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Statistical mechanics of a nonlinear deformable sine-Gordon model
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The low-temperature thermodynamic properties of a deformable sine-Gordon model are studied by means of
the transfer-integral method. Using asymptotic methods from the theory of differential equations depending on
a large parameter, the lowest-order corrections due to the interactions between solitons as well as the first-order
lattice corrections to the free energy are evaluated. They are strongly dependent on the deformable parameter
r . It appears that the entropy of the system is an increasing function ofr . A physical interpretation of the result
shows that, in the system, disorder increases asr varies from 0 to 1 and decreases whenr varies from 0 to21.
@S0163-1829~97!01926-7#
h
s
er
o

ha
in

s

ns

n
n,

a

by
re
-
it

e

ce
te
u
ra
o

n-
e
e
ttl

de

tir
of
ee
f
in
r

G
y
pli-
at
e-
with
der
era-
ergo

of
in
the

he

ials
and
ve

well
n

es
-

ssi-
ri-
s a
a

as
c-
In

ec.
of

. 29
er-

we

of
in
I. INTRODUCTION

In the last few decades, a great amount of attention
been devoted to the low-temperature statistical mechanic
one-dimensional~1D! nonlinear models of condensed matt
systems which support kinklike or solitary wave solutions
the associated field equation of motion. This attention
been motivated by the important role played by the kink
many areas of condensed matter physics: dislocation
crystals,1–3 planar domains walls in ferromagnets4 and
ferroelectrics,5–7 propagating flux quanta in Josephson tra
mission lines,8 nonlinear spin waves,9 incommensurate
systems,10,11 and bond-alternation domain walls i
polyacetylene12,13 to name only a few. It has been show
through the transfer integral operator~TIO! method or ideal-
gas phenomenology, that the low-temperature thermodyn
ics of the systems are sensitive to and even dominated
solitons.5,14–16 Their presence in the system is signaled
the termEs in the Arrhenius factor in the low-temperatu
free energy, whereEs is the static soliton energy. This pic
ture has proved to work quite well in the continuum lim
~strong coupling between adjacent particles! where the soli-
ton width has to be large enough to avoid the discreten
effects of the lattice.

In some materials, the soliton width is just a few latti
spacings and the discreteness effects cannot be neglec17

Their influence on the properties of nonlinear systems s
porting kinklike solutions was investigated by seve
authors.18–28Those studies have carried out a large variety
effects, namely, the modification of kink velocity and e
ergy, and the pinning of the kink center of mass betwe
lattice sites. Recently, the influence of the lattice discreten
on the thermodynamic properties has received a li
attention.26,29–32Trullinger and Sasaki30 have examined the
entirely separate question of the effects of discreteness on
results of the TIO method. They obtained the lowest-or
discreteness corrections to the pseudo-Schro¨dinger equation
approximation to the transfer integral equation for the en
class of kink-bearing Hamiltonians. Also, the effect
soliton-soliton interactions on statistical mechanics has b
considered only recently33–35 and its study as well as that o
the discreteness effects has still been restricted to the s
Gordon ~SG! and f4 systems, the only exception to ou
560163-1829/97/56~6!/3353~7!/$10.00
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knowledge being the recent work by Dikande´ and Kofane´26

on the deformablef4 systems.
In spite of the fact that the results concerning the S

model as well as thef4 and other rigid models are ver
encouraging, they remain nevertheless limited in their ap
cability to real physical systems, since it is unlikely th
physical condensed matter systems will be ‘‘exactly’’ d
scribed by either of the special cases of these potentials
defined shapes. For example, it is established that un
variation of some physical parameters such as the temp
ture and pressure, some physical systems may und
changes which are either shape distortions, variations
crystalline structures, or conformational changes. Also,
the hydrogen-bonded system, the large displacement of
heavy ions can significantly modify the barrier height of t
double-well potential associated with the light proton.36 It
appears then relevant to look for a wider class of potent
useful to describe nonlinear excitations in real materials
model field theories. Thus a few deformable models ha
appeared in the literature such as parametrized double-
potentials.36–40 Also, deformable SG models have bee
proposed.41–43 The dynamic and thermodynamic properti
as well as the chaotic behavior44–46of some of these deform
able nonlinear systems have been studied.

In this paper, we investigated the low-temperature cla
cal mechanics of a 1D atomic chain with a deformable pe
odic potential whose shape can be varied continuously a
function of the parameterr and which has the SG shape as
particular case.41 The lowest-order discreteness effects
well as the soliton-soliton interactions will be taken into a
count in our study. The paper is organized as follows:
Sec. II, we briefly present the deformable lattice, while S
III is devoted to the low-temperature classical mechanics
the model. In this section, the Schro¨dinger-like equation re-
sulting from the TIO method is solved in the limit of low
temperatures by means of the procedure outlined in Ref
based on the asymptotic methods from the theory of diff
ential equations depending on large parameter.47 Next, we
evaluated the thermodynamic functions, and in Sec. IV,
summarize our results.

II. MODEL DESCRIPTION

The system we wish to consider is a chain of particles
massm harmonically coupled, separated from each other
3353 © 1997 The American Physical Society
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the x direction with lattice spacinga and placed in the field
of a nonlinear substrate potentialV(f,r ). The Hamiltonian
of this discrete chain@in the notation of Currie, Krumhans
Bishop, and Trullinjer16 ~CKBT!# may be written as

H5(
i

AaH 1

2
ḟ i

21
C0

2

2a2 ~f i 112f i !
21v0

2V~f i ,r !J ,

~2.1!

wheref i is the scalar dimensionless longitudinal displac
ment of the i th particle on a 1D lattice. The constantA
;ma sets the energy scale of the system, andC0 andv0 are
a characteristic velocity and frequency, respectively. H
the overdot denotes time differentiation. The nonline
‘‘one-site potential’’ to which we concentrate our attention
that introduced by Remoissenet and Peyrard~RP!,41

V~f,r !5~12r !2
12cosf

11r 212r cosf
, ~2.2!

whereur u,1. As this parameter varies, the amplitude of t
potential remains constant with degenerate minima 2pn and
maxima (2n11)p, while its shape changes. Atr 50, the RP
potential model reduces to the well-known SG potential.

The system described by the Hamiltonian~2.1! possesses
stable small-amplitude solutions~in the bottom of the poten
tial well f52pn! with the dispersion relation

vg
25v r

21~4C0
2/a2!sin2~ga/2!, v r5

12r

11r
v0 , ~2.3!

wherev r is a frequency of oscillations of an isolated partic
at the bottom of the substrate potential andg the wave vec-
tor. With the help of the expression ofv r and using the
measured values ofv0 , it is more reliable to determine th
parameterr directly from experimental data. An estimate fo
e.g., anH/W adsystem~hydrogen atoms adsorbed on a tun
sten surface! yields r .20.3.48 Apart from the small-
amplitude solutions, in the case of strong coupling betw
adjacent particles (d5C0 /v0@a) the system admits two
families of implicit kink solutions with velocityv given in
term of the moving coordinatess5(12v2/C0

2)21/2(x2vt)
by41,42

s

d~1! 5sgn~f2p!H ~12a2!1/2

a
tan21F ~12a2!1/2

@a21tan2~f/2!#1/2G
1tanh21

a

@a21tan2~f/2!#1/2J , ~2.4a!

with the rest energy

Es
~1!58AC0v0~12a2!21/2tan21@~12a2!1/2/a#,

~2.4b!

for 21,r<0 and
-

e
r

-

n

s

d~2! 5sgn~p2f!

3H ~12a2!1/2 tanh21F ~12a2!1/2

@11a2tan2~f/2!#1/2G
2tanh21

1

@11a2tan2~f/2!#1/2J , ~2.5a!

with the rest energy

Es
~2!58AC0v0a~12a2!21/2tanh21@~12a2!1/2#,

~2.5b!

for 0<r ,1, with

a5
12ur u
11ur u

, d~1!5da, d~2!5d/a, ~2.6!

where d( j ) ( j 51,2) are the ‘‘pseudokink widths.’’ For
r 50, Eqs.~2.4! and~2.5! reduce to the usual SG kink. Whe
r tends to 1,d(2) tends to infinity. On the other hand, whe
r decreases and tends to21, d(1) tends to zero. Thus the
kink extension is not only determined by the characteris
length scaled, but also by the curvature of the minima of th
potential. It is important to note that whenr tends to21,
even if the neighboring particles are sufficiently clos
~strong coupling!, the kink extension could be just a few
lattice spacings and, consequently, the discreteness effec
soliton dynamics42 and thermodynamic properties could n
be neglected.

III. LOW-TEMPERATURE STATISTICAL MECHANICS

The classical canonical partition function for system
governed by the Hamiltonian~2.1! for distribution of the
density of states in phase space is given in the factored f
Z5ZḟZf by making use of the TIO method25 with5

Zḟ5S 2pAa

bh2 D N/2

, Zf5 (
n50

`

exp~2bALv0
2«n!,

~3.1!

where b51/kBT, kB being the Boltzmann constant,h the
Planck constant,T the temperature,N the number of par-
ticles, andL5Na the length of the chain. Here«n is the
eigenvalue of a pseudo-Schro¨dinger equation

2S 1

2m* D d2

df2 cn~f!1Veff~f,r !cn~f!5 «̃ncn~f!,

~3.2!

with

«̃n5«n2V0 , V05~21/r!lnS 2pa2

rd2 D 1/2

, r5Aabv0
2,

m* 5A2b2C0
2v0

2. ~3.3!

The temperature-dependent parameterm* plays the role of
an ‘‘effective mass’’ of a particle moving in the 1D effectiv
potential30



en
te

d

i
in
gy
ce

e.

ta
of
b

r
-
a

e
to

nt
s

nc

-

m-
n

g

nd
he
gi-
the
w.

56 3355STATISTICAL MECHANICS OF A NONLINEAR . . .
Veff~f,r !5V~f,r !2LS dV~f,r !

df D 2

, L5a2/~24d2!.

~3.4!

In the thermodynamic limits ~L→`, N→`, L/N
5const!, Zf is dominated by the lowest eigenvalue«̃0 and
the free energy per unit length,f 52(1/bL)ln Z, becomes

f 5~21/2ba!lnS 2pAa

bh2 D1Av0
2V01Av0

2«̃0 . ~3.5!

It is apparent that, to evaluatef , the main problem we are
faced with consists in the investigation of the lowest eig
value «̃0 of the Schro¨dinger operator. We first concentra
our attention on the continuum limit (L50). In the low-
temperature regime (b!1), there are several ways to fin
the approximate eigenvalue«̃0 , namely, the improved WKB
methods. In the following we use the procedure outlined
Ref. 29 which has the advantage of making a clear dist
tion between various contributions to the free ener
phonons, solitons, soliton-solitons, etc. Following this pro
dure, the calculation of the ground state«̃0 is similar to the
one performed by Croitoruet al.29,44 for the asymptotical
evaluation of the eigenspectrum for the SG potential cas
yields

«̃0
~ j !5 «̃00

~ j !~114n inf!. ~3.6!

The superscripts~1! and ~2! stand for the case21,r<0
and 0<r ,1, respectively. From now we shall use this no
tion. Here«̃00

( j ) is the first term in the asymptotic expansion
the lowest eigenvalue of the isolated potential well given

«̃00
~1!5

1

2aAm*
, «̃00

~2!5
a

2Am*
. ~3.7!

It can be readily obtained by solving Eq.~3.2! with an ap-
proximated form of the potentialV(f,r ) by a second-orde
Taylor expansion aboutf50 ~lowest-order harmonic oscil
lator level!. This approximation is accurated if the temper
ture is sufficiently low.

The quantityn inf is the small parameter related to th
small shifts from the eigenvalue of an isolated well due
the presence of the other degenerate minima of the pote
V(f,r ). The presence of these degenerate minima lead
the tunnel splitting of the lowest level«̃00

( j ) of the isolated
well into continuous bands. The lower extremity (n inf) can
be found using the boundary conditions for the wave fu
tion of Eq. ~3.2! and its derivative. As previously
mentioned,32 the tunneling terms (n inf) are directly related to
the soliton contribution to the free energy. It follows that

2n inf5n, ~3.8!

wheren verifies the equation32

exp@22lI 22n~11 ln 2!1~1/2!~114n!ln~114n!21/2#

5
22Ap

G~2n!

G~n11/2!

G~1/2!
exp~2 ipn!. ~3.9!

The constantI is related to the potentialV(f,r ) through
-

n
c-
:
-

It

-

y

-

ial
to

-

I 5E
t2

p
A2q~t! dt, ~3.10!

wheret2 is the right turning point of the isolated well cen
tered atf50 given by

t2
~1!.S a2«̃

22 «̃~12a2! D
1/2

, t2
~2!.S «̃

2a21 «̃~12a2! D
1/2

.

~3.11!

The integration of Eq.~3.10! yields49

I 52&H ~12a2!21/2 tan21@~12a2!1/2/a#2a~«̃0
~1!2/8!

3F ln~32/«̃0
~1!2!1112

~12a2!1/2

a
tan21@~12a2!1/2/a#J

~3.12a!

for 21,r<0 and

I 52&$a~12a2!21/2tanh21@~12a2!1/2#2~ «̃0
~2!2/8a!

3@ ln~32/«̃0
~2!2!1122~12a2!1/2

3tanh21@~12a2!1/2#% ~3.12b!

for 0<r ,1, where«̃0
(1) and «̃0

(2) are defined in Eq.~3.7!.
To evaluate the various soliton contributions, a syste

atic method of evaluatingn as a serie expansion i

u5e2bEs
( j )

!1 was given by Grecu and Visinescu.32 Up to
second order,n is obtained as

n5un11u2n21••• , ~3.13!

with

n1
~ j !5~16Am* C̃~ j !/p!1/2,

n2
~ j !52n1

~ j !2~ ln~32gAm* C̃~ j !!2 ip/2!, ~3.14!

which follows from the substitution of Eq.~3.13! into Eq.
~3.9!, where

C̃~1!5exp$@2~12a2!1/2/a#tan21@~12a2!1/2/a#%a,
~3.15a!

C̃~2!5exp$22~12a2!1/2 tanh21@~12a2!1/2#%/a,
~3.15b!

and g51.7810 . . . is Euler’s constant. Equation~3.14!
shows thatn2 is imaginary with an imaginary part satisfyin
the relation

Im n2
~ j !5pn1

~ j ! . ~3.16!

For r 50, this relation reduces to that obtained by Grecu a
Visinescu32 when they analyzed the lattice corrections to t
free energy of the SG models. We will show that this ima
nary part may be of importance for understanding of
system’s behavior. A physical interpretation is given belo
In the following, we consider only the real part ofn2 . From
Eqs.~3.6!, ~3.8!, and~3.13!, the lowest eigenvalues«̃0 of the
Schrödinger eigenvalue equation can be as follows:
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«̃0
~ j !5 «̃00

~ j !24~16Am* C̃~ j !/p!1/2«̃00
~ j !e2bEs

~ j !

3@122~16Am* C̃~ j !/p!1/2e2bEs
~ j !

ln~32gAm* C̃~ j !!#.

~3.17!

Since we are presently in possession of the relevant
rameters interfering in the construction of the thermod
namic properties of the model, we shall first estimate
basic thermodynamic function~free energy density!. This en-
ergy can be separated into two parts. The part

f ph
~ j !5~1/ba!lnS b\C0

a D1Av0
2«̃00

~ j ! ~3.18!

is due to the classical harmonic phonons. The second
f tun contains the kink rest energyES

( j ) . It is well known since
the basic works of Krumhansl and Schrieffer5 and CKBT
~Ref. 16! that this term is kink~antikink! contribution to free
energy density. Owing to the fact thatf tun contains the rel-
evant information about manifestations of solitons in therm
dynamic processes, it is rewritten in the more sugges
form35

f tun
~ j !52KBTn0

~ j !~12B~ j !n0
~ j !!. ~3.19!

Also, the total density of kinks and antikinks is given by

n
k2 k̄

tot~ j !
5n0

~ j !~122B~ j !n0
~ j !!, ~3.20!

with

n0
~ j !5

2

d~ j ! S 2

p D 1/2

~8Am* C̃~ j !!1/2e2bEs
~ j !

, ~3.21!

B~ j !5d~ j !ln~32gAm* C̃~ j !!, ~3.22!

whered( j ) are the pseudokink width defined in Eq.~2.6! and
n0

( j ) are the total density of kinks and antikinks within th
ideal gas approximation. The coefficientsB( j ) are the loga-
rithmic temperature dependence, which are attributed to
exponential decay of the interaction potential between s
ton at large distances.35 Equation ~3.20! follows from the
soliton-gas interpretation of the soliton free energy den
according to the treatment of Ref. 35.

As we have evaluated the free energy densityf , all other
thermodynamic quantities can be readily obtained. The s
cific heatcl per unit length is given by

cl
~ j !/KB5$~1/a!1n0

~ j !@~bEs
~ j !21/2!221/2#%2n0

~ j !2d~ j !

3$124bEs
~ j !@12~B~ j !/d~ j !!~bEs

~ j !21!%.

~3.23!

Similarly, the entropys per unit length is given by

s~ j !/KB5H 1

a
@12 ln~b\C0 /a!2a/2d~ j !#

1n0
~ j !~bEs

~ j !11/2!J
1n0

~ j !2d~ j !~122bEs
~ j !B~ j !/d~ j !!. ~3.24!
a-
-
e

art

-
e

e
i-

y

e-

Equations ~3.23! and ~3.24! give the low-temperature
thermodynamic properties of the deformable SG system.
terms proportional ton( j )2 designate the corrections due
soliton-soliton interactions. As one can readily see from
numerical analysis of the above formulas of thermodynam
functions as well as the total kink density, all these quantit
are reduced by the correction terms whatever the value of
deformable parameterr . These correction terms decrea
when the temperature decreases and become negligible
very small temperature~see, for example, Fig. 1 for the spe
cific heat!. Also, the analysis ofc1 as a function ofr shows
that the contribution of the correction term decreases w
r increases and becomes negligible whenr .0 ~Fig. 1!. Con-
sequently, the contribution of soliton-soliton interactions
useful particularly forr ,0.

FIG. 1. Plot of the specific heat per unit length~in arbitrary
units! vs r and for a few normalized temperature (d510a) T*
5KBT/(8Av0C0), a51: ~a! for T* 50.05, ~b! for T* 50.1, and
~c! for T* 50.15. The dotted curves are the results of Eqs.~3.23!,
while the solid lines are the results of the term containing in the fi
bracket only~i.e., without the correction term due to soliton-solito
interactions!.
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FIG. 2. Specific heat as a function ofT*
5KBT/(8Av0C0), for a given r . See the in-
creasing value ofcl with T* .
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The analysis for a given temperature of these thermo
namic quantities as a function ofr shows that their variations
pass into a minimum atr 0 , which depends on the temper
ture. Asr increases from21 to r 0 , these quantities decreas
to a minimum and increase withr from r 0 to 1 ~Fig. 1!. r 0 is
different from a function to other one. Otherwise, the entro
s is an increasing function ofr . This increasing behavior o
the entropy can be understood if we appeal to the fact tha
increase of the deformable parameterr leads to an increas
of the kink width. Consequently, the entropy of the syst
increases. It is also seen, as can be expected, that these
modynamic properties increase with temperature~for ex-
ample, see Fig. 2 for the case of the specific heat!.

Let us look at the lattice corrections to the free ene
density. As pointed out by Trullinger and Sasaki,30 the first
lattice corrections are taken into account if the poten
V(f,r ) is replaced by an effective potentialVeff(f,r) defined
in Eq. ~3.4!. Using the same procedure of the preceding pa
graph, the free energy density is given~available for small
r ! by

f ~ j !5 f ph
~ j !1 f tun

~ j ! , ~3.25a!

where

f ph
~ j !5~1/ba!lnS b\C0

a D1
1

2bd~ j ! @12a2/~24d~ j !2!#,

~3.25b!

f tun
~ j !5

2

d~ j ! S 2

p D 1/2

~8Am* !1/2~12a2/~48d~ j !2!!e2bEsc
~ j !

3H 122S 2

p D 1/2

~8Am* !1/2e2bEsc
~ j !

ln~32gAm* !J ,

~3.25c!

with

Esc
~1!5Es

~1!~12L/3a2!, Esc
~2!5Es

~2!~12La2/3!,
~3.26!

whereL is defined in Eq.~3.4!.
The term f tun designates the contribution of kinks an

antikinks to the free energy, whilef ph is due to classica
harmonic phonons. It is important to note thatf ph is easily
identified with the first terms in the series expansion in po
ers of (a2/d2) of the exact free energy of a phonon gas,
y-

y

an

her-

y

l

-

-

f ph5~1/2pb!E
2p/a

1p/a

dg ln~b\vg! ~3.27!

~with \5h/2p!, wherevg is given by Eq.~2.3!.
The preceding formulas of the free energy density sh

us that the correction terms involving (a2/d2) are propor-
tional to the curvature of the potentialV(f,r ) at its minima.
This result is in agreement with the expectation of Ref. 30
the model under consideration, this curvature is 1/a2 for r
<0 anda2 for r>0. As one can readily see, these correcti
terms are very small for the model withr>0 indeed, even
for a/d as large as unity. However, it appears that the
terms are appreciable whenr approaches21.

The Arrhenius factor appearing inf tun (Esc
( j )) implies that

the rest energy of the soliton is corrected by the factor
2L/3a2) ~for r<0! and (12La2/3) ~for r>0! by the lat-
tice discreteness effects. This energy is therefore lowe
below the continuum zero-order valueEs

( j ) . Such lowering
has also been obtained recently by other authors.27,30–32The
discreteness correction appearing in Eq.~3.26! for the kink
rest energy can be interpreted as a downward renorma
tion of the kink creation energy.30,50

Before concluding this work, we wish to make a fe
comments about the imaginary part of the tunneling con
bution of the ground-state energy (n2). Note that a similar
relation has been obtained by Zinn-Justin51 in model field
theories. Later this result has been extended in conden
matter physics by Grecu and Visinescu,32 and our result rep-
resents a generalization for a nonlinear deformable s
Gordon model. In fact, particular interest51,52has been, some
years ago, devoted to find the large order behavior of per
bation theory in the case of potentials with degener
minima in which a divergent result was found in quantu
mechanics for the ground-state energy. To avoid this inc
sistency where the instanton does not correspond to a p
odic path, Zinn-Justin51 has performed a large-order estima
for the perturbative expansion of the ground-state ene
around an instanton–anti-instanton path configuration le
ing to an imaginary part contribution. For an analytical p
tential possessing degenerate minima, such asf4 field
theory, the kink ~instanton! configuration has topologica
charge11, while the antikink~anti-instanton! has topologi-
cal charge21. Both configurations communicate betwe
the adjacent wells of the potential. However, the kin
antikink configuration~resulting from inelastic scattering o
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3358 56DAVID YEMÉ LÉ AND TIMOLÉON C. KOFANÉ
kinks! corresponds in a configuration from vacuum
vacuum with topological charge~determined from the
boundary conditions at plus and minus infinity! zero.

Beside the above comment, one can add the follow
general observation: The problem we are faced up d
with the soliton-soliton stability which is related to the com
plete integrability of the corresponding wave equation.
such a case, when the solitary waves interact, they are alw
scattered elastically, preserving asymptotically their sha
The integrability also permits an analytical study of the m
tisoliton interactions such as in the sine-Gordon model.
many real physical systems, the basic models are not i
grable such as thef4 model. Many numerical studies of th
collisions of solitary waves in nonintegrable systems ha
been done~see Ref. 53 and references therein!. From the
soliton-gas theory35,50to integrable or nonintegrable system
one can say that the real part of Eq.~3.13! results from the
elastic scattering of solitons. However, solitons lose or g
energy in the form of radiation during their collisions~inelas-
tic scatterings!. The consequence is that the final velocity
the soliton is less than its initial velocity. Also, these inela
tic scatterings can lead to a chaotic behavior of the syste45

Sometimes, creation and annihilation of the solito
antisoliton pairs occurs, and are accompanied by absorpt
and emissions of phonons. Therefore it is possible that
imaginary part ofn2 may be related to the inelastic scatteri
contribution of solitons or to the so-called vacuum sector
solutions with topological charge zero. In this case, follo
ing Langer,54 it is now interpreted in the same way as t
imaginary component of a resonance energy in quant
field theory, namely, as a quantity describing the finite li
time of each state of the periodic potential.
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IV. SUMMARY

This work intended to investigate the low-temperatu
thermodynamic properties of the 1D deformable sin
Gordon model by means of the TIO method. Explicit expre
sions of the specific heat and entropy as well as total k
density have been obtained. For a given temperature,
these functions vary and pass into a minimum whenr in-
creases, except the entropy which increases for increasinr .
Such behavior of the entropy is understandable if we app
to the fact that the increase of the deformable parametr
leads to the increase of the wide spread of disorder in
system.

Owing to the fact that the model is not a completely i
tegrable one and to the importance of the discreteness ef
in many physical applications involving nonlinear solitonlik
excitations, the lattice corrections and soliton-soliton con
butions to the free energy have been calculated. All th
results reduce to that of the SG system in the limitr 50.30,32

The main conclusion which derives from the above resul
that the lattice correction as well as the soliton-soliton co
tributions to the thermodynamic properties at low tempe
ture is more relevant for physical systems with a negat
value of the deformable parameterr and negligible for those
with a positive value ofr . This result is not surprising sinc
the increase of the kink width~increase ofr ! leads to the
decrease of the soliton-soliton interactions and the lattice
creteness effects.

In spite of the interesting results obtained in this pap
much remains to be done. For example, there may exist
terials for which it is not possible to assume the small p
rameterr as we have done when deriving the lattice corre
tions to the free energy.
.
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