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Statistical mechanics of a nonlinear deformable sine-Gordon model
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The low-temperature thermodynamic properties of a deformable sine-Gordon model are studied by means of
the transfer-integral method. Using asymptotic methods from the theory of differential equations depending on
a large parameter, the lowest-order corrections due to the interactions between solitons as well as the first-order
lattice corrections to the free energy are evaluated. They are strongly dependent on the deformable parameter
r. It appears that the entropy of the system is an increasing functionfophysical interpretation of the result
shows that, in the system, disorder increaseas\agies from 0 to 1 and decreases whevaries from 0 to—1.
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. INTRODUCTION knowledge being the recent work by Dikanded Kofané®
on the deformables* systems.
In the last few decades, a great amount of attention has In spite of the fact that the results concerning the SG
been devoted to the low-temperature statistical mechanics #hodel as well as thes* and other rigid models are very
one-dimensional1D) nonlinear models of condensed matter €ncouraging, they remain nevertheless limited in their appli-

systems which support kinklike or solitary wave solutions of¢@Pility to real physical systems, since it is unlikely that

the associated field equation of motion. This attention hagssilsgglbsoe?g]ﬂs;dthgZt;eercigit:;gz é’)\li”tlhg:e”sgtaecrﬂ?/arlsdv(\a/i_th
been motivated by the important role played by the kink "Ndefined shapes. For example, it is established that under

manty lzlrgas |Of con(;jensc_ad mattltlar phy?'CS' d'SI%?at'%ns Variation of some physical parameters such as the tempera-
crystass, - p§7nar omains walls in ferromagnetsin ture and pressure, some physical systems may undergo
fe_rroglectr]csr’, propagating flgx quanta in Josephson trans'changes which are either shape distortions, variations of
mission Ol'ﬂeﬁ nonlinear  spin \{vave%, Incommensurateé  orystalline structures, or conformational changes. Also, in
systems;” a1r13d bond-alternation domain walls in the hydrogen-bonded system, the large displacement of the
polyacetylen&* to name only a few. It has been shown, heavy ions can significantly modify the barrier height of the
through the transfer integral operat@O) method or ideal-  gouble-well potential associated with the light prof8nit
gas phenomenology, that the low-temperature thermodynamppears then relevant to look for a wider class of potentials
ics of the systems are sensitive to and even dominated hyseful to describe nonlinear excitations in real materials and
solitons>14~1® Their presence in the system is signaled bymodel field theories. Thus a few deformable models have
the termEg in the Arrhenius factor in the low-temperature appeared in the literature such as parametrized double-well
free energy, wher&; is the static soliton energy. This pic- potentials’®~*° Also, deformable SG models have been
ture has proved to work quite well in the continuum limit proposed’~** The dynamic and thermodynamic properties
(strong coupling between adjacent partigladere the soli- as well as the chaotic behaviér*® of some of these deform-
ton width has to be large enough to avoid the discretenesable nonlinear systems have been studied. _
effects of the lattice. In this paper, we investigated the low-temperature classi-
In some materials, the soliton width is just a few lattice €@ mechanics of a 1D atomic chain with a deformable peri-

spacings and the discreteness effects cannot be neglécted?dic potential whose shape can be varied continuously as a

Their influence on the properties of nonlinear systems suplUnction of the parameter and which has the SG shape as a

porting kinklike solutions was investigated by Se\/er(a'partlcular casé! The lowest-order discreteness effects as

authorsi8-28Those studies have carried out a large variety 0fwell as the soliton-soliton interactions will be taken into ac-
effects, namely, the modification of kink velocity and en- count in our study. The paper is organized as follows: In

ergy, and the pinning of the kink center of mass betwee Ie_c. (Ijl’ W? %rlffl¥hpr?serlt the deIormaIbIe I_att:ce, Wl?'le. Sec%
lattice sites. Recently, the influence of the lattice discretene IS devoted to the low-temperature classical mechanics o

on the thermodynamic properties has received a little"'e model. In this section, the Schiinger-like equation re-

attention?®2%-32Trullinger and Sasafi have examined the sulting from the TIO method is solved in the limit of low

entirely separate question of the effects of discreteness on yigmperatures by means of the procedure outlined in Ref. 29

results of the TIO method. They obtained the Iowest-ordePa?eld on tr;_e aS):jmptotié:_ metho?s from the g;;;)rytof differ-
discreteness corrections to the pseudo-Stihger equation ential equations depending on largé parameteyext, we

approximation to the transfer integral equation for the entireevaluated the thermodynamic functions, and in Sec. IV, we

class of kink-bearing Hamiltonians. Also, the effect of summarize our results.
soliton-soliton interactions on statistical mechanics has been
considered only recently 3> and its study as well as that of

the discreteness effects has still been restricted to the sine- The system we wish to consider is a chain of particles of
Gordon (SO and ¢* systems, the only exception to our massm harmonically coupled, separated from each other in

Il. MODEL DESCRIPTION
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the x direction with lattice spacin@ and placed in the field
of a nonlinear substrate potent(¢,r). The Hamiltonian

of this discrete chaifin the notation of Currie, Krumhansl,
Bishop, and Trullinjet® (CKBT)] may be written as

A 1.2+c§
a7 ¢t 52

H=2

(his1— P1)°+ V(¢ ,r)},
(2.1
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where ¢; is the scalar dimensionless longitudinal displace-

ment of theith particle on a 1D lattice. The constaAt
~masets the energy scale of the system, @gcand w are

a characteristic velocity and frequency, respectively. Her

the overdot denotes time differentiation. The nonlinear

“one-site potential” to which we concentrate our attention is

that introduced by Remoissenet and Peyr@e),*

1-cosp

_ _r\2
Vig.r)=(1-r) 1+r%+2r cosp’

2.2

56
S
W=ng{ﬂ—¢)
(1_a2)l/2
_ 2\1/2 =1
X e N e 4272
—tanh ! ! 2.5
N T a1 2.53
with the rest energy
E?=8ACywoa(1— a?) Yaanh [ (1-a?)*?],
(2.5b
Qor 0<r<1, with
1—|r
a= 1+:r:, dY=da, d@=d/a, (2.6

where d1) (j=1,2) are the “pseudokink widths.” For

r=0, Egs.(2.4) and(2.5) reduce to the usual SG kink. When
r tends to 1d® tends to infinity. On the other hand, when
r decreases and tends tol, d*) tends to zero. Thus the

where|r|<1. As this parameter varies, the amplitude of they;\ extension is not only determined by the characteristic

potential remains constant with degenerate mininra 2nd
maxima (2 + 1), while its shape changes. At=0, the RP
potential model reduces to the well-known SG potential.

The system described by the Hamiltoni@nl) possesses
stable small-amplitude solutioris the bottom of the poten-
tial well ¢=2n) with the dispersion relation

w§=w;+(4Cf/a?)sirt(gal2), O =T

wq, (2.3

length scalal, but also by the curvature of the minima of the
potential. It is important to note that whentends to—1,

even if the neighboring particles are sufficiently closed
(strong coupling the kink extension could be just a few
lattice spacings and, consequently, the discreteness effects on
soliton dynamic¥ and thermodynamic properties could not
be neglected.

Ill. LOW-TEMPERATURE STATISTICAL MECHANICS

The classical canonical partition function for systems

wherew, is a frequency of oscillations of an isolated particle governed by the Hamiltoniaf2.1) for distribution of the

at the bottom of the substrate potential anthe wave vec-
tor. With the help of the expression @, and using the
measured values ab, it is more reliable to determine the

parameter directly from experimental data. An estimate for,
e.g., anH/W adsysten{hydrogen atoms adsorbed on a tung-

sten surface yields r=—0.3*8 Apart from the small-

amplitude solutions, in the case of strong coupling between

adjacent particlesd=Cy/wy>a) the system admits two
families of implicit kink solutions with velocity given in
term of the moving coordinates=(1—v?%/C2) ~Y4(x—ut)

b}/11,42

s
@:ngﬁ—ﬂ)

1_a2 1/2
|( ) tan !

( 1— aZ) 1/2
[a2+tar?(¢/2)]1’2}

+tanh™!

[a?+tarf( ¢/2)]1’2] ! (243

with the rest energy

E(V=8ACowo(1—a?) YAan Y (1-a?) ¥ a],
(2.4b

for —1<r<0 and

density of states in phase space is given in the factored form
Z=Z 7, by making use of the TIO meth&tiwith®

N/2 *
, z¢=20 exp(— BALwien),

n=

- [2mAa

(3.9

where B=1/kgT, kg being the Boltzmann constart, the
Planck constant] the temperatureN the number of par-
ticles, andL=Na the length of the chain. Here, is the
eigenvalue of a pseudo-Schlinger equation

d? ~
W Un( @)+ Ve ,1) hn(P)=€nthn(P),
(3.2

2m*)

with
2

pd?

1/2
en=¢,— Vo, V0=(—1/p)|n( ) , pZAa,BwS,

m* =A2B2C2w3. (3.3
The temperature-dependent parametér plays the role of
an “effective mass” of a particle moving in the 1D effective
potentiaf®
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V(g,r)\? g
Vei( ¢,1)=V(,r)— A( a6 | A=a?/(24d?). |=f V—q(7) dr, (3.10
2
3.4
39 where 75 is the right turning point of the isolated well cen-
In the thermodynamic limits(L—o%, N—w, L/N  tered at¢=0 given by
=cons}, Z, is dominated by the lowest eigenvaleg and

g 1/2 = 1/2
the free energy per unit length=—(1/8L)In Z, becomes (1) ae (2)_ €
272751 =a®)) 0 2 Tl 2a%75(1-a?)
(3.11)

2mAa ) o~
f=(—-1/2Ba)In| — 7| + AwgVotAwieg. (3.5

Bh
It is apparent that, to evaluafe the main problem we are

faced with consists in the investigation of the lowest eigen- |—2f[(1 a®) P tan [ (1- a®) Y a] - a(zV%8)
values, of the Schrdinger operator. We first concentrate

our attention on the continuum limitA(=0). In the low-
temperature regimeB<1), there are several ways to find
the approximate eigenvalg, namely, the improved WKB
methods. In the following we use the procedure outlined in (3.123
Ref. 29 which has the advantage of making a clear distinc-
tion between various contributions to the free energyf —1<r<0Oand
phonons, solitons, soliton-solitons, etc. Following this proce-
dure, the calculation of the ground stafgis similar to the

The integration of Eq(3.10 yields*

1_a,2 1/2
X |n(32/5§)1>2)+1+2( )

tan [ (1— a2)1/2/a]]

=2v2{a(1-a®)  YAanh [ (1- o?) Y] - (5})%/8a)

one performed by Croitoriet al2*4 for the asymptotical X[IN(32B22) + 1-2(1— a?) 2

evaluation of the eigenspectrum for the SG potential case. It

yields X tanh [ (1— a?)Y?]} (3.12b
FO =W (L+ by 3.6 foro=r<i, wherez{") andz(? are defined in Eq(3.7).

To evaluate the various sollton contributions, a system-
The superscript$l) and (2) stand for the case-1<r<0  atic method of evaluatingr as a serie expansion in
and O<r <1, respectively. From now we shall use this nota- y_¢ - e <1 was given by Grecu and VisinesfUp to
tion. Heres(” is the first term in the asymptotic expansion of second ordery is obtained as
the lowest elgenvalue of the isolated potential well given by
v=0v,+ 0?v+ -+, (3.13

~n__ 1 z@__¢ 3.7  Wwith

£00 2am*’ “o0 = 2\/m*'

It can be readily obtained by solving E(.2) with an ap-

v =(16ym* CV/ )12

proximated form of the potentiaf(¢,r) by a second-order () —n ()2 )y i

Taylor expansion aboup=0 (lowest-order harmonic oscil- vz =2vi(In(32yym CH) —iml2), (314
lator leve). This approximation is accurated if the tempera-\hich follows from the substitution of E¢3.13 into Eq.
ture is sufficiently low. (3.9, where

The quantity vy is the small parameter related to the _
small shifts from the eigenvalue of an isolated well due to C(l):exp[[Z(l—a2)1’2/a]tan‘1[(1—az)l’zla]}a,

the presence of the other degenerate minima of the potential (3.153
V(¢,r). The presence of these degenerate minima leads to

the tunnel splitting of the lowest levall) of the isolated CP@=exp{—2(1—a?)Y? tanh [ (1— a?)?)}/ a,

well into continuous bands. The lower extremity;{) can (3.15h

be found using the boundary conditions for the wave func-
tion of Eg. (3.2 and its derivative. As previously
mentioned? the tunneling termsi) are directly related to
the soliton contribution to the free energy. It follows that

and y=1.7810... is Euler's constant. Equatior{3.14
shows thatv, is imaginary with an imaginary part satisfying
the relation
() = ()
R 3.8 Im vy’=mvi’. (3.19
Forr =0, this relation reduces to that obtained by Grecu and
Visinesct? when they analyzed the lattice corrections to the
ext — 2\ —20(1+1n 2)+ (1/2)(1+4v)In(1+4v) — 1/2] free energy of the SG models. We will show that this imagi-
nary part may be of importance for understanding of the
—2Jr I'(v+1/2) ] system’s behavior. A physical interpretation is given below.
== exp—imv). (3.9 In the following, we consider only the real part of. From
I'(=v) TI'(1/2 : o
Egs.(3.6), (3.8), and(3.13, the lowest eigenvalues, of the
The constant is related to the potentidf(¢,r) through Schralinger eigenvalue equation can be as follows:

where v verifies the equatiofd




~(i ; i ()
20— 4(16\m* C/ ) V25 (e~ AES

X [1—2(16Jm* C0/ ) Y2e~ B In(32yJm* C 1)) 1.
(3.17)

Since we are presently in possession of the relevant pe
rameters interfering in the construction of the thermody-
namic properties of the model, we shall first estimate the
basic thermodynamic functiaifree energy densijy This en-
ergy can be separated into two parts. The part

BhCy
a

fh=(1/8a)ln +Aw3eY)

(3.18

is due to the classical harmonic phonons. The second pa

f un cONtains the kink rest enerdst) . It is well known since
the basic works of Krumhansl and Schrieffemd CKBT
(Ref. 16 that this term is kinkantikink) contribution to free
energy density. Owing to the fact th&t,, contains the rel-

evant information about manifestations of solitons in thermo-
dynamic processes, it is rewritten in the more suggestive

form®®

fll=—KgTni(1—BWnY)). (3.19

Also, the total density of kinks and antikinks is given by

tot(j);_

N, =ny(1-2B0ny)),

(3.20
with

2

1/2 )
q0 _> (8Ym*C) 2% A (3,21

ni—_2
0 T

BW=dWIn(32yJm*Ch), (3.22

whered are the pseudokink width defined in E§.6) and
ny’ are the total density of kinks and antikinks within the
ideal gas approximation. The coefficie®S§’ are the loga-

g 077
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rithmic temperature dependence, which are attributed to the g 1. piot of the specific heat per unit lengtin arbitrary
exponential decay of the interaction potential between soliynitg vs r and for a few normalized temperature=10a) T*

ton at large distanceS. Equation (3.20 follows from the

=KgT/(8AwoCyp), a=1: (a) for T*=0.05, (b) for T*=0.1, and

soliton-gas interpretation of the soliton free energy densityc) for T* =0.15. The dotted curves are the results of E§23,

according to the treatment of Ref. 35.
As we have evaluated the free energy dengjtgll other

while the solid lines are the results of the term containing in the first
bracket only(i.e., without the correction term due to soliton-soliton

thermodynamic quantities can be readily obtained. The spénteractions.

cific heatc, per unit length is given by
cVIKg={(1/a)+nY [ (BEY - 1/2)2—1/2]} —n{'2dD)
x{1-4BEV[1-(BV/dV)(BEY - 1)}.

(3.23
Similarly, the entropys per unit length is given by
. 1 .
sW/Kg= 5[1—|n(ﬁﬁc0/a)—a/zo|<1>]
+nY(BEY +1/2)
+ny2dV(1-28EWBIIdD).  (3.29

Equations (3.23 and (3.249 give the low-temperature
thermodynamic properties of the deformable SG system. The
terms proportional to()? designate the corrections due to
soliton-soliton interactions. As one can readily see from the
numerical analysis of the above formulas of thermodynamic
functions as well as the total kink density, all these quantities
are reduced by the correction terms whatever the value of the
deformable parameter. These correction terms decrease
when the temperature decreases and become negligible for
very small temperaturésee, for example, Fig. 1 for the spe-
cific hea}. Also, the analysis o€; as a function of shows
that the contribution of the correction term decreases when
r increases and becomes negligible wherD (Fig. 1). Con-
sequently, the contribution of soliton-soliton interactions is
useful particularly for <0.
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The analysis for a given temperature of these thermody-
namic quantities as a function pfshows that their variations
pass into a minimum at,, which depends on the tempera-
ture. Asr increases from-1 tor, these quantities decrease

to a minimum and increase withfromrg to 1 (Fig. 1). rg is

+mla

fon=(L/27B) dg In(Bhwg)

—mla

(3.27

(with i=h/27), wherew, is given by Eq.(2.3.
The preceding formulas of the free energy density show

different from a function to other one. Otherwise, the entropy,,s that the correction terms involving?/d?) are propor-

s is an increasing function af. This increasing behavior of tional to the curvature of the potenti(¢,r) at its minima.
the entropy can be understood if we appeal to the fact that afhjs result is in agreement with the expectation of Ref. 30. In
increase of the deformable parameteeads to an increase he model under consideration. this curvature is21for r

of the kink width. Consequently, the entropy of the system— anq42 for r=0. As one can readily see, these correction
increases. It is also seen, as can be expected, that these theliss are very small for the model witt=0 indeed, even

modynamic properties increase with temperat(fi@ ex-
ample, see Fig. 2 for the case of the specific heat

Let us look at the lattice corrections to the free energ

density. As pointed out by Trullinger and Sas#kthe first

for a/d as large as unity. However, it appears that these
terms are appreciable whemapproaches- 1.

Y The Arrhenius factor appearing i, (E{)) implies that

the rest energy of the soliton is corrected by the factor (1

lattice corrections are taken into account if the potentlaI_A/3a2) (for r=<0) and (1- A a?3) (for r=0) by the lat-

V(¢,r) is replaced by an effective potentd}q(,r) defined

in Eq. (3.4). Using the same procedure of the preceding par

graph, the free energy density is givéavailable for small
r) by

f=f0+ i), (3.253
where
. BHC .
f0=(1/8a)In| —— +W[l—a2/(24d(”2)],
(3.25h
2 [2\12 - )
fin=gm ;) (8\Jm*)M3(1—a%/(48d1)2))e” PEse
2|12 (i)
X11-2| — (8Ym*)Y%e™ FEscIn(32ym*) {,
(3.259
with

EQ=EM(1-A3a%), EQ=EZ(1-Aa’M3),
(3.26

whereA is defined in Eq(3.4).

a_

tice discreteness effects. This energy is therefore lowered
below the continuum zero-order vali& . Such lowering
has also been obtained recently by other autho?$:32The
discreteness correction appearing in E2j26 for the kink
rest energy can be interpreted as a downward renormaliza-
tion of the kink creation energi:>°

Before concluding this work, we wish to make a few
comments about the imaginary part of the tunneling contri-
bution of the ground-state energy,). Note that a similar
relation has been obtained by Zinn-Justim model field
theories. Later this result has been extended in condensed
matter physics by Grecu and Visinestand our result rep-
resents a generalization for a nonlinear deformable sine-
Gordon model. In fact, particular interest?has been, some
years ago, devoted to find the large order behavior of pertur-
bation theory in the case of potentials with degenerate
minima in which a divergent result was found in quantum
mechanics for the ground-state energy. To avoid this incon-
sistency where the instanton does not correspond to a peri-
odic path, Zinn-Justitt has performed a large-order estimate
for the perturbative expansion of the ground-state energy
around an instanton—anti-instanton path configuration lead-
ing to an imaginary part contribution. For an analytical po-
tential possessing degenerate minima, such ¢dsfield

The termf,,, designates the contribution of kinks and theory, the kink(instanton configuration has topological

antikinks to the free energy, whiléy, is due to classical

harmonic phonons. It is important to note tHg}, is easily

charge+ 1, while the antikink(anti-instanton has topologi-
cal charge—1. Both configurations communicate between

identified with the first terms in the series expansion in pow-the adjacent wells of the potential. However, the kink-

ers of @%/d?) of the exact free energy of a phonon gas,

antikink configuration(resulting from inelastic scattering of
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kinks) corresponds in a configuration from vacuum to IV. SUMMARY

vacuum with topological chargddetermined from the This work intended to investigate the low-temperature

bound:_;try conditions at plus and minus infiigero. . thermodynamic properties of the 1D deformable sine-
Beside the abpve comment, one can add the fOIIOWIr‘%ordon model by means of the TIO method. Explicit expres-
general observation: The problem we are faced up dedljons of the specific heat and entropy as well as total kink
with the sohtor_ysohton stability Wh|ch_|s related to the_ COM- density have been obtained. For a given temperature, all
plete integrability of the corresponding wave equation. Inthese functions vary and pass into a minimum winein-
scattered elastically, preserving asymptotically their shapesych behavior of the entropy is understandable if we appeal
The integrability also permits an analytical study of the mul-to the fact that the increase of the deformable paranreter
tisoliton interactions such as in the sine-Gordon model. Ineads to the increase of the wide spread of disorder in the
many real physical systems, the basic models are not intesystem.
grable such as thé* model. Many numerical studies of the ~ Owing to the fact that the model is not a completely in-
collisions of solitary waves in nonintegrable systems havdegrable one and to the importance of the discreteness effects
been donegsee Ref. 53 and references thejeifrom the in many physical applications involving nonlinear solitonlike
soliton-gas theory*°to integrable or nonintegrable systems, excitations, the lattice corrections and soliton-soliton contri-
one can say that the real part of E§.13 results from the butions to the free energy have been calculated. All these
elastic scattering of solitons. However, solitons lose or gairresults reduce to that of the SG system in the limit0.30-32
energy in the form of radiation during their collisiofiselas-  The main conclusion which derives from the above result is
tic scatterings The consequence is that the final velocity of that the lattice correction as well as the soliton-soliton con-
the soliton is less than its initial velocity. Also, these inelas-tributions to the thermodynamic properties at low tempera-
tic scatterings can lead to a chaotic behavior of the sytem.ture is more relevant for physical systems with a negative
Sometimes, creation and annihilation of the soliton-value of the deformable parameteand negligible for those
antisoliton pairs occurs, and are accompanied by absorptiongith a positive value of . This result is not surprising since
and emissions of phonons. Therefore it is possible that théhe increase of the kink widtlincrease ofr) leads to the
imaginary part ofv, may be related to the inelastic scattering decrease of the soliton-soliton interactions and the lattice dis-
contribution of solitons or to the so-called vacuum sector ofcreteness effects.
solutions with topological charge zero. In this case, follow- In spite of the interesting results obtained in this paper,
ing Langer;® it is now interpreted in the same way as the much remains to be done. For example, there may exist ma-
imaginary component of a resonance energy in quantumterials for which it is not possible to assume the small pa-
field theory, namely, as a quantity describing the finite life-rameterr as we have done when deriving the lattice correc-

time of each state of the periodic potential.

tions to the free energy.
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