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Onset of chaos in a superconducting Wheatstone bridge of overdamped Josephson junctions
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We identify a physical mechanism responsible for the onset of chaos in an asymmetric superconducting
Wheatstone bridge of overdamped Josephson junctions while focusing on the dynamics of the transverse
junction. The dynamics of the transverse junction are shown to be affected by an effective-noise-current term
whose presence eventually leads to the onset of chaos in the bridge. This effective-noise-current term results
from the competition of circulating currents in the upper and lower loops of the bridge. For some bridges, the
effective-noise-current term has a profound influence on the value of the dc biasing current at which a nonzero
average voltage appears across the transverse junction of the bridge.@S0163-1829~97!04430-5#
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I. INTRODUCTION

For the last 10 years, Josephson junction arrays have
a benchmark for both the experimental and theoretical st
of nonlinear dynamical systems with many degrees of fr
dom. Since the early 1990s, there has been a growing inte
in two-dimensional~2D! arrays following early theoretica
predictions of a tremendous increase in the output powe
2D arrays compared to their 1D counterparts.1 However, up
to now, the maximum experimental radiation power of 2
arrays has been found to be much smaller than that of
arrays~100 nW maximum versus 50mW in 1D arrays!.2,3

Recently, Wiesenfeld and co-workers formulated general
sign criteria for optimization of power and linewidth o
phase-locked 2D arrays.1 However, a thorough understand
ing of phase locking and the effects of disorder on the
herence properties of 2D arrays is still in its infancy. T
understand the effects of disorder on synchronization~phase
locking! in 2D Josephson junction arrays, there have b
recent theoretical investigations of the dynamics of sma
arrays of Josephson junctions~JJ!.4–6 For instance, Lands
berg et al.5 have studied two prototype systems—t
plaquette and double plaquette of Josephson junctions—
show that, in the presence of moderate disorder in both
critical currents and normal resistances, the vertical juncti
within each row can maintain 1:1 frequency locking. On t
other hand, different rows operate at different frequencies
matter how small the amount of disorder.

The analysis of JJ arrays still lacks the formulation
general criteria to study the onset of chaos in these array
the presence of disorder. This is an important issue s
chaos is bound to disrupt phase locking in large arrays.
conditions for the onset of chaos in single underdamped J
the presence of radio-frequency current source has been
lyzed by Kautz and Monaco.7 Extensive numerical simula
tions by Dominguez and Cerdeira8 have pointed out the onse
of spatiotemporal chaos in JJ series arrays. However, m
general criteria are needed to understand the onset of c
in 2D and 3D JJ arrays. Towards that end, we present in
paper an extension of our earlier investigations9,10 of the dy-
namics of an array of five junctions forming a supercondu
ing Wheatstone bridge with strong asymmetry~i.e., with dis-
similar junction parameters!. We show explicitly that the
560163-1829/97/56~6!/3394~8!/$10.00
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dynamics of the bridge is characterized by a system of th
first-order differential equations, the minimum required f
any dynamical system to eventually show signs of chao
behavior. The origin of chaos in the bridge is clearly iden
fied and linked to the presence of an effective noise curr
source in the equation governing the dynamics of the tra
verse junction. We believe our analysis constitutes a preli
nary step towards the design of more general criteria to st
the onset of chaos in larger JJ arrays.

II. APPROACH

Figure 1 shows a Wheatstone bridge configuration wh
each cross represents an overdamped Josephson junctio
the limit of negligible capacitance, the dynamic behavior
each junction can be described by the resistively shun
junction model.11 The total current through thei th branch,
I i , can be expressed as

FIG. 1. Wheatstone bridge configuration. Each cross repres
a Josephson junction.I 3 is the difference of the two circulating
currents in the upper and lower loops of the bridge. Also shown
the convention used to define the polarity of the superconduc
phase difference across each Josephson junction.
3394 © 1997 The American Physical Society
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56 3395ONSET OF CHAOS IN A SUPERCONDUCTING . . .
I i5I c; isinw i1
\

2eRi
S dw i

dt D , ~1!

wherew i is the superconducting phase difference across
Josephson junction in thei th branch of the bridge. The quan
tities I c; i and Ri are the critical current and channel res
tance of thei th junction, respectively. The instantaneo
voltage across thei th junction is equal to (\/2e)(dw i /dt).
The superconducting Wheatstone bridge is fed by a dc
rent source (I dc) between nodesA and B in Fig. 1 and the
transverse voltageVCD is measured between nodesC and
D. For simplicity, we neglect the effects of thermal noise
the junctions.

Using the quantitiesRg and I m to normalize the various
resistances and currents inside the bridge12 and introducing
the dimensionless time variablet5Vt @with V
5(2e/\)RgI m#, the total current through thei th branch of
the bridge can be rewritten

I i

I m
5

Rg

Ri

dw i

dt
1

I c,i

I m
sinw i . ~2!

Using Kirchoff’s current law in Fig. 1, we obtainI dc5I 4
1I 5 , I 15I 31I 4 , I 55I 21I 3 . If we neglect the self-
inductance of each branch and the mutual inductance of
top and bottom loops of the bridge, Kirchoff’s voltage la
gives

U25U11U3 , ~3!

U45U31U5 , ~4!

where the potential across thei th junction is given byUi
5RgI m(dw i /dt). Using Eqs.~2!–~4! and Kirchoff’s current
law, the dynamics of the bridge can be readily described
set of five first-order nonlinear differential equations for t
w i ’s. This system of differential equations can be simplifi
since thew i ’s are not independent but related by the fl
quantization rules written for the upper and lower loops
the Wheatstone bridge. Neglecting the self-inductance
each loop and the mutual inductance between the loops
assuming zero external magnetic field, the flux quantiza
rule11 applied to the upper and lower loops of the brid
leads to the following constraints:

w11w32w252pn, ~5!

and

w42w52w352pm, ~6!

respectively. In Eqs.~5! and~6!, n andm are integers. Using
Eqs.~5! and~6!, the system of first-order nonlinear differen
tial equations for thew i ’s can then be reduced to a system
three first-order nonlinear differential equations for the va
ablesx5w11w2 , y5w41w5 , and z5w3 . The system of
differential equations for the three variables (x,y,z) is de-
rived explicitly in Appendix A:

F dx/dt
dy/dt
dz/dt

G5
1

D F ad2b2 bb8/2 ab8

bb8/2 a8d2b82 a8b

b8a/2 ba8/2 aa8
G F b1

b2

b3

G . ~7!
e

r-
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a

f
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-

In Eq. ~7! above, the following notations were used:13

b15
I dc

I m
2

I c;1

I m
sinS x2z

2 D2
I c;2

I m
sinS x1z

2 D , ~8!

b25
I dc

I m
2

I c;4

I m
sinS y1z

2 D2
I c;5

I m
sinS y2z

2 D , ~9!

b35
1

2

I c;1

I m
sinS x2z

2 D2
1

2

I c;2

I m
sinS x1z

2 D
2

1

2

I c;4

I m
sinS y1z

2 D1
1

2

I c;5

I m
sinS y2z

2 D2
I c;3

I m
sinz.

~10!

Furthermore, the following quantities were introduced:

D5RgS aa8

R3
1

aa8

2
~a1a8!2

1

2
~a8b21ab82! D ,

~11!

a5
1

2 S 1

R4
1

1

R5
D , a85

1

2 S 1

R1
1

1

R2
D , ~12!

b5
1

2 S 1

R5
2

1

R4
D , b85

1

2 S 1

R1
2

1

R2
D ~13!

and

d51/R31~a1a8!/2. ~14!

The quantitiesa anda8 are the average conductances of t
two upper and lowerJJ’s, respectively. The quantitiesb and
b8 characterize the asymmetry in the conductances of
branches of the upper and lower loops of the bridge.

Starting with Eqs.~7!–~14! and using standard units,
can be shown that the phasez satisfies the following equa
tion:

\

2eRt

dz

dt
1I * sinz5I dc1I N

eff , ~15!

which is equivalent to the equation of a single junction w
a maximum critical supercurrentI * ,

I * 5
2I c;3

@~R22R1!/~R21R1!#1@~R42R5!/~R41R5!#
, ~16!

and with a normal-state resistance

Rt5
b8a1a8b

2g
, ~17!

where g5D/Rg . In Eq. ~15!, the effective noise curren
sourceI N

eff is given by



ce
n
h

or

ge
n

ce

e
e

o

o

ct
e

s

-

e
te

gly

es
dle
lly,

s

nd
erse
s in

e in
he

rac-
sted
ter-

the
-
tion

third
ion

3396 56M. CAHAY AND R. KOTHARI
I N
eff5

R41R5

R2R42R1R5
FR1I c;1sinS x2z

2 D2R2I c;2sinS x1z

2 D G
1

R11R2

R2R42R1R5
FR5I c;5sinS y2z

2 D2R4I c;4sinS y1z

2 D G .
~18!

The resistanceRt is the value of the transverse resistan
Rt5VCD /I dc, of the Wheatstone bridge fed with a consta
current sourceI dc when only the normal channels of eac
junction are taken into account as shown in Appendix B.14

Equation ~16! indicates that the supercurrentI * can be
made arbitrarily large by tuning the values of the resist
R1 , R2 , R4 , and R5 . In fact, according to Eq.~16!, I * is
infinite whenever the conditionR1 /R25R4 /R5 is satisfied.
The latter is the condition for a perfectly balanced brid
when the superconducting channel of each junction is
glected. In that case, the transverse resistanceRt and trans-
verse voltage are both equal to zero.

In Eq. ~15!, the effective noise current sourceI N
eff is given

by

I N
eff5

R41R5

R2R42R1R5
FR1I c;1sinS x2z

2 D2R2I c;2sinS x1z

2 D G
1

R11R2

R2R42R1R5
FR5I c;5sinS y2z

2 D2R4I c;4sinS y1z

2 D G .
~19!

It is instructive to rewrite the effective noise current sour
as

I N
eff5

2

b8/a81b/a
@~R1I c;1sinw12R2I c;2sinw2!

2~R4I c;4sinw42R5I c;5sinw5!#, ~20!

which shows thatI N
eff is due to the asymmetry in the bridg

parameters leading to a competition of two circulating sup
currents in the top and bottom loops of the bridge.

III. RESULTS

Three numerical examples of the current-transverse v
age characteristics (I dc2VCD) of various Wheatstone
bridges are shown as full lines in Fig. 2. The parameters
the first bridgeWI are listed in Table I.15 In this bridge, the
transverse junction has the same parameters as the jun
with the largest critical supercurrent in the other branch
The other two bridges are identical toWI except for the
transverse junction. In bridgeWII the transverse junction ha
the same parameters as junction 1~with the intermediate
critical supercurrent! and, in bridgeWIII , the transverse junc
tion has the same parameters as junction 4~with the lowest
critical supercurrent!.

As shown in Fig. 2, for some bridges, theI dc2VCD char-
acteristics atT50 K can be well approximated by th
current-voltage characteristics of a single junction charac
ized by the parameters (I * ,Rt). TheseI -V curves are calcu-
lated using Eq.~15! while neglecting the termsI N

eff and are
shown as dash-dotted lines in Fig. 2. For the bridgesWII and
,
t

s

e-

r-

lt-

f
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r-

WIII the effective noise current source becomes increasin
important. This is expected from Eqs.~16! and ~18! since,
whenI c;3 is smaller than all otherI c; i ’s, I N

eff is not negligible
in Eq. ~15!. This trend is not particular to the specific bridg
studied here and holds true for other bridges whose mid
junction has the smallest critical supercurrent. Numerica
the values of the maximum critical supercurrent in theI dc
2VCD characteristics are found to be equal to 159.6mA
(5.7I c;2) for bridge WI , 72.2 mA (2.58I c;2) for bridge
WII , and 30.2mA (1.08 I c;2) for bridgeWIII , whereI c;2 is
the maximum critical supercurrent. Equation~16!, on the
other hand, gives a critical supercurrentI * equal to 156.4
mA (5.6I c;2) for bridge WI , 69.8 mA (2.49I c;2) for bridge
WII , and 2.6mA (0.09I c;2) for bridgeWIII .

I N
eff is a highly nonlinear function of the three variable

(x,y,z) which is bounded and independent ofI dc, at least
explicitly. It is a function of the normal-state resistances a
critical supercurrents in all branches other than the transv
one. Since there are two positive and two negative term
the expression ofI N

eff , we expect it to swing in the positive
and negative directions as a function of time. The chang
sign of I N

eff is dependent on the time scales controlling t

FIG. 2. The full lines are the current-transverse voltage cha
teristics of the three Wheatstone bridges with the parameters li
in Table I. The dash-dotted lines are the current-voltage charac
istics of a single junction with the parameters (Rt ,I * ) while ne-
glecting the effective noise current source in Eq.~15!. Currents and
voltages are expressed in units ofI c;2 andV05R2I c;2 .

TABLE I. The supercurrent and normal resistance values of
Wheatstone bridgeWI . The second bridge (WII) has the same junc
tion parameters as the first one except for the transverse junc
whose parameters are the same as for junction 1. For the
bridge (WIII ), the junction parameters are the same as for junct
4.

Junction I c; i ~mA! Ri ~V!

1 12.5 12.5
2 28.0 9.6
3 28.0 9.6
4 0.47 28.0
5 28.0 9.6
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56 3397ONSET OF CHAOS IN A SUPERCONDUCTING . . .
dynamics of the Wheatstone bridge. Figure 3 shows a plo
I N

eff versus time for different values of the dc biasing curre
of the bridgeWI . Figure 3 shows that the effective nois
current sourceI N

eff has a maximum amplitude merely ind
pendent of the dc biasing current and its variation occ
over a smaller time scale asI dc increases. This is due t
nearly linear increase with time of both variablesx and y,
solutions of the system of differential equations~7!. The lin-
ear increase with time ofx and y for large values ofI dc
follows directly from Eq.~7! if the terms proportional to the
critical supercurrents in the expressions of thebi ’s are ne-
glected. The nearly linear increase with time ofx andy was
confirmed numerically for all the bridges simulated he
Typical results are shown in Fig. 4 for Wheatstone brid
WI at two different values ofI dc. Referring to Eq.~18!, since
x andy are found to be proportional toI dc, this explains the
higher frequency components in the plot ofI N

eff versus time in
Fig. 3 for largerI dc.

FIG. 3. Time dependence of the effective noise current sou
I N

eff as a function of the dc biasing current of the Wheatstone bri
WI . For clarity, the curves corresponding toI dc56 and 9I c;3 have
been shifted vertically by an amount equal to 10 and 20I c;3 , re-
spectively. Time is expressed in units of\/2eR3I c;3 .

FIG. 4. Time dependence of the variablex andy solutions of the
system of differential equations~7! for two different values of the
dc biasing current. The bridge simulated is bridgeWI . At large
I dc, bothx andy increase linearly with time. Time is expressed
units of \/2eR3I c;3 .
of
t

s

.
e

Since the dynamics of the bridge can be reduced to a
of three highly nonlinear differential equations, there exist
possibility to observe the onset of chaos in the bridge wh
varying the dc biasing current. The onset of chaos can
illustrated through the computation of Poincare maps for
system of differential equations for the variables (x,y,z) as a
function of I dc. Using Eqs.~8!–~10!, it can be seen that the
system of differential equations~7! is invariant under the
change of variables (x,y,z)→(x14p,y14p,z14p). We
computed a two-sided Poincare map by recording the va
of the phases (x,y)mod(4p) at time t corresponding to
crossings of the planez52p ~in either direction! by the
trajectory initiating at~0,0,0!. This two-sided Poincare ma
is shown in Fig. 5 forI dc equal to 6I c;2 for bridgeWIII . This
Poincare map clearly indicates the presence of chaos in
bridge. Indeed, while plotting Fig. 5 for a chaotic solutio
the successive values of the phases (x,y)mod(4p) recorded
as described above were found to jump from one region
another of the interval@0,4p#3@0,4p# in an apparently ran-
dom fashion, producing a geometrically complex Poinc
section, often referred to as a strange attractor. The ons
chaos in the bridge was supported through a calculation
the one-dimensional Lyapounov exponents which charac
ize the divergence~positive exponent! or convergence~nega-
tive exponent! of neighboring trajectory solutions of the sy
tem of differential equations for the variables (x,y,z).16,17

The Lyapounov exponents were computed using the a
rithm developed by Wolfet al.16 A brief description of the
algorithm used to calculate the Lyapounov exponents
given in AppendixC.

Figure 6~a! is a plot of the three Lyapounov exponents
the system of differential equations~7! as a function ofI dc
for bridgeWI . Figure 6~b! is a look at the Lyapounov expo
nents in a narrower window showing that one Lyapoun
exponent becomes positive whenI dc increases aboveI c;4
1I c;5 . This threshold corresponds to a value ofI dc larger
than the maximum supercurrent which can flow through
superconducting Wheatstone bridges considered here.
I c;41I c;5 , one Lyapounov exponent stays positive for t

e
e FIG. 5. Two-sided Poincare map showing the values of the v
ables (x,y)mod(4p) for each crossing of the planez52p by the
trajectory describing the dynamics of the Wheatstone bridgeWIII .
The dc biasing current is set equal to 6I c;2 .
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3398 56M. CAHAY AND R. KOTHARI
range ofI dc investigated here. For all bridges, the Lyapoun
exponents were found to be quite small above the crit
supercurrentI * at which a nonzero value of the avera
transverse voltage (VCD) appears across the bridge. Nume
cally, the sum of the three Lyapounov exponents was fo
to be negative for allI dc’s, as required for any dissipativ
system.18

IV. CONCLUSIONS

In conclusion, we have identified a physical mechani
leading to the onset of chaos in an asymmetric supercond
ing Wheatstone bridge of overdamped Josephson junct
as the presence of an effective noise current source
the equation describing the dynamics of the transve
junction of the bridge. This effective noise current sour
results from the competition of circulating supercurrents
the upper and lower loops of the bridge. The onset of ch
in the bridge is found to occur at the dc biasing curre
corresponding to the maximum supercurrent which can fl
through the bridge. We believe that the analysis perform
here could be extended to larger arrays of Josephson j

FIG. 6. ~a! Plot of the three Lyapounov exponents of the syst
of differential equations~7! as a function ofI dc for bridgeWI . ~b!
Zoom on the variation of the Lyapounov exponents within a sma
range of values showing that one Lyapounov exponent beco
positive whenI dc increases aboveI c;41I c;5 . This is the threshold
corresponding to a dc biasing current larger than the maxim
supercurrent which can flow through the superconducting Wh
stone bridge.
l

d

ct-
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e
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tions providing additional insight on the mechanisms disru
ing the intralocking of JJ’s in 2D or 3D arrays in the pre
ence of disorder.

APPENDIX A

In this appendix, we outline the derivation of th
system of differential equations~7! in the text. Applying Kir-
choff’s current law to the nodes of the bridge in Fig. 1, w
obtain

I 5I 11I 2 , ~A1!

I 15I 31I 4 , ~A2!

I 55I 21I 3 , ~A3!

and

I 5I 41I 5 . ~A4!

Furthermore, introducing the quantities:V5(2e/\)RgI m
andt5Vt, the voltage across thei th junction can be written

Ui5RgI m

dw i

dt
, ~A5!

and the current through thei th branch is given by

I i

I m
5

Ri

Rg

dw i

dt
1

I c; i

I m
sinw i . ~A6!

Equations~A2! and ~A3! can then be written as follows:

R1

Rg

dw1

dt
1

I c;1

I m
sinw1

5
R3

Rg

dw3

dt
1

I c;3

I m
sinw31

R4

Rg

dw4

dt
1

I c;4

I m
sinw4 , ~A7!

R5

Rg

dw5

dt
1

I c;5

I m
sinw5

5
R2

Rg

dw2

dt
1

I c;2

I m
sinw21

R3

Rg

dw3

dt
1

I c;3

I m
sinw3 . ~A8!

Summing the last two equations and rearranging, we ob

2S R3

Rg

dw3

dt
1

I c;3

I m
sinw3D

5
R5

Rg

dw5

dt
2

R4

Rg

dw4

dt
1

R1

Rg

dw1

dt
2

R2

Rg

dw2

dt
1

I c;1

I m
sinw1

2
I c;2

I m
sinw21

I c;5

I m
sinw52

I c;4

I m
sinw4 . ~A9!

Making use of the two constraints~5! and~6! in the text and
the definitions~12! and ~13!, Eq. ~A9! can be rewritten as
follows:

r
es

m
t-
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RgF 1

R3
1S a1a8

2 D G dw3

dt
1

I c;3

I m
sinw35

Rg

2 Fb8S dw5

dt
1

dw4

dt D1bS dw1

dt
1

dw2

dt D G1
1

2 F I c;1

I m
sinS w11w22w3

2 D
2

I c;2

I m
sinS w11w21w3

2 D G1
1

2 F I c;5

I m
sinS w41w52w3

2 D2
I c;4

I m
sinS w41w51w3

2 D G .
~A10!

Defining z5w3 , x5w11w2 , andy5w41w5 , the last equation becomes

RgF 1

R3
1S a1a8

2 D G dz

dt
1

I c;3

I m
sinz5

Rg

2 S b8
dy

dt
1b

dx

dt D1
1

2 F I c;1

I m
sinS x2z

2 D2
I c;2

I m
sinS x1z

2 D G
1

1

2 F I c;5

I m
sinS y2z

2 D2
I c;4

I m
sinS y1z

2 D G . ~A11!
in
is

b

ni

v

i-

e

The differential equations for the dynamical variablesx and
y are derived easily starting from Eqs.~A1! and~A4!. Solv-
ing these equations simultaneously with Eq.~A11!, the ex-
pressionsdx/dt,dy/dt,dz/dt are then readily found to be
given by Eq.~7! in text.

APPENDIX B

For an unbalanced~nonsuperconducting! Wheatstone
bridge, the transverse resistance,Rt5VCD /I dc can be readily
calculated using theD2Y connection rules.14 As shown in
Fig. 7, this technique consists in replacing theD network of
resistors (R1 ,R2 ,R3) by an equivalentY network of resistors
(R18 ,R28 ,R38) whose values are given explicitly by14

R185
R2R3

R11R21R3
, ~B1!

R285
R1R3

R11R21R3
, ~B2!

and

R385
R1R2

R11R21R3
. ~B3!

Application of network analysis to the equivalent circuit
Fig. 6 leads to the following result for the transverse res
tance:

Rt5
VCD

I dc
5

R3~R2R42R1R5!

~R41R5!~R11R21R3!1R3~R11R2!
. ~B4!

The latter can be written in the more compact form given
Eq. ~17! by using definitions~12! and ~13!.

APPENDIX C

For annth-order system, we must solve

ẋ5 f ~x,t !, x~ t0!5x0 , ~C1!

wherex hasn dimensions. If we callf t(x0 ,t0), the solution
of this system of differential equations for the specified i
-

y

-

tial condition x(t0), the determination of the Lyapouno
spectrum of a dynamical system requiresDx0

f t(x0 ,t0), the
derivative of the trajectory with respect to the initial cond
tion. From Eq.~C1!, we have

ḟ t~x0 ,t0!5 f @f t~x0 ,t0!,t#, f t0
~x0 ,t0!5x0 . ~C2!

Differentiating Eq.~C2! with respect tox0 , we obtain

Dx0
ḟ t~x0 ,t0!5Dxf @f t~x0 ,t0!,t#Dx0

f t~x0 ,t0!,

Dx0
f t0

~x0 ,t0!5I . ~C3!

IntroducingF t(x0 ,t0)5Dx0
f t(x0 ,t0), Eq. ~C3! becomes

Ḟt~x0 ,t0!5Dxf @ḟ t~x0 ,t0!,t#F t~x0 ,t0!, F t0
~x0 ,t0!5I ,

~C4!

FIG. 7. Illustration of theD2Y connection rule~Ref. 14! to
calculate the transverse resistanceRt5VCD /I dc. In this technique,
the D network of resistors (R1 ,R2 ,R3) is first replaced by the
equivalentY network of resistors (R18 ,R28 ,R38). The transverse re-
sistanceRt is then derived using Kirchoff’s current and voltag
laws for the equivalent circuit as shown in Appendix B.
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which is the variational equation. This variational equati
depends both onf andF0 . The system of differential equa
tions and the variational equation must be solved simu
neously. To perform this simultaneous integration, the va
tional equation is appended to the original system to ob
the combined system

F ẋ

ḞG5F f ~x,t !
Dxf ~x,t !F G , ~C5!

which is the integrated subject to the initial conditions

F x~ t0!

F~ t0!G5Fx0

I G . ~C6!

An explicit algorithm to calculate the Lyapounov spectru
for a nonlinear system whose equations of motion and t
linearizations@Eq. ~C6!# are provided by the user has be
given by Wolf and co-workers.16 The technique is based o
the calculation of the long-term growth rate of small volum
elements on the attractor. The reader is referred to Appe
A of Ref. 16 for a detailed description of the algorithm. F
the case under study, we need the Jacobian@Dxf (x,t)# in Eq.
~C6! for the system of differential equations~7! describing
the dynamics of the bridge. This Jacobian is calculated
plicitly in the next appendix.

APPENDIX D

As shown in Sec. II, the dynamics of the bridge can
described by a set of three first-order differential equatio

ẋ5FX~x,y,z!, ~D1!

ẏ5FY~x,y,z!, ~D2!

ż5FZ~x,y,z!, ~D3!

where the explicit forms ofFX ,FY ,FZ are given in Eq.~7! in
Sec. II. A calculation of the Lyapounov exponents for th
system of differential equations requires a numerical solu
of the variational equation, as described in Appendix C. T
variational equation requires an explicit calculation of t
Jacobian associated to the right-hand side of the three di
ential equations above. The elements of the Jacobian ca
calculated explicitly and are found to be

dFX

dx
5S ad2

b2

2 D db1

dx
1ab8

db3

dx
, ~D4!

dFY

dy
5S bb8

2 D db2

dy
1ab8

db3

dy
, ~D5!

dFX

dz
5S ad2

b2

2 D db1

dz
1

b8b

2

db2

dz
1ab8

db3

dz
, ~D6!

dFY

dx
5

bb82

2

db1

dx
1a8b

db3

dx
, ~D7!
-
-

in

ir

ix

x-

e
:

n
s

r-
be

dFY

dy
5S a8d2

b8

2 D db2

dy
1a8b

db3

dy
, ~D8!

dFY

dz
5

bb8

2

db1

dz
1S a8d2

b82

2 D db2

dz
1a8b

db3

dz
,

~D9!

dFZ

dx
5

ab8

2

db1

dx
1aa8

db3

dx
, ~D10!

dFZ

dy
5

a8b

2

db2

dy
1aa8

db3

dy
, ~D11!

dFZ

dz
5

ab8

2

db1

dz
1

a8b

2

db2

dz
1aa8

db3

dz
, ~D12!

whered51/Rn;31@(a1a/2)#.
The explicit expressions for (b1 ,b2 ,b3) are given by Eqs.

~8!–~10! in Sec. II. The derivatives of (b1 ,b2 ,b3) appearing
in the elements of the Jacobian matrix can be found exac

db1

dx
52

Ic1

I m
cosS x2z

2 D2
Ic2

I m
cosS x1z

2 D , ~D13!

db1

dy
50, ~D14!

db1

dz
5

Ic1

I m
cosS x2z

2 D2
Ic2

I m
cosS x1z

2 D , ~D15!

db2

dx
50, ~D16!

db2

dy
52

Ic4

I m
cosS y1z

2 D2
Ic5

I m
cosS y1z

2 D , ~D17!

db2

dz
52

Ic4

I m
cosS y1z

2 D1
Ic5

I m
cosS y2z

2 D , ~D18!

db3

dx
5

1

2

db1

dz
, ~D19!

db2

dy
5

1

2

db2

dz
, ~D20!

db3

dz
5

1

2

db2

dy
1

1

2

db1

dx
2

Ic3

I m
cosz. ~D21!
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