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One-dimensional Kondo lattice model as a Tomonaga-Luttinger liquid

Naokazu Shibata
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

Alexei Tsvelik
Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

Kazuo Ueda
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

~Received 3 February 1997!

Arguments are presented that in the one-dimensional Kondo lattice modelf -electron spins participate in
filling of the Fermi sea. It is shown that in its paramagnetic phase this model belongs to the spin-1/2
Tomonaga-Luttinger liquid universality class. The ratio of the spin and charge velocitiesvs /vr andKr are
estimated to be of the order of (TK /eF)
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I. INTRODUCTION

One can use a one-dimensional Kondo lattice~KL ! model
as a toy model to study the long-standing problem
whether localized electrons determine the volume of
Fermi surface. Recent numerical results show that in
paramagnetic metallic phase, the KL model belongs to a
versality class of spin-1/2 Tomonaga-Luttinger~TL!
liquid.1–3 In particular it has been shown that the Fried
oscillations are characterized by the large Fermi vector.1 So
it seems that thef electrons do participate in the Fermi su
face formation. On the other hand, the conclusions of
bosonization studies are controversial. In the area of
paramagnetic metallic phase the TL liquid4 with a large
Fermi surface is obtained by Fujimoto and Kawakami5 while
the Luther-Emery liquid with a spin gap is also predicted
White and Affleck.6 Recent analytical work based on th
Lieb-Schultz-Mattis construction shows that there exist
gapless excitation away from half-filling.7 Though its char-
acter is not yet clear, it seems to be consistent with the
liquid with a large Fermi surface.

In this paper we undertake a further study of the TL ph
of the KL model. Let the reader recall that the spin-1/2 T
liquid critical point is characterized by two parameters: t
ratio of spin to charge density wave velocitiesvs /vr and the
numberKr which parametrizes scaling dimensions in t
charge sector@the similar parameter in the spin sector is fix
by the SU~2! symmetry,Ks51#. The dynamical spin and
charge susceptibilities at low (v,q) are given by

xs~vn ,q!5
2

p

q2

q2vs1vn
2/vs

, ~1!

xr~vn ,q!5
2Kr

p

q2

q2vr1vn
2/vr

. ~2!

Thus, if we shall manage to find these two parameters,
characterization of the low-energy sector of the KL mode
complete.
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II. LUTTINGER LIQUID PARAMETERS OBTAINED
BY THE 1/N EXPANSION

The Hamiltonian of the one-dimensional KL model is

H52t(
is

~ais
† ai11s1H.c.!1J(

im
Si

msi
m , ~3!

where ais
† (ais) is the creation ~annihilation! operator

of a conduction electron at thei th site, and
si

m5~1/2!(ss8ais
† tss8

m ais8, with tss8
m (m5x,y,z) being the

Pauli matrices, are the spin density operators of the cond
tion electrons. The spin densities are coupled to the locali
spins Si

m through an antiferromagnetic exchange coupli
J.

In order to obtain analytical results we shall extend t
symmetry of the KL model to the SU(N) and resort to the
1/N expansion~see Refs. 8 and 9!. The corresponding La-
grangian density is

L5aj* @]t1 ê~x!#aj1 f j* ]t f j1 il~ f j* f j2qN!

2
J

N
~aj* f j !~ f k* ak!. ~4!

Here the dynamical fieldl(t,x) is introduced to enforce
the local constraint of the fermion occupation number. T
numberq remains finite whenN→`.

Next we decouple the interaction by the Hubbar
Stratonovich transformation:

2
J

N
~aj* f j !~ f k* ak!→N

V*V
J

1V~aj* f j !1V* ~ f j* aj !.

~5!

The resulting partition function is gauge invariant:
330 © 1997 The American Physical Society
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56 331ONE-DIMENSIONAL KONDO LATTICE MODEL AS A . . .
f j~t,x!→ f j~t,x!eif~t,x!,

V~t,x!→V~t,x!e2 if~t,x!,

l~t,x!→l~t,x!2]tf~t,x!. ~6!

It is convenient to choose the gauge where the fieldV is real.
We choose the following parametrizations:

V~t,x!5V0A11@r ~t,x!/V0AN#, ~7!

il5TK1 iu/AN, ~8!

where V0 is the saddle point value ofV which we shall
determine later andr is a new field chosen in such a way th
its measure of integration is trivial.

We shall expand the partition function around its sad
point:

V5V0 , il5TK . ~9!

Expanding to the second order inr we get

L5L01Lint ,

L05aj* @]t1 ê~x!#aj1 f j* ~]t1TK! f j1V0~aj* f j1c.c.!,
~10!

Lint5
r 2

4J
1

r

2AN
~ :aj* f j1c.c.:!1

iu

AN
: f j* f j , ~11!

where the dots mean that the average is substruc
:A:[A2^A&, and ther 2 term comes from the expansion o
the square root in the expression forV, Eq. ~7!. The saddle
point parametersV0 andTK are determined self-consistent
by the vanishing of the terms linear inr andu:

1

N(
j51

N

^ f j
†~n! f j~n!&5q, ~12!

1

N(
j51

N

@^aj
†~n! f j~n!&1^ f j

†~n!aj~n!&#52
2V0

J
. ~13!

In the leading order in 1/N the spectrum is determined b
the saddle point. This gives us a great advantage becaus
saddle point describes the large Fermi surface. The sin
electron spectrum has the following well-familiar form:

E6~p!5@e~p!1TK#/26A@e~p!2TK#2/41V0
2. ~14!

Substituting the saddle point Green’s functions into Eqs.~12!
and ~13! we get

q5r~0!V0
2/TK , TK5Dexp@21/r~0!J#, ~15!

wherer(0) is the bare density of states per one channel,
D is the bandwidth. The expression for the new Fermi vec
is

kF5kF
~0!1pq. ~16!

It follows from this equation that the charge susceptibil
remains unaffected by the presence of the spins.
e

d,

the
le-

d
r

Only the modeE2(p) crosses the chemical potentia
Near the Fermi points the spectrum can be linearized:

E2~p!'6v* ~p7pF!, v*5vFr~0!TKq. ~17!

Now one can calculate the spin and charge density
sponse functions~2! directly. The calculation of the spin-spi
correlation function is straightforward: In the leading ord
in 1/N the only contribution comes from the polarizatio
loop of two Gf5^^ f f1&& functions. The result reproduce
Eq. ~1! with vs5v* .

The calculation of the charge response function is m
complicated. We chose the following approach: First
shall integrate out the high-energy degrees of freedom in
partition function and obtain the effective action for the low
energy sector; then we shall bosonize this action and ob
the parameters of the TL liquid. To do the integration it
convenient to diagonilize the saddle point Hamiltonian a
to express the fermionic operators in terms of the new an
hilation operatorsA6, j (k) corresponding to excitations with
the dispersionE6(k) ~since the transformation is diagonal
the flavor indices, we shall omit them!:

a~k!5AakA1~k!1AbkA2~k!,

f ~k!52AbkA1~k!1AakA2~k!, ~18!

where

ak1bk51, bk5
1

2H 12
@e~k!2TK#

A@e~k!2TK#214V0
2J . ~19!

Substituting these expressions into Eq.~11! and omitting the
terms containing onlyA1 we get

E dxLint5L11L2 , ~20!

L15(
q

r ~2q!r ~q!

4J
1

1

2AN(
k,q

@r ~q!~Aak1qak2Abk1qbk!

22iu~q!Abk1qak#@A1, j* ~k1q!A2, j~k!1c. c.#, ~21!

L25
1

AN(
k,q

@A2, j* ~k1q!A2, j~k!#@AaFbFr ~q!1 iaFu~q!#,

~22!

whereaF andbF are taken at the Fermi surface:aF'1 and
bF;TK /D.

Integrating overA1 we get in the leading order in 1/N the
following action for the fieldsr andu:

Seff5
1

2(v,q P~v,q!@4r ~2v,2q!r ~v,q!

1u~2v,2q!u~v,q!#. ~23!

To get the effective action for the low-lying excitation
we need to know the functionP(v,q) for the area around
q50 and forq52kF . The result isP(0,0)5r(0).

We bosonize the fermionic operators,
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(
k, j

A2, j* ~k1q!A2, j~k!5 iAN/pqFr~q! ~ uqu!kF!,

~24!

whereFr is the charge field, and integrate overu and r .
SincebF is so small, the largest contribution to the effecti
action comes from the fluctuations of theu field. The
bosonized version of the effective action in the charge se
is given by

Seff5E dt dxF 1

2v*
~]tFr!21

1

2pr~0!
~]xFr!2G . ~25!

From this action one can derive the canonical express
for the charge susceptibility andKr . At least in the leading
order in 1/N the result does not depend onN:

vr5Av* /pr~0! ~26!

and

Kr5Apr~0!v* . ~27!

III. DENSITY MATRIX RENORMALIZATION
GROUP STUDY

In order to check the validity of the large-N results for the
N52 case we numerically estimate the TL liquid para
eters, making use of the density matrix renormalizat
group~DMRG!.10 This method is the most suitable for stud

FIG. 1. ~a! Size dependence of the difference of the chemi
potentials,m12m2 , in the one-dimensional Kondo lattice mode
2m1(L)5Eg(nc5nc

012/L,L)2Eg(nc5nc
0 ,L). 2m2(L)5Eg(nc

5nc
0 ,L)2Eg(nc5nc

022/L,L). Eg(nc ,L) is the ground-state en
ergy at the carrier densitync in the system of lengthL. nc

052/3. ~b!
Size dependence of the spin gapDs(L)5Eg(Sz

tot51,L)
2Eg(Sz

tot50,L). Eg(Sz
tot ,L) is the lowest energy in the Hilber

space of total spinSz
tot . nc52/3. The energy unit ist. Typical trun-

cation errors in the DMRG calculations are 1024.
or

n

-
n

ing long-range and low-energy properties since it allows o
to study long chains, iteratively enlarging the system si
and to obtain the ground-state wave function with only sm
systematic errors, which can be estimated from the eigen
ues of the density matrix. The obtained results are consis
with the above arguments and indicateKr!1/2 in the weak-
coupling limit ~J→0!.

Now we shall describe results of the numerical analysis
the model~3!. The paramagnetic metallic state of this mod
which is expected to be a TL liquid, is realized only in th
region of rather weak exchange coupling away from b
half-filling (nc51) and the low carrier density limi
(nc→0). The ground state is always insulating at half-fillin
and ferromagnetic both in the strong-coupling limit (J→`)
for general carrier densities (ncÞ1) and in the low-carrier-
density limit.11

We first calculate spin excitation gapDs and difference of
chemical potentialsm12m2 as a function of the system siz
L. As expected, bothDs andm12m2 @Figs. 1~a! and 1~b!
for the case ofnc52/3 andJ51.8t,2.0t# vanish in the bulk
limit ( L→`), which confirms that the paramagnetic phase
the KL model is a TL liquid.

The finite-size corrections ofm12m2 andDs in Fig. 1
are related to the charge susceptibility and the spin veloc
respectively. Since we have used open boundary conditi
Ds(L)5vsDk(L)5vsp/L and m1(L)2m2(L)5Dnc(L)/
xr52/(xrL). The obtained values are shown in Table
Once we have obtainedvs , then we can calculatexs

through the relationKs5pvsxs/2; see Eq.~1!. Because the
SU~2! symmetry in the spin space guaranteesKs51, a
rather largexs is obtained as is shown in Table I. This larg
xs is naturally expected because there is a macroscopic n
ber of almost free spins in both weak- and strong-coupl
regions. Thef spins are almost but not exactly independe
with each other: In the weak-coupling region,L almost-free
f spins, and in the strong-coupling region,L(12nc) f spins
unpaired with conduction electrons.

l

FIG. 2. ~a! Charge density Friedel oscillations induced by t
open boundary conditions. The system size is 70 sites.~b! Spin
density Friedel oscillations induced by applying local magne
fields at the both ends. The strength of the local magnetic field
0.2t. Typical truncation errors in the DMRG calculations a
131026 for J52.5t.
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Now we discuss the charge susceptibility. In the stro
coupling limit it tends to the value for the free spinless fe
mions: xr

215ptsin(p2pnc). On the other hand, in the
weak-coupling limit we expect aJ-independent charge sus
ceptibility as is predicted by the Gutzwiller-type variation
calculations:12 xr

215ptsin(pnc/2). The densitync52/3 is
rather special in the sense that the values expected fo
strong-coupling limit and weak-coupling limits are the sam
Thus we expect thatxr depends only weakly onJ. In gen-
eral, in the weak-coupling limit we have an asymptotic fo
of the charge velocity which is proportional toKr as

vr52Krtsin~pnc/2! ~28!

from the relationKr5pvrxr/2, Eq. ~2!. However, we have
to be careful close to half-filling where the charge susce
bility tends to diverge owing to the charge gap at half-fillin

The estimation of the correlation exponent is one of
most difficult calculations even by the DMRG method.
order to estimateKr we need to see the long-range behavi
of the system with sufficient accuracy. In the present stu
we use asymptotic form of the Friedel oscillations beca
they are numerically more reliable than long-range o
diagonal correlations.

The Friedel oscillations are density oscillations induc
by a local perturbation. In a TL liquid, power law anomali
in correlation functions naturally reflect themselves in t
Friedel oscillations; the Friedel oscillations induced by
impurity potential are

dr~x!;C1cos~2kFx!x~212Kr!/21C2cos~4kFx!x22Kr,
~29!

as a function of the distancex from the impurity,13–15 and
analogously, spin density oscillations induced by a lo
magnetic field behave as

s~x!;D1cos~2kFx!x2Kr. ~30!

Thus, we can determineKr from the asymptotic form of the
oscillations.

Figure 2 shows induced charge and spin density Frie
oscillations of the KL model obtained by the DMRG fo
J52.5t at nc56/7. The Fourier components of spin dens
Friedel oscillations forJ51.8t,2.5t,2.5t at nc52/3,4/5,6/7,
respectively, are also shown in Fig. 3. The charge den
Friedel oscillations are induced naturally by the open bou
ary conditions of the system and the spin density oscillati
are introduced by applying local magnetic fields at the b
ends. As is already shown fornc54/5 in the previous work,1

the period of the oscillations is explained by the assump

TABLE I. Luttinger liquid parameters of the one-dimension
Kondo lattice model. The carrier densitync is 2/3. The energy unit
is t. The errors are estimated from the ambiguity of the power
decay of the charge density Friedel oscillations.

Kr vs xs vr xr

J50 1 - - 1.73 0.37
J51.5t 0.196 0.03 0.306 0.06 0.42
J51.8t 0.246 0.02 0.014 46 0.416 0.06 0.38
J52.0t 0.276 0.02 0.011 56 0.486 0.06 0.36
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of the spin-1/2 TL liquid with a large Fermi surface
kF5p(11nc)/2, which includesf spin densities as well a
the density of conduction electrons.

Now we calculate the correlation exponentKr . In order
to obtainKr , we simply use the slope of the envelope fun
tion of the charge density oscillations, assuming that its
cay is proportional tox22Kr, because the dominant compo
nent of the oscillations is the 4kF component even for the
case ofJ51.5t. In Fig. 4, the obtainedKr for the exchange
coupling fromJ54.0t to 1.5t atnc52/3 are presented. Sinc
the 2kF spin density oscillations decay much slower than
charge density oscillations, it is not possible to determ
Kr from the spin density oscillations in the present syst
size. However, the slower decay of the spin density osci
tions is consistent with the TL liquid prediction, Eq.~30!,
which gives a smaller exponent,x2Kr.

As is clearly seen in Fig. 4,Kr is always smaller than
1/2 and monotonically decreases with decreasingJ. In the

FIG. 3. Fourier components of the spin density Friedel osci
tions.

FIG. 4. Correlation exponentKr estimated from the decay rat
of the charge density Friedel oscillations. The error bars are de
mined from the ambiguity of the power law fitting.nc52/3. J is in
units of t.
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strong-coupling limit, the conduction electrons and the loc
ized f spins form local singlets, leading to a complete sp
charge separation. Since the charge part is described b
free spinless fermions,Kr51/2 is obtained in the strong
coupling limit as in the case of the infinite-U Hubbard
model. With decreasingJ from infinity the repulsive interac-
tion between the neighboring spinless fermions is introdu
in the leading order oft/J. Thus the situation is similar to th
large-U Hubbard model with nearest-neighbor repulsio
whoseKr is smaller than 1/2.16,17

In Fig. 4 we find a small discontinuity atJ52.4t. This is
due to the phase transition from the ferromagnetic state
the paramagnetic one. Since this transition is of first or
accompanied by a jump in the total spin quantum numb
from S5L(12nc)/2 to 0, or 1/2 withL being the number of
the sites, it is natural that theKr also shows a jump at th
critical valueJc . In order to confirm the discontinuity we
have calculated theKr in both ferromagnetic and parama
netic states atJ52.4t which is near but smaller than th
critical point. TheKr in the ferromagnetic state is calculate
by setting the totalSz asL(12nc)/2, which is the total spin
in the ferromagnetic state.

In contrast to the slow decrease ofKr above the critical
Jc , a rather sharp decrease is observed belowJc , and the
Kr becomes smaller than 1/3 which means that the l
range behavior of the charge-charge correlation is gover
by 4kF oscillations. The dominance of 4kF oscillations is a
characteristic feature of this new class of spin-1/2 TL liqu

With further decreasingJ, theKr seems to cross the valu
322A2;0.17. Since the exponent of the power la
anomaly in the momentum distribution function,a, is given
by a5(Kr11/Kr22)/4, the power law anomaly is remove
below this point and we cannot see a clear Fermi surface
more. It is very difficult to observe clear Friedel oscillatio
for Kr smaller than 0.17.

IV. CONCLUSIONS

In conclusion we have established that in the area of
phase diagram where the one-dimensional Kondo lattic
paramagnetic, it belongs to the universality class of spin-
TL liquids. The f electrons do take part in the formation
l-
-
the

d

s

to
r
r,

g
ed

.

ny

e
is
/2

the Fermi surface. According to the Luttinger theorem t
volume of the Fermi sea is determined by those branche
the spectrum which cross the chemical potential. Despite
fact that most of the spectral weight of thef electrons is
concentrated far from the chemical potential, they do ha
access to it via the Kondo resonance. We bring the atten
of the reader to the fact that the Luttinger theorem does
require the existence of a pole in the single-electron Gree
function and therefore can be applied outside the Fermi
uid domain. In particular, the system under considerat
belongs to the spin-1/2 TL liquid universality class. It is
rather peculiar member of this class sinceKr is small. How
small is not entirely clear; the analytical calculations gi
Kr5vs /vr @see Eqs.~26! and ~27!# which is one order of
magnitude smaller than the values obtained numerically~see
Table I!. This may be due to the inaccuracy of the 1/N ap-
proximation; it is more likely, however, that the maxim
system size available for the numerical calculations is
large enough to penetrate to the asymptotic region. Ind
we cannot analyze the numerical data in the weak-coup
region (J/t,1) where the typical correlation length far ex
ceeds the accessible system size. In small systems
known that the dominant correlation is determined by
density of conduction electrons.18 Thus the numerical value
of Kr given in Table I should be considered as upper lim
This may appear unusual to those who consider the Hubb
model as a typical example of a TL liquid. The smallness
Kr clearly originates from the nonlocality of the effectiv
interactions in space and time. In this sense the KL mode
similar to charge density wave systems where the inte
tions are also retarded, being carried by low-energy opt
phonons. In these systemsKr!1.19,20
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