerr@{r,r’') (r=x,y) V_Vith Ds:Ps/Mo:P/d,u_o the sheet di_ffusivifty of flu_x. Equa-
which relates the perpendicular fiekd,(x,y) in the speci- tions (6)_ and (7) describe the two-dlmer_|5|onal diffusion of
men planez=0 to g(x,y) by magn.etlc.flux. In the present _perpendlculgr geometry, the
diffusion is nonlocal characterized by the integral kernel
Q (r,r"). In the simpler parallel geometry the flux diffu-
Ha(r)= H:ﬁf Q(r,r")g(r’)d?r’. (3 sion s local, obeying a differential equation, since the kernel
A Q formally reduces to a delta functiof(r—r') times the
This may be inverted to give specimen thicknessd, and g(r) then coincides with
H,(r)—H,.*In general the diffusion isonlinearand inho-
g(r)=f Q I(r,r")[Hy(r")—H,]d2r". 4) mogeneous since the flux diffusivify/ u, may depend on
A r,J, andH,.
. . ) When the resistivity is anisotropic, expressed by the two
The mtegn_alls in Eqs(.2) and(3) are over the specimen area gnctionsp,,=E, /J, and pyy=E,13,, Eq. (6) still applies
A apd Q is the inverse kernel ofQ, defined by .t with a modified integrand,
JAQ™Hr,r)Q(r" k" )d?r"=8(r—r").
Finding the 2D integral kernd) is not a trivial task, since -
when one performs the limit of zero thickness in the Biot- HrO=Vd oy /V@]+ VL (paod )V, ®
Savart law, the kernel becomes highly singular,One can show that in the limit of a long strip or of a rect-
Q= —1/4=|r—r'|3; this form of the kernel thus applies only angle with extreme anisotropy,,> pyy the 2D Eq.(8) re-
whenr lies outsidethe specimen, buinside the specimen duces to the corresponding 1D expressi¢x,t) for an infi-
area(wherer=r’ can occuy one should perform part of the nitely long strip**
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C. Rectangular films and plates nonlinear resistivities py,=E /3= (E¢/Jy)| I/ IE|"

In films or plates with rectangular shape, the boundaryyy=Ey/Jy=(Ec/J,)|J,/3¢|" if the anisotropy axes are
condition that) cannot cross the specimen boundary may be|x and blly. Throughout this paper we use a constant creep
satisfied by expressing(x,y) as a 2D Fourier series in €xponentn=19, and constanf.=j.d values, though our
which each term vanishes at the edges. For a rectangle fillingomputational method, in principle, allows for arbitrary de-
the area 8&x<2a, 0<y=2b one writes® pendences of(B) andJ.(B) on the perpendicular compo-

nent of the inductiorB= ugH. For convenience we use the
B . . specimen half widtha and the critical sheet curredf as
g(x,y,t)—; Ik (1)SINKxSINK ©) units of length and magnetic field. We further &gt=1 and

. . . the ramp rateugH,=B,=1, which in real units means
where theK are reciprocal-lattice vectors with the compo- . a i
nents K,=(2m-1)m/2a and K,=(2n—1)m/2b, B,=E./a and a time unitr= ugJza/E.. In these units, the

field of full penetrationH ,, which logarithmically depends
on the specimen thicknes$ or on our grid spacing, is
H,~1.0. For a thin strip of width @8>d one ha$3%3°
Hp=(Jc/m)[1+In(2a/d)].

Due to our large creep exponemt 19, which yields an

m,n=1,23,.... The sumZ is over allm=1, n=1. A
similar Fourier series may be written for the fidit), inside
the specimen area,

H(xy,t)= ; Hi () sinK,xsinKyy. (100 almost creep-free Bean-like example, the chosen ramp rate is
not very relevant here. In fact, one can make the following
From Egs.(2), (9), and(10) one obtains useful statement. Any choice of the ramp rate is equivalent
and does not restrict the generality of the computation:
HK(t):E Qu gk (1) (11) Choosing the ramp rate larger by a factorfofsay A= 10)

would vyield identical results except that the obtained

) . ) B(r,t) andJ(r,t) are larger by a constant fact&'" (here
where theQgk : are the 2D Fourier coefficients of the inte- AUN=10Y19%=1.13) and the time runs faster by a factor

gral kernelQ in Eq. (2), A~ (here 1681°=8.86). This scaling law is derived and
1 discussed in more detail in Ref. 38. It applies to any power
Q(r,r')= %E Qkk +SINK,xsinK yysink  x’ sinkjy " law Ex«J" and states that the equations and their solutions

remain unchanged if one simultaneously changes the time
(12) scale by a factor of @ (or the frequency scale by a factor of

Explicitly one finds from Eqs(4) and(12) (Refs. 18,19 C) and the field and current units by a factor@¥( 1),
Q= 2 fw KK, (1+cos2ak,) E. Sheet current and flux density
KK'= 5 = -
b (k=K (kz—K'x2) Figures 2—-5 show the computed flux penetration into

squares lf/a=1) and rectanglesb{a=1.4) of supercon-

(13) ductors with isotropic 42/J§=1) and anisotropic
(JS/J§= 1.4) pinning at three values of the applied field
. . H.. Note the qualitative similarities of the current stream
Inspection reveals that the’mtegrand in BE3) is sharply  jines and contour lines of the magnetic field for the isotropic
peaked aK, = X K2 ‘E‘EdK Ky - In fact, without the common e ctangle and anisotropic square, and for the anisotropic rect-
factork= (k; +k{)““ the double integral13) would separate angle and the isotropic square, respectively. The depicted
and would exactly equaj S . Therefore, at larg&k or  three states of penetration correspondHtg' J3=0.25, 0.55,
K’ one approximately haQyx - = kk 'K/2. This useful ap-  anq 1.55(top to botton; in the latter case the penetration is
prOX|mat|on allows us to write the inverse kernel explicitly complete. We used an exponemt=19 and grids of
as Q= dik 2/K and to obtain approximate analytic ex- N, X Ny=25x 25 (30x 22, 22x< 30, and 25 25) equidistant
pressions. pomts chosen such that in the fully penetratertical state

For rectangular plates or films in increasing, constant, oall discontinuity lines run through grid points; this grid
cycled applied perpendicular field,(t), the magnetization choice strongly reduces the numerical noise, in particular of
g(x,y,t) may be computed by time-integrating the nonlocalthe electric fieldE=J". Note that the sheet current is finite
diffusion equation(6) with the kernelQ Eqgs.(12), (13) and  over the entire specimen area, even in regions where the
a material lawE=E(j), or two lawsE,(j,) andE(j,) in- perpendicular flux has not yet penetrated.
serted in Eqs(7) or (8). Fromg(x,y,t) one obtains the sheet More detailed three-dimensional computatiSreccount-
CurrentJ:jd:_ix Vg, the magnetic-field components at ing for the finite thicknessl of the superconductor reveal
the specimen surfade, Eq. (3), Hy=J,/2, H,= —J,/2, and that in the penetrated regionB # 0) the current density is
the electric fieldE=E(J/d)J. constant over the entire thickness, with valye thus the
sheet current id=j.d=J. there. In the nonpenetrated re-
gion (B,=0) one hag =j. near the two flat surfaces, and
j=0 in a current- and flux-free kernel which has approxi-

In this paper we model the anisotropic pinning by twomately the shape of an ellipsoid, as assumed by Krasnov
critical sheet current densitie¥ and J° which enter the et al,® but not exactly’® During flux penetration, the flux-

xfm K K{,(l+costk)
0 Y ( y)(k2 !2)

D. Nonlinear resistivity and scaling
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FIG. 2. The stream lines of the sheet currdnfleft) and the FIG. 3. As Fig. 2 but for a square witmisotropiccritical sheet
contour lines of the local magnetic-field componéhi(x,y) per-  current®/J2=1.4. The field unit is now)?. Due to the intrinsic
pendicular to the specimen plafrgght) computed for a thin square-  anisotropy the discontinuity lines in the fully penetrated state
shaped superconductor withotropic pinning. The values of the (y > 1.00%) form a doubley.
applied fieldH, areH,=0.25, 0.55, and 1.55 in units of the critical
sheet currend,. TheJ; value and the creep exponent 19 in the
assumed lavE=E_(J/J.)" are chosen as constants independent of
H(x,y), andB=uyH was assumed. For this isotropic square the
discontinuity lines after full penetratiorH=1.0J;) form a cross
coinciding with the diagonals.
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and current-free kernel initially reaches the specimen surface
at the two verticex=y=0, z=*d/2, where the thickness

of the two current carrying surface layers vanishes linearly,
not quadratically as for the ellipsoid. When the flux front
comes close to the centédistancer~d/2), the flux-free
kernel starts to detach from the surface even at the two points
x=y=0, z==*d/2 and becomes completely isolated. The
closed surface layer around the entire superconductor has
now finite thickness everywhere and carries a current density
of constant magnitudg.. Near the centex=y=0 one has a

circulating currenf= qujc whose components exhibit a jump
of orientation as one crosses this central line.Hisreaches
the field of full penetration the surface layer attains a thick-
nessd/2 even on the link=y=0 and the flux-free kernel
shrinks to a point.

The left columns in Figs. 2—5 may be interpreted in three
different ways: They showa) the contour lines of the local
magnetization or current-loop densiyx,y), (b) the stream
lines of the current flowing in the superconducting film, and
(c) they tell the intensity of the in-plane magnetic-field com-

X

FIG. 4. As Fig. 2 but for a rectangular plate witkotropic
) ) N pinning. The side ratio i®/a=1.4. The discontinuity lines start
ponentBy at the film surface, sincBj=+ 3zXxJ. from the corners and form an angle of 45° with the edges of the
The right columns in Figs. 2-5 give the contour lines of rectangle. In the fully penetrated statd £=1.0J,) the discontinu-
the perpendicular magnetic fiel,(x,y) close to the film ity lines form a doubley.
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FIG. 5. As Fig. 4 but for a rectangular plate with anisotropic
pinning,.]’c’/.]iz b/a=1.4. Due to the compensation of the intrinsic
and shape anisotropies the discontinuity lines in the fully penetrated
state H,=1.03%) form a cross, like with the isotropic square.
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surface. The bold line is the contour liBg(x,y)=B,. This \
N

contour line coincides with the “neutral line” which during
flux flow in the critical statelower row) separates the outer
region whereB,(x,y,t) decreasesfrom the inner region
whereB, increases”
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Figures 6—9 show the magnitueteof the electric field for
the same isotropic and anisotropic squares and rectangles
and the sameH, values as in Figs. 2—5. Note th&t is
induced by the moving vortex lines, thlss=Buv is roughly
proportional to the vortex velocity when the local induction
B=puoH is nearly constant. The orientation of the electric
field E coincides with the current stream lines, and the flux-
flow velocity v is perpendicular t& andB. Before complete N ) . )
flux penetration is reached(x,y) vanishes with approxi- I_n the critical statet is an exact_ly linear function of and
mately constant slope at the cushion-shaped flux front. Insid¥ Since the current and its self-field have saturated and are
the flux front one ha8=0 and approximatelfe=0. More  thus time independent, therefo¥ex E= —B= —B, is con-
precisely, sinc&ExJ" andJocr = (x?+y?)Y? near the speci- stant; on the discontinuity lines one then Has 0 and the
men center =0, one has ther&or", which for n>1 is maximum ofE is a|Wa_ysEmaX:a_'Ba except for Fig. 9the

vanishingly small compared with the typical vala®, of  anisotropic rectanglewhereE,,.,=bB, occurs at the points
E near the edges. x=0,y=*b. SinceExJ" andExs wheres<a is the dis-
The maximum electric fieldE ., occurs in the middle of tance from a discontinuity line, one findb<s'" near all
the specimen edges. In the rectangle with isotropic pinninggiscontinuity lines. See also the discussiorE¢k,y) in Ref.
this maximum is approximately the same at all four edgesjg.
Emaxc=Bal p Wherel,=a—x,=b—y,~H,/J. is the penetra-
tion depth(see Ref. 11 for a better value &f). For the
rectangle with anisotropic pinnindgs,.« iS lower at the
longer edge, along which the larger critical-current density From the flux densityB,(x,y) and the magnitude of the
J’=1.432 flows, since there the penetration depthelectric field E(x,y) one obtains the vortex speed
Ip~H,/Jg is smaller. v(x,y)=|E/B,|. The flux flow in the specimen plarze=0 is

FIG. 6. The profiles of the magnitude of the electric fi&d
during flux penetration for the isotropic square and the sége
values as depicted in Fig. 2.

G. Flux-flow velocity
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FIG. 7. The profiles of the magnitude of the electric fiéld
during flux penetration into the anisotropic square depicted in Fig.

3. FIG. 8. The profiles of the magnitude of the electric fi&d

during flux penetration into the isotropic rectangle depicted in Fig.
directed perpendicular to the sheet currdf=—vxzB,, %+

thusv=EXz/B,. The magnitude of the flux-flow velocity  towards the flux front, but after a certain depth of order of
during flux penetration is depicted in Fig. 18D plot) and  0.5a, v reaches a maximum in the penetrated region and
Fig. 11 (contour line$ for the isotropic and anisotropic rect- decreases towards the front.
angle in increasing applied field Ht, /J.=0.55 and 1.55 for When full penetration is reacheti,=H,, the jump in
the same cases depicted in Figs. 2—-9. Remember that fulhe velocity disappears andvanishes almost linearly at the
penetration is reached wheéfy=H,~J.=].d. The velocity — specimen center. WheH, is increased furtheB,(x,y) be-
field in the anisotropic rectangle is qualitatively similar to thecomes more and more constantB,(x,y;H;>H,)
electric field discussed in Sec. Il F. =B,(x,y;Ha=H,)+uo(Ha—Hp), and the velocity field
For incomplete penetration one hBs=0 andE=0 in  looks more and more like the profiles |&(x,y)| depicted in
the nonpenetrated region; to avoid division by zero we thusigs. 6—9. Therefore; (x,y)=|E/B| becomes almost linear
usedv~E/(B,+0.03) (B, in units ugJ.). Note in Fig. 10 in x andy, which means the vortex lattice is compressed
that the velocity at the flux front abruptly jumps from a nearlyuniformlyatH,>H,.
nearly constant value to zero, whifeandB both vanish as To illustrate the qualitative behavior of the speed of pen-
the square root of the distance to the front. The constancgtrating flux, we give the analytic expressions for a long thin
and abrupt vanishing af means that near the flux front the superconductor strip in perpendiculbl,. The profiles of
vortex lattice penetrates almost as a solid. More precisely),, B,, E,, and v, for a strip with width 2 and
with increasing penetration, first increases monotonically J.=j.d=const(Bean modellook very similar to the corre-
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FIG. 9. The profiles of the magnitude of the electric fiéld

during flux penetration into the anisotropic rectangle depicted in
Fig. 5.
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sponding profiles of a thin rectangle witta=1.4 taken
along thex axis. These profiles, measured in the specimen

planez=0 (or |z|<a), are as follows?

The position of the two flux fronts isx=*x, with
Xp=alcosh@H,/J;), or inverted,H,=(J./m)acosh@/xp). _ _ _
The vortex Veloc|ty IS}X(X):Ey(X)/BZ(X) In the nonpen_ FIG. 10. The proflles of the magn|tude of the flux VElOCIty

etrated central zone = |x|<x one has v=I|E/B| during flux penetration into the isotropi@upper two
B,(X)=E,(x)=v,(x)=0 and the Sheetpcurrent plots) and anisotropig¢lower two plotg rectangle depicted in Figs.
z y X

8 and 9. Shown are two valug$,=0.55 and 1.55in units J;).

X
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23 Note the abrupt jump to zero of the velocity at the flux front before
J(x)=— Carctan (14) complete penetration is reached.
y - '
. Ey(X)=—Ba(x?—x5)%sgn(x), (17)
In the penetrated zone,<|x|<a the profiles are
2mH,  (x*—x3)1? 18
Jy(x)=—Jcsgn(x), (15) Ux(X)=— 3. |n|(1_u),(1+u)|ogr(><)- (18)
ode |1-u Here  u=cx/|x;—x?[*2  and  c=(1-x%a%™?
B,(x)= 20 °In 11a (16 =tanh(wH_,/J;). These profiles are depicted in Fig. 12 for
a




FIG. 11. The contour lines of the velocity fields depicted in Fig.
10.

X,/a=0.95, 0.9, 0.8, .., 0.1, 0.05, 0.02, and 0.001 corre-
sponding toH,=0.32, 0.47, 0.69, 0.90, 1.10, 1.32, 1.57,
1.87, 2.29, 2.99, 3.69, 4.61, and 7.60. Expressit) for
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0

0 x/a 1

FIG. 12. Magnitude of the sheet currelit Egs.(14) and(15),
flux densityB, Eq. (16), electric fieldE, Eq.(17), and flux velocity
vx=E, /B, Eq. (18) for a thin strip of width 2 in increasing per-
pendicular field H,. Shown are the profiles for values
H,/J.=0.32 to 7.6((see text corresponding to flux-front positions
X,/a=0.95, 0.9, 0.8, .., 0.1, 0.05, 0.02, and 0.001.

same width 2 in longitudinal field H,, which is
v(X)=H,/j.=const for Ha<Hp=aj. and
v(X)=(Ha/j)X/(x+Xy) with  Xo=H,/j.—a>0 for

Ha=H,. In particular, the velocity at the flux front(x,)
during flux penetration is constant for parallel geometry, but
for perpendicular geometry(x,) goes through a maximum
and becomes zero wher,=H,=(J./m)[1+In(2a/d)] is
reached. AH,>H,, thev(x) in the strip is an almost linear
function ofx. Interestingly, if finiteH, is accounted for, the
profiles in parallel geometry become more similar to the pro-
files of the perpendicular geometry.

B,(x) is valid also outside the specimen and exhibits the

known logarithmic infinityB,(x) «In||x|—a| at the edges.
Note the nontrivial velocity profilg18): v(x)=|v,| is

constant near the flux front, then goes through a maximum,

and becomes nearly linear whe—0. This behavior is
different from the velocity of the vortices in a Bean slab of

Ill. EXPERIMENTS
A. Faraday effect

We visualize the magnetic-field distribution of a super-
conductor by magneto-optics. Since the HTSC's themselves
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have no significant magneto-optical effect, the sample sur-
faces have to be covered by a magneto-optically active ma-
terial. For our investigations we use the magneto-optical Far-
aday effect. The flux penetration is imaged by detecting the
rotation of the polarization plane when linearly polarized
light passes a magneto-optically active layer exposed to the
magnetic field of the underlying superconductor. The light is
reflected from flux-free regions without rotation of the polar-
ization plane; this light thus cannot pass an analyzer which is
set in a crossed position with respect to the polarizer. In this
way the Shubnikov phasgvith a flux-line lattice will be
imaged as bright areas, whereas the flux-free Meissner phase
remains dark. For the experiments presented in this paper we
used ferrimagnetic iron-garnet films with an in-plane anisot-
ropy as magneto-optical indicators.

The iron garnet film was grown by liquid phase epitaxy
onto a gallium-gadolinium substrate with a thickness of
about 3.5um (commercial firm Gamma Scientific Produc-
tion, Russia*® This kind of indicator allows the flux pen-
etration into HTSC samples to be observed directly in the
whole temperature regime of superconductivity with a mag-
netic sensitivity of about 1 mT and a spatial resolution of
about 4um.

The external magnetic field is generated by a copper so-
lenoid coil, which is cooled with liquid nitrogen and pro-
duces a maximum field of 0.55 T. The observations were
performed in the optical cryostat described in Refs. 41 and
42. All images can be observed directly via the microscope
or be transferred to an image processing system for
analyzing®® The image processing system allows one to de-
termine the gray level pixel by pixel along a user-defined
line.

FIG. 13. Magneto-optical picture of the penetrating perpendicu-
lar flux density at the surface of a rectangular platelet of size
) 1000x 685x 15 um?, a DBCO monocrystal witi .= 88 K, mea-

B. Sample preparation sured afT=75 K. The values of the applied field afeom top to

We use DyBaCu;0,_s (DBCO) single crystals pre- bottom 41, 82, and 123 mT. At this temperature the shape anisot-
pared as described in Ref. 44 with dimensions of aboufoPy 1000:685 just compensates the radiation-induced anisotropy of
1000x 685X 15 Mm3 and with T,~88 K as measured by _the critical-current densit_y_in tha-b plane. The discontinuity lines
the Meissner effect using superconducting quantum interfer!? the fully penetrated critical state thus form a cross.
ence device magnetometry. All crystals have a distinct twin
structure, which was revealed by polarized light microscopyflux-free Meissner phase remains dark. The measured field

Crossed LD’s were introduced by irradiation with 340- patterns nicely agree with the calculations shown in Fig. 5.
MeV Xe ions at room temperature at the ISL acceleratorrhe smaller critical current densify flows along the short
(Hahn-Meitner-Institut, Berlin, GermajyThe samples were  sample edges, as can be seen from the faster flux penetration

glued on copper sample holders and mounted at the Where |n the critical statébottom image the d* lines run
angile_&p—t?] 45 b_etwefetr;] the ion Ibeaan]1 ar;dttf:e}lsurface NOralong the diagonals. This means that the current anisotropy
mal, 1.6., thec a)gs. of the_sampie. ihe tota ue'ncelwasjlc)/jg exactly compensates the deviation from unity of the
about ¢t=2x 10" ions/cn? and the inclination direction - ¢ . o

side ratiob/a of our rectangle, like in the calculated ex-
was set parallel to the longer crystal edges. The range of théem le
projectiles in the target material is larger than the sample ple. L

. X Figure 14 shows the flux penetration into the same sample

thickness. The heavy-ion bombardment redutgdy less g _

as in Fig. 13 but at lower temperatufe=60 K (H,=233
than 1 K at thefluence used. . X ) ;

mT), where the pinning anisotropy is lower, and at higher
temperatureT=80 K (H,=50 mT), wherej%/j2 is larger
than atT=75 K. In both cases the diagonal cross which

Figure 13 shows the flux distribution in a rectangularappeared af =75 K after full penetration, deforms into a

DBCO single crystal with irradiation-induced critical-current double Y, but the orientation of the short central line of the
anisotropy. The sequence shows the flux penetration durindouble Y for T=60 is along the longer side, like in the
increase of the perpendicular applied magnetic field fromisotropic rectangle, but along the shorter side Ter 80 K.
moH2=0 to 41, 82, and 123 mTfrom top to bottom at At temperatures above 80 K, the anisotropy increases further
temperatureT=75 K. In these pictures the regions pen- but the contrast in our magneto-optical images diminishes
etrated by the normal field component are white, while thedue to decreasing penetration fi¢ig, . At temperatures be-

C. Measured flux-density patterns
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IV. CONCLUSION

In this paper we presented patterns of electric and mag-
netic fields and current densities during the penetration of
magnetic flux into flat type-1l superconductors with an aniso-
tropic critical-current density. Our previous numerical
method to calculate currents and electric and magnetic-field
patterns from first principles was extended to anisotropic
critical currents for the case that these critical currents flow
parallel to the sample edges. This computation method treats
the superconductor as a highly nonlinear conductor with two
nonlinear resistivitiegp,,(jx) and pyy(jy). The method, in
principle, allows one to consider arbitrary dependences of
these two resistivities on the normal field compon8gt
e.g., by using creep exponent¢B,) and critical-current
densitiesj .(B,). Qualitative similarities between the current
stream lines and the magnetic-field lines are found for the
isotropic square and the anisotropic rectangle with anisot-
ropyjﬁ‘/jgza/b, and for the isotropic rectangle and the an-
isotropic square.

The good agreement of the calculated field patterns with
those obtained by magneto-optics on a rectangular DBCO
single crystal with irradiation-induced critical-current anisot-
ropy demonstrates the applicability of our computational
method, in which anisotropic pinning is modeled by two
nonlinear resistivities. In addition, we have derived the flux-
flow velocity during flux penetration and discussed the quali-
tative differences of these velocities in parallel and perpen-

FIG. 14. The same specimen as in Fig. 13 but at lower temperadicular geometries.
ture T=60 K (top, H,=233 mT) and higherT=80 K (bottom,

H,=50 mT). At the lowerT=60 K, the anisotropy of the critical
current density is lower; the discontinuity lines in the critical state ACKNOWLEDGMENTS
thus form a doublé&’, which is located between the doubdeof the

isotropic rectangle and the diagonal cross of the more anisotropic . .. .
rectangle shown in Figs. 5 and 10. At the higher temperature The authors wish to thank H. Kronier for his interest

T=80 K, the anisotropy of.. is higher; the discontinuity lines in " this work and M. V. Indenbom for helpful discussions.
the critical state then form a doublewhich is at a right angle to  1his work was financially supported by the Bundesministe-
the doubleY of the isotropic rectangle shown in Fig. 4. rium fur Bildung, Wissenschaft, Forschung und Technologie

(Grant No. 13N651pand by the German-Israeli Foundation
low 60 K, H, is higher than the maximum field of our ex- for Research and Developmef@rant No. 1-300-101.07/93
perimental setup and thus the critical state is not reached. This is gratefully acknowledged.
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