
PHYSICAL REVIEW B 1 AUGUST 1997-IIVOLUME 56, NUMBER 6
Charge and spin transport through a metallic
ferromagnetic-paramagnetic-ferromagnetic junction

Selman Hershfield and Hui Lin Zhao*
Department of Physics and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611

~Received 3 February 1997!

Using a pair of weakly coupled drift-diffusion equations for spin-up and spin-down electrons, we compute
the signal of recent spin-injection experiments by Johnson on ferromagnetic-paramagnetic-ferromagnetic films.
In the limit of large junction resistance, our results coincide with those of earlier calculations. As the junction
resistance decreases, there are correction terms which provide a cutoff to the size of the signal for films much
thinner than the spin-diffusion length. The physical origin of this cutoff is the leakage of nonequilibrium
magnetization out of the paramagnet into the current and voltage probes. Although our calculation can explain
the sample thickness dependence of the experiments, it cannot account for the large magnitude of the signal
observed.@S0163-1829~97!03530-3#
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I. INTRODUCTION

The transport of spin-polarized electrons in metals
been a subject of investigation for many years. One way
generate spin-polarized electrons is to drive a current fro
ferromagnetic metal to a nonmagnetic material. The earl
tunneling experiment done in this context was by Tedr
and Meservey, who drove a current from a ferromagne
film to a superconductor.1 An alternative method is to creat
a tunnel junction with a spin-dependent transmission pr
ability or resistance. For example, such a junction can
created using a magnetic semiconductor for the barrier
tween two normal metals.2 Of course, in any real experimen
involving current flow from a ferromagnet to a paramagn
the nonequilibrium magnetization is due to both the polari
tion of the electrons in the ferromagnet and the sp
dependent transmission probabilities at the interface.

In recent years, one phenomena involving polarized e
trons which has attracted a great deal of experimental3,4 and
theoretical5,6 interest is the giant magnetoresistance seen
magnetic multilayers. In these experiments the resistivity
alternating layers of magnetic and nonmagnetic metals
pends crucially on whether the magnetizations of adjac
magnetic layers are parallel or antiparallel. Since the lay
can be aligned with small fields, one can see large chang
the resistance with small applied magnetic fields, leading
technological applications as well as raising fundamen
physics questions.7

In this paper we consider a different but not unrelated
of experiments called spin-injection experiments develo
by Johnson and Silsbee over the last 10 years.8,9 With this
technique a nonequilibrium population of spin-polariz
electrons is created by driving a current from a ferromag
to a paramagnet10 and then detected with the use of a seco
ferromagnet.11 In Fig. 1 we show the geometry of Johnson
most recent spin-injection experiment.12 A current is driven
from the ferromagnetic metal labeled F1 to the paramagn
metal labeled P. This creates a nonequilibrium magnetiza
which extends roughly one spin-diffusion length into t
paramagnet. One way to think of a nonequilibrium magn
560163-1829/97/56~6!/3296~10!/$10.00
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zation is that spin-up and spin-down electrons have differ
chemical potentials. The clever part of this and the ear
spin-injection experiments is to measure the chemical po
tial difference between the two spin species using a sec
ferromagnetic voltage probe, shown as F2 in Fig. 1.

In thin magnetic films such as those used in the exp
ment the magnetization tends to be parallel to the plane
the film. By applying a sufficiently large magnetic field pa
allel to the film, the magnetization of the two ferromagne
films can be aligned parallel to one another. Since the fi
will in general not have the same coercivities, as one redu
and then reverses the direction of the magnetic field, at so
point the magnetization of one of the films will flip befor
the other. At this point the ferromagnets F1 and F2 will ha
antiparallel magnetizations. Continuing to increase the m
nitude of the magnetic field, the other film will reverse i
direction of magnetization and the two films will again ha
parallel magnetizations.

What is measured experimentally is the voltage of

FIG. 1. The experimental geometry of the spin-injection expe
ment of Ref. 12. Current flows from the ferromagnetic curre
probe F1 to the paramagnet P creating a nonequilibrium magn
zation in P. The voltage is measured between the ferromagn
voltage probe F2 and the paramagnetic voltage probeN. This is
done both for parallel alignment of the magnetizations of the t
ferromagnetic films (VI) and for antiparallel alignment of the mag
netizations (VII ). The differenceVI2VII divided by the currentI is
the signalRS .
3296 © 1997 The American Physical Society
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56 3297CHARGE AND SPIN TRANSPORT THROUGH A . . .
ferromagnetic voltage probe F2 relative to a reference p
magnetic metal voltage probe,N. When F1 and F2 have
parallel magnetizations, one voltage is measured, which
will denote asVI . When the magnetizations are antiparall
another voltage is measured,VII . The voltage difference
VI2VII divided by the electrical current injected,I , is de-
fined asRS

RS5~VI2VII !/I , ~1.1!

which is the spin-injection signal.
To see that the voltage differenceVI2VII and RS are

related to the difference in the chemical potentials
spin-up and spin-down electrons, we consider the limit
case discussed in Ref. 8 when only one of the spin spe
s5↑, is occupied in the ferromagnets. When the ferrom
netic voltage probe is placed in contact with the paramag
the chemical potential of F2 will align with the chemic
potentialm↑ for the spin-up electrons in P at the interface.
we flip the direction of magnetization of F2 so that only t
s5↓ electrons are occupied, then the chemical potentia
the ferromagnetic voltage probe will align with the spi
down chemical potentialm↓ in P at the interface. Thus, b
measuring the difference between the chemical potential
F2 for these two cases, using a paramagnetic voltage pr
N, as a reference, one can directly measurem↑2m↓ . For the
case when only one spin species is occupied,2e(VI2VII ) is
identically equal to (m↑2m↓). For an experiment using
ferromagnetic material like iron or Permalloy, the ferroma
net will have nonzero occupation of both spin species
2e(VI2VII ) will be proportional to (m↑2m↓).

Johnson and Silsbee have performed both thermodyna
and microscopic analyses of their spin-injection experime9

When applied to the experiment shown in Fig. 1 one fin
that for thicknessesd of the paramagnetic film~P! less than
the spin-diffusion length in the paramagnetdS , the signal
grows as 1/d:

RS'h1h2

rdS
2

2Ad
, ~1.2!

while in the opposite limit whered@dS , the signal decays
exponentially

RS'h1h2

rdS

A e2d/dS. ~1.3!

In both Eqs.~1.2! and ~1.3! the resistivity of the paramag
netic film isr, the cross-sectional area of the current prob
A, and the factorsh1 andh2 are dimensionless parameter
The first dimensionless parameterh1 is the polarization of
the current at the F1-P interface,

h15
I ↑2I ↓
I ↑1I ↓

, ~1.4!

where I s is the electrical current carried by spin-up (s5↑)
and spin-down (s5↓) electrons. For the case in which on
one spin species carries currenth1 is equal to one. The sec
ond dimensionless parameter is a measure of how closely
ferromagnetic voltage probe measures the difference in
chemical potentials for spin-up and spin-down electrons
the paramagnet
a-
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2e~VI2VII !

m↑2m↓
. ~1.5!

As discussed above, one would expecth251 for a ferromag-
net with only one spin species occupied.

One of the most interesting features of the experimen
Ref. 12 is that the resistanceRS does indeed grow like 1/d
for d,dS . Thus, this is an effect which increases as sam
sizes are made smaller, which is highly desirable for tech
logical considerations. Another interesting and unexpec
feature of the experiment is that the producth1h2 appears to
be larger than one, which is counterintuitive.

To better understand both the small thickness beha
and the size ofh1h2, in this paper we present another ana
sis of the spin-injection experiment based on a tw
component drift-diffusion equation, one component for ea
spin. One could also use higher component drift-diffusi
equations or the full Boltzmann equation; however, sin
even with a simple two-component model we cannot de
mine all the parameters, we feel that a more sophistica
analysis is not justified at this point. The approach used h
is related to both the microscopic approach used by John
and Silsbee9 and recent theory of the perpendicular magn
toresistance in magnetic multilayers by Johnson13 and by Va-
let and Fert.14 In particular the work of Valet and Fert als
uses spatially-dependent chemical potentials and boun
conditions at the interface similar to ours. They have a
recently analyzed Johnon’s experiment.15

Our goal in this paper is to answer the following que
tions: At the microscopic level of this model, what dete
minesh1 andh2? Can eitherh1 or h2 be larger than unity?
As the sample thickness is made smaller, does the si
diverge as 1/d or is there a cutoff? If there is a cutoff, wha
governs the scale of it? In the end we will reproduce
results of Johnson and Silsbee in the limit of large junct
resistance between the ferromagnets and the paramagne
the resistance is decreased, however, there are correct
Some of these corrections may be important already in
present experiments.

The rest of this paper is organized as follows. In the n
section we introduce our two-component drift-diffusio
equation, solve it in a bulk system, and introduce the s
and charge modes. In Sec. III we treat the case of one ju
tion between a ferromagnet and a paramagnet. This is a
ally a calculation of the parameterh1. By working through
this case in detail, we are able to simplify the treatment
the full ferromagnet-paramagnet-ferromagnet junction
scribed in Sec. IV. In Sec. IV we also argue that this thre
terminal geometry is sufficient to explain the experiment
Ref. 12. Thus, in Sec. V we compare the results of our c
culation to the experiment. All the results are summarized
Sec. VI. An appendix gives an alternate derivation of t
results in Sec. IV and V based on the Onsager relations
resistance measurements.

II. CHARGE AND SPIN MODES

The model used consists of spin-up and spin-down e
trons which diffuse independently except for weak scatter
from one spin to the other. The two kinds of electron
s5↑ or ↓, have different diffusion constants,Ds , density of
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3298 56SELMAN HERSHFIELD AND HUI LIN ZHAO
states,Ns(EF), and conductivities,ss5e2Ns(EF)Ds . The
current densitiesj s for spin-up and spin-down electrons a
determined by the electric fieldE and the densityns :

j ↑5s↑E2D↑¹n↑ , ~2.1!

j ↓5s↓E2D↓¹n↓ . ~2.2!

The electric field is in turn determined by Gauss’s Law,

¹•E5
1

e0
~n↑1n↓!. ~2.3!

The rate at which spin-up electrons scatter to spin-do
electrons is denoted by 1/t↑↓ . Likewise, spin-down electron
scatter to spin-up electrons with rate, 1/t↓↑ . In steady state
this scattering can be included via

¹• j ↑52
n↑
t↑↓

1
n↓
t↓↑

, ~2.4!

¹• j ↓52
n↓
t↓↑

1
n↑
t↑↓

. ~2.5!

Equations~2.1!–~2.5! are the basic equations which w
solve. They satisfy current conservation because the sum
Eq. ~2.4! and Eq.~2.5! is zero:¹•( j ↑1 j ↓)50. They can also
be combined to form the drift-diffusion equation by takin
the divergence of Eqs.~2.1! and ~2.2! and substituting in
Eqs.~2.3!–~2.5!:

¹2S n↑

n↓
D 5S k↑

21
1

D↑t↑↓
k↑

22
1

D↑t↓↑

k↓
22

1

D↓t↑↓
k↓

21
1

D↓t↓↑
D S n↑

n↓
D , ~2.6!

where

ks
25ss /~Dse0!5e2Ns~EF!/e0 , ~2.7!

andks is the inverse of the screening length, which is by
the smallest length scale in the problem.

We first examine the case when the spin-up and s
down electrons are not coupled, i.e., 1/t↑↓51/t↓↑50. In this
case the matrix on the right-hand side of Eq.~2.6! is easily
diagonalized. We will call the two eigenvectors the spin a
charge modes and label them asvS andvQ . The eigenvalues
have units of inverse length squared so we denote them
(lS)2 and (lQ)2, wherel has units of inverse length. With
these conventions the eigenvectors and eigenvalues are

vQ5S g↑

g↓
D , ~lQ!25k↑

21k↓
2 , ~2.8!

vS5S 1

21D , ~lS!250, ~2.9!

wheregs is the fraction of the density of states at the Fer
surface due to spin-up and spin-down electrons:

gs5
Ns~EF!

Ns~EF!1N2s~EF!
. ~2.10!
n

of

r

-

d

by

i

From Eqs.~2.8! and ~2.9! we can see much of the bas
physics. First, in this no-coupling limit, the spin mode has
net charge density. It is truly a spin mode. Also, in the n
coupling limit the spin mode does not decay in spa
lS50. Since the charge mode’s divergence is zero an
decays in space, the charge mode does not carry any cur
Thus, in the no-coupling limit the spin mode has no n
charge and does not decay, and the charge mode carrie
current.

The two scattering lifetimes,t↑↓ and t↓↑ , can also be
related using the above equations. The net rate of scatte
of up electrons to down electrons is given by the right-ha
side of Eq.~2.4!. Similarly, the net rate of scattering of dow
electrons to up electrons is given by the right-hand side
Eq. ~2.5!. If we uniformly shift the chemical potential of the
entire system, then this rate should not change, and co
quently

N↑~EF!

t↑↓
2

N↓~EF!

t↓↑
50. ~2.11!

This equation can also be justified by the Boltzmann eq
tion.

With a finite, but weak, coupling between spin-up a
spin-down electrons, the spin-mode carries a small amo
of charge and decays over a long length scale, the spin
fusion length. To see this, we expand the eigenvectors
eigenvalues of the matrix in Eq.~2.6! to lowest order in the
ratio of theks

22 to theDs8ts9,2s9 in Eq. ~2.6!. Theks
21 are

of the order of the~charge! screening length, while the
(Ds8ts9,2s9)

21/2 are of the order of the spin-diffusion length
Since the screening length is of the order of an Angstrom
the spin-diffusion length is of the order of 100 Å or large
this is a good approximation. The resulting eigenvectors
eigenvalues for the spin mode are

vS5S 11a/2

211a/2D , ~lS!25S g↓
D↑

1
g↑
D↓

D 1

tS
, ~2.12!

where the spin-relaxation rate is

1

tS
5

1

t↑↓
1

1

t↓↑
, ~2.13!

and the dimensionless factora is

a5
1

k↑
21k↓

2S 1

D↓
2

1

D↑
D 1

tS
. ~2.14!

Thus, if we allow electrons to scatter from one spin to t
other, the spin mode has a finite but long decay length~spin-
diffusion length!, and it has a finite but small charge densi
Because of the relation Eq.~2.11!, the eigenvector of the
charge mode remains the same. The eigenvalue does ch
but the change is small and can be neglected. This is dif
ent from the spin mode, where the spin-coupling correct
could not be neglected because both the charge carried b
spin mode andlS

21 are zero without spin coupling.
In actually matching boundary conditions and solving t

drift-diffusion equation, it is more convenient to work wit
the spin-dependent electrochemical potential,ms(x), than the
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56 3299CHARGE AND SPIN TRANSPORT THROUGH A . . .
density, ns(x), of Eq. ~2.6!. The spin-dependent electro
chemical potential is defined by

ns~x!52eNs~EF!@ms~x!1eV~x!# ~2.15!

or equivalently by

ms~x!

2e
5V~x!1

ns~x!

e2Ns~EF!
, ~2.16!

where V(x) is the electrical potential,E52¹V(x). From
Eqs. ~2.1! and ~2.2! the electrochemical potential is simp
related to the current via

j s52ss¹S ms

2eD . ~2.17!

Although both the density,n(x), and the electrical potentia
V(x), vary over a charge screening length near a bound
the electrochemical potential defined in Eq.~2.16! is smooth
over a charge screening length. This can be readily see
computing the equation for the electrochemical potent
from Eqs.~2.1!–~2.6!:

¹2S m↑

m↓
D 5S 1

1

D↑t↑↓
2

1

D↑t↑↓

2
1

D↓t↓↑
1

1

D↓t↓↑
D S m↑

m↓
D . ~2.18!

The matrix in Eq.~2.18! has two eigenvalues and eigenve
tors, which again correspond to the charge and spin mo
Because the electrochemical potential is a linear combina
of the excess charge densityns and the electrical potentia
V, the eigenvectors are changed. The new charge mod
genvector and eigenvalue are

vQ8 5S 1

1D , ~lQ8 !250. ~2.19!

The fact that the charge eigenvalue is zero does not m
that there is no screening, but only that the electrochem
potential does not vary over a charge screening length.
new spin mode eigenvector and eigenvalue are

vS85
1

s↑1s↓
S s↓

2s↑
D , ~lS8!25~lS!2. ~2.20!

The electrochemical potential varies over the same s
diffusion length as the density.

The reason that the electrochemical potential is more u
ful than the density in solving this problem is that it vari
over only one length scale, the spin-diffusion length, wh
is much larger than a mean free path. We can expect a
fusion equation to describe behavior on length scales la
compared to a mean free path, but not behavior on len
scales much smaller than the mean free path, e.g., the ch
screening length. Furthermore, we will see in the next s
tion that the difference in the electrochemical potential
what enters into our Landauer formula boundary condit
describing the current across a boundary between two m
rials.
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III. ONE JUNCTION

Before going to the three-terminal case we first consi
the simpler two-terminal geometry shown in Fig. 2~a!. Al-
though this case has been treated by a number of authors
go through it in detail because it will allow us to introduc
the basic boundary conditions used in the more complica
three-terminal geometry and hence simplify the more di
cult case.

As a first step we reduce the three-dimensional equat
to one-dimensional equations. A set of one-dimensio
functions are defined by integrating their three-dimensio
counterparts over a cross-sectional areaA:

m~x!5
1

AE d2x'm~x!, ~3.1!

j ~x!5
1

AE d2x'„j ~x!…x . ~3.2!

FIG. 2. Idealized two-terminal and three-terminal spin-injecti
geometries.~a! In the two-terminal geometry used in Sec. III cu
rent flows from the ferromagnet F to the paramagnet P.~b! In the
three-terminal geometry used in Sec. IV current enters through
ferromagnetic current probe F1 and exits through the paramagn
current probe P. The ferromagnetic voltage probe F2, is use
measure the nonequilibrium magnetization in P.~c! In the three-
terminal geometry used in the Appendix current enters through
and exits through F2. The voltageV measured in~b! and~c! is the
same because of the Onsager relations for a resistance mea
ment. The dashed lines indicate a typical slab used to reduce
three-dimensional problem to an effective one-dimensional prob
via the divergence theorem.
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3300 56SELMAN HERSHFIELD AND HUI LIN ZHAO
The x direction is the direction of current flow as shown
Fig. 2~a!. If one assumes that there is no current flowing o
the sides of the wire, then applying the divergence theo
to a slab like the one in Fig. 2~a! allows one to reduce Eq
~2.18! to a one-dimensional equation:

d2

dx2S m↑

m↓
D 5S 1

1

D↑t↑↓
2

1

D↑t↑↓

2
1

D↓t↓↑
1

1

D↓t↓↑
D S m↑

m↓
D . ~3.3!

The current in thex direction is also given by a one
dimensional equation

j s~x!52ss

dms~x!/~2e!

dx
. ~3.4!

Equations~3.3! and ~3.4! are satisfied on both the left
hand side~ferromagnet, F! and right-hand side~paramagnet,
P! of the junction. We denote the different values of t
screening lengths, conductivities, etc., on the two sides of
junction with superscriptsL and R. Using the eigenvalues
and eigenvectors of Eqs.~2.19! and ~2.20!, the solution of
Eq. ~3.3! on the left-hand side (x,0) has the form

1

j S m↑ /~2e!

m↓ /~2e!
D 5~ALx1BL!S 1

1D 1
j L

2lS
L e1lS

LxS 1~s↑
L!21

2~s↓
L!21D .

~3.5!

In Eq. ~3.5! we have explicitly divided out the net curren
density, j , which is the sum of the spin-up and spin-dow
current densities. The net current density is constant bec
of current conservation. The solution is determined fro
three constants,AL, BL, and j L, which will be determined by
matching boundary conditions at the interface between
two regions. The solution on the right-hand side (x.0) has
a similar form and also contains three unknowns, which
denote asAR, BR, and j R:

1

j S m↑ /~2e!

m↓ /~2e!
D 5~ARx1BR!S 1

1D 1
j R

2lS
R e2lS

RxS 1~s↑
R!21

2~s↓
R!21D .

~3.6!

Equations~3.5! and ~3.6! have a total of six unknowns
Far away from the junction, the electrochemical potenti
for spin-up and spin-down electrons are the same. Ther
an arbitrary offset in defining the electrochemical potent
This offset can be fixed by one of the variables, sayBL. This
leaves five remaining unknowns, which are solved via fi
boundary conditions. Below we examine these bound
conditions one at a time.

1,2. The net current at x51` is the same as the ne
current at x52` and equal to j.The electrical current is
related to the electrochemical potential via Eq.~3.4!. Since
the spin modes decay, the currents at6` are entirely deter-
mined by the electric fields at6`: j 5(s↑1s↓)E. Taking
the derivative of the electrochemical potentials in Eqs.~3.5!
and~3.6!, this boundary condition determines the coefficie
AL andAR:
t
m

e

se

e

e

s
is

l.

e
ry

s

AL5
21

s↑
L1s↓

L , ~3.7!

AR5
21

s↑
R1s↓

R . ~3.8!

3. The spin current is continuous across the interfa
Spin-flip scattering could be included; however, this wou
tend to reduce the spin polarization, since it allows the m
netization to relax. Because we are interested in seeing
large the effect can be theoretically, we do not include sp
flip scattering. Again using Eq.~3.4! to compute the current
the spin current boundary condition yields

s↑
L2s↓

L

s↑
L1s↓

L 2 j L5 j R. ~3.9!

4, 5. The current across the junction is determined by
difference in the electrochemical potential across the ju
tion. Up to this point we have not said anything about t
transparency or opacity of the interface between the two
gions. Using a Landauer formula16 the current is determined
by the difference in the electrochemical potential on the
side and right side of the junction,ms(0

2) andms(0
1), re-

spectively. Letting the conductances per unit area for spin
and spin-down electrons beG↑ and G↓ , the spin-up and
spin-down currents are

j ↑~0!5G↑S m↑~02!

2e
2

m↑~01!

2e D , ~3.10!

j ↓~0!5G↓S m↓~02!

2e
2

m↓~01!

2e D . ~3.11!

Before solving Eqs.~3.7!–~3.11! we introduce some no
tation which will simplify the equations. We let the polariza
tion of the current far to the left of the junction be defined
p,

p5
s↑

L2s↓
L

s↑
L1s↓

L . ~3.12!

For this junction, there is no polarization far to the right
the junction because the right-hand side is a paramagne
described in the introduction, we define the spin polarizat
at the interface to beh1 @see Eq.~1.4!#. The voltage drop
across the interface due to the charge mode is define
V:

V5BL2BR. ~3.13!

Finally, we introduce two quantities which have the dime
sions of resistance per unit area:

Rs
L5

1

ss
LlS

L , ~3.14!

Rs
R5

1

ss
RlS

R . ~3.15!
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56 3301CHARGE AND SPIN TRANSPORT THROUGH A . . .
They are the resistance per unit area of a region one s
diffusion length long. Consequently, a longer spin-diffusi
length means a largerRL or RR.

With these definitions, the now three equations wh
must be solved are

h15pL2 j L5 j R, ~3.16!

11h1

2
5G↑H V

j
1

R↑
L j L

2
2

R↑
Rj R

2 J , ~3.17!

12h1

2
5G↓H V

j
2

R↓
L j L

2
1

R↓
Rj R

2 J . ~3.18!

The solution forh1 from these equations is

h15
1/G↓21/G↑1pL~R↓

L1R↑
L!

1/G↓11/G↑1R↓
L1R↑

L1R↓
R1R↑

R . ~3.19!

There are several limits of Eq.~3.19! which can be easily
understood. First if the junction has a large resistan
1/Gs@Rs

L , Rs
R , then the expression forh1 of Johnson and

Silsbee is reproduced exactly.9 Second, if the spin relaxation
in the leads is weak, i.e.,Rs

L , Rs
R@1/Gs , thenh1 is deter-

mined by the polarizationp of the electrons coming from th
ferromagnet. In the intermediate regime, Eq.~3.19! interpo-
lates between the two limits. Note that in no case ish1 of Eq.
~3.19! larger than one.

IV. THREE-TERMINAL DEVICE

There are two important observations to make to red
the actual experimental geometry shown in Fig. 1 to a thr
terminal geometry. First, the voltage probes are perpend
lar to the electrical current flow. Consequently, there is
Ohmic voltage drop between the two voltage probes. S
ond, the length scale of the cross-sectional area of the v
age probes is much larger than the spin-diffusion leng
Thus, the leakage of the nonequilibrium magnetization fr
the region under one voltage probe to the other is negligi
We can regard the two voltage probes independently. Ins
of working with a four-terminal geometry, we can use t
three-terminal geometry shown in Fig. 2~b!. Since the volt-
age between the paramagnet P and the paramagnetic vo
probeN is independent of the relative orientation of the fe
romagnets, the experimentally relevant voltage is the volt
of the ferromagnetic voltage probe relative to some refere
voltage. Remember, the signal is determined by the dif
ence between the voltage when the ferromagnets have p
lel magnetizations,VI , minus the voltage when they hav
antiparallel magnetizations,VII . We will take as our refer-
ence voltage a point far into the left lead,xL!0, where the
electrochemical potentials for spin-up and spin-down el
trons are equal. The voltage at this point is taken to be z
05m↑(xL)5m↓(xL).

The actual current flows in Fig. 2~b! are complex becaus
the current must change direction as it goes from the fe
magnet F1 to the paramagnet P. None the less one can d
effective one-dimensional equations. In this section
present a derivation similar to the one used in the previ
section. In the Appendix we present another derivation of
in-
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same result based on the Onsager relations for resist
measurements.

As in Sec. III, we apply the divergence theorem to a th
slab. In the ferromagnetic regions, F1 and F2, the integ
over the sides of the wire vanish because no current flo
out the sides. Thus, one-dimensional equations can be
rived for x,0,

1

j S m↑ /~2e!

m↓ /~2e!
D 5

2~x2xL!

s↑
L1s↓

L S 1

1D 1
j L

2lS
L e1lS

LxS 1~s↑
L!21

2~s↓
L!21D ,

~4.1!

and forx.d

1

j S m↑ /~2e!

m↓ /~2e!
D 5BRS 1

1D 1
j R

2lS
R e2lS

R
~x2d!S 1~s↑

R!21

2~s↓
R!21D .

~4.2!

In Eq. ~4.1! the boundary condition that the net incomin
current density isj has been included by setting the coef
cient ofx for the charge mode equal to21/(s↑

L1s↓
L). Simi-

larly, the fact there is no net current going into the volta
probe has been included by taking the coefficient ofx in Eq.
~4.2! to be zero.

The situation is more complicated in the paramagne
region P, where the lower edge of the slab is not on a bou
ary @see Fig. 2~b!#. At this boundary,j s52ss¹ms is defi-
nitely not zero because the current exits there. The key h
is to look at the spin current instead of the charge current.
subtracting the spin-up and spin-down electrochemical
tentials in Eq.~2.18!, we obtain

¹2@m↑~x!2m↓~x!#5
1

DtS
@m↑~x!2m↓~x!#, ~4.3!

whereD5D↑5D↓ is the diffusion constant in the parama
net. There is a leakage of the spin current,2sM(m↑2m↓),
out the lower boundary; however, the reduction of the no
equilibrium magnetization due to this spin current is sm
compared to the decay due to spin-flip scattering (tS) be-
cause the size of the voltage pads is much larger than
spin-diffusion length. In Johnson’s experiment, the volta
pads have an area of 1022 mm2, which is large compared to
spin-diffusion length, which is at most of order a micro
This means that even though¹(m↑2m↓) is not zero at the
lower boundary, it is small, and one can derive a on
dimensional equation for the difference in the electroche
cal potentials in the paramagnet:

d2@m↑~x!2m↓~x!#

dx2 5
1

DtS
@m↑~x!2m↓~x!#. ~4.4!

This equation has a solution of the form (0,x,d):

m↑~x!2m↓~x!

~2e! j
5S 1

s↑
M 1

1

s↓
M D H j M1

2lS
M e2lS

Mx

1
j M2

2lS
M elS

M
~x2d!J . ~4.5!
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We now match boundary conditions between the two
gions as in the previous section. The conditions for conti
ity of the spin current atx50 andx5d are

p2 j L5 j M12 j M2e2lS
Md, ~4.6!

j R5 j M1e2lS
Md2 j M2, ~4.7!

wherep is defined in Eq.~3.12!. The other important bound
ary conditions are the Landauer formula boundary conditi
like Eqs.~3.10! and~3.11!. Equation~4.5! allows us to relate
the difference in the electrochemical potentials betwe
spin-up and spin-down electrons atx50 and atx5d, but it
does not relate the average electrochemical potential betw
the two sides. Fortunately, the Landauer formula bound
condition only involves the difference in the electrochemi
potential between pointsx502 andx501 and between the
pointsx5d2 andx5d1. The part of the voltage drop at th
interface due to the charge mode@V in Eq. ~3.13!# can be
treated as an unknown. In analogy with Eq.~3.13! we define
VL to be the voltage drop atx50 due to the charge mod
and VR to be corresponding the voltage drop atx5d. The
four equations for the two junctions with two possible sp
orientations is then

11p2 j L5G↑
LS 2VL

j
1R↑

L j L2R↑
M@ j M11 j M2e2lS

Md# D ,

~4.8!

12p1 j L5G↓
LS 2VL

j
2R↓

L j L1R↓
M@ j M11 j M2e2lS

Md# D ,

~4.9!

j R5G↑
RS 2VR

j
1R↑

M@ j M1e2lS
Md1 j M2#2R↑

Rj RD ,

~4.10!

2 j R5G↓
RS 2VR

j
2R↓

M@ j M1e2lS
Md1 j M2#1R↓

Rj RD .

~4.11!

The factors of 2 appear in these equations because
have multiplied by 2 on both sides of the equations@see Eqs.
~3.17! and ~3.18!#. The resistancesRs are defined as in Eqs
~3.14! and ~3.15!. The six equations, Eqs.~4.6!–~4.11!, are
the equations which must be solved in order to compute
signal measured in the experiment. In the next section
discuss the results of the solution.

V. RESULTS

The voltageV measured in Fig. 2~b! is measured relative
to the xL . In terms of the electrochemical potentials it
given by

V5S ms~xR!

2e D2S ms~xL!

2e D , ~5.1!

wheres is ↑ or ↓. Implicit in Eq. ~5.1! is that the ends of the
voltage probes are further than a spin-diffusion length aw
from the interfaces atx50 and x5d so that the electro-
chemical potentials for spin-up and spin-down electrons
-
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en
ry
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we

e
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the same. The signal measured is the difference of the v
age,V, shown in Fig. 2~b! for F1 and F2 with parallel mag
netizations~configuration I! minus the voltage measured fo
F1 and F2 with antiparallel magnetizations~configuration II!.

RS5S V

jAD
I

2S V

jAD
II

. ~5.2!

To go from configuration I to configuration II in Eq.~5.2!
one interchanges the spin-up and spin-down parame
ss , Ds , Gs , . . . . in one of theferromagnets. This corre
sponds to flipping the magnetization in that ferromagnet.

The voltageV is the sum of several different contribu
tions. There are voltage drops in going fromx5xL to
x502, from x502 to x501, from x501 to x5d2, from
x5d2 to x5d1, and fromx5d1 to x5xR . These terms
may be computed using Eqs.~4.1!, ~4.2!, and ~4.5!, as well
as the definitions ofVL andVR used in computing the drop
across the interface in Eqs.~4.8!–~4.11!. The result is

V52
uxLu

s↑
L1s↓

L 2VL1S m↑~d2!1m↓~d2!

2~2e!

2
m↑~01!1m↓~01!

2~2e! D2VR. ~5.3!

The first term in Eq.~5.3! is invariant upon changing the
direction of the magnetizations in either ferromagnet. Co
sequently, it drops out of the difference in Eq.~5.2!. Upon
solving for VL, one finds that it is also unchanged after r
versing the magnetization direction in one of the ferroma
nets. The third term in Eq.~5.3! is the voltage drop in the
paramagnet due to the charge current flow. It is not ass
ated with the nonequilibrium magnetization because it is
average of the electrochemical potentials for spin-up a
spin-down electrons. One would thus expect it to also
independent of the orientation of the ferromagnets. Unfor
nately, within this approach we cannot compute it direct
however, by comparison to the Onsager relation appro
described in the Appendix we will see that this term is
deed invariant under magnetization reversal. We are left w
only the last termVR as contributing to the signalRS :

RS5S 2VR

jA D
I

2S 2VR

jA D
II

. ~5.4!

In order to write the signalRS in as simple a manner a
possible we introduce two dimensionless quantitiesh18 and
h28 , which will reduce precisely to theh1 and h2 expres-
sions of Johnson in some limiting cases.

h185
1/G↓

L21/G↑
L1p~R↑

L1R↓
L!

1/G↓
L11/G↑

L1R↑
L1R↓

L , ~5.5!

h285
1/G↓

R21/G↑
R1R↓

R2R↑
R

1/G↓
R11/G↑

R1R↑
R1R↓

R . ~5.6!

In these equations and all subsequent equations the pa
eters,G↓ , G↑ , R↓ , andR↑ , are those in the parallel mag
netization configuration~configuration I!. We also introduce
two dimensionless ratios of resistances,r L and r R , which
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compare the junction resistance 1/Gs to the resistance asso
ciated with the spin diffusion in the leadsRs :

r L5
1/G↓

L11/G↑
L1R↑

L1R↓
L

R↑
M1R↓

M , ~5.7!

r R5
1/G↓

R11/G↑
R1R↑

R1R↓
R

R↑
M1R↓

M . ~5.8!

With these definitions, the result forRS is

RS5
1

2
h18h28

R↑
M1R↓

M

A H coshS d

dS
D S 1

r L
1

1

r R
D

1sinhS d

dS
D S 11

1

r Lr R
D J 21

, ~5.9!

wheredS is the spin-diffusion length in the paramagnet.
the notation of the previous sectiondS5(lS

M)21. Below we
examine several limiting cases of this equation forRS .

When the junction resistance is large compared to
resistance associated with spin diffusion, the dimension
ratios r L and r R are much larger than one. In this limit w
recover the Johnson and Silsbee9 result forh1 andh2:

h18→
G↑

L2G↓
L

G↑
L1G↓

L , ~5.10!

h28→
G↑

R2G↓
R

G↑
R1G↓

R . ~5.11!

Provided thatd/dS is not too small, the resistanceRS also
reduces in this limit to

RS'
1

2
h18h28

R↑
M1R↓

M

A
1

sinh~d/dS!
. ~5.12!

This is again in agreement with Johnson’s results@see Eqs.
~1.2! and ~1.3!#. One of the most interesting features of E
~5.12! is that the signalRS becomes larger as the samp
becomes smaller. Indeed ford!dS , the signal diverges a
RS;1/d. This is clearly not physical. The full result, Eq
~5.9!, does not diverge for very thin samples, but rather
proaches

RS→
1

2
h18h28

R↑
M1R↓

M

A H 1

r L
1

1

r R
J 21

. ~5.13!

The origin of the divergence in Eq.~5.12! is that we have
effectively taken the resistance of the junction to be infinit
large~compared toRs). If we keep the current fixed, then th
magnetization density is proportional toI tS /Ad. In reality,
though, this density will not become infinite, but some of t
magnetization will leak out into the ferromagnetic current
voltage probes. The length at which this happens is set by
dimensionless ratiosr L and r R .

In Fig. 3 we have plottedRS as a function ofd/dS for
different values ofr 5r L5r R . The producth18h28 is set equal
to one, which is the largest possible value of the product.
expected, all the curves decay exponentially ford.dS . The
d,dS behavior is different for the three values ofr . For
large junction resistance (r 5100) the productRSd is
e
ss

.

-

y

r
he

s

roughly constant for a wide range ofd below dS . Note that
RSd does eventually go to zero becauseRS goes to the finite
value in Eq.~5.13!. For smaller junction resistances (r 510
and r 51) the product decays more and more quickly f
small d. The overall magnitude also decreases asr is de-
creased.

In the same figure we have also plotted the data of Ref
with Permalloy as the ferromagnet and gold as the param
net. Since the plot in Fig. 3 is scaled by the diffusion leng
in both the abscissa and ordinate, we have chosen two
ferent diffusion lengths in plotting the data:dS51 mm
~squares! anddS54 mm ~circles!. The 1 mm spin-diffusion
length correctly describes the decay of the signal at la
d, but produces too large a signal at smalld. The 4 mm
spin-diffusion length produces agreement at smalld, but de-
cays too rapidly at larged. Thus, it is not possible to fit the
data quantitatively with this theory for alld, even though the
length dependence of the data looks qualitatively similar
the theoretical curve for large junction resistance.

VI. CONCLUSION

In this paper we have used a two-component dr
diffusion equation for spin-up and spin-down electrons
compute the signal for recent spin-injection experimen
The length dependence of the signal is determined by
ratio of two resistances. The first resistance is the resista

FIG. 3. The scaled spin-injection signalRS vs the thickness of
the film d. The curves are the theoretical result of Eq.~5.9! for
different values of the dimensionless ratiosr L5r R5r of Eqs.~5.7!
and~5.8! with h18h2851. Ford larger than the spin-diffusion length
dS , the signal decays exponentially. For large junction resista
(r 5100), the productRSd is roughly constant for a wide range o
d,dS , while for smaller junction resistances (r 510 or r 51),
RSd decays more rapidly. Even for large junction resistance,RSd
does eventually decay for smalld. The points are from the experi
ment of Ref. 12 for the case where Permalloy is the ferromagne
plotting the data we have used two different values for the sp
diffusion length:dS51 mm ~squares! anddS54 mm ~circles!. As
explained in Ref. 12 if one adjustsdS to fit the falloff at larged,
then the signal is larger than the theory, and if one adjustsdS to fit
the smalld data, then the experiment decays more quickly than
theory at larged. The resistivity of the paramagnet P isr, andA is
the cross-sectional area of the current probe in Fig. 2.
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of the junctions between the ferromagnets and the param
net. The second resistance is determined by how quickly
magnetization relaxes in the metals. This resistance is la
for long spin-relaxation times.

When the junction resistances are large, we reproduce
results of Johnson and Silsbee: the spin-injection signalRS
decays exponentially for large sample thicknessesd, and is
proportional to 1/d for sample thicknesses less than the sp
diffusion length. However, for sufficiently small samp
thicknesses we do find that the signal eventually satura
This saturation is due to the leakage of nonequilibrium m
netization out of the paramagnet into the current and volt
probes. For smaller junction resistances the size of the si
is smaller and the saturation of the 1/d behavior occurs for
larger d. Thus, to enhance the spin-injection signal for th
samples one should use a large junction resistance.

The theory does fit qualitatively the length dependence
the data assuming large junction resistances. This includ
possible beginning of the saturation of the 1/d behavior for
the smallest sample thickness measured. However, as
earlier analyses, it is not possible to quantitatively fit both
small d and larged data with the theory.
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APPENDIX: ONSAGER RELATIONS

In this appendix we provide an alternate derivation of
results of Secs. IV and V for the signalRS . This approach
has the advantage that the current flow is very nearly
dimensional, and hence the reduction to and interpretatio
our effective one-dimensional equation is more direct.

The Onsager relations for a resistance measuremen
plied to this problem state that the voltage measured is
changed upon interchanging current and voltage probe17

Thus, the voltage measured by the probe configura
shown in Fig. 2~b! is the same as the voltage measured
the probe configuration in Fig. 2~c!. This is a big advantage
because the current flow in Fig. 2~c! does not change direc
tions, but goes directly from left to right. There will be som
fringing of the current flows in the paramagnetic region
however, provided that the dimensions of the cross-sectio
areaA are large compared to the thickness of the param
netic regime, this fringing is small compared to the net c
rent.

For the current flow shown in Fig. 2~c! we again derive
effective one-dimensional equations and solve them. The
lutions in the three regimes have the following form:

x,0:
1

j S V↑~x!

V↓~x!
D 5S 1

1D H 2~x2xL!

s↑
L1s↓

L J ~A1!

1S ~s↑
L!21

2~s↓
L!21D H j L

2lS
L e1lS

LxJ ,
g-
e
er

he

-

s.
-
e
al

f
a

ith
e

d
y

e

e
of

p-
n-
.
n
y

;
al
g-
-

o-

0,x,d:
1

j S m↑ /~2e!

m↓ /~2e!
D 5S 1

1D H 2x

s↑
M1s↓

M 1
xL

s↑
L1s↓

L 2VLJ

1S ~s↑
M !21

2~s↓
M !21D H j M1

2lS
M e2x/LS

M

1
j M2

2lS
M e1lS

M
~x2d!J , ~A2!

x.d:
1

j S m↑ /~2e!

m↓ /~2e!
D 5S 1

1D H 2~x2d!

s↑
R1s↓

R 2
d

s↑
M1s↓

M

1
xL

s↑
L1s↓

L 2VL2VRJ
1S ~s↑

R!21

2~s↓
R!21D H j R

2lS
R e2lS

R
~x2d!J . ~A3!

Matching boundary conditions, the continuity of the sp
current gives

pL2 j L5 j M12 j M2e2ld, ~A4!

pR1 j R5 j M1e2ld2 j M2, ~A5!

wherepL is p of Eq. ~3.12! andpR is the same withL↔R.
The Landauer formula applied to the left and right junctio
gives

11pL2 j L5G↑
LS 2VL

j
1R↑

L j L2R↑
M@ j M11 j M2e2ld# D ,

~A6!

12pL1 j L5G↓
LS 2VL

j
2R↓

L j L1R↓
M@ j M11 j M2e2ld# D ,

~A7!

11pR1 j R5G↑
RS 2VR

j
1R↑

M@ j M1e2ld1 j M2#2R↑
Rj RD ,

~A8!

12pR2 j R5G↓
RS 2VR

j
2R↓

M@ j M1e2ld1 j M2#1R↓
Rj RD .

~A9!

As in Sec. V the voltage measured has several differ
contributions. The voltage drop betweenxL and 0 is again
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independent of the orientation of the ferromagnets. The v
age drop across the left interface has a contribution
2VL. Although it is not clear where in the middle parama
netic region the voltage probe measures the voltage, for
choice of position, 0,x,d, the voltage measured by th
average electrochemical potential is invariant under mag
tization reversal@see Eq.~A2!#. Thus, in this case the voltag
measured is just2VL:
lt-
of
-
ny

e-

RS5S 2VL

jA D
I

2S 2VL

jA D
II

. ~A10!

Upon solving Eqs.~A4!–~A9! for VL and substituting into
Eq. ~A10!, we obtain exactly the same result as Eq.~5.9!. In
this manner we can infer that the third term in Eq.~5.3! is
indeed invariant under magnetization reversal.
hys.
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