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Two-hole problem in the t-J model: A canonical transformation approach

V. I. Belinicher,* A. L. Chernyshev,† and V. A. Shubin‡

Institute of Semiconductor Physics, 630090, Novosibirsk, Russia
~Received 1 November 1996; revised manuscript received 11 April 1997!

The t-J model in the spinless-fermion representation is studied. An effective Hamiltonian for the quasipar-
ticles is derived using a canonical transformation approach. It is shown that the rather simple form of the
transformation generator allows one to take into account the effect of hole interactions with the short-range
spin waves and to describe the single-hole ground state. Obtained results are very close to ones of the
self-consistent Born approximation. Further accounting of the long-range spin-wave interaction is possible on
a perturbative basis. Spin-wave exchange and an effective interaction due to minimization of the number of
broken antiferromagnetic bonds are included in the effective quasiparticle Hamiltonian. The two-hole bound
state problem is solved using a Bethe-Salpeter equation. The only bound state found to exist in the region of
1,(t/J),5 is thed wave. Both types of the hole-hole interaction are important for its formation. A discussion
of the possible relation of the obtained results to the problem of superconductivity in real systems is presented.
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I. INTRODUCTION

The problem of the hole motion in an antiferromagne
~AF! background of local spins originally arose in conne
tion with the study of the localized magnetic insulators1,2

and has received considerable attention since the disco
of the CuO2 based high-temperature superconductors. I
well established that at zero doping these materials are i
lators with the long-range AF order, and one is well d
scribed by the two-dimensional Heisenberg model.3 The in-
stability of long-range AF order under the small finite dopi
of carriers is due to the strong interaction of spins with m
bile holes.4,5 The simplest model, which contains in itse
this strong interaction, is thet-J model.6 Extensive studies o
this model’s validity for the description of the real CuO2
plane result in a number of quantitative predictions for
range of parameters and in the set of possiblet-J model
generalizations.7–11 It is widely believed that the essentia
low-energy physics of the high-Tc systems can be studie
using the puret-J model

Ht2J5t (
^ i j &,a

c̃ i ,a
† c̃ j ,a1J(̂

i j &
S SiSj2

1

4
NiNj D ~1!

in the standard notation of the constrained fermion crea
~annihilation! operatorsc̃ i ,a

† ( c̃ i ,a), ^ i j & denotes the neares
neighbor sites,Si is a local spin operator, andNi is the op-
erator of the number of spins. Physically, thet term de-
scribes an additional hole~singlet! hopping on the back-
ground of hole spins, or, otherwise, the hopping of h
~vacancy! in the electron spin background. An important fe
ture of this term is the absence of the double-particle oc
pancy at any site. Exclusion of doubly occupied states d
not allow for the implementation of mean-field-type appro
mations.

The single-hole problem in thet-J model ~1! has been
extensively studied by the various analytical12–22 and
numerical23–26techniques, which have provided the deep u
derstanding of the character of the hole motion. For a rev
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see, e.g., Refs. 27 and 28. Analytical results obtained wi
the self-consistent Born approximation~SCBA! ~Refs. 12,
13, 20, and 29! agree very well with the exact diagonaliza
tion studies on clusters,28 variational,16–18 and other
approaches.19 The main feature of hole motion revealed
these studies is the strong renormalization of the naive tig
binding result for the band energies due to the hole ‘‘dre
ing’’ by the cloud of spin excitations. This leads to a narro
band (;2J for t/J.1 and;t2/J for t!J) with minima at
the 6(p/2,6p/2) points on the boundary of the magnet
Brillouin zone ~MBZ!.

The two-hole problem has received much attention due
the searching of possible pairing mechanisms. In spite of
large amount of work a full consensus on the existence
bound states in thet-J model is absent. There was muc
work devoted to the study of the spin-fluctuation pairing a
corresponding type of superconductivity.30–34There is strong
evidence that the long-range spin-wave exchange, whic
the source of the dipolar interaction between holes,32,35 can
lead to thed-wave pairing in thet-J model. As was estab
lished in Ref. 36 the corresponding bound states are sha
and have a large size. Many efforts aimed at the study of
t-J model bound states originated from the fact that the t
holes can minimize their energy by sharing the common li
that can lead to the picture of superconductivity by ‘‘pr
formed’’ pairs.37 More specifically, numerical works in exac
diagonalization on small clusters and Monte Carlo stud
which account for the latter interaction, provide negative e
ergy of the bound state of thedx22y2 symmetry up to the
valuest/J;325,38–41 which are relevant to the real com
pounds. Variational42 and a kind of quasiparticle
calculation43 yield the critical value oft.2J for this inter-
action, which is somewhat lower than the realistic one. G
erally, there is no agreement on the energy of the gro
state of two holes and on their spatial correlation functio44

even between the similar approaches.
In this paper we propose a canonical transformation

proach to thet-J model problems that allowed us to tur
from thet-J model to an effective quasiparticle Hamiltonia
3381 © 1997 The American Physical Society
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describing the ‘‘dressed’’ holes and their interaction of t
~i! ‘‘contact’’ type and~ii ! via spin waves, and then to fin
the ground state of two such quasiparticles. Both types
interactions are accurately accounted for by our approach
some sense, we use the ideas of the earlier works by Sus
et al.,17,5,45,36 where the same scheme was realized us
quite different approach.

To begin, let us describe the form of the Hamiltonian~1!
we start with. The most popular analytical approach to
t-J model is the SCBA,12,13,20,29 which is based on the
spinless-fermion representation for the fermion operators
Holstein-Primakoff12,20 or Dyson-Maleev46 representation
for the spin operators for thet-J model. Namely, this ap-
proach is applied to the spin-polaron Hamiltonian, which
followed from thet-J one ~1! in the presence of the long
range AF order and in the linear spin-wave approximatio

H.2J(
q

vqaq
†aq1t(

k,q
~M k,qhk2q

† hkaq
†1H.c.!1DH,

~2!

whereh†(h), a†(a), are the spinless hole and magnon o
erators, respectively, 2Jvq52J(12gq)

1/2 is the spin-wave
energy,M k,q54(gk2quq1gkvq), uq ,vq are the Bogolubov
canonical transformation parameters,gk5(coskx1cosky)/2.
The spinless-fermion representation fulfills the abo
mentioned constraint on double occupation exactly20 and,
therefore, the only approximation made is the spin-wave o
As it was recently shown in Ref. 29, the two-loop correctio
due to the higher-order terms in thet term of Eq. ~2! are
analogous to the higher-order nonlinear spin-wave cor
n
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tions to the linear spin-wave theory, and have the same o
of smallness.

To do mapping of the Hilbert space of the constrain
fermion and spin operators onto one of the spinless fermi
and bosons one has to care about projecting out the unph
cal states with the boson and fermion at the same site.
procedure of including projection operators into theJ term
~1! is described in Sec. V B. This adds some interact
terms to the spin-polaron Hamiltonian (DH) ~2!. They are
important for the consideration of the two-hole proble
Namely, the main part of them is an explicitly written ter
of the effective hole-hole attraction due to minimization
the number of the broken AF bonds.

We will study this version of thet-J model with the ad-
ditional interaction terms arising from the projection ope
tors in theJ term. In such a formulation Eq.~2! is explicitly
a problem with very strong interactions. The problem of t
interaction of fermion excitations with a bosonic field an
the resulting effective ‘‘dressing’’ of fermions by the virtua
cloud of bosons is an old and well-investigated problem, a
a powerful approach to it is the canonical transformat
one.47 Therefore, one can hope that a canonical transform
tion can be found for thet-J model too. Briefly, we will
show that a rather simple transformation, which takes i
account the main effect of the strong interaction;t and
allows one to consider the rest of the interaction pertur
tively, exists.

To complete the consideration of the known facts ab
the Hamiltonian~2! let us note that in the recent work b
Reiter48 an exact wave function of the single hole in an A
background has been obtained within the SCBA:
h̃ k
†u0&5AZk Fhk

†1(
q

M k,qGk2q~Ek2vq!hk2q
† aq

†1•••1 (
q, . . . ,qn

M k,qGk2q~Ek2vq!•••M k•••2qn21 ,qn
Gk•••2qn

3~Ek•••2vqn
!hk•••2qn

† aq
†
•••aqn

† 1•••G u0&, ~3!
ow
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where Zk is the quasiparticle residue,Gk(v) is an exact
single-hole Green’s function, andEk is the hole energy.
Since h̃ k

†u0& is an exact eigenfunction of the Hamiltonia
~2!, so the one-hole subspace of the Hamiltonian~2! is com-
pletely diagonalized, and the effective Hamiltonian for qu
siparticles~3! has the form

Heff
SCBA52J(

q
vqaq

†aq1(
k

Ek h̃ k
†u0&^0u h̃k1H int

h2h1•••,

~4!

thus, the initially strong interaction is transformed exactly
the ‘‘dressing’’ of the bare hole, and to an effective intera
tion between such quasiparticles. Unfortunately, one can
use Eq.~3! as the definition of the new Fermi operatorh̃k

† ,
and then obtain the hole-hole interactionH int

h-h by the averag-
ing Ht-J @Eq. ~2!# over the two-hole wave function
-

-
ot

h̃ k
†h̃ k8

† u0&, becauseh̃k , h̃ k
† defined in this way, do not obey

the usual anticommutation relations. In other words, to kn
H int

h-h one has to define the unitary operator, which cor
sponds to the transformation of the ‘‘bare’’ hole wave fun

tion hk
†u0& to the ‘‘dressed’’ oneh̃ k

†u0&. This problem is very
complicated.

Briefly, we present an approximate solution of the diag
nalization problem of the initial Hamiltonian~2!. An effec-
tive Hamiltonian is formulated for the ‘‘dressed’’ holes
which have the energy, bandwidth, and structure very cl
to SCBA ones. Our advantage is that we have an exp
expression for the hole-hole interaction. Then, the solving
the two-hole problem is straightforward.

Our described procedure is valid for the regio
0,(t/J),5, and we consider this region as the actual o
since considering thet/J model as a result of the simpl
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Hubbard or many-band Hubbard model mapping, thet/J pa-
rameter has the lower boundaryt/J;1, below that the map-
ping procedure is not valid. Moreover,t/J55 corresponds to
U/t520, which is well above that realized in the real com
pounds.

The paper is organized as follows. In Sec. II, we give
comparison of the lattice polaron problem with the sp
polaron one and write the general form of the transform
t-J Hamiltonian. In Secs. III and IV, we apply the propos
procedure to the Ising case as well as to the general c
Section V is devoted to the two-hole problem. Finally, Se
tion VI states our conclusions. Technical details are availa
from the authors.51

II. CANONICAL TRANSFORMATION

From the formal point of view, the spin-polaron Ham
tonian~2! has a form that is very similar to one of the usu
lattice polaron problem. We consider here the lattice pola
problem to compare these two models in detail, and to es
lish similarities and differences.

The Fröhlich Hamiltonian is

H5(
k

Ekck
†ck1(

q
Vqbq

†bq1(
k,q

gqVqck2q
† ck~bq

†1b2q!,

~5!

wherec†(c) and b†(b) are the electron and phonon oper
tors,Ek andVq are their energies, respectively.gqVq is the
electron-phonon coupling. Diagonalization of the Ham
tonian ~5! can be done using the Lang-Firsov~LF!
transformation:47

Heff5e2SHeS5H1@H,S#1
1

2!
@@H,S#S#1•••,

with

S52(
k,q

gqck2q
† ck~bq

†2b2q!. ~6!

In the limit of the ‘‘static’’ electron (Ek5E0) only the first
two commutators in Eq.~6! are not equal to zero. One ca
easily obtain the effective Hamiltonian for the ‘‘dressed
electrons

Heff5S E02(
q

Vqugqu2D(
k

ck
†ck1(

q
Vqbq

†bq

2 (
k,k8,q

Vqugqu2ck2q
† ck81q

† ck8ck . ~7!

Thus, the electron-phonon interaction term in Eq.~5! results
in the lowering of the electron energy~polaronic shift! and
the directni

enj
e interaction. For the mobile electron an infini

series of terms in Eq.~6! may be summed and yields a
effective hopping term describing the collective hopping p
cess of a bare electron with a cloud of phonons. It was sho
that the strong ‘‘dressing’’ leads to the exponentially narr
effective band.47 The remaining part of the interaction wit
the phonons~multiple phonon processes! can be considered
as the perturbation. The underlying physical idea of the
approach is that the presence of an electron at the lattice
-
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-
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-
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F
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leads to change of the equilibrium position of the surroun
ing ions and that the new eigenfunction of phonons is
coherent state.

There are two main differences between phonon and m
netic polaron problems. The first one is the absence of
‘‘bare’’ dispersion in the Hamiltonian~2!, i.e., its hopping
term is the hole-magnon vertex.27 The second one is the
nonlocal character of the hole-spin interaction, i.e., emiss
~absorption! of a magnon can be done only by hopping. B
cause of this there is no ‘‘static’’ limit of the problem even
t!J, and the evidenta priori ideas about the structure o
spin cloud around the hole are absent.

Nevertheless, the existing knowledge about the hole m
tion in an AF background can help one to succeed in tra
forming the t-J model to an effective one, which is muc
more appropriate to study. First, in the Ising background
ground state of the hole is a localized magnetic polar
which is formed by a self-retraceable motion of the hole. F
a Néel background there is the similar situation, i.e., sp
waves in the virtual spin cloud around the hole are absor
exactly in the reversed order that they were emitted. T
contribution of the processes beyond these retraceable p
~or SCBA! approximation was found to be very small. Se
ond, it was argued in a number of works that the ho
‘‘dressing’’ by the single spin wave provides results for t
hole dispersion law, which are close to the exact ones.17,18

Namely, the bottom of the band, band minima locations, a
width of the band were determined with a sufficient accura
in the framework of this approximation.17 Therefore, this
shows that the main contribution to the polaron well form
tion for the actual range of (t/J),5 is made by the ‘‘one-
string’’ component of the hole wave function~3!. The au-
thors of some SCBA works also successfully used t
approximation for the differentt-J model studies.48,49 These
are the reasons to hope that the relatively simple transfor
tion, in the spirit of Lang-Firsov, can be used to obtain
effective model which accounts for the main polaron effe
~of the order oft) in the hole energy and hole-hole intera
tion, whereas the other included terms allow one to ap
perturbation theory.

We propose the general form of the generator of suc
transformation:

S5(
k,q

mk,q~hk2q
† hkaq

†2H.c.!, ~8!

wheremk,q is the parameter of the transformation. It is nat
ral to require thatmk,q should obey the same symmetry pro
erties as the kinematic factorM k,q of the t term in the Hamil-
tonian ~2!. Note that M k,q is odd with respect to the
transformations M k,q52M k1Q,q52M k,q1Q , here
Q5(p,p). So, without loss of generality one can rewri
mk,q5 f k,qM k,q , wheref k,q is even under mentioned symme
try transformations.

The transformed Hamiltonian~2! can be developed in the
usual commutator expansion50

Heff5e2SHeS5H1@H,S#1
1

2!
@@H,S#S#1•••. ~9!

Using the generator given by Eq.~8! one can get
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Heff.(
k

Ekhk
†hk12J(

q
vqaq

†aq1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8hk1t(

k,q
Fk,qM k,q~hk2q

† hkaq
†1H.c.!

1t (
k,q,q8

V1
haa~k,q,q8!~hk2q2q8

† hkaq
†aq8

†
1H.c.!1t (

k,q,q8
V2

haa~k,q,q8!hk2q1q8
† hkaq

†aq8, ~10!

where we omit the terms, which are irrelevant for the one- and two-hole problems. General expressions for the hol
Ek , hole-magnon form factorFk,q ~up to the sixth order of the transformation!, hole-hole vertexVk,k8,q

hh ~up to the fourth
order!, and the other vertices are presented in the full version of the paper.51 The order of the transformation is equal to th
number of the commutators in the expansion series~9!.

There is the freedom in choosing of the transformation parameter~TP! f k,q . The systematic way of treating the problem
to do all calculations with the TP as a free parameter and then fix it using some physical reasons. In this paper we
following procedure, which allows us to avoid the self-consistency in equations. We neglect theq dependence in the TP
( f k,q⇒ f k), and then determinef k by minimizing the hole energy. The other thinkable condition for fixing the TP can be
equation for the hole-magnon form factorFk,q50. Indeed, we investigated the different forms of the TP and found
significant changes in results. We will discuss the details of our approach in the next two sections. Here we claim tha
rather general form of the TP one can restrict oneself by the first four terms in the transformed Hamiltonian~10!, namely

Heff.(
k

Ekhk
†hk12J(

q
vqaq

†aq1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8hk1t(

k,q
Fk,qM k,q~hk2q

† hkaq
†1H.c.! ~11!

keeping in mind that the transformed ‘‘internal’’ interactions@DH term in Eq.~2!# are included inVk,k8,q
hh . Moreover, the

resulting effective hole-magnon vertex is perturbative, i.e., the second-order correction to the energy from the sel
diagram is small. The importance of the effective hole-magnon vertex for the two-hole problem will be discussed in

III. ISING LIMIT

Let us start the general consideration of our approach from the Ising case. As was noted in Ref. 52, treating thet-J model
in the Ising limit within the linear spin-wave approximation leaves the physics of the problem essentially unchanged
over, it was shown52 that the spin-wave formalism provides exactly the same result as one of the SCBA.

The t andJ terms of the general spin-hole Hamiltonian~2! using the momentum independence ofvq in the Ising limit are
(vq5uq51 andvq50):

H5t(
k,q

M k,q
I ~hk2q

† hkaq
†1H.c.!12J(

q
aq

†aq ~12!

with

M k,q
I 54gk2q .

The additional terms of the interaction Hamiltonian (DH) can be considered independently.
Following the analogy with the LF transformation we turn to the effective Hamiltonian with the help of the transform

~9! using

S5 f(
k,q

M k,q
I ~hk2q

† hkaq
†2H.c.!, ~13!

where generator of the transformation reproduces the kinematic structure of the hopping Hamiltonian and involves th
free parameterf . It is natural for the TPf to bek independent in this case, since the energy of the hole in the Ising backgr
does not depend onk. Using the evident relation@HJ ,S#5 f (2J/t)Ht one can get the effective Hamiltonian

Heff.Eh(
k

hk
†hk12J(

q
aq

†aq1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8hk1tF(

k,q
M k,q

I ~hk2q
† hkaq

†1H.c.!1t (
k,q,q8

Vk,q,q8
haa hk2q1q8

† hkaq
†aq8

~14!

with one-hole energy, hole-magnon form factor, hole-hole vertex, and hole-two magnon vertex given by

Eh58tF f 2
4

3
f 31

2J

t S 1

2
f 22

1

3
f 4D G ,

F5124 f 21
2J

t S f 2
4

3
f 3D , ~15!
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Vk,k8,q
hh

5~M k,q
I M k81q,q

I
1M k2q,2q

I M k8,2q
I

!• f F11
J

t
f 2

4

3
f 2S 11

J

2t
f D ~41gk1k8!G

2~M k,q
I M k2q,2q

I 1M k81q,q
I M k8,2q

I
!•

8

3
f 3S 11

J

2t
f D , ~16!
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up to the fourth order of transformation. The first pecul
feature of the Ising case is that the minimization of the
ergy provides an equation inf :

dEh

d f
;124 f 21~2J/t !S f 2

4

3
f 3D50, ~17!

which coincides exactly with the equation for the ho
magnon form factorF50. This is closely connected to th
facts that the each act of emission or absorption of the m
non is due to the hole hopping, and that the polaron is c
ated by the self-retraceable motion of the hole. The role
the so-called Trugman processes15 among the other fifth-
order contributions was found negligibly small. The ne
simplifying fact is the absence of the two-magnon vertic
with the h†ha†a† (aa) terms inHeff ~14!. This means that
there are no contributions of the hole-two-magnon inter
tion ~14! into the self-energy and to the hole-hole verte
Hence, theh†ha†a term can be omitted. Thus, after the e
ergy minimization the effective quasiparticle Hamiltonia
has the form, which is very similar to the lattice polaron on

Heff5Eh(
k

hk
†hk12J(

q
aq

†aq

1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8hk , ~18!

here the energy and hole-hole vertex are given by Eq.~15!
with f obtained from Eq.~17!.

Equation~17! shows that

f 52
t

2J
, t/J!1,

f 2.2
1

zS 12
2J

Azt
D , t/J@1 ~19!

demonstrating the perturbative nature of our approach.
perturbative parameter ist/J for small t/J and 1/z for large
t/J.

An exact result for the energy of the hole in the Isi
background was obtained in Ref. 52 in the form of the d
ference equation. Also, there is an analytical solution of t
equation in thet/J@1 limit first proposed by Bulaevskii
Nagaev, and Khomskii:2

E522Azt22J12.34~2J!2/3~Azt!1/3. ~20!

Figure 1 presents the numerical solution of the ex
equation52 ~bold solid curve! and approximate solution~20!
~dashed curve! together with our results Eq.~15!. Upper and
lower curves correspond to the calculations performed u
r
-

g-
e-
f

t
s

-
.

,

e

-
s

t

to

the fourth and sixth orders of the transformation, resp
tively. This figure demonstrates that our single-hole energ
very close to an exact one.

We also have found a close agreement between
weights of the components of an exact wave function52 and
ones of our ‘‘dressed’’ holeh̃ †u0&5e2Sh†u0&.

IV. NÉEL CASE

According to the above discussion~Sec. II! we transform
the initial Hamiltonian H5Ht2J ~2! to an effective one
Heff ~10! using

S5(
k,q

f kM k,q~hk2q
† hkaq

†2H.c.!. ~21!

The general form ofHe f f is given by Eq.~10!.
At the next step we use the same kind of variational pr

ciple to fix the TPf k . The technical advantage of the chos
form of the TP is that thek- and q-dependent parts in the
integrals are separable and the integrals can be reduce
several functions.

Minimization of the energy by variation over the TPf k ,

d

d f k
S (

k8
Ek8D 50, ~22!

FIG. 1. Single-hole energy for the Ising limit. The bold sol
curve is an exact result in the spin-wave approximation. The das
curve is an exact result for the larget@J limit. The solid curves~1!
and~2! are the canonical transformation results up to the fourth
sixth orders of transformation, respectively.
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gives an integral equation inf k . We use the following
method to solve such an integral equation~22!. Using the
symmetry properties of the TPf k one can see tha
f k5 f 2k5 f k1(p,p)5 f (kx↔ky), and hence,f k can be ex-
pressed as a power series in cos(kx)

2, cos(ky)
2, and

cos(kx)cos(ky), or more conveniently

f k5 (
n>m

`

Cn,mgk
2~n2m!~gk

2!2m5C0,01C1,0gk
2

1C1,1~gk
2!21•••, ~23!

where the shorthand notations aregk5@cos(kx)1cos~ky)]/2,
gk

25@cos(kx)2cos(ky)]/2. Then, substituting this form
of f k in expressions for the auxiliary functions one yiel
an infinite number of integrals of the typ
(q@M k,q

2 gk2q
2(n2m)(gk2q

2 )2m], each of them is a finite series i
gk

2 , (gk
2)2 of the power (n12). Cutting f k and all other

series at the finite powern one obtains from Eq.~22! a set of
(n11)(n12)/2 nonlinear algebraic equations in coefficien
Ci , j ( i<n). As a result, the integral equation~22! is trans-
formed to the set of algebraic equations, which is mu
easier to solve. Keeping in mind the 1/z character of the
expansion series for the hole energy (t.J), one can hope
that only a few terms are important, and the role of t
higher orders is insignificant.

We solved these systems of equations numerically for
particular values of 0,t/J,5, and found that extension o
the series in Eqs.~22! and ~23! from n53 (cos6, 10 equa-
tions! to n55 (cos10, 21 equations! changes results for th
parameterf k , energy, and form factor for the relative valu
less than 0.5%. Note that including of the fifth- and six
order terms into the expression of the energy changes
results for approximately 10%. In all further calculations w
used the largest (n55) set of equations.

With the solution forf k of such a high accuracy in han
one can get explicit expressions for the energy, form fac
hole-hole, and hole-two-magnon vertices in the effect
Hamiltonian, Eq.~10!. Evidently, the hole energy has th
shape with the minima at6(p/2,6p/2) points and a large
effective mass along the MBZ boundary, and also obeys
symmetry propertyEk5Ek1(p,p) .

The next step of our consideration is to prove the ne
gible role of the hole-two-magnon vertices and the pertur
tive character of the renormalized hole-magnon one.
have calculated the second-order corrections to the sin
hole energy from the one-magnon and two-magnon s
energy diagrams for the varioust/J. Briefly, a correction to
the depth of the band from the rest of the hole-magnon v
tex is less than 10%, while a correction from the hole-tw
magnon vertex~10! is of the next order of smallness
Namely, fort/J53, E(p/2,p/2)522.22t, dE(1)520.15t, and
dE(2)520.02t. The relative correction to the effective hole
hole vertexVk,k8,q

hh from the hole-two-magnon exchange
even smaller. Single-magnon exchange is also negligible
the large transfer momentum (uqu;p), but it is very impor-
tant for the small one. Indeed, it has a ‘‘quasisingular’’ for
at the small transfer momentum;t(qx1qy)

2/q2, whereas
Vk,k8,q

hh is small at uqu→0. Note also that the two-magno
exchange cannot provide the singular interaction anywhe
h
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Therefore, based on this argument we claim that the r
of the higher-order magnon vertices is negligible, and
rather general type of transformation leads to a transfer of
initially strong hole-magnon interaction~2! mainly to the
hole ‘‘dressing’’ and to the hole-hole interaction. Thus, for
wide region oft/J with the high level of accuracy, one ca
restrict oneself by consideration of the effective Hamiltoni
~11!

Heff5(
k

Ekhk
†hk12J(

q
vqaq

†aq

1t(
k,q

Fk,qM k,q~hk2q
† hkaq

†1H.c.!

1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8hk , ~24!

with all quantities defined as expressed throu
mk,q5 f kM k,q , wheref k is defined from the integral equatio
~22!.

The physical implication of the transformations~9! and
~21! becomes clear if one considers the wave function of
‘‘dressed’’ hole. One can see from Eq.~21! that since the
hole-magnon vertexM k,q→0 at q→0, the admixture of the
long-range magnons in the polaron wave function should
small. Thus, the transformation~21! corresponds to taking
into account the short-range spin-wave ‘‘dressing’’ of t
hole. Following this statement one can conclude tha
should be a strongq dependence of the form factorFk,q ~24!.
In agreement with this expectation we found thatFk,q tends
to zero at largeuqu;p and varies from 0.2 to 0.4 a
uqu!p for t/J.1. The next thing, which is connected wit
the type of transformation, is the separation of the scale
the momentum space for the effective hole-hole interacti
The ‘‘contact’’ interactionVk,k8,q

hh tends to zero atq→0,
whereas the one-magnon-exchange interaction has the
structure nearq50. We focus on the long-range part of th
interaction because, as was found earlier,36 it is the key part
of the pairing interaction for thedx22y2 two-hole bound
state.

Figures 2 and 3 represent our results for the bottom
width of the single-hole band together with ones of t
SCBA calculations from Refs. 20 and 49. The small g
between the bottoms in Fig. 2 is obviously due to the a
sence of the long-range magnon contribution in our quasip
ticle.

After an exhaustive investigation we are certain that
wave function that results from the canonical transformat
introduced in this paper is similar to those of other analyti
studies, e.g., the SCBA, that numerical work,53,26 has shown
to be accurate. Thus, from now on we focus on the m
interesting and complicated problem of two holes.

V. TWO-HOLE PROBLEM

A. Two-sublattice representation

Because of the AF long-range order there are two type
fermion and boson excitations in the system associated
two sublattices. For consideration of the one-particle s
space it is of no importance whether one has the model w
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two degenerate branches of excitations, or the model w
one type of them. Above we used the latter for the sake
simplifying the notations. One can easily prove the form
equivalence of these approaches. For the two-sublattice
resentation there are two types of holes and magnons
defined inside the first magnetic Brillouin zone, whereas
the one-sublattice representations holes and magnons ar
fined inside the full Brillouin zone.

For the calculation of the correlation function,49 consider-
ation of the hole-hole interaction,54 or some other calcula
tions in the two-hole subspace one should turn to the t
sublattice representation. It is convenient to do it using
following expressions for the operatorshk andaq :

FIG. 2. Bottom of the hole band. The Solid curve is our res
~sixth order of the transformation!, the dashed curve is the SCB
result.

FIG. 3. Width of the hole band. The solid curve is our res
~sixth order of the transformation!, the dashed curve is the SCB
result.
th
f
l
p-
th
r
de-

-
e

hk5~ f k1gk!/A2, hk1~p,p!5~ f k2gk!/A2, ~25!

aq5~aq1bq!/A2, aq1~p,p!5~aq2bq!/A2,

where f k and gk correspond to the fermionic excitations
the A andB sublattices, respectively.aq andbq are the two
types of Bogolubov spin-wave excitations. Transition to t
new variables for the hole-magnon part of the effect
Hamiltonian~24! is straightforward if one uses the odd pari
of the vertex M k,q with respect to the transformatio
k→k1(p,p):

Heff
ha⇒t(

k,q
Fk,qM k,q~ f k2q

† gkbq
†1gk2q

† f kaq
†1H.c.!,

~26!

where the summation is performed over the MBZ.
Expressing thehh-interaction ~24! in the terms of new

variables one has

Heff
hh⇒H f g1H f f1Hgg5t (

k,k8,q
Vk,k8,q

f g f k2q
† gk81q

† gk8f k

1t (
k,k8,q

@Vk,k8,q
f f f k2q

† f k81q
† f k8f k

1~ f→g!#. ~27!

Thus, there are three different parts in theHeff
hh , which cor-

respond to the interaction between the holes at the diffe
sublattices (f g part! and at the same one (f f andgg parts!.
The first contribution to the latter arises in the third order
the transformation and physically corresponds to the proc
shown in Fig. 4~a!. Generally, thef f ~or gg) interaction does
not have some important features of thef g one. Namely,
there are no singularities in its long-range part, and the
fective attraction due to reducing of the number of brok
AF bonds is absent for the particles at the same sublattic
well. These physical reasons were checked earlier43 and it
was found that there are no bound states formed by the
ticles at the same sublattice in the region of (t/J).1. So, we
will concern ourselves with the interaction of the particles
the different sublattices.

To derive thef g interaction from thehh one, an accurate
consideration of the parity of thehh vertexVk,k8,q

hh with re-
spect to the transformationR5k(k8)→k(k8)1(p,p) is re-
quired. There are two contributions of the different par
(R57) in the effectivef g interaction. Their diagrammatic
analogues are presented in Figs. 4~b! and 4~c!, respectively.
Since the first contribution is due to the one-magnon
change, by its origin it is of the ‘‘exchange’’ type (Vex

hh). The
second one is due to the two-magnon exchange and the
tact interactions~additions from theDH term!, so it is of the
‘‘direct’’ type ( Vdir

hh). Obviously, these contributions enter
the f g vertex with the opposite signs

Vk,k8,q
f g

5@2Vex
hh~k,k8,q!2Vex

hh~k8,k,2q!1Vdir
hh~k,k8,q!

1Vdir
hh~k8,k,2q!#. ~28!

Note here that the first nonzero correction beyond the l
der approximation for the hole-hole (f g) scattering arises

t

t
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only in the sixth order overt @see Fig. 4~d!#. Moreover,
structure of this correction resembles one of the Trugm
type diagrams for the single-hole self-energy. Therefo
keeping in mind the negligible role of the non-SCBA cont
butions to the hole energy, one can hope that the diagra
Fig. 4~d! can be omitted in all calculations. This leads to t
conclusion that the ladder approximation should work w
even for the initial~untransformed! t-J model ~2!. In our
calculations we use the same approximation, but for alre
‘‘dressed’’ quasiparticles and renormalized interactions.

B. Types of pairing interaction

Generally, there are two different types of hole-hole int
actions in thet-J model. The first one is the spin-wave e
change and the second one is due to minimization of
number of broken AF bonds by the holes located at the n
est neighbor sites. We consider them separately.

The second type of interaction is usually introduced in
pure t-J model by adding projectorsPi5(12ni

h) in the J
term ~1!:

HJ5J(
^ i , j &

F ~12ni
h!SiSj~12nj

h!2
1

4
ni

hnj
hG , ~29!

FIG. 4. Schematic view of the scattering diagrams:~a!
f f→ f f , ~b! f g→g f , exchange type,~c! f g→ f g, direct type,~d! the
first diagram of thef g→ f g scattering beyond the ladder approx
mation. Here the wavy lines denote the interaction originated fr
the magnon exchange (t term!. The point in the diagram~c! denotes
the nearest neighbor attraction vertex (J term!.
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in
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which project out the subspace of the local spins at the s
with the holes,ni

h5hi
†hi is the operator of the hole numbe

This procedure is necessary because the spinless fermio
erators, unlike the constrained fermion ones, commute w
the spin operators and hence, unphysical states of the
and spinless fermion at the same site should be projected
It is evident that due to thehi

†(hi) andSi operators the com-
mutativity projection procedure is exact, i.e., there is no sp
spin interaction between the sites with the holes. Thus,
additional part of thet-J Hamiltonian~2! can be written as

DH5J(
^ i , j &

F2~ni
h1nj

h!SiSj1ni
hnj

hSiSj2
1

4
ni

hnj
hG ,

~30!

where summation runs over bonds. Treating this term in
spin-wave approximation yields

DH522J~122dl! (
k,k8,q

gqf k2q
† gk81q

† gk8f k1dHJ ,

~31!

where the termdHJ consists of the two-magnon term
nhaa andnhnhaa.51 The hole attraction~31! is enhanced by
zero-point fluctuations (22dl.0.16). Applying transfor-
mation ~21! to the Hamiltonian~31! one can get the addi
tional part of the effective Hamiltonian

dH f g5J (
k,k8,q

dVk,k8,q
f g f k2q

† gk81q
† gk8f k . ~32!

An explicit expression of the ‘‘dressed’’ vertexdVk,k8,q
f g is

cumbersome.
There is an evident result for theninj interaction in the

t50 limit. Namely, the ground state of the two holes is t
bound state with the energyEb5(122dl)J/2.20.58J.
The states of s @coskx1cosky#, d @coskx2cosky#, and
p @sinkx , sinky# symmetries are degenerate in this limit. Th
nn-type of interaction~31! has been intensively studied by
number of analytical,42,43 and numerical techniques.40 It was
established that the increase oft leads to the gradual growth
of Eb and disappearance of the bound states at some cri
tc . The largest critical valuetc5(225)J, which is close to
the values oft proposed for the real CuO2 planes, was found
for the bound state of thed symmetry. There are two mecha
nisms of reducing thenn attraction. The first mechanism i
due to the decrease of the ‘‘bare’’ hole part in the magne
polaron. The second one is from the loss of the kinetic
ergy due to the close location of the holes.

Considered pairing interaction has nothing to do with t
spin-fluctuation one, which has been investigated in Ref.
on the phenomenological basis and in Ref. 30 using the R
for the Hubbard model. An essential contribution to t
studying of the spin-wave exchange interaction in thet-J and
Hubbard models has been done in Refs. 32 and 35, w
authors found that the exchange by the long-range~small
momentum transfer! spin wave leads to the dipolar intera
tion between holes which can be attractive or repulsive
pending on the relative location of them. In the later work
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FIG. 5. Graphical identity for an exact verte

G̃(kf ,2kg ,kf8 ,2kg8) for the f g scattering in the
ladder approximation. The solid circle denote

G̃(kf ,2kg ,kf8 ,2kg8), the empty circle denotes a
‘‘compact’’ vertex G0(kf ,2kg ,kf8 ,2kg8).
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Kuchiev and Sushkov36 this problem has been independen
studied in great detail and several interesting features of
system have been found. First of all, neglecting the reta
tion effect and the finite size of the Brillouin zone one c
obtain the Schro¨dinger equation for the two-hole problem
with an effective potential;(x22y2)/r 4, which can lead to
the ‘‘fall to the center’’ effect and to the infinite number o
bound states. It has been also found that the actual deep
of the bound states is very sensitive to the curvature of
hole band along the MBZ boundary.36 This effect was ex-
plained by the strengthening of the pairing interaction due
the effective lowering of the dimensionality of the system.
Ref. 36 onlyd and g @(coskx2cosky)sinkxsinky# states were
found to exist. This confirms the general statement56 that in
the AF state one-magnon exchange leads to repulsion o
carriers in thes-wave state and to attraction in thed-wave
one.

C. Bethe-Salpeter equation

Thus, one has the Hamiltonian~24! with the hole-magnon
~26! and ‘‘contact’’ hole-hole~28! and ~32! interactions. As
it was noted, the correct account of the retardation effec
the spin-wave exchange diagram is important, so let us c
sider this problem first. Since we turned to the effect
Hamiltonian using a canonical transformation~21!, the short-
range spin-wave exchange@Fig. 4~b!# is included in the
‘‘contact’’ interaction, which does not contain the retard
tion.

The systematic procedure for searching the bound stat
to look for the poles of the two-particle Green’s function
the scattering channel considering it as a function of the t
energy of the particles in the center of inertia system.57 The
corresponding integral equation for the two-hole Gree
function for the holes with the total momentumP50 is pre-
sented in Fig. 5 in diagrammatic form. The standard way
solving this equation with the nonretarded ‘‘compact’’ vert
G0 is given in the Appendix.

In our case the ‘‘compact’’ vertexG0 consists of two parts
~see Fig. 6! and one has to include the magnon propaga
into the expression for the long-range spin-wave excha
part. A natural assumption that the two-particle Gree
function has no singularities as the function of the differen
of the energies of incoming particles provides a somew
he
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different way of solving the Bethe-Salpeter problem. Deta
are also given in the Appendix.

The resulting equation of the Bethe-Salpeter type for
problem with two vertices~Fig. 6! is given by

c~k,E!5
1

E22Ek
(

p
F 22Vk,qVp,q

E2Ep2Ek2vq
1tVk,2k,q

f g

1JdVk,2k,q
f g Gc~p,E!, ~33!

whereq5k1p (q5k2p) for the exchange~direct! parts of
interactions~27! and ~32!, Vk,q5tFk,qM k,q .

D. Results

Finally, having in hand vertices~26!, ~28!, ~32!, and Eq.
~33! one can hope to obtain reliable results for the bou
states in thet-J model. Moreover, since we have consider
the interactions of different natures independently one
demonstrate the role of each type of interaction in the f
mation of the bound states.

Briefly, our results are as follows. The bound state of
d symmetry (dx22y2) exists in the region 0,(t/J),5. The
states of the other symmetries (s, p) were not found at
(t/J)>0.2. The main thesis of this work is that the interpl
of interactions which tend tod-wave pairing, namely the
short-rangeJ interaction~32! and the long-range spin-wav
exchange ~26!, is important for the formation of the
d-wave bound state.

Specifically, there are no bound states from theJ term
alone @the third term in Eq.~33!# for (t/J).2.1. The spin-
wave exchange@the first and second terms in Eq.~33!# pro-
vide a rather shallow bound state. Nevertheless, putting th
interactions together one obtains a much deeper bound
than from the pure spin-wave exchange.

As was noted above in the limitt50, the bound states o
d, s, andp symmetry have the same energy. We have fou
that thes andp states disappear at (t/J).0.2.

Considering terms in the equation for the bound state
x-
s,
FIG. 6. Structure of the ‘‘compact’’ vertex
G0(kf ,2kg ,kf8 ,2kg8) ~empty circle!. Here, the
wavy line denotes the long-range spin-wave e
change~26!, and the point denotes all vertice
which do not contain the retardation~28! and
~32!.
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ergy ~33! separately and together, we have obtained res
for the d-wave pairing state shown in Fig. 7. The dash
curve corresponds to taking into account theJ term of inter-
action dVk,2k,q

f g ~32! alone. The obtained critical value o
tc52.1J for disappearing this short-range-in-nature state
in excellent agreement with the variational approach42

finite-cluster calculations,28,40 and other approaches.43 The
dash-dotted curve corresponds to the long-range bound
due to the first two terms in Eq.~33!. According to Ref. 36
this state should have a small negative energy.

The actual value of the binding energy was found ve
sensitive to the curvature of the hole band along the M
boundary. As was noted in Ref. 36, the higher anisotro
leads to the more one-dimensional character of the spin
larons. The latter leads to the effective enhancement of
interaction. This feature of the problem is very close to
earlier idea by Schriefferet al.30 about the effective attrac
tion of the ‘‘cigarlike’’ ~one-dimensional! spin polarons.
More generally, an attractive interaction itself does not i
mediately result in the bound state. One has to prove tha
energy gain due to the pairing is larger than the energy
due to the localization, or, in other words, to solve the Bet
Salpeter equation. Hence, the less kinetic energy assoc
with the hole movement, the deeper bound state one can

We have found that the actual value of the mass~SCBA!
along the MBZ boundary leads to very small binding ene
;102321024t for the long-range state. Actually, the boun
state is almost pushed in the continuous spectra. The s
curve is our final result for the energy of thed-wave bound
state in thet-J model. The bound state energy for (t/J)53 is
equal toDE5E22Ek0

520.022t, which is two orders of
magnitude deeper than was obtained earlier.36 Thus we have

FIG. 7. Results for the energy of thed-wave pairing state. The
dashed curve corresponds to the short-range bound state, the
dotted curve corresponds to the long-range one, and the solid c
corresponds to the resulting bound state.
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obtained a strong enhancement of the coupling effect by
interplay of the two types of pairing interactions.

Note that the ‘‘contact’’ part of the spin-wave exchan
interactionVk,k8,q

f g ~28! plays the minor role in such a stron
effect. Namely, ignoring it in Eq.~33! one yields the energy
20.01t (t/J53), which is only two times smaller than th
result of the integral effect.

It is useful to consider the structure of the wave functio
of the two-hole bound states ink space. Figure 8~a! shows
the wave function for (t/J)51. It is simply a short-range
wave function from the ‘‘bare’’J term ck;(coskx2cosky)
with the small addition of the higher harmonics. Figur
8~b!–8~d! show the wave functions for the~b! long-range
state,~c! short-range one, and~d! resulting wave function, all
for (t/J)52. The long-range bound state@Fig. 8~b!# is well
localized near the band minima that is consistent with
large-r character. The short-range state@Fig. 8~c!# is more
complex than one in Fig. 8~a! because its energy is smalle
and the corresponding momentum space distribution
volves more harmonics. The resulting wave function@Fig.
8~d!# reveals the features of the previous states.

The next problem is the influence of the next-nearest h
ping terms (t8 terms! on the bound states. Evidently, th
small t8 leads to the perturbative addition to the hole disp
siondEk54t8cos(kx)cos(ky) which can change the physics o
the system.58,59 A positive value oft8 makes the band more
flat in the (p/2,p/2)→(p,0) direction. According to the
above discussion it strongly enhances the interactions
makes thed-wave bound state much deeper. For instance,
the flat band (mi5`) energy of the bound state i
E520.165t @(t/J)53#. Note that the neglecting of the
short-range interaction provides the resultE520.043t. For
some region oft8.0 existence of the long-range bound sta
of theg symmetry becomes possible. Theg-state wave func-
tion obeys the symmetry of the produ
@(coskx2cosky)sinkxsinky#, i.e., changes the sign in MBZ
eight times. Because of the absence of the short-range at
tion for such a state the energy associated with it is v
small.

It is well established by now that, for the real CuO2 com-
pounds,t8 has the negative sign and thet8 terms result in the
fully isotropic dispersion near the band minima.60,61 Note
that the change of the quasiparticle spectrum is the m
effect fromt8 terms, so one can neglect their contribution
the effective interactions. Adding this statement to the se
tivity of the bound state to the anisotropy of the hole ba
one can suggest that there are no bound states in thet-t8-J
models of the CuO2 plane for the realistic parameters. W
have studied the problem of the critical value oft8 and found
tc8.0.3J for (t/J)53, which is much lower than the realisti
value teff8 ;1.5J.

Turning back to the simplet-J model, one can say that th
direct relation of the studied bound states to thet-J super-
conductivity is questionable, since we used the existenc
the long-range AF order as the basis of the model~2!,
whereas the long-range order is unstable under very s
hole doping. Therefore, to clear this subject one has to so
the problems of the pairing and stable spin state s
consistently.

sh-
rve
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FIG. 8. Wave functions of the two-hole boun
states: ~a! (t/J)51, ~b! (t/J)52, long-range
state~c! (t/J)52, short-range one,~d! (t/J)52,
wave function of the resulting bound state.
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VI. CONCLUSION

We conclude by summarizing our results. We have
forward a canonical transformation of thet-J Hamiltonian
using an analogy with the lattice polaron problem and so
ideas based on the known properties of the hole in the
background. We have shown that the rather simple trans
mation, which has some kind of 1/z expansion in the basis
allows one to extend the region of the analytical treatmen
the problem up tot/J;5 with appropriate accuracy. Gene
ally, the powerful method applied provided us the straig
way to the formulation of the quasiparticle Hamiltonia
which includes the free energy terms for the holes and m
nons and all essential interactions.

Results for the single-hole bottom of the band, bandwid
and other properties have been compared with ones of
SCBA calculations and remarkable agreement has b
found. The idea that the ‘‘canonically transformed’’ qua
particles have the properties which are close to ones of e
t-J model quasiparticles is supported.

Using the obtained Hamiltonian we have performed
study of the two-hole problem. The hole-hole interactions
different natures have been considered separately, and
together. Rather deep bound states ofd-wave symmetry
originating from the interplay of the two types of the pairin
interactions have been found. The retardation effect for
t

e
F
r-

f

t

g-

,
he
en

ct

a
f
en

e

long-range spin-wave exchange has been carefully taken
account. Other possible symmetries of the bound state w
function have been studied as well. The main effect of
so-calledt8 terms has been investigated and the critical va
of tc8 , at which the bound state disappears, has been fou

Since we have used the presence of the AF long-ra
order as a foundation of setting up the problem, the dir
relation of the considered two-hole problem to the case
finite hole doping of the real CuO2 plane is unclear. We have
briefly discussed the possible way of this relation a
touched on questions which remain to be resolved.
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APPENDIX

For two holes with the total momentumP50 one can
write the following integral equation:
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G̃~kf ,2kg ,kf8 ,2kg8!5G0~kf ,2kg ,kf8 ,2kg8!1(
pf

G0~kf ,2kg ,pf ,2pg!G~pf !G~2pg!G̃~pf ,2pg ,kf8 ,2kg8!, ~A1!

where we introduced four-momentum notationskf5(k,e f), 2kg5(2k,eg), pf5(p,e f9), 2pg5(2k,eg9) with momentak,p
and frequenciese f (g) , e f (g)9 . G(p)51/(e2Ek1 id) is the single-hole Green’s function. This equation is equivalent to

graphic equality shown in Fig. 5. Near the poleG0!G̃ and hence the first term in Eq.~A1! can be neglected. Then, one ca
see thatG̃ dependence on outgoing four-momentak, k8 is the parametric one, i.e., it is not defined by equation itself. Omitt
these parameters and introducingE5e f1eg , De5(e f2eg)/2, De95(e f92eg9)/2 we have

G̃~k,E,De!5 (
p,De9

G0~k,p,E,De,De9!G~p,E/21De9!G~2p,E/22De9!G̃~p,E,De9!. ~A2!

WhenG0 has no frequency dependence~‘‘static’’ interaction!,

G0~k,p,E,De,De9!5U~k,p!, ~A3!

it is natural to change the variableGGG̃5x and get

x~k,E,De!5G~k,E/21De!G~2k,E/22De!(
p

U~k,p!E d~De9!x~p,E,De9!. ~A4!

Integrating both sides overDe we get the Schro¨dinger equation

c~k,E!5
1

E22Ek
(

p
U~k,p!c~p,E!, ~A5!

with c(k,E)5*d(De)x(k,E,De), which has the sense of the bound state wave function.
In our case the ‘‘compact’’ vertexG0 consists of two parts~see Fig. 6! and one has to include the magnon propagator i

the expression for the spin-wave exchange vertex

G1
0~k,p,De,De9!52F Vk,pV2k,2p*

e2e92vk1p1 id
1

V2k,2pVk,p*

e92e2v2k2p1 idG , ~A6!

whereVk,p5tFk,qM k,q , e2e95De2De9, k1p5q. The negative sign on the right side and relationq5k1p are due to the
exchange character of the diagram~Fig. 6!. Thus, there are threeDe9-dependent denominators in the integral Eq.~A2! and the
simple change of the variables is impossible.

It is natural to assume at this step that since one is looking for the poles of the two-particle Green’s function as the
of E, G̃ has no singularities as the function of the difference of the energies of incoming particlesDe. Therefore, the integra
overDe9 in Eq. ~A2! is determined by the poles ofG(p,E/21De9), G(p,E/22De9), andG1

0(k,p,De,De9) ~A6!. These poles
are De95(Ep2E/2)2 id, De952(Ep2E/2)1 id, andDe956(De2vq)6 id, respectively.1 (2) in the last pole corre-
sponds to the first~second! term in Eq.~A6!. The integration gives

G̃~k,E,De!5(
p

S 2
Vk,pV2k,2p*

E22Ep
D F G̃@p,E,~Ep2E/2!#

De2~Ep2E/2!2vq1 id
1

G̃@p,E,2~Ep2E/2!#

2De2~Ep2E/2!2vq1 id
G . ~A7!

The further way is close to the usual one. Multiplying both sides of Eq.~A7! by the external incoming Green functions on

can integrate overDe, using the evident parity ofG̃ in De

G̃~k,E!

E22Ek
5

1

E22Ek
(

p

22Vk,pV2k,2p*

E2Ep2Ek2vq
3

G̃~p,E!

E22Ep
. ~A8!

ChangingG̃(k,E)/(E22Ek)5c(k,E) one obtains

c~k,E!5
1

E22Ek
(

p

22Vk,pV2k,2p*

E2Ep2Ek2vq
c~p,E!. ~A9!

Evidently, the ‘‘usual’’ Bethe-Salpeter equation~A5! can be obtained in the same way. Surprisingly, this result~A9! coincides
exactly with one obtained in Ref. 36 using the Rayleigh-Schro¨dinger perturbation theory.
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