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One-dimensional Kondo lattice model as a Tomonaga-Luttinger liquid
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Arguments are presented that in the one-dimensional Kondo lattice nfigglettron spins participate in
filling of the Fermi sea. It is shown that in its paramagnetic phase this model belongs to the spin-1/2
Tomonaga-Luttinger liquid universality class. The ratio of the spin and charge velagities, andK, are
estimated to be of the order of ¢ /eg) Y2 [S0163-182697)03225-9

I. INTRODUCTION Il. LUTTINGER LIQUID PARAMETERS OBTAINED
BY THE 1/N EXPANSION
One can use a one-dimensional Kondo latti€e) model

as a toy model to study the long-standing problem of
whether localized electrons determine the volume of the
Fermi surface. Recent numerical results show that in the
paramagnetic metallic phase, the KL model belongs to a uni- H=—-t> (al,a1,+H.c)+IX S'st, (€)
versality class of spin-1/2 Tomonaga-Luttinge(TL) 7 '“
liquid.>=3 In particular it has been shown that the Friedel
oscillations are characterized by the large Fermi vet®o. where afg(aig) is the creation (annihilation operator
it seems that thé electrons do participate in the Fermi sur- of a conduction electron at theith site, and
face formation. On the other hand, the conclusions of thegﬁ:(l/z)zw,a.’f ™ ,a;,, with Tﬁ,,/ (w=x,y,2) being the

1o’ oo

bosonization studies are controversial. In the area of th@auh matriceS, are the Spin density operators of the conduc-

paramagnetic metallic phase the TL lighidith a large  tion electrons. The spin densities are coupled to the localized
Fermi surface is obtained by Fujimoto and KawaKawiiile  spins S through an antiferromagnetic exchange coupling

the Luther-Emery liquid with a spin gap is also predicted by j.
White and Affleck® Recent analytical work based on the | order to obtain analytical results we shall extend the

Lieb-Schultz-Mattis construction shows that there exists %ymmetry of the KL model to the SB) and resort to the

gapless excitation away from half-fillifgThough its char- 1/N expansion(see Refs. 8 and)9The corresponding La-
acter is not yet clear, it seems to be consistent with the T'grangian density is

liquid with a large Fermi surface.
In this paper we undertake a further study of the TL phase
of the KL model. Let the reader recall that the spin-1/2 TL gzaj?r[,;7+ ;(X)]aj+fl_*(97fl.+i)\(f}kfj_q[\|)
liquid critical point is characterized by two parameters: the
ratio of spin to charge density wave velocities/v,, and the B i N 4
numberK, which parametrizes scaling dimensions in the N(ai P (ficaw). )
charge sectdithe similar parameter in the spin sector is fixed
by the SW2) symmetry,K,=1]. The dynamical spin and

The Hamiltonian of the one-dimensional KL model is

charge susceptibilities at lows(q) are given by Here the dynamical field (7,x) is introduced to enforce
the local constraint of the fermion occupation number. The
2 92 numberg remains finite whemN—oo.
Xolwn,Q)=————>—, 1) Next we decouple the interaction by the Hubbard-
T QU t oplv, Stratonovich transformation:
2K q°
Xp(@n,0) = —" ————. 2 J *
o T G, +oplv, — @ T(Frag—N=3=+ V(@ f) +V*(ffa).
Thus, if we shall manage to find these two parameters, the ®)
characterization of the low-energy sector of the KL model is
complete. The resulting partition function is gauge invariant:
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fj(T,x)Hfj(T,x)eW’(T:X), Only the modeE_(p) crosses the chemical potential.
Near the Fermi points the spectrum can be linearized:
V(TlX)HV(T!X)e_i(ﬁ(T'X)! * - *
E_(p)=xv*(p+pe), v*=vep(0)Tkq. (17)

Now one can calculate the spin and charge density re-
It is convenient to choose the gauge where the field real.  sponse function&) directly. The calculation of the spin-spin

N7, X) =N (7,X) = 3,¢(7,X). (6)

We choose the following parametrizations: correlation function is straightforward: In the leading order
in 1/N the only contribution comes from the polarization
V(7,%)=VoV1+[r(7,x)/VoyN], (7)  loop of two G;=((ff™)) functions. The result reproduces
Eq. (1) with v,=v*.
i)\=TK+iu/\/N, (8) The calculation of the charge response function is more

complicated. We chose the following approach: First we
shall integrate out the high-energy degrees of freedom in the
partition function and obtain the effective action for the low-
energy sector; then we shall bosonize this action and obtain
She parameters of the TL liquid. To do the integration it is

where V, is the saddle point value of which we shall
determine later andis a new field chosen in such a way that
its measure of integration is trivial.

We shall expand the partition function around its saddl

point: convenient to diagonilize the saddle point Hamiltonian and
V=V,, irn=Tg. (9) tq express the fermionic operators ir_1 terms of.thg new fanni-
_ _ hilation operatorsA.. ;(k) corresponding to excitations with
Expanding to the second orderiinve get the dispersiork .. (k) (since the transformation is diagonal in

the flavor indices, we shall omit them
L=Ly+ Lint

A a(k)=a A (K)+ VBA_(K),
Lo=af[d,+e(x)]a;+ ] (a.+Tx)fj+Vo(aj fj+c.c),

(10 f(k)=—VBIA, (K)+ Var A_(K), (18)

r2 r iu where
—t—=(afj+cec)+—=:f7f;, (11

42N N Lo, Ldk-Tda .
where the dots mean that the average is substructed, actB=l Bz 1o Ve(k)— T2 +4V2|’ 19
:A:=A—(A), and ther? term comes from the expansion of
the square root in the expression ¥y Eq. (7). The saddle Substituting these expressions into Etjl) and omitting the
point parameter¥, and Ty are determined self-consistently terms containing onlyA, we get
by the vanishing of the terms linear inandu:

Lin=

l N f dX‘Cint:Ll"" L2, (20)
N2 (mfim)=q, (12
- 1
. L=3 PO LS 1r(g)(Vare g VB o)
1 : ) A 2\N%a
N2, @) +(fmam)]=--3=. 13

—2iu(O)V B+ qai[AY j(k+a)A_ j(k)+c.c],  (21)

In the leading order in N the spectrum is determined by 1
the saddle point. This gives us a great advantage because the _ * % . — .
saddle point describes the large Fermi surface. The singlel—‘z_\/ﬁ%‘; [AZ (k)AL VarBer(a) Fiaru(a)],
electron spectrum has the following well-familiar form: (22)

E.(p)=[e(p)+Tkl2= \/[e(p)—TK]2/4+V(2). (14)  Whereap and B¢ are taken at the Fermi surfacez~1 and
o _ o Be~Tk/D.
Substituting the saddle point Green’s functions into Ej2) Integrating ovelA . we get in the leading order inN/the
and(13) we get following action for the fields andu:

q=p(0)V§/Tx, Tx=Dexd—1/p(0)J], (19 1
Set=52, M(w,q)[4r(~w,~q)r(w,q)

wherep(0) is the bare density of states per one channel, and ©.q

D is the bandwidth. The expression for the new Fermi vector

is tu(—o,—q)u(w,q)]. (23
szk(FO) + Q. (16) To get the effective action for the low-lying excitations

we need to know the functiohl (w,q) for the area around
It follows from this equation that the charge susceptibilityg=0 and forq=2kg. The result isl1(0,0)=p(0).
remains unaffected by the presence of the spins. We bosonize the fermionic operators,
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/L 1x10 © for J=2.5.

FIG. 1. (a) Size dependence of the difference of the chemical
potentials,u, — «_ , in the one-dimensional Kondo lattice model. ing long-range and low-energy properties since it allows one
2u, (L)=Eg(nc=nd+2/L,L)—Eg4(n.=nd,L). 2u_(L)=E4(n. to study long chains, iteratively enlarging the system size,
=n2,L)—E4(nc=n2-2/L,L). E4(n.,L) is the ground-state en- and to obtain the ground-state wave function with only small
ergy at the carrier density, in the system of length. n°=2/3. (b) systematic errors, which can be estimated from the eigenval-
Size dependence of the spin gapg(L)=E4(SY'=1L) ues of the density matrix. The obtained results are consistent
—E4(SP'=0L). E4(S;',L) is the lowest energy in the Hilbert with the above arguments and indicitg<1/2 in the weak-
space of total spils'. n.=2/3. The energy unit is. Typical trun- coupling limit (J—0).
cation errors in the DMRG calculations are 0 Now we shall describe results of the numerical analysis of
the model(3). The paramagnetic metallic state of this model,
. ) which is expected to be a TL liquid, is realized only in the
kzj AL j(k+a)A_ j(K)=1YN/mq®,(q)  (a<ke), region of rather weak exchange coupling away from both
’ (24) half-filing (n.=1) and the low carrier density limit
(nc.—0). The ground state is always insulating at half-filling
where qbp is the Charge field, and integrate overandr. and ferromagnetic both in the Strong_coup"ng ||rn]t_()oc)
Since,Bp is so Sma”, the Iargest contribution to the effectivefor genera| carrier densities]'(;& 1) and in the low-carrier-
action comes from the fluctuations of the field. The  density limit!*
bosonized version of the effective action in the charge sector \we first calculate spin excitation gdn and difference of
is given by chemical potentialg. . — u_ as a function of the system size
L. As expected, botlA and u, — u_ [Figs. Xa) and Xb)
Seff: f drdx

1 1
oo (3T¢p)2+277p(0) (0x®,)%|. (25  for the case oh,=2/3 andJ=1.&,2.0] vanish in the bulk
) ) ) ) . limit (L—<0), which confirms that the paramagnetic phase of
From this action one can derive the canonical expressiofhe K model is a TL liquid.
for the charge susceptibility arid, . At least in the leading The finite-size corrections g, —x_ and A in Fig. 1
order in 1N the result does not depend bh are related to the charge susceptibility and the spin velocity,
respectively. Since we have used open boundary conditions,

v,=v*/mp(0) @8 A(L)=v, AK(L)=v,m/L and u.(L)—pu (L)=Any(L)/
and X,=2/(x,L). The obtained values are shown in Table I.
Once we have obtained,, then we can calculate,
K,=\mp(0)v*. (27)  through the relatioiK ,= 7v . x,/2; see Eq(1). Because the
SU(2) symmetry in the spin space guarantd€s=1, a
Il DENSITY MATRIX RENORMALIZATION rather largey,, is obtained as is shown in Table I. This !arge
GROUP STUDY X. IS naturally expected because there is a macroscopic num-

ber of almost free spins in both weak- and strong-coupling
In order to check the validity of the largé+esults for the regions. Thef spins are almost but not exactly independent
N=2 case we numerically estimate the TL liquid param-with each other: In the weak-coupling regidn.almost-free
eters, making use of the density matrix renormalizationf spins, and in the strong-coupling regidr(1—n.) f spins
group(DMRG).*° This method is the most suitable for study- unpaired with conduction electrons.
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TABLE |. Luttinger liquid parameters of the one-dimensional

Kondo lattice model. The carrier density is 2/3. The energy unit 0.02 ' ' ' '
is t. The errors are estimated from the ambiguity of the power law ne=6/7 M= 4/5
decay of the charge density Friedel oscillations. J=25¢ J=25t
p . - p -/ / ne=2/3 3
P o o P P / J=1.8¢
J=0 1 - - 1.73 0.37 =
J=15 019+ 0.03 0.30+ 0.06 0.42 w 001~ 7
J=18 0.24+= 0.02 0.014 46 0.4% 0.06 0.38
J=2.0¢ 0.27*+ 0.02 0.011 56 0.48& 0.06 0.36
Now we discuss the charge susceptibility. In the strong-
coupling limit it tends to the value for the free spinless fer- 0 L —
mions: X;lz mrtsin(r—amny). On the other hand, in the 0 0.2 0.4 0.6 0.8 1
weak-coupling limit we expect d-independent charge sus- gin
ceptibility as is predicted by the Gutzwiller-type variational
calculationst? X;l: mtsin(mnd2). The densityn,=2/3 is FIG. 3. Fourier components of the spin density Friedel oscilla-

rather special in the sense that the values expected for tHiNs:
strong-coupling limit and weak-coupling limits are the same.
Thus we expect thag, depends only weakly od. In gen-
eral, in the weak-coupling limit we have an asymptotic form
of the charge velocity which is proportional ko, as

of the spin-1/2 TL liquid with a large Fermi surface,
ke=m(1+n¢)/2, which includesf spin densities as well as
the density of conduction electrons.
Now we calculate the correlation exponé€yf. In order
v,=2K tsin(7n/2) (28 to obtainK ,, we simply use the slope of the envelope func-
tion of the charge density oscillations, assuming that its de-
from the relationK ,= mv ,x,/2, Eq.(2). However, we have cay is proportional tox 2K», because the dominant compo-
to be careful close to half-filling where the charge susceptinent of the oscillations is thek¢ component even for the
bility tends to diverge owing to the charge gap at half-filling. c35e ofJ=1.5. In Fig. 4, the obtaine®, for the exchange
The .e.stimation of 'ghe correlation exponent is one of thecoupling fromJ=4.0t to 1.5 atn.=2/3 are presented. Since
most difficult calculations even by the DMRG method. In he 2. spin density oscillations decay much slower than the
order to estimat& , we need to see the long-range behaviorsgharge density oscillations, it is not possible to determine
of the system with sufficient accuracy. In the present study from the spin density oscillations in the present system
we use asymptotic form of the Friedel oscillations becausgjze. However, the slower decay of the spin density oscilla-
they are numerically more reliable than long-range off-tions is consistent with the TL liquid prediction, E(B0),
diagonal correlations. , o _ which gives a smaller exponent; .
The Friedel oscillations are density oscillations induced aq js clearly seen in Fig. 4<, is always smaller than
by a local perturbation. In a TL liquid, power law anomalies /> gnq monotonically decreaseps with decreasingn the
in correlation functions naturally reflect themselves in the
Friedel oscillations; the Friedel oscillations induced by an 0.5
impurity potential are )

8p(X)~Cco9 2kex)x "1 K2+ Ccoq 4kex)x %Ko, ne=12/3
04
(29)
as a function of the distance from the impurity>*~® and i }

analogously, spin density oscillations induced by a local 0.3
magnetic field behave as Ko ]

o(X)~D;cog 2kex)x Ko, (30) 0265 % i

Thus, we can determiri¢, from the asymptotic form of the

oscillations. 0.1
Figure 2 shows induced charge and spin density Friedel '

oscillations of the KL model obtained by the DMRG for

J=2.5 atn,=6/7. The Fourier components of spin density 0 ! | ! !

Friedel oscillations fod=1.8,2.5,2.5 at n.=2/3,4/5,6/7, 0 1 2 3 4 5

respectively, are also shown in Fig. 3. The charge density J

Friedel oscillations are induced naturally by the open bound-

ary conditions of the system and the spin density oscillations FiG. 4. Correlation exponerit,, estimated from the decay rate

are introduced by applying local magnetic fields at the bottof the charge density Friedel oscillations. The error bars are deter-

ends. As is already shown fag=4/5 in the previous work,  mined from the ambiguity of the power law fitting,=2/3. J is in

the period of the oscillations is explained by the assumptiomnits oft.
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strong-coupling limit, the conduction electrons and the localthe Fermi surface. According to the Luttinger theorem the
ized f spins form local singlets, leading to a complete spin-volume of the Fermi sea is determined by those branches of
charge separation. Since the charge part is described by titlee spectrum which cross the chemical potential. Despite the
free spinless fermionsK,=1/2 is obtained in the strong- fact that most of the spectral weight of tlieelectrons is
coupling limit as in the case of the infinitd- Hubbard ~concentrated far from the chemical potential, they do have
model. With decreasing from infinity the repulsive interac- aCCess to it via the Kondo resonance. We bring the attention

tion between the neighboring spinless fermions is introduce@f the reader to the fact that the Luttinger theorem does not
in the leading order of/J. Thus the situation is similar to the '€duire the existence of a pole in the single-electron Green's

largelU Hubbard model with nearest-neighbor repulsionsfu.nCt'On a_nd therefqre can be applied outside the Fermi !'q'
uid domain. In particular, the system under consideration

H 6,17
whoseK, is smaller than L2 belongs to the spin-1/2 TL liquid universality class. It is a

In Fig. 4 we find a small discontinuity &t=2.4t. This is rather peculiar member of this class sif€gis small. How
due to the phase transition from the ferromagnetic state tg p . ) inee ; .
mall is not entirely clear; the analytical calculations give

the paramagnetic one. Since this transition is of first ordef, e
accompanied by a jump in the total spin quantum numberm/;_r’i.‘t’ / gg gsr‘r?:lleErqtshgr?)tr?;da(llzz]s Vgg;;hn:d %n?ngqgum
from S=L(1—n.)/2 to 0, or 1/2 withL being the number of gnitu vau : umeri¢asy

the sites, it is natural that thi€ ) also shows a jump at the Tabl_e . _Th|.s_m_ay be du_e to the inaccuracy of th(NJaip_
e P . L proximation; it is more likely, however, that the maximal
critical valueJ;. In order to confirm the discontinuity we : . : . X
. . system size available for the numerical calculations is not
have calculated thi,, in both ferromagnetic and paramag- large enough to penetrate to the asymptotic region. Indeed
netic states ati=2.4 which is near but smaller than the =9 9 P ymp glon.

" : . . . w nn nalyze the numerical in the weak- lin
critical point. TheK, in the ferromagnetic state is calculated e cannot analyze the numerical data in the weak-coupling

A - S .~ region (/t<1) where the typical correlation length far ex-
.by setting the totasz asL(1-n)/2, which is the total spin ceeds the accessible system size. In small systems it is
in the ferromagnetic state.

In contrast to the slow decrease 6, above the critical known that the dqminant correlation s deterrr_lined by the
3,. a rather sharp decrease is observed belowand the density of conduction electror& Thus the numerical values
Kc, becomes smaller than 1/3 which means. that the lon of K, given in Table | should be considered as upper limits.
P : o %his may appear unusual to those who consider the Hubbard
range behavior of the charge-charge correlation is governer(ii]Odel as a typical example of a TL liquid. The smaliness of

bz 4kFtos_C|tI_Iatf|onts. Th?t?](_)mmancle Oﬂ(ﬂfosg'”it/'gr_‘ri'? a'd K, clearly originates from the nonlocality of the effective
¢ ?/(lat%?rlstrlc za ure o ISthnelzv class o tspln- th Iqlw ‘interactions in space and time. In this sense the KL model is
ith further decreasing, theK, seems to cross the value similar to charge density wave systems where the interac-

3_2\/§~_0'17' Since the exponent of the power law ong are also retarded, being carried by low-energy optical
anomaly in the momentum distribution functio, is given phonons. In these systerK§<1.19'2°

by a=(K,+ 1/K,—2)/4, the power law anomaly is removed

below this point and we cannot see a clear Fermi surface any ACKNOWLEDGMENTS
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