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Onset of chaos in a superconducting Wheatstone bridge of overdamped Josephson junctions
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We identify a physical mechanism responsible for the onset of chaos in an asymmetric superconducting
Wheatstone bridge of overdamped Josephson junctions while focusing on the dynamics of the transverse
junction. The dynamics of the transverse junction are shown to be affected by an effective-noise-current term
whose presence eventually leads to the onset of chaos in the bridge. This effective-noise-current term results
from the competition of circulating currents in the upper and lower loops of the bridge. For some bridges, the
effective-noise-current term has a profound influence on the value of the dc biasing current at which a nonzero
average voltage appears across the transverse junction of the h883€3-18207)04430-3

[. INTRODUCTION dynamics of the bridge is characterized by a system of three
first-order differential equations, the minimum required for
For the last 10 years, Josephson junction arrays have be@my dynamical system to eventually show signs of chaotic
a benchmark for both the experimental and theoretical studpehavior. The origin of chaos in the bridge is clearly identi-
of nonlinear dynamical systems with many degrees of freefied and linked to the presence of an effective noise current
dom. Since the early 1990s, there has been a growing intereg@urce in the equation governing the dynamics of the trans-
in two-dimensional(2D) arrays following early theoretical verse junction. We believe our analysis constitutes a prelimi-
predictions of a tremendous increase in the output power ofary step towards the design of more general criteria to study
2D arrays compared to their 1D counterpartsowever, up the onset of chaos in larger JJ arrays.
to now, the maximum experimental radiation power of 2D
arrays has been found to be much smaller than that of 1D
arrays(100 nW maximum versus 5@W in 1D array3.?® Il. APPROACH
Recently, Wiesenfeld and co-workers formulated general de-

sign criteria for optimization of power and linewidth of ) .
each cross represents an overdamped Josephson junction. In
phase-locked 2D arraystowever, a thorough understand- the limit of negligible capacitance, the dynamic behavior of

ing of phase Ioc.kmg and the effegts OT d_|so_rde_r on the €O%ach junction can be described by the resistively shunted
herence properties of 2D arrays is still in its infancy. To. i def The total t th h thigh b h
understand the effects of disorder on synchronizatrase junction modet. e total current throug ranch,
locking) in 2D Josephson junction arrays, there have beerll" can be expressed as
g p J ys,

recent theoretical investigations of the dynamics of smaller
arrays of Josephson junctiortd).*~® For instance, Lands-
berg etal® have studied two prototype systems—the
plaquette and double plaquette of Josephson junctions—and
show that, in the presence of moderate disorder in both the
critical currents and normal resistances, the vertical junctions
within each row can maintain 1:1 frequency locking. On the
other hand, different rows operate at different frequencies no
matter how small the amount of disorder.

The analysis of JJ arrays still lacks the formulation of
general criteria to study the onset of chaos in these arrays in
the presence of disorder. This is an important issue since

chaos is bound to disrupt phase locking in large arrays. The

Figure 1 shows a Wheatstone bridge configuration where

conditions for the onset of chaos in single underdamped JJ in Q /
the presence of radio-frequency current source has been ana- | 4 l 5
lyzed by Kautz and MonacbExtensive numerical simula-

tions by Dominguez and Cerdéfraave pointed out the onset B

of spatiotemporal chaos in JJ series arrays. However, more

general criteria are needed to understand the onset of chaos

in 2D and 3D JJ arrays. Towards that end, we present in this F|G. 1. Wheatstone bridge configuration. Each cross represents
paper an extension of our earlier investigatbiiof the dy-  a Josephson junction is the difference of the two circulating
namics of an array of five junctions forming a superconductcurrents in the upper and lower loops of the bridge. Also shown is
ing Wheatstone bridge with strong asymme(rg., with dis-  the convention used to define the polarity of the superconducting
similar junction parameteys We show explicitly that the phase difference across each Josephson junction.
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_ i [de In Eq. (7) above, the following notations were uskd:
Ii_lC?iSln{Pidl—FR(W)' (1)

] ) ] lge le1 . [X=2Z) lgp . (X+2z
where ¢, is the superconducting phase difference across the bl=|—— I_ sm( T) - I_ sinl ——/, (8
Josephson junction in thiéh branch of the bridge. The quan- mooom m
tities |.,; and R; are the critical current and channel resis-
tance of theith junction, respectively. The instantaneous lac lca . (YTZ) l¢s y—z
voltage across thith junction is equal to%/2e)(de; /dt). =y T M T S ) ©
The superconducting Wheatstone bridge is fed by a dc cur-
rent source l(y) between nodeé andB in Fig. 1 and the
transverse voltag®/cp is measured between nod€sand :llc_l sin(E _ 1l sin E)
D. For simplicity, we neglect the effects of thermal noise in 2 1 2 2 | 2
the junctions. 11 T 11 SR

Using the quantitieRy and |, to normalize the various _Z G4 sin(y— 4+ -GS sin( y_) — 3 iz
resistances and currents inside the brtdged introducing Y 2 N 2 Im
the dimensionless time variabler=Qt [with € (10)
=(2e/h)Ryl ], the total current through thigh branch of
the bridge can be rewritten Furthermore, the following quantities were introduced:
i Rgdei ¢ . , ,
Tm Rodr 1,00 @ D:Rg(ﬂ+ﬂ<a+ar>—3<arg2+ag'2>),
Rs 2 2
Using Kirchoff's current law in Fig. 1, we obtaihy=1,4 (13)
+1g, I1=I3+1,4, Is=Il,+15. If we neglect the self-
inductance of each branch and the mutual inductance of the 1/1 1 1/1 1
top and bottom loops of the bridge, Kirchoff's voltage law a=5 (R—4+ R_s) a'=3 R—1+ R, (12
gives
U,=
=it Us, ® AL p-iE-Y as
2\Rs Ry 2\R; R
Uy=Us+Us, (4)

where the potential across thth junction is given byU; and

=Ryl m(de;/d7). Using Egs(2)—(4) and Kirchoff's current

law, the dynamics of the bridge can be readily described as a 0=1Rsz+(a+a')/2. (14

set of five first-order nonlinear differential equations for the

¢;’s. This system of differential equations can be simplified The quantitiesy anda’ are the average conductances of the
since theg;’s are not independent but related by the fluxtwo upper and lowedJ's, respectively. The quantitiggand
quantization rules written for the upper and lower loops of 3’ characterize the asymmetry in the conductances of the
the Wheatstone bridge. Neglecting the self-inductance obranches of the upper and lower loops of the bridge.

each loop and the mutual inductance between the loops and Starting with Egs.(7)—(14) and using standard units, it
assuming zero external magnetic field, the flux quantizatioigan be shown that the phazesatisfies the following equa-
rule'! applied to the upper and lower loops of the bridgetion:

leads to the following constraints:

h_dz * Qi eff
P11+ 3= @o=27N, (5 ﬁa‘H sinz=1ly.+1g, (15
and
which is equivalent to the equation of a single junction with
®4— 5~ pz=2mM, (6)  a maximum critical supercurrent,

respectively. In Eq95) and(6), n andm are integers. Using

Egs.(5) and(6), the system of first-order nonlinear differen- |« _ 2lc;3 (16)
tial equations for thep;’s can then be reduced to a system of [(Ro—R)/(Ry+Ry)]+[(Rs—R5)/(Rs4+Rg) ]’

three first-order nonlinear differential equations for the vari-

ablesx= ¢+ @5, Y=0@4+ ¢5, and z=¢5. The system of and with a normal-state resistance

differential equations for the three variablesy(,z) is de-

rived explicitly in Appendix A: B ata'B
-y 17
dxdr] aé=p*  BR'12  ap'l[p, 2y
dy/dr =D BB'I2 a'o=p' a'B||b2|. (1)  where y= D/Ry. In Eq. (15), the effective noise current

dz/dr B'al2  Ba'l2  aa'|lbs sourcel ' is given by
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The resistanc®, is the value of the transverse resistance,
Ri=Vcp/l 4, of the Wheatstone bridge fed with a constant
current sourcd 4. when only the normal channels of each -
junction are taken into account as shown in Appendi¥ B. 2ol

Equation(16) indicates that the supercurreht can be
made arbitrarily large by tuning the values of the resistors e
R;, Ry, R4, andRs. In fact, according to Eq(16), 1* is o.oolg' o - " 26
infinite whenever the conditioR,/R,=R,/Rs is satisfied. VOLTAGE
The latter is the condition for a perfectly balanced bridge _
when the superconducting channel of each junction is ne- _FI_G. 2. The full lines are the cur_rent-trar?sverse voltage cha_rac-
glected. In that case, the transverse resistajcand trans- .terlstlcs of the three Wheatst‘one bridges with the parameters listed

in Table I. The dash-dotted lines are the current-voltage character-
verse voltage are both equal to zero.

In Eq.(15). the effecti . bﬁf . istics of a single junction with the parametel®, (I*) while ne-
n Eq. (15), the effective noise current sourtg is given glecting the effective noise current source in Etp). Currents and

40

by voltages are expressed in unitslgf, andVy=R,l.,.
off R;+Rsg [x—z [x+z
IN “"R.R—R.R= Rilc;isin > —Ral;2sin > W, the effective noise current source becomes increasingly
204 TS important. This is expected from Eggl6) and (18) since,
Ri+R, y—2 y whenl .3 is smaller than all othelr.;’s, Iﬁ,ﬁ is not negligible

. - +Z
" RyRa—RiRs {R5| c:55'”( - ) - R4|c;45'n( - in Eq. (15). This trend is not particular to the specific bridges
studied here and holds true for other bridges whose middle
(19) junction has the smallest critical supercurrent. Numerically,
It is instructive to rewrite the effective noise current sourcethe values of the maximum critical supercurrent in the
as —V¢p characteristics are found to be equal to 1584
(5.7..,) for bridge W,, 72.2 uA (2.58..,) for bridge
W, and 30.2uA (1.081.,) for bridgeW,, , wherel., is

|ﬁﬁ:m[(R1|c;1Sin901—R2|c;2Sin<Pz) the maximum critical supercurrent. Equati¢h6), on the
other hand, gives a critical supercurrdfit equal to 156.4
— (R4l ¢.48iN@4—Rsl ¢.58ines) ], (200  uA (5.6l..,) for bridgeW,, 69.8 uA (2.49.,) for bridge

. . , , W, and 2.6uA (0.09..,) for bridgeW,, .
eff I d c;2 1
which shows thaty" is due to the asymmetry in the bridge 18" is a highly nonlinear function of the three variables

parametgrs leading to a competition of two cirqulating superzx,yyz) which is bounded and independent Igf, at least
currents in the top and bottom loops of the bridge. explicitly. It is a function of the normal-state resistances and
critical supercurrents in all branches other than the transverse
ll. RESULTS one. Since there are two positive and two negative terms in
t‘ghe expression of", we expect it to swing in the positive
and negative directions as a function of time. The change in
i 15" is dependent on the time scales controlling the

Three numerical examples of the current-transverse vol
age characteristics | {-—V¢cp) of various Wheatstone
bridges are shown as full lines in Fig. 2. The parameters ofi9n Of
the first bridgew, are listed in Table 1> In this bridge, the
transverse junction has the same parameters as the junction TABLE I. The supercurrent and normal resistance values of the
with the largest critical supercurrent in the other branchesWheatstone bridg#/,. The second bridgeW) has the same junc-
The other two bridges are identical ¥, except for the tion parameters as the first one except for the transverse junction
transverse junction. In bridge/, the transverse junction has Whose parameters are the same as for junction 1. For the third
the same parameters as junction(iith the intermediate bridge W,;,), the junction parameters are the same as for junction
critical supercurrentand, in bridgew,;, , the transverse junc-
tion has the same parameters as junctidmwith the lowest
critical supercurrent

As shown in Fig. 2, for some bridges, thg—Vp char- 1 12.5 12.5

Junction leii (uA) R; (Q)

acteristics atT=0K can be well approximated by the 2 28.0 9.6
current-voltage characteristics of a single junction character- 3 28.0 9.6
ized by the parameter$®{,R;). Thesel-V curves are calcu- 4 0.47 28.0
lated using Eq(15) while neglecting the termls,‘iff and are 5 28.0 9.6

shown as dash-dotted lines in Fig. 2. For the bridggsand
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FIG. 3. Time dependence of the effective noise current source
18 as a function of the dc biasing current of the Wheatstone bridge FIG. 5. Two-sided Poincare map showing the values of the vari-
W, . For clarity, the curves correspondinglig=6 and 91 .; have ~ ables &y)mod(4m) for each crossing of the plare=27 by the
been shifted vertically by an amount equal to 10 and 29, re-  trajectory describing the dynamics of the Wheatstone bridge.
spectively. Time is expressed in unitsfoReRyl .. The dc biasing current is set equal tb.6.

dynamics of the Wheatstone bridge. Figure 3 shows a plot of Since the dynamics of the bridge can be reduced to a set
1 versus time for different values of the dc biasing currentof three highly nonlinear differential equations, there exists a
of the bridgeW, . Figure 3 shows that the effective noise possibility to observe the onset of chaos in the bridge while
current sourcd ﬁlff has a maximum amplitude merely inde- varying the dc biasing current. The onset of chaos can be
pendent of the dc biasing current and its variation occurdllustrated through the computation of Poincare maps for the
over a smaller time scale ds. increases. This is due to System of differential equations for the variablesy,z) as a
nearly linear increase with time of both variablesandy,  function of I4.. Using Egs.(8)—(10), it can be seen that the
solutions of the system of differential equatici@s. The lin-  system of differential equation§&) is invariant under the
ear increase with time ok andy for large values ofi,  change of variablesx(y,z)—(x+4m,y+4m,z+4m). We
follows directly from Eq.(7) if the terms proportional to the computed a two-sided Poincare map by recording the values
critical supercurrents in the expressions of this are ne- Of the phases X,y)mod(4x) at time 7 corresponding to
glected. The nearly linear increase with timexoindy was ~ crossings of the planeg=2m (in either direction by the
confirmed numerically for all the bridges simulated here.trajectory initiating at(0,0,0. This two-sided Poincare map
Typical results are shown in Fig. 4 for Wheatstone bridgels shown in Fig. 5 foll 4. equal to 6l ., for bridgeW,;, . This

W, at two different values offy.. Referring to Eq(18), since  Poincare map clearly indicates the presence of chaos in the
x andy are found to be proportional 1, this explains the bridge. Indeed, while plotting Fig. 5 for a chaotic solution,

higher frequency components in the plot §ff versus time in ~ the successive values of the phaseymod(4m) recorded
Fig. 3 for largerl 4. as described above were found to jump from one region to

another of the intervdl0,4+]X[0,44r] in an apparently ran-
60000.0 ’ dom fashion, producing a geometrically complex Poincare
Y section, often referred to as a strange attractor. The onset of

L6y chaos in the bridge was supported through a calculation of
\ the one-dimensional Lyapounov exponents which character-

X ize the divergencépositive exponentor convergencénega-
tive exponentof neighboring trajectory solutions of the sys-
Lie=31y tem of differential equations for the variables,y,z).1%’

Y The Lyapounov exponents were computed using the algo-
rithm developed by Wolkt al® A brief description of the
algorithm used to calculate the Lyapounov exponents is
given in AppendixC.

Figure Ga) is a plot of the three Lyapounov exponents of
0o . . the system of differential equatiorig) as a function ofl 4.
0.0 20000 40000 6000.0 for bridgeW, . Figure @b) is a look at the Lyapounov expo-
TIME (Reduced Units) . . .
nents in a narrower window showing that one Lyapounov

FIG. 4. Time dependence of the variallandy solutions of the ~ €Xponent becomes positive wheg. increases aboveé.,

system of differential equatior@) for two different values of the ~+1¢;5. This threshold corresponds to a valuelgf larger
dc biasing current. The bridge simulated is bridgk. At large  than the maximum supercurrent which can flow through the

l4, bothx andy increase linearly with time. Time is expressed in superconducting Wheatstone bridges considered here. Past
units of 7i/2e Ryl ¢.3. le.at1c5, one Lyapounov exponent stays positive for the

40000.0 |

Phases (X,Y) (Radians)

20000.0 - X
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5000 ; ' - - tions providing additional insight on the mechanisms disrupt-
w o ing the intralocking of JJ’s in 2D or 3D arrays in the pres-
g e ence of disorder.
;g 0.0 -
E r APPENDIX A
w
é -500.0 - In this appendix, we outline the derivation of the
5 system of differential equation{3) in the text. Applying Kir-
2 choff's current law to the nodes of the bridge in Fig. 1, we
() .
% 10000 - obtain
I=11+15, (A1)
18000, 5 20 40 50 80 100 [i=1at] (A2)
DC BIASING CURRENT 17137 14
10.0 T T T T
® ls=15+13, (A3)
80 i
- 60t ] and
% 40
; 20
g 00 t Furthermore, introducing the quantitie§)=(2e/%)Rgyln,
5 ol andr=(Qt, the voltage across th¢h junction can be written
Z
2
Q 4.0
< qu.
2 sl Loat Lo r ] Ui=Rglm d—T', (A5)
8.0+ I+ I / ]
100 A ‘ ‘ , and the current through thi¢h branch is given by
0.0 2.0 4.0 6.0 8.0 10.0
DC BIASING CURRENT
Ii R d(,D| | cii
FIG. 6. (a) Plot of the three Lyapounov exponents of the system m Rg a7 -+t — I sing; . (A6)

of differential equationg7) as a function of 4 for bridgeW, . (b)
Zoom on the variation of the Lyapounov exponents within a Sma”equuations(AZ) and (A3) can then be written as follows:
range of values showing that one Lyapounov exponent becomes
positive whenl 4 increases abovk..,+1..5. This is the threshold

corresponding to a dc biasing current larger than the maX|mum_%+ le, sing;
supercurrent which can flow through the superconducting WheatRg d7 Im
stone bridge. Rs des lea Ry dos .
_ . . R ar —— + ——sinp3+ — Ry ar Sln(p4, (A7)
range ofl 4 investigated here. For all bridges, the Lyapounov Im Im
exponents were found to be quite small above the critical
supercurrent* at which a nonzero value of the average "s Rs dos | les
transverse voltageMp) appears across the bridge. Numeri- R dr I'm T Sines
cally, the sum of the three Lyapounov exponents was found
to be negative for all 4;'s, as required for any dissipative 2 de, | 2 Ginoo+ —2 Ry des I %3 qin (A8)
system'® R dr P2 Ry, d7 P3-

V. CONCLUSIONS Summing the last two equations and rearranging, we obtain
In conclusion, we have identified a physical mechanism R3 de; lg3
—_—+ - sm<p
leading to the onset of chaos in an asymmetric superconduct{ R~ g, 3
ing Wheatstone bridge of overdamped Josephson junctions

as the presence of an effective noise current source in  Rsdes R;des, Ry d(,ol Rz de, I

the equation describing the dynamics of the transverse R dr R. dr  R. dr Ry dr oot sines

. . L . . . g g 9 m
junction of the bridge. This effective noise current source

results from the competition of circulating supercurrents in Ic 4 e le; |c;4 : (A9)
the upper and lower loops of the bridge. The onset of chaos |m sing, |m Slnq05 |m Sing,.

in the bridge is found to occur at the dc biasing current

corresponding to the maximum supercurrent which can flonMaking use of the two constrain{§) and(6) in the text and
through the bridge. We believe that the analysis performedhe definitions(12) and (13), Eq. (A9) can be rewritten as
here could be extended to larger arrays of Josephson junésllows:



56 ONSET OF CHAOS IN A SUPERCONDUCTIH . . . 3399

1 ata'\|deg gz Ry des dey de;  de; 1lca ‘P1+¢’2_€D3)
—+ =42 =B/ ==+ == ——+ 2|+ = | == sin ———=
Ry R; 2 ) dr I SiNes=75 B dr dr dr dr 2|1y 2
_|c_;2 [ P1T @2t @3 +E |c_5 | Pat s @3 _|c_;4Sin P4t @5t @3
I 2 2|1, 2 I 2 '
(A10)
Defining z= @3, Xx=¢1+ ¢,, andy= ¢, + ¢5, the last equation becomes
1 ata'\|dz l.s . Ry dy dx| 1 |lgq X—=2z\ leo X+z
_ [ — — 4 = == =+ — |+ = | = sinl ——| — == sinl ——
RQ{R3 2 a0, e (B g P 2, S ) T, SN
1 Ic;5 . (Y—z Ic;4 [ytz
+ > [K SIH(T) - K Sin| N (A11)

The differential equations for the dynamical variabkeand tial condition x(tg), the determination of the Lyapounov
y are derived easily starting from Eq#\1) and(A4). Solv-  spectrum of a dynamical system requim,soqst(xo,to), the
ing these equations simultaneously with £411), the ex-  derivative of the trajectory with respect to the initial condi-
pressionsdx/dr,dy/dr,dz/dr are then readily found to be tjon. From Eq.(C1), we have

given by Eq.(7) in text.

APPENDIX B ¢t(x0,to)=f[d)t(xo,to),t], ¢tO(XOvtO)=XO- (C2

For an unbalancednonsuperconducting Wheatstone Differentiating Eq.(C2) with respect tax,, we obtain
bridge, the transverse resistanBgs=Vcp/l 4 can be readily
calculated using th& —Y connection rule$* As shown in

Fig. 7, this technigue consists in replacing theetwork of D, ®1(X0.10) = Dxf[ h1(X0.t0) 11D he(Xo. o).
resistors R, ,R,,R3) by an equivalen¥ network of resistors
(R1,R5,R3) whose values are given explicitly By on¢to(XO:t0)= | (C3)
, R,R3 - _
Rl:m' (B1) Introducing®(xo,to) = Dy, ¢t(Xo.t0), EQ. (C3) becomes
R = RiRs (B2) D(X0,t0) = Dxf[ (X0, t0) t]Pe(X0,to), Py (Xo,to) =1,
2 R;+R,+Ry’ (C4)
and A
, RiR, }
R TRAR Ry &9 . Ry
Application of network analysis to the equivalent circuit in R4 Ro R’2 R’1
Fig. 6 leads to the following result for the transverse resis- /@ %\
tance: Rj
c ANy D C ™S o
n Voo Rs(RoR4— R4Rs) - /
Tl (Re+Re)(Ry+ Ry +Ry) T R(Ry TRy R4 »ns s )
. . . 5
The latter can be written in the more compact form given by B B
Eq. (17) by using definitiong12) and (13).
APPENDIX C
For annth-order system, we must solve FIG. 7. lllustration of theA—Y connection rule(Ref. 19 to
calculate the transverse resistame=Vcp/l 4. In this technique,
x=f(x,t), X(tg)=Xo, (C1 the A network of resistors R;,R,,R3) is first replaced by the

_ _ _ equivalentY network of resistorsR;,R;,R3). The transverse re-
wherex hasn dimensions. If we callp,(Xq.to), the solution  sistanceR, is then derived using Kirchoff's current and voltage
of this system of differential equations for the specified ini-laws for the equivalent circuit as shown in Appendix B.
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which is the variational equation. This variational equation
depends both o and®,. The system of differential equa-
tions and the variational equation must be solved simulta-
neously. To perform this simultaneous integration, the varia-
tional equation is appended to the original system to obtain
the combined system

(CH

X f(x,t)
®|~| D f(x, D]’

which is the integrated subject to the initial conditions

X(to) | | Xo
B(ty) || I

An explicit algorithm to calculate the Lyapounov spectrum
for a nonlinear system whose equations of motion and their
linearizations[Eq. (C6)] are provided by the user has been
given by Wolf and co-workert The technique is based on
the calculation of the long-term growth rate of small volume
elements on the attractor. The reader is referred to Appendix
A of Ref. 16 for a detailed description of the algorithm. For
the case under study, we need the Jacodyi(x,t)] in Eq.
(Ce) for the system of differential equatiorig) describing
the dynamics of the bridge. This Jacobian is calculated ex-
plicitly in the next appendix.

(C6)

APPENDIX D

As shown in Sec. Il, the dynamics of the bridge can be
described by a set of three first-order differential equations:

X:FX(va:Z)a (Dl)
y:Fy(X,y,Z), (DZ)
.Z: FZ(Xiy’Z)v (D3)

where the explicit forms of « ,Fy ,F; are given in Eq(7) in

Sec. II. A calculation of the Lyapounov exponents for this
system of differential equations requires a numerical solution
of the variational equation, as described in Appendix C. This
variational equation requires an explicit calculation of the
Jacobian associated to the right-hand side of the three differ-
ential equations above. The elements of the Jacobian can be
calculated explicitly and are found to be

dFy B2\ db, . dbs

W—(“ ‘7)& ax’ (B4
dFy (BB') db, , dbg
d_y_(T) ay TP gy (09

A L. UL
dz’

dz 24z 2 4z
dFy Bp'?db;  dbg
ax - 2 dx ax ©7)
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%:%ﬂ%+<a’5—§)%+a’ﬁ%,
(D9)

%:%ﬂl%-i-aa’%, (D10)
%:%%—F#%-ﬁ-aa’%, (D12

where 6=1/R.3+[(a+ a/2)].
The explicit expressions fobg ,b,,b3) are given by Egs.

(8)—(10) in Sec. Il. The derivatives ofty(; ,b,,b3) appearing

in the elements of the Jacobian matrix can be found exactly;

dbl_ Ic, x—2z\ lIcy X+z D13
W— KCO —2 HCO —2 ) ( )

db, _ D14
e (D14)
db; Icy x—2z\ lc, X+z
a1, S(T)‘HC“(T’ (b13
db2—o D16
W_y ( )
db,  Icy y+2z\ lcg y+z
d_y__ImCOS(T T %875 O
db,  Icy y+z\ lcg y—2z
E——H O{T +HCO T, (D18)
dbs; 1db,
x 2 dz (019
db, 1db,
dy 2 dz (D20
db, 1db, 1db, Ic
S 2 = ® cog. (D21)

dz 2dy "2dx 1.
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