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Two-hole problem in the t-J model: A canonical transformation approach
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Thet-J model in the spinless-fermion representation is studied. An effective Hamiltonian for the quasipar-
ticles is derived using a canonical transformation approach. It is shown that the rather simple form of the
transformation generator allows one to take into account the effect of hole interactions with the short-range
spin waves and to describe the single-hole ground state. Obtained results are very close to ones of the
self-consistent Born approximation. Further accounting of the long-range spin-wave interaction is possible on
a perturbative basis. Spin-wave exchange and an effective interaction due to minimization of the number of
broken antiferromagnetic bonds are included in the effective quasiparticle Hamiltonian. The two-hole bound
state problem is solved using a Bethe-Salpeter equation. The only bound state found to exist in the region of
1<(t/J)<5 is thed wave. Both types of the hole-hole interaction are important for its formation. A discussion
of the possible relation of the obtained results to the problem of superconductivity in real systems is presented.
[S0163-182697)04429-9

[. INTRODUCTION see, e.g., Refs. 27 and 28. Analytical results obtained within
the self-consistent Born approximatid8CBA) (Refs. 12,
The problem of the hole motion in an antiferromagnetic13, 20, and 2Pagree very well with the exact diagonaliza-
(AF) background of local spins originally arose in connec-tion studies on clusterS, variational®=*® and other
tion with the study of the localized magnetic insulatbfs, approache$’ The main feature of hole motion revealed in
and has received considerable attention since the discovethiese studies is the strong renormalization of the naive tight-
of the CuQ, based high-temperature superconductors. It iinding result for the band energies due to the hole “dress-
well established that at zero doping these materials are insiRg” by the cloud of spin excitations. This leads to a narrow
lators with the long-range AF order, and one is well de-band (~2J for t/J>1 and~t?/J for t<J) with minima at
scribed by the two-dimensional Heisenberg modehe in-  the + (#/2,= /2) points on the boundary of the magnetic
stability of long-range AF order under the small finite doping Brillouin zone (MBZ).
of carriers is due to the strong interaction of spins with mo- The two-hole problem has received much attention due to
bile holes*® The simplest model, which contains in itself the searching of possible pairing mechanisms. In spite of the
this strong interaction, is thieJ model® Extensive studies of large amount of work a full consensus on the existence of
this model’s validity for the description of the real CyO bound states in thé-J model is absent. There was much
plane result in a number of quantitative predictions for thework devoted to the study of the spin-fluctuation pairing and
range of parameters and in the set of posstble model  corresponding type of superconductivity3*There is strong
generalization-!! It is widely believed that the essential evidence that the long-range spin-wave exchange, which is
low-energy physics of the higli; systems can be studied the source of the dipolar interaction between hdfes, can
using the purdé-J model lead to thed-wave pairing in thet-J model. As was estab-
lished in Ref. 36 the corresponding bound states are shallow
B ~4 = 1 and have a large size. Many efforts aimed at the study of the
Ht*J_tmz;fa ¢ i,aci~a+‘]<% (SS;— ZNiNJ> (D) -3 model bound states originated from the fact that the two
' holes can minimize their energy by sharing the common link,
in the standard notation of the constrained fermion creatiofhat can lead to the picture of superconductivity by “pre-
(annihilation operatorsEIa(Ei,a), (ij) denotes the nearest formed” pairs®’ More specifically, numerical works in exact
neighbor sitesS is a local spin operator, arl; is the op-  diagonalization on small clusters and Monte Carlo studies,
erator of the number of spins. Physically, theerm de- which account for the latter interaction, provide negative en-
scribes an additional holésingle) hopping on the back- ergy of the bound state of the,_,> symmetry up to the
ground of hole spins, or, otherwise, the hopping of holevaluest/J~3—5 3% which are relevant to the real com-
(vacancy in the electron spin background. An important fea-pounds. Variationdf and a kind of quasiparticle
ture of this term is the absence of the double-particle occuealculatiod® yield the critical value ot=2J for this inter-
pancy at any site. Exclusion of doubly occupied states doeaction, which is somewhat lower than the realistic one. Gen-
not allow for the implementation of mean-field-type approxi- erally, there is no agreement on the energy of the ground

mations. state of two holes and on their spatial correlation funéfion
The single-hole problem in theld model (1) has been even between the similar approaches.
extensively studied by the various analytiéaf> and In this paper we propose a canonical transformation ap-

numericaf®~?®techniques, which have provided the deep un-proach to thet-J model problems that allowed us to turn
derstanding of the character of the hole motion. For a revievirom thet-J model to an effective quasiparticle Hamiltonian,
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describing the “dressed” holes and their interaction of thetions to the linear spin-wave theory, and have the same order
(i) “contact” type and(ii) via spin waves, and then to find of smallness.
the ground state of two such quasiparticles. Both types of To do mapping of the Hilbert space of the constrained
interactions are accurately accounted for by our approach. Iférmion and spin operators onto one of the spinless fermions
some sense, we use the ideas of the earlier works by Sushké@#d bosons one has to care about projecting out the unphysi-
et al, 1754536 where the same scheme was realized using:al states with the boson a_md_fermion at the_ same site. The
quite different approach. proqedure of inclgding projection operators into theerm _

To begin, let us describe the form of the Hamiltonian (1) is described in Sec. V B. This adds some interaction
we start with. The most popular analytical approach to thd®'ms to the spin-polaron HamiltoniadK) (2). They are
t-J model is the SCBA2132029 which is based on the important for the consideration of the two-hole problem.

spinless-fermion representation for the fermion operators anuamely’ the.mam part of them IS an epr|C|tIy_ written term

Holstein-Primakof?2° or Dyson-Maleeff representation of the effective hole-hole attraction due to minimization of
. . the number of the broken AF bonds.

for the spin operators for theJ model. Namely, this ap- =%\ "\t sy this version of the-J model with the ad-

proach is applied to the spin-polaron Hamiltonian, which is ... . Y - Co

followed from thet-J one (1) in the presence of the long- ditional interaction terms arising from the projection opera-

. / ! - 2 tors in theJ term. In such a formulation Ed2) is explicitly
range AF order and in the linear spin-wave approximation: a problem with very strong interactions. The problem of the

interaction of fermion excitations with a bosonic field and
H=2J> wqaaaq"i_tE (My ghi _ghkad +H.c)+AH, the resulting effective “dressing” of fermions by the virtual
q k.4 5 cloud of bosons is an old and well-investigated problem, and
@) a powerful approach to it is the canonical transformation
whereh'(h), a'(a), are the spinless hole and magnon op-one?” Therefore, one can hope that a canonical transforma-
erators, respectively,\]&)q:2‘](1—yq)l’2 is the spin-wave tion can be found for the-J model too. Briefly, we will
energy,My q=4(vk-qUqt vgq), Uq,vq are the Bogolubov show that a rather simple transformation, which takes into
canonical transformation parameteng,= (cok,+cok,)/2.  account the main effect of the strong interactiert and
The spinless-fermion representation fulfills the above-allows one to consider the rest of the interaction perturba-
mentioned constraint on double occupation exéﬁttynd, tively, exists.
therefore, the only approximation made is the spin-wave one. To complete the consideration of the known facts about
As it was recently shown in Ref. 29, the two-loop correctionsthe Hamiltonian(2) let us note that in the recent work by
due to the higher-order terms in theterm of Eq.(2) are  Reitef® an exact wave function of the single hole in an AF
analogous to the higher-order nonlinear spin-wave correcbackground has been obtained within the SCBA:

'ﬁl|0>= \/Z—k hl‘l‘Eq: Mk'qu_q(Ek—wq)hI_qag-i- e +q Eq Mk,qu—q(Ek_wq)' . Mk~--*qn,1,qnGk'~*q

n

X(Ee - —wg)hl. . _qah--al+ - |0), 3

- =0,

where Zy is the quasipart_icle residu@k(w) is an exact Flﬁ I/|0>! becausd~1k, Fl defined in this way, do not obey
su_ngle;bfr)le Qreens funcﬂ_on, anEk_ is the hole er?ergy. the usual anticommutation relations. In other words, to know
Since h |0} is an exact eigenfunction of_the Hgmlltonlan H™ one has to define the unitary operator, which corre-
(2), so the one-hole subspace of the Hamiltor{@nis com-

) . ; S sponds to the transformation of the “bare” hole wave func-
pletely diagonalized, and the effective Hamiltonian for qua-." B w o =t . .
siparticles(3) has the form tion h,|0) to the “dressed” onéh ;|0). This problem is very

complicated.
— — Briefly, we present an approximate solution of the diago-
SCBA_ t + h—h
Heir _2‘]% ‘*’qaqaq+; Exh (J0)(Ofhy+Hi "+ - - -, nalization problem of the initial Hamiltonia(®). An effec-
(4) tive Hamiltonian is formulated for the “dressed” holes,

o i o which have the energy, bandwidth, and structure very close
thus, the initially strong interaction is transformed exactly toty SCBA ones. Our advantage is that we have an explicit

the “dressing” of the bare hole, and to an effective interac-gypression for the hole-hole interaction. Then, the solving of
tion between such quasiparticles. Unfortunately, one cannghe two-hole problem is straightforward.

use Eq.(3) as the definition of the new Fermi operaiof, Our described procedure is valid for the region
and then obtain the hole-hole interactildﬁ'th by the averag- 0<(t/J)<5, and we consider this region as the actual one,
ing Hy; [Eg. (2)] over the two-hole wave function since considering the¢/J model as a result of the simple
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Hubbard or many-band Hubbard model mapping,tfidegpa-  leads to change of the equilibrium position of the surround-
rameter has the lower boundaij~ 1, below that the map- ing ions and that the new eigenfunction of phonons is a
ping procedure is not valid. MoreoverJ=5 corresponds to coherent state.

U/t=20, which is well above that realized in the real com- There are two main differences between phonon and mag-
pounds. netic polaron problems. The first one is the absence of the
The paper is organized as follows. In Sec. Il, we give a‘bare” dispersion in the Hamiltoniar{2), i.e., its hopping

comparison of the lattice polaron problem with the spin-term is the hole-magnon verté%.The second one is the
polaron one and write the general form of the transformechonlocal character of the hole-spin interaction, i.e., emission
t-J Hamiltonian. In Secs. Il and IV, we apply the proposed (absorption of a magnon can be done only by hopping. Be-
procedure to the Ising case as well as to the general caseause of this there is no “static” limit of the problem even if
Section V is devoted to the two-hole problem. Finally, Sec-t<J, and the evident priori ideas about the structure of
tion VI states our conclusions. Technical details are availablepin cloud around the hole are absent.

from the authors? Nevertheless, the existing knowledge about the hole mo-
tion in an AF background can help one to succeed in trans-
Il. CANONICAL TRANSFORMATION forming thet-J model to an effective one, which is much

) ) _ _more appropriate to study. First, in the Ising background the

From the formal point of view, the spin-polaron Hamil- ground state of the hole is a localized magnetic polaron,
tonian(2) has a form that is very similar to one of the usual which is formed by a self-retraceable motion of the hole. For
lattice polaron problem. We consider here the lattice polaroRy Neel background there is the similar situation, i.e., spin

problem to compare these two models in detail, and to estakyayes in the virtual spin cloud around the hole are absorbed

lish similarities and differences. exactly in the reversed order that they were emitted. The
The Frdnlich Hamiltonian is contribution of the processes beyond these retraceable paths
(or SCBA) approximation was found to be very small. Sec-
H=>, EkCle‘FE qu(’;bq+2 YquCl_qu(bg'*‘ b_g), ond, it was argued in a number of works that the hole
k q k.q “dressing” by the single spin wave provides results for the

(5 hole dispersion law, which are close to the exact dhé.
wherec'(c) andb'(b) are the electron and phonon opera- Namely, the bottom of the band, band minima locations, and
tors, E, and (), are their energies, respectively,(), is the width of the band were determined with a sufficient accuracy
electron-phonon coupling. Diagonalization of the Hamil-in the framework of this approximatiofi. Therefore, this
tonian (5) can be done using the Lang-FirsoftF)  Shows that the main contribution to the polaron well forma-
transformatiorf’ tion for the actual range oft{J)<5 is made by the “one-

string” component of the hole wave functiai8). The au-
L8y 1 thors of some SCBA works also successfully used this
Her=€ "He"=H+[H,S]+ 7[[H,SIS]+- -, approximation for the differenttJ model studie$®*° These
' are the reasons to hope that the relatively simple transforma-
with tion, in the spirit of Lang-Firsov, can be used to obtain an
effective model which accounts for the main polaron effect
S= _2 y CI— ck(bT—b_ ). (6) (pf the order oft) in the hole energy and hole-hole interac-
kg (97T T tion, whereas the other included terms allow one to apply
perturbation theory.
We propose the general form of the generator of such a
transformation:

In the limit of the “static” electron E,=E,) only the first
two commutators in Eq(6) are not equal to zero. One can
easily obtain the effective Hamiltonian for the “dressed”
electrons

S= % k(i _ghkad—H.c), ®
Hor= B0 3 7| clect S 0abipe '
a q whereuy  is the parameter of the transformation. It is natu-
ral to require thaj, o should obey the same symmetry prop-

t : ; . ; .
- 2 Qql val k-G oS Ck - (7)  erties as the kinematic factd, , of thet term in the Hamil-

kk'.q tonian (2). Note that M, is odd with respect to the
Thus, the electron-phonon interaction term in Eg).results  transformations My o= —My,qq= ~Mkqg+a, here

in the lowering of the electron enerdgpolaronic shiff and Q= (r, 7). So, without loss of generality one can rewrite
the direcinin interaction. For the mobile electron an infinite tk,q=fkgMk,q. Wheref 4 is even under mentioned symme-
series of terms in Eq(6) may be summed and yields an try transformations.

effective hopping term describing the collective hopping pro-  The transformed Hamiltoniaf) can be developed in the
cess of a bare electron with a cloud of phonons. It was showksual commutator expansih

that the strong “dressing” leads to the exponentially narrow
effective band” The remaining part of the interaction with
the phonongmultiple phonon processesan be considered
as the perturbation. The underlying physical idea of the LF
approach is that the presence of an electron at the lattice sitésing the generator given by E() one can get

1
He=e SHeS=H+[H,S]+ 5 [[H,S]S]+---. (9
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eﬁ_Z Ech hk+232 ey aq+t Z Vi aeahir s gk £ Fi gMy g(hi_ghyad+H.c)
k.q

+tquq Vvi3(k,q,q )(hk —q-q hkagag,JrH.c.)Hk%q, vhad(k,q,q )hk v hka;aq,, (10)

where we omit the terms, which are irrelevant for the one- and two-hole problems. General expressions for the hole energy
Ex, hole-magnon form factoF , (up to the sixth order of the transformatjornole-hole verteX\/k K'.q (up to the fourth
orded, and the other vertices are presented in the full version of the pajiéxe order of the transformanon is equal to the
number of the commutators in the expansion sei®s

There is the freedom in choosing of the transformation paraniéB®rf, ,. The systematic way of treating the problem is
to do all calculations with the TP as a free parameter and then fix it using some physical reasons. In this paper we use the
following procedure, which allows us to avoid the self-consistency in equations. We neglegtdéygendence in the TP
(frg= "W, and then determing, by minimizing the hole energy. The other thinkable condition for fixing the TP can be the
equation for the hole-magnon form factbg ,=0. Indeed, we investigated the different forms of the TP and found no
significant changes in results. We will discuss the details of our approach in the next two sections. Here we claim that for the
rather general form of the TP one can restrict oneself by the first four terms in the transformed Hamilt6hiaamely

eﬁ_E E.h hk+2a2 wqal aq+t 2 Vi M= gt 2 Fie qMicq(hl_ghiad +H.c) (12)
k.q

keeping in mind that the transformed “internal” interactio[nSH term in Eq.(2)] are included inVE’hk,’q. Moreover, the
resulting effective hole-magnon vertex is perturbative, i.e., the second-order correction to the energy from the self-energy
diagram is small. The importance of the effective hole-magnon vertex for the two-hole problem will be discussed in Sec. V.

III. ISING LIMIT

Let us start the general consideration of our approach from the Ising case. As was noted in Ref. 52, trebtingdldel
in the Ising limit within the linear spin-wave approximation leaves the physics of the problem essentially unchanged. More-
over, it was showtf that the spin-wave formalism provides exactly the same result as one of the SCBA.

Thet andJ terms of the general spin-hole Hamiltonié?) using the momentum independencewgfin the Ising limit are
(wg=Ug=1 andvy=0):

H :t% Mi (Nl —ghial + H.c.)+2J% ala (12)
with

ML'q=4yk_q.

The additional terms of the interaction HamiltoniakH) can be considered independently.
Following the analogy with the LF transformation we turn to the effective Hamiltonian with the help of the transformation
(9) using

s:f;1 M (Nl —ghial—H.c), (13

where generator of the transformation reproduces the kinematic structure of the hopping Hamiltonian and involves the single
free parametef. It is natural for the TH to bek independent in this case, since the energy of the hole in the Ising background
does not depend dk. Using the evident relatiopH ;,S]=f(2J/t)H, one can get the effective Hamiltonian

t
hagag

(14

h
Heg=E hE h hk+2a§‘, a aq+t Z Vit ohi hl,mhk,thru:k};4 M o(hi_ghiag+H.c)+t 2 VSt he_ oo
, k,9,9"

with one-hole energy, hole-magnon form factor, hole-hole vertex, and hole-two magnon vertex given by
4 2J(1 1
_ T3 T2 T¢4
Ep St[f 3f+t 2f 3f),

F=1—4f2+§(f—ff3> (15
t 3 )
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v =Ml M! M! M! fl1 Jf 4f21 —Jf 4
kkra= (MicgMiriq gt Micq—gMir ) T3 * ot (4F Vi)
ML M! M. M 8f3 1 —Jf 16
= (MicgMic—gq —q+ Mg qMir ) 3 % 1+ 5 . (16)

up to the fourth order of transformation. The first peculiarthe fourth and sixth orders of the transformation, respec-
feature of the Ising case is that the minimization of the en4ively. This figure demonstrates that our single-hole energy is
ergy provides an equation if1 very close to an exact one.

We also have found a close agreement between the
weights of the components of an exact wave funcfiamd

ones of our “dressed” hold T|0)=e~Sh"|0).

= 4
—~1-4f2+(2J/1) f—§f3 =0, (17

of

which coincides exactly with the equation for the hole- .
magnon form factoF =0. This is closely connected to the IV. NEEL CASE
facts that the each act of emission or absorption of the mag-
non is due to the hole hopping, and that the polaron is cr
ated by the self-retraceable motion of the hole. The role o
the so-called Trugman procesSesmong the other fifth-
order contributions was found negligibly small. The next
simplifying fact is the absence of the two-magnon vertices S:E fM k,q(hl_qhkag—H.c.). (21
with the h'ha'a' (aa) terms inHg (14). This means that ka

there are no contributions of the hole-two-magnon interac-

. . The general form of.¢; is given by Eq.(10).

tion (14) 'nt? thTe self-energy and to the hole-hole vertex. Atgthe next step WéEfoJse gt]he sarr):e Igrgd gf variational prin-

Srzr;cfﬁi;r;?izgzoi t?r:? g?ch?i?/eorgstc:b;—rTiﬁfé al-f|taerrn}|rtl§nie;r; ciple to fix the TPf, . The technical advantage of the chosen
form of the TP is that th&- and g-dependent parts in the

has the form, which is very similar to the lattice polaron one’integrals are separable and the integrals can be reduced to

According to the above discussig8ec. I) we transform
fhe initial HamiltonianH=H;_; (2) to an effective one
off (10) using

several functions.

Her=En>, hihe+23> ala, Minimization of the energy by variation over the TP,
k q
hh ot 0 > Ep|=0 22
“k%q Vickr,alMk=alkr+ gk P (18) st & KT 22
here the energy and hole-hole vertex are given by (E§). 0.0 — T I w
with f obtained from Eq(17). |
Equation(17) shows that B -
t 1.0 - e -
= —_— —_— < - s
f >3 t/J<1, - 1
2 1( -2 ) t/13>1 19 = = |
~ — — -, = S~ _ [ ¢ n
Z \/Et g 20 )
demonstrating the perturbative nature of our approach. The r J B
perturbative parameter t¢J for smallt/J and 1% for large 2 4
t/J. 3.0 -

An exact result for the energy of the hole in the Ising ]
background was obtained in Ref. 52 in the form of the dif- - |
ference equation. Also, there is an analytical solution of this
equation in thet/J>1 limit first proposed by Bulaevskii, 4.0 r \ L ; | \

Nagaev, and Khomskf: 0.0 0.4 0.8 12 1.6 2.0

Jn
E=—2\zt—2J+2.3423)%3\[zt)13, (20)
FIG. 1. Single-hole energy for the Ising limit. The bold solid
Figure 1 presents the numerical solution of the exacturve is an exact result in the spin-wave approximation. The dashed
equatior? (bold solid curvg and approximate solutiof20)  curve is an exact result for the large J limit. The solid curves)
(dashed curvetogether with our results Eq415). Upper and  and(2) are the canonical transformation results up to the fourth and
lower curves correspond to the calculations performed up teixth orders of transformation, respectively.
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gives an integral equation ifi,. We use the following Therefore, based on this argument we claim that the role
method to solve such an integral equati@®). Using the of the higher-order magnon vertices is negligible, and the
symmetry properties of the TH, one can see that rather general type of transformation leads to a transfer of the
fu="1 _k=Txs(m.m=F(ke—ky), and hencef, can be ex- initially strong hole-magnon interactiof®) mainly to the

pressed as a power series in G cosky)z, and hole “dressing” and to the hole-hole interaction. Thus, for a

cosk,)cosk,), or more conveniently wide region oft/J with the high level of accuracy, one can
restrict oneself by consideration of the effective Hamiltonian
” 11
fi= nzm Com¥e " ™ (% )?™=Co ot C1 07k
Her= >, Exhih+23Y wqala,
+Cra(y )+, (23 K q
where the shorthand notations aye=[ cosk,)+cogk,)]/2, +1D, Fy aMx q(hl_qhkang H.c)
Yk =[cosk)—cosk))/2. Then, substituting this form ka '

of f,. in expressions for the auxiliary functions one yields
an infinite number of integrals of the type +t >, Vi, th_th,mhk,hk, (24)
S IME 2% ™ (¥i—g)?™. each of them is a finite series in kk'g
Ye. (%)? of the power (+2). Cutting f, and all other with all quantiies defined as expressed through
series at the finite power one obtains from Eq22) asetof  ,,, =f,M, ,, wheref, is defined from the integral equation
(n+1)(n+2)/2 nonlinear algebraic equations in coefficients(22).
Ci,; (i=n). As a result, the integral equatid@2) is trans- The physical implication of the transformatio(® and
formed to the set of algebraic equations, which is much21) becomes clear if one considers the wave function of the
easier to solve. Keeping in mind thezl¢haracter of the “dressed” hole. One can see from E(R1) that since the
expansion series for the hole energy-Q), one can hope hole-magnon verte¥, ,—0 atq—0, the admixture of the
that only a few terms are important, and the role of thelong-range magnons in the polaron wave function should be
higher orders is insignificant. small. Thus, the transformatiof21) corresponds to taking
We solved these systems of equations numerically for thénto account the short-range spin-wave “dressing” of the
particular values of €t/J<5, and found that extension of hole. Following this statement one can conclude that it
the series in Eqs(22) and (23) from n=3 (co$, 10 equa-  should be a strong dependence of the form factby , (24).
tions) to n=>5 (cos?, 21 equationschanges results for the |n agreement with this expectation we found tRat, tends
parameterf, , energy, and form factor for the relative value to zero at large|q|~ = and varies from 0.2 to 0.4 at
less than 0.5%. Note that including of the fifth- and sixth-|q|<77 for t/3>1. The next thing, which is connected with
order terms into the expression of the energy changes thge type of transformation, is the separation of the scales in
results for approximately 10%. In all further calculations wethe momentum space for the effective hole-hole interaction.
used the largesin(=5) set of equations. . The “contact” interactionV", , tends to zero ag—0,
With the solution forf, of such a high accuracy in hand \yhereas the one-magnon-exchange interaction has the peak
one can get explicit expressions for the energy, form factorgy,,cture neag=0. We focus on the long-range part of the

hole-hole, and hole-two-magnon vertices in the effectiveyieraction because, as was found eaffét,is the key part
Hamiltonian, Eq.(10). Evidently, the hole energy has the of the pairing interaction for thel,_,2 two-hole bound
shape with the minima at (#/2,= 7/2) points and a large giate. Y

effective mass along the MBZ boundary, and also obeys the rigyres 2 and 3 represent our results for the bottom and

symmetry propertye, =By (z,m. _width of the single-hole band together with ones of the
. The next step of our conS|derat|on_|s to prove the negli-cpa calculations from Refs. 20 and 49. The small gap
gible role of the hole-two-magnon vertices and the perturbapanyeen the bottoms in Fig. 2 is obviously due to the ab-

tive character of the renormalized hole-magnon one. Weence of the long-range magnon contribution in our quasipar-
have calculated the second-order corrections to the singlgy|e.

hole energy from the one-magnon and two-magnon self- after an exhaustive investigation we are certain that the
energy diagrams for the variows). Briefly, a correction to  \yave function that results from the canonical transformation
the depth of the band from the rest of the hole-magnon verroduced in this paper is similar to those of other analytical
tex is less than 10%, while a correction from the h0|e'tW0‘studies, e.g., the SCBA, that numerical w68 has shown

magnon vertex(10) is of the next order of smallness. 5 pe accurate. Thus, from now on we focus on the more

Namely, fort/J=3, E 5,z = —2.22, E®)=—-0.1%,and  interesting and complicated problem of two holes.
SE(?)=—0.02. The relative correction to the effective hole-

hh .
hole vertexVy . q from the hoIe-two—magnon excha_nge is V. TWO-HOLE PROBLEM
even smaller. Single-magnon exchange is also negligible for _ _
the large transfer momentunhg(~ ), but it is very impor- A. Two-sublattice representation

tant for the small one. Indeed, it has a “quasisingular” form  Because of the AF long-range order there are two types of
athrfhe small transfer momentumt(q,+qy)?/q°, whereas fermion and boson excitations in the system associated with
Vi krq is small at|g[—0. Note also that the two-magnon two sublattices. For consideration of the one-particle sub-
exchange cannot provide the singular interaction anywherespace it is of no importance whether one has the model with
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08— ‘ he=(Ft 90/V2,  hismm=(F—g)/N2, (25

aq=(aqtB/V2, ags(mm=(aq— B2,

where f,, and g, correspond to the fermionic excitations at
the A andB sublattices, respectively, and 8, are the two
types of Bogolubov spin-wave excitations. Transition to the
new variables for the hole-magnon part of the effective
Hamiltonian(24) is straightforward if one uses the odd parity
of the vertex M, with respect to the transformation
K—k+ (,7):

-1.6 —

E/t

Hgf?:tk}; FraMia( Fi_qOkBE+ 9l _fral+H.c),
(26)
where the summation is performed over the MBZ.

\ Expressing thehh-interaction(24) in the terms of new

0.4 0.8 12 1.6 2.0 variables one has
Jn

o )
~
| I

f ff t+ T
FIG. 2. Bottom of the hole band. The Solid curve is our result Heff=>H I+HT+HI9=t 2 Vk k', fk—qgk’+qgk’fk
(sixth order of the transformationthe dashed curve is the SCBA kk'.q

result. +

o _ 2 [V ofkeafirs ofiefi
two degenerate branches of excitations, or the model with k,k’.q
one type of them. Above we used the latter for the sake of +(f—9)] 27)

simplifying the notations. One can easily prove the formal
equivalence of these approaches. For the two-sublattice refihus, there are three different parts in lIHéf'}, which cor-
resentation there are two types of holes and magnons botespond to the interaction between the holes at the different
defined inside the first magnetic Brillouin zone, whereas forsublattices fg par) and at the same ond f( andgg parts.
the one-sublattice representations holes and magnons are dgxe first contribution to the latter arises in the third order of
fined inside the full Brillouin zone. the transformation and physically corresponds to the process
For the calculation of the correlation functi@hconsider-  shown in Fig. 4a). Generally, the f (or gg) interaction does
ation of the hole-hole interactiof,or some other calcula- not have some important features of thg one. Namely,
tions in the two-hole subspace one should turn to the twothere are no singularities in its long-range part, and the ef-
sublattice representation. It is convenient to do it using théective attraction due to reducing of the number of broken
following expressions for the operatdng anda,: AF bonds is absent for the particles at the same sublattice as
well. These physical reasons were checked e&tl@nd it

1.0 was found that there are no bound states formed by the par-
L ticles at the same sublattice in the region@fij>1. So, we
will concern ourselves with the interaction of the particles at
0.8 — the different sublattices.

, To derive thefg interaction from thénh one an accurate
consideration of the parity of thieh verteka K'.q with re-

0.6 — ! — spect to the transformatidR=k(k’)—k(k") + (7, ) is re-

/ quired. There are two contributions of the different parity
(R=7=) in the effectivefg interaction. Their diagrammatic

! analogues are presented in Figé)4and 4c), respectively.

) Since the first contribution is due to the one-magnon ex-
L 7 change, by its origin it is of the “exchange” typ&{l"). The

! second one is due to the two-magnon exchange and the con-
02, - tact interactions{additions from the\H term), so it is of the
“direct” type (er) Obviously, these contributions enter in

' the fg vertex with the opposite signs

00! I ‘
0.0 0.4 0.8 1.2 1.6 2.0 k k, =[— V (k,k’,q)—VhQ(k’,k,—q)+Vd|,(k k',q)

J/it
+Var(k' k,—q)]. (29
FIG. 3. Width of the hole band. The solid curve is our result
(sixth order of the transformatignthe dashed curve is the SCBA Note here that the first nonzero correction beyond the lad-
result. der approximation for the hole-holefd) scattering arises

Wi/t
T
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f ¥ which project out the subspace of the local spins at the sites

g f g with the holesn'=h'h; is the operator of the hole number.

This procedure is necessary because the spinless fermion op-
erators, unlike the constrained fermion ones, commute with
the spin operators and hence, unphysical states of the spin
f P f g f and spinless fermion at the same site should be projected out.
It is evident that due to thb?(hi) and$S operators the com-

f g o T _ ) : ,
mutativity projection procedure is exact, i.e., there is no spin-
spin interaction between the sites with the holes. Thus, the
additional part of theé-J Hamiltonian(2) can be written as

. rrrr~’\4,,L P p

a b 1
@) (b) AH=J, —(nih+nJh)SSj+nPnP$Sj—Znihn]h},
(ij)
(30)
f e 8 f f &
where summation runs over bonds. Treating this term in the
spin-wave approximation yields
4 f 4 4
f
! ! AH=-23(1-26N) 2 ¥qfi-@u . Gkt Hy,
k,k',q
>< @D
where the terméH; consists of the two-magnon terms
g g n"aa andn"n"aa.’! The hole attractiori31) is enhanced by

zero-point fluctuations £ 26\=0.16). Applying transfor-
(C) (d) mation (21) to the Hamiltonian(31) one can get the addi-
tional part of the effective Hamiltonian

FIG. 4. Schematic view of the scattering diagrams)

ff—ff, (b) fg—gf, exchange typeg) fg— fg, direct type(d) the SH9=3 sV, i gl . gufy. (32)
first diagram of thefg— fg scattering beyond the ladder approxi- kk'.q kok'al k==K +qIk Tk
mation. Here the wavy lines denote the interaction originated from . . .

int i i An explicit expression of the “dressed” vertesV[%, is
the magnon exchangeé {erm). The point in the diagrartc) denotes p p k.k’,q
the nearest neighbor attraction vertektérm. cumbersome.

There is an evident result for thgn; interaction in the

only in the sixth order ovet [see Fig. 4d)]. Moreover, t=0 limit. Namely, the ground state of the two holes is the

structure of this correction resembles one of the TrugmanPound state with the energl,=(1-2461)J/2=-0.58J.

type diagrams for the single-hole self-energy. Therefore/Ne states ofs [cos+cos] d [cos,—cosk], and
keeping in mind the negligible role of the non-SCBA contri- P [Sinky, sink,| symmetries are degenerate in this limit. The
butions to the hole energy, one can hope that the diagram {iN-type of interactior(31) has been intensively studied by a
Fig. 4(d) can be omitted in all calculations. This leads to thenumber of analyticaf?**and numerical techniqué8it was
conclusion that the ladder approximation should work well€Stablished that the increasetdeads to the gradual growth
even for the initial (untransformeyl t-J model (2). In our of E, and d|sappge}rance of the bound statgs gt some critical
calculations we use the same approximation, but for alread{c- The largest critical valué;=(2—5)J, which is close to

“dressed” quasiparticles and renormalized interactions. ~ the values of proposed for the real Cufplanes, was found
for the bound state of the symmetry. There are two mecha-

S _ nisms of reducing th@n attraction. The first mechanism is
B. Types of pairing interaction due to the decrease of the “bare” hole part in the magnetic
Generally, there are two different types of hole-hole inter-polaron. The second one is from the loss of the kinetic en-
actions in thet-J model. The first one is the spin-wave ex- €rgy due to the close location of the holes.
change and the second one is due to minimization of the Considered pairing interaction has nothing to do with the
number of broken AF bonds by the holes located at the neagPin-fluctuation one, which has been investigated in Ref. 55
est neighbor sites. We consider them Separate|y_ on the phenomenological basis and in Ref. 30 using the RPA
The second type of interaction is usually introduced in thefor the Hubbard model. An essential contribution to the

pure t-J model by adding projector®;=(1—n") in the J studying of the spin-wave exchang_e interaction inttdeand
term (1): Hubbard models has been done in Refs. 32 and 35, where

authors found that the exchange by the long-ratsyeall
. momentum transfgrspin wave leads to the dipolar interac-
_ e c(1_nM_ = nhnh tion between holes which can be attractive or repulsive de-
HJ_J%% (1=nDSS(L=n) =g ning ), 29 pending on the relative location of them. In the later work by
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FIG. 5. Graphical identity for an exact vertex
T'(k¢, —Kg ki ,—kj) for the fg scattering in the
ladder approximation. The solid circle denotes
T (ks ,—Kg ki ,—kg), the empty circle denotes a
“compact” vertex (k¢ , — kg ki ,—kg).

Kuchiev and Sushka¥ this problem has been independently different way of solving the Bethe-Salpeter problem. Details
studied in great detail and several interesting features of thare also given in the Appendix.

system have been found. First of all, neglecting the retarda- The resulting equation of the Bethe-Salpeter type for the
tion effect and the finite size of the Brillouin zone one canproblem with two verticesFig. 6) is given by

obtain the Schidinger equation for the two-hole problem

with an effective potentiat-(x?>—y?)/r4, which can lead to

the “fall to the center” effect and to the infinite number of

bound states. It has been also found that the actual deepness =2V qVpq
of the bound states is very sensitive to the curvature of the v(kB)= E—2Ek§p: [E_Ep_ Ex— wq
hole band along the MBZ bounda?$.This effect was ex-

plained by the strengthening of the pairing interaction due to fg

the effective lowering of the dimensionality of the system. In IV q|¥(P.E),

Ref. 36 onlyd andg [(cok,—cok)sink,sink, | states were

found to exist. This confirms the general staterffetitat in

the AF state one-magnon exchange leads to repulsion of the

carriers in thes-wave state and to attraction in tilewave Whereq=k+p (q=k—p) for the exchangédirec) parts of
one. interactions(27) and (32), Vi q=tF M-

f
+th§’,k’q

(33

C. Bethe-Salpeter equation D. Results

Thus, one has the Hamiltoni@®4) with the hole-magnon Finally, having in hand vertice€6), (28), (32), and Eq.
(26) and “contact” hole-hole(28) and(32) interactions. As  (33) one can hope to obtain reliable results for the bound
it was noted, the correct account of the retardation effect irstates in the-J model. Moreover, since we have considered
the spin-wave exchange diagram is important, so let us corthe interactions of different natures independently one can
sider this problem first. Since we turned to the effectivedemonstrate the role of each type of interaction in the for-
Hamiltonian using a canonical transformati@1), the short- mation of the bound states.

range spin-wave exchandéig. 4(b)] is included in the Briefly, our results are as follows. The bound state of the
“contact” interaction, which does not contain the retarda-d symmetry @,2_,2) exists in the region € (t/J)<5. The
tion. states of the other symmetries, (p) were not found at

The systematic procedure for searching the bound states (§/J)=0.2. The main thesis of this work is that the interplay
to look for the poles of the two-particle Green'’s function in of interactions which tend ta-wave pairing, namely the
the scattering channel considering it as a function of the totahort-rangel interaction(32) and the long-range spin-wave
energy of the particles in the center of inertia systéffihe  exchange (26), is important for the formation of the
corresponding integral equation for the two-hole Green’'sd-wave bound state.
function for the holes with the total momentuPs=0 is pre- Specifically, there are no bound states from thé&erm
sented in Fig. 5 in diagrammatic form. The standard way ofalone[the third term in Eq(33)] for (t/J)>2.1. The spin-
solving this equation with the nonretarded “compact” vertex wave exchanggthe first and second terms in E®3)] pro-

I'% is given in the Appendix. vide a rather shallow bound state. Nevertheless, putting these

In our case the “compact” verteK® consists of two parts interactions together one obtains a much deeper bound state
(see Fig. & and one has to include the magnon propagatothan from the pure spin-wave exchange.
into the expression for the long-range spin-wave exchange As was noted above in the limit=0, the bound states of
part. A natural assumption that the two-particle Green'sd, s, andp symmetry have the same energy. We have found
function has no singularities as the function of the differencehat thes and p states disappear at/()=0.2.
of the energies of incoming particles provides a somewhat Considering terms in the equation for the bound state en-

FIG. 6. Structure of the “compact” vertex
IO(ke,—kg.ki ,—kg) (empty circlg. Here, the
wavy line denotes the long-range spin-wave ex-
change(26), and the point denotes all vertices,
which do not contain the retardatiof28) and
(32.
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0.4 , : : obtained a strong enhancement of the coupling effect by the
' interplay of the two types of pairing interactions.

Note that the “contact” part of the spin-wave exchange
interactionVE’k,’q (28) plays the minor role in such a strong
effect. Namely, ignoring it in Eq(33) one yields the energy
—0.01t (t/J=3), which is only two times smaller than the
result of the integral effect.

It is useful to consider the structure of the wave functions
of the two-hole bound states k space. Figure @) shows
the wave function for {{J)=1. It is simply a short-range
wave function from the “bare”J term i~ (Cok,—Cok,)
with the small addition of the higher harmonics. Figures
8(b)—8(d) show the wave functions for théb) long-range
state,(c) short-range one, and) resulting wave function, all
for (t/J)=2. The long-range bound stdt€ig. 8b)] is well
localized near the band minima that is consistent with its
X L —— R large+ character. The short-range stéfdg. 8(c)] is more

0.0 1o 2.0 3.0 4.0 30 complex than one in Fig.(8) because its energy is smaller

vy and the corresponding momentum space distribution in-
volves more harmonics. The resulting wave funct|étig.

FIG. 7. Results for th  th iring state. Th 8(d)] reveals the features of the previous states.

- /. Results for the energy of tiewave paning state. 'he The next problem is the influence of the next-nearest hop-
dashed curve corresponds to the short-range bound state, the dash- , he b d Evidentlv. th
dotted curve corresponds to the long-range one, and the solid cunin9 terms ¢’ termg on the h oun _SFates' vident y’_ the
corresponds to the resulting bound state. smallt’ leads to the perturbative addition to the hole disper-

sion 6Ey = 4t’ coskcosk,) which can change the physics of
the systen?®° A positive value oft’ makes the band more

ergy (33) separately and together, we have obtained result‘gat in the (m/2,m/2)—(,0) direction. According to the

2 C above discussion it strongly enhances the interactions and
for the d-wave pairing state shown in Fig. 7. The dashed .

o : makes thal-wave bound state much deeper. For instance, for
curve corresponds to taking into account theerm of inter- :
action 6V9_  (32) alone. The obtained critical value of the flat band fn=c) energy of the bound state is

k,—k.q ) E=-0.165 [(t/J)=3]. Note that the neglecting of the

tc=2.1J for disappearing this short-range-in-nature state 'Short-range interaction provides the redile —0.043. For
in excellent agreement with the variational appro¥ch,

_ . i I> i -
finite-cluster calculation&“ and other approaché&.The — Sorc region of’>0 existence of the long-range bound state

dash-dotted curve corresponds to the long-range bound Statétheg symmetry becomes possible. Thestate wave func-

due to the first two terms in E¢33). According to Ref. 36 o obeys . th? s_ymmetry of th.e .product
. . [ (cosk,—cok)sinksink, ], i.e., changes the sign in MBZ
this state should have a small negative energy. : ; Y
- eight times. Because of the absence of the short-range attrac-
The actual value of the binding energy was found ver

V.. . L
sensitive to the curvature of the hole band along the MBZE ?nnalfor such a state the energy associated with it is very

boundary. As was noted in Ref. 36, the higher anisotropy It is well established by now that, for the real CyGom-

:eads toTtr:\e lmt?re lonz-dltm?rr]\sm?fal (t:.haractr:ar of the stplr; fh oundst’ has the negative sign and thieterms result in the
arons. The latter leads fo the eflective ennancement o lly isotropic dispersion near the band minifif£! Note

interaction. This feature of ths% problem is very close 10 thehat the change of the quasiparticle spectrum is the main
earlier idea by Schrle’f’feet al™ about the effective atrac- ftect fromt’ terms, so one can neglect their contribution to
tion of the “cigarlike” (one-dimensional spin polarons.  he effective interactions. Adding this statement to the sensi-
More generally, an attractive interaction itself does not im-tyity of the bound state to the anisotropy of the hole band
mediately result in the bound state. One has to prove that thgne can suggest that there are no bound states itvtthd
energy gain due to the pairing is larger than the energy losgodels of the Cu@ plane for the realistic parameters. We
due to the localization, or, in other words, to solve the Bethehave studied the problem of the critical valuetband found
Salpeter equation. Hence, the less kinetic energy associatgt~0.3) for (t/J)=3, which is much lower than the realistic
with the hole movement, the deeper bound state one can 9&kaluet/~1.5].

We have found that the actual value of the mé&SBA) Turning back to the simple-J model, one can say that the
along the MBZ boundary leads to very small binding energygirect relation of the studied bound states to thi super-
~10"°—10""t for the long-range state. Actually, the bound conductivity is questionable, since we used the existence of
state is almost pushed in the continuous spectra. The solige long-range AF order as the basis of the mot®)|
curve is our final result for the energy of tewave bound  \hereas the long-range order is unstable under very small
state in theé-J model. The bound state energy féf])=3is  hole doping. Therefore, to clear this subject one has to solve
equal toAE=E—2E, =—0.022, which is two orders of the problems of the pairing and stable spin state self-
magnitude deeper than was obtained eaffi@thus we have consistently.

AE/J
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FIG. 8. Wave functions of the two-hole bound
states: (@) (t/J)=1, (b) (t/J)=2, long-range
state(c) (t/J)=2, short-range ondd) (t/J)=2,
wave function of the resulting bound state.

(©) (d)

VI. CONCLUSION long-range spin-wave exchange has been carefully taken into
account. Other possible symmetries of the bound state wave
We conclude by summarizing our results. We have pufunction have been studied as well. The main effect of the
forward a canonical transformation of thhel Hamiltonian  so-calledt’ terms has been investigated and the critical value
using an analogy with the lattice polaron problem and somef t_, at which the bound state disappears, has been found.
ideas based on the known properties of the hole in the AF Since we have used the presence of the AF long-range
background. We have shown that the rather simple transfoerder as a foundation of setting up the problem, the direct
mation, which has some kind ofZLéxpansion in the basis, relation of the considered two-hole problem to the case of
allows one to extend the region of the analytical treatment ofinite hole doping of the real Cuplane is unclear. We have
the problem up td/J~5 with appropriate accuracy. Gener- briefly discussed the possible way of this relation and
ally, the powerful method applied provided us the straighttouched on questions which remain to be resolved.
way to the formulation of the quasiparticle Hamiltonian,
which includes the free energy terms for the holes and mag- ACKNOWLEDGMENTS
nons and all essential interactions.
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study of the two-hole problem. The hole-hole interactions 0f1436'
different natures have been considered separately, and then
together. Rather deep bound statesdefvave symmetry
originating from the interplay of the two types of the pairing  For two holes with the total momentuf@=0 one can
interactions have been found. The retardation effect for thevrite the following integral equation:

APPENDIX



3392 V. I. BELINICHER, A. L. CHERNYSHEV, AND V. A. SHUBIN 56

F(kf,—kg.kf’,—kg,)=r°<kf.—kg,ké,—kg>+§ IOK¢,—Kg,Pr . —Pg)G(P)G(—Pg)T(Pr, —Pg .k, —kg), (A1)
f

where we introduced four-momentum notatidgs- (k,e), —kg=(—K,€g), pr=(p,€f), —pg=(—k, €g) with momentak,p
and frequenciey g , e’f’(g). G(p)=1/(e—E,+i06) is the single-hole Green’s function. This equation is equivalent to the
graphic equality shown in Fig. 5. Near the pdle<T and hence the first term in EA1) can be neglected. Then, one can

see thal' dependence on outgoing four-momekt&’ is the parametric one, i.e., it is not defined by equation itself. Omitting
these parameters and introduciig: e;+ €, Ae= (€1~ €4)/2, A" =(€f — €5)/2 we have

T(k,E,Ae)= >, ToK,p,E,Ae,A€")G(p,E/2+A€")G(—p,E2—Ae")T(p,E,A€"). (A2)
p,AE"

WhenT° has no frequency dependenstatic” interaction),
Iok,p,E,Ae,Ae")=U(k,p), (A3)
it is natural to change the variabl&GT = y and get
X(k,E,Ae)zG(k,E/2+Ae)G(—k,E/Z—Ae)Ep: U(k,p)f d(A€e") x(p,E,A€"). (A4)

Integrating both sides ovexe we get the Schidinger equation

1
W(kE)=ggg 2 U(kp)U(pE). (A5)

with #(k,E)=fd(A€)x(k,E,A€), which has the sense of the bound state wave function.
In our case the “compact” vertek® consists of two partésee Fig. 6 and one has to include the magnon propagator into
the expression for the spin-wave exchange vertex

* *
VioVok-p Vok-pVip
e—€'—wptid €'—e—w_y ptid]

I'Y(k,p,Ae,Ae")=— (A6)

whereV, ,=tF, (M4, e—€"=Ae—A€", k+p=q. The negative sign on the right side and relatipak + p are due to the
exchange character of the diagréfig. 6). Thus, there are threke”-dependent denominators in the integral E&R) and the
simple change of the variables is impossible.

It is natural to assume at this step that since one is looking for the poles of the two-particle Green’s function as the function
of E, T has no singularities as the function of the difference of the energies of incoming patticl@herefore, the integral
overAe€” in Eq.(A2) is determined by the poles &f(p,E/2+A€"), G(p,E/2—A€"), andF?(k,p,Ae,Ae”) (AB). These poles
areAe"=(E,—E/2)—id, Ae"=—(E,—E/2)+i6, andA€e"=*(Ae—wy) *iJ, respectively.+ (—) in the last pole corre-
sponds to the firssecond term in Eq.(A6). The integration gives

T'[p,E,(E,~E/2)] T[p.E,~ (E,~E/2)]
Ae—(E)—E/D)—wqtid —Ae—(E)—ED)—wgtid)

~ Vk pV’ik_p
T(k,E,Ae)=D, (— e

(A7)

The further way is close to the usual one. Multiplying both sides of(B@) by the external incoming Green functions one
can integrate oveA e, using the evident parity of in Ae

T(kE) 1 —2Vi V¥ »  T(p,E) A8
E-2E, E-2E5 E-E,~Ey—w, E-2E, (A8)
Changingl (k,E)/(E— 2E,) = ¥(k,E) one obtains
1 —2Vj VE,
Y(k,E)= > PP y(p,E). (A9)

E-2E,% E—Ep— E— g

Evidently, the “usual” Bethe-Salpeter equatiGh5) can be obtained in the same way. Surprisingly, this ré&@j coincides
exactly with one obtained in Ref. 36 using the Rayleigh-Sdimger perturbation theory.
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