PHYSICAL REVIEW B VOLUME 56, NUMBER 6 1 AUGUST 1997-lI

Charge and spin transport through a metallic
ferromagnetic-paramagnetic-ferromagnetic junction

Selman Hershfield and Hui Lin Zh&o
Department of Physics and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611
(Received 3 February 1997

Using a pair of weakly coupled drift-diffusion equations for spin-up and spin-down electrons, we compute
the signal of recent spin-injection experiments by Johnson on ferromagnetic-paramagnetic-ferromagnetic films.
In the limit of large junction resistance, our results coincide with those of earlier calculations. As the junction
resistance decreases, there are correction terms which provide a cutoff to the size of the signal for films much
thinner than the spin-diffusion length. The physical origin of this cutoff is the leakage of nonequilibrium
magnetization out of the paramagnet into the current and voltage probes. Although our calculation can explain
the sample thickness dependence of the experiments, it cannot account for the large magnitude of the signal
observed[S0163-18287)03530-3

I. INTRODUCTION zation is that spin-up and spin-down electrons have different

chemical potentials. The clever part of this and the earlier

The transport of spin-polarized electrons in metals haspin-injection experiments is to measure the chemical poten-

been a subject of investigation for many years. One way tdial difference between the two spin species using a second

generate spin-polarized electrons is to drive a current from &rromagnetic voltage probe, shown as F2 in Fig. 1.

ferromagnetic metal to a nonmagnetic material. The earliest In thin magnetic films such as those used in the experi-

tunneling experiment done in this context was by TedrowMent the magnetization tends to be parallel to the plane of
and Meservey, who drove a current from a ferromagnetidhe film. By applying a sufficiently large magnetic field par-
film to a superconductdrAn alternative method is to create &/l€l to the film, the magnetization of the two ferromagnetic

a tunnel junction with a spin-dependent transmission probf'lms can be aligned parallel to one another. Since the films

ability or resistance. For example, such a junction can bg\/lll in general not have the same coercivities, as one reduces

created using a magnetic semiconductor for the barrier bea_md then reverses the direction of the magnetic field, at some

tween two normal metafsOf course, in any real experiment point the magr_netizqtion of one of the films will flip b_efore
) ) ’ the other. At this point the ferromagnets F1 and F2 will have
involving current flow from a ferromagnet to a paramagnet,

L SN .~ antiparallel magnetizations. Continuing to increase the mag-
the nonequilibrium magnetization is due to both the polarizagiy, e of the magnetic field, the other film will reverse its
tion of the electrons in the ferromagnet and the spinirection of magnetization and the two films will again have
dependent transmission probabilities at the interface. parallel magnetizations.

In recent years, one phenomena involving polarized elec- \what is measured experimentally is the voltage of the
trons which has attracted a great deal of experim&htaid
theoretical® interest is the giant magnetoresistance seen in
magnetic multilayers. In these experiments the resistivity of
alternating layers of magnetic and nonmagnetic metals de-
pends crucially on whether the magnetizations of adjacent
magnetic layers are parallel or antiparallel. Since the layers
can be aligned with small fields, one can see large changes ir
the resistance with small applied magnetic fields, leading to
technological applications as well as raising fundamental
physics questions.

In this paper we consider a different but not unrelated set
of experiments called spin-injection experiments developed
by Johnson and Silsbee over the last 10 yéard/ith this

technlque_ a ”O”GQU'“b”Hm population of spin-polarized FIG. 1. The experimental geometry of the spin-injection experi-
electrons is created by driving a current from a ferromagnefnent of Ref. 12. Current flows from the ferromagnetic current
toa parama%néq and then detected with the use of a secondyrope F1 to the paramagnet P creating a nonequilibrium magneti-
ferromagnet? In Fig. 1 we show the geometry of Johnson's zation in P. The voltage is measured between the ferromagnetic
most recent spin-injection experimeAtA current is driven voltage probe F2 and the paramagnetic voltage pmb@&his is
from the ferromagnetic metal labeled F1 to the paramagnetigone both for parallel alignment of the magnetizations of the two
metal labeled P. This creates a nonequilibrium magnetizatioferromagnetic films ;) and for antiparallel alignment of the mag-
which extends roughly one spin-diffusion length into thenetizations ¥,,). The differenceV,—V,, divided by the current is
paramagnet. One way to think of a nonequilibrium magnetithe signalRg.
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ferromagnetic voltage probe F2 relative to a reference para- —e(V,—V,)
magnetic metal voltage prob&. When F1 and F2 have M= -
parallel magnetizations, one voltage is measured, which we s
will denote aS\/| . When the magnetizations are antipara"el,AS discussed above' one would expagt: 1 fora ferromag_
another voltage is measureW;,. The voltage difference net with only one spin species occupied.
V=V, divided by the electrical current injected, is de- One of the most interesting features of the experiment in
fined asRs Ref. 12 is that the resistand®; does indeed grow like d/
Re= (V= V,))/I (1.2) for d<és. Thus, this is an effect which increases as sample
S b ' sizes are made smaller, which is highly desirable for techno-
which is the spin-injection signal. logical considerations. Another interesting and unexpected
To see that the voltage differendg—V, and Rg are feature of the experiment is that the produgty, appears to
related to the difference in the chemical potentials forbe larger than one, which is counterintuitive.
spin-up and spin-down electrons, we consider the limiting To better understand both the small thickness behavior
case discussed in Ref. 8 when only one of the spin speciegnd the size ofy, 7,, in this paper we present another analy-
s=1, is occupied in the ferromagnets. When the ferromagsis of the spin-injection experiment based on a two-
netic voltage probe is placed in contact with the paramagnet;omponent drift-diffusion equation, one component for each
the chemical potential of F2 will align with the chemical spin. One could also use higher component drift-diffusion
potentialu, for the spin-up electrons in P at the interface. If equations or the full Boltzmann equation; however, since
we flip the direction of magnetization of F2 so that only the even with a simple two-component model we cannot deter-
s=| electrons are occupied, then the chemical potential irmine all the parameters, we feel that a more sophisticated
the ferromagnetic voltage probe will align with the spin- analysis is not justified at this point. The approach used here
down chemical potentigh| in P at the interface. Thus, by is related to both the microscopic approach used by Johnson
measuring the difference between the chemical potentials @ind Silsbetand recent theory of the perpendicular magne-
F2 for these two cases, using a paramagnetic voltage prob@resistance in magnetic multilayers by JohriSamd by Va-
N, as a reference, one can directly meagure « . Forthe let and Fert® In particular the work of Valet and Fert also
case when only one spin species is occupied(V,—V,,) is  uses spatially-dependent chemical potentials and boundary
identically equal to fi;—u ). For an experiment using a conditions at the interface similar to ours. They have also
ferromagnetic material like iron or Permalloy, the ferromag-recently analyzed Johnon’s experimént.
net will have nonzero occupation of both spin species and Our goal in this paper is to answer the following ques-
—e(V,—V,;) will be proportional to fu;— /). tions: At the microscopic level of this model, what deter-
Johnson and Silsbee have performed both thermodynami®inesz; and »,? Can eitherp; or », be larger than unity?
and microscopic analyses of their spin-injection experiment.As the sample thickness is made smaller, does the signal
When applied to the experiment shown in Fig. 1 one findgliverge as I or is there a cutoff? If there is a cutoff, what
that for thicknessed of the paramagnetic filniP) less than governs the scale of it? In the end we will reproduce the
the spin-diffusion length in the paramagngy, the signal results of Johnson and Silsbee in the limit of large junction

1.5

grows as 1d: resistance between the ferromagnets and the paramagnet. As
the resistance is decreased, however, there are corrections.
pb‘é Some of these corrections may be important already in the
Rs~mna5 g (1.2} present experiments.

o o ) The rest of this paper is organized as follows. In the next
while in the opposite limit wherel> s, the signal decays section we introduce our two-component drift-diffusion

exponentially equation, solve it in a bulk system, and introduce the spin
0o and charge modes. In Sec. Il we treat the case of one junc-

S _ i IS i -

Rs~ M2 e d/ds, (1.3  tion between a ferromagnet and a paramagnet. This is actu

ally a calculation of the parameter,. By working through

this case in detail, we are able to simplify the treatment of
éhe full ferromagnet-paramagnet-ferromagnet junction de-
scribed in Sec. IV. In Sec. IV we also argue that this three-
terminal geometry is sufficient to explain the experiment of
Ref. 12. Thus, in Sec. V we compare the results of our cal-
culation to the experiment. All the results are summarized in
Sec. VI. An appendix gives an alternate derivation of the
(1.4 results in Sec. IV and V based on the Onsager relations for

resistance measurements.

In both Eqgs.(1.2) and (1.3 the resistivity of the paramag-
netic film isp, the cross-sectional area of the current probe i
A, and the factorsgy; and 5, are dimensionless parameters.
The first dimensionless parametgy is the polarization of
the current at the F1-P interface,

77_|T—|l
1= y
I+

wherel is the electrical current carried by spin-up<(1)
and spin-down = |) electrons. For the case in which only
one spin species carries currept is equal to one. The sec-
ond dimensionless parameter is a measure of how closely the The model used consists of spin-up and spin-down elec-
ferromagnetic voltage probe measures the difference in th#ons which diffuse independently except for weak scattering
chemical potentials for spin-up and spin-down electrons irfrom one spin to the other. The two kinds of electrons,
the paramagnet s=1 or |, have different diffusion constant®, density of

Il. CHARGE AND SPIN MODES
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states,Ng(Eg), and conductivitiesg,=e?Ng(EF)Ds. The From Egs.(2.8) and (2.9) we can see much of the basic
current densitieg, for spin-up and spin-down electrons are physics. First, in this no-coupling limit, the spin mode has no
determined by the electric field and the densityy: net charge density. It is truly a spin mode. Also, in the no-

) coupling limit the spin mode does not decay in space,

jy=01E=D;Vn,, (21 \g=0. Since the charge mode’s divergence is zero and it

i decays in space, the charge mode does not carry any current.

jj=0E-D/Vn,. (22) " Thus, in the no-coupling limit the spin mode has no net
The electric field is in turn determined by Gauss's Law, charget and does not decay, and the charge mode carries no

current.
The two scattering lifetimesr;; and 7;, can also be
V- Eze_o(”T+”L)- (2.3 related using the above equations. The net rate of scattering

, . ) of up electrons to down electrons is given by the right-hand
The rate at which spin-up electrons scatter to spin-dowride of Eq.(2.4). Similarly, the net rate of scattering of down

electrons is denoted by4/, . Likewise, spin-down electrons gjectrons to up electrons is given by the right-hand side of
scatter to spin-up electrons with ratez 1/. In steady state Egq (2.5). If we uniformly shift the chemical potential of the

this scattering can be included via entire system, then this rate should not change, and conse-
quently
. n.on
Vip==——+_—, (2.4) N
Tl 11 T(EF)_NL(EF):O 2.19)
. on o Tl T
Vii=s ﬁjL 7 29 1his equation can also be justified by the Boltzmann equa-
tion.

Equations(2.1)—(2.5) are the basic equations which we  Wwith a finite, but weak, coupling between spin-up and
solve. They satisfy current conservation because the sum @hin-down electrons, the spin-mode carries a small amount
Eq.(2.4) and Eq.(2.9) is zero:V-(j; +j,)=0. They can also  of charge and decays over a long length scale, the spin dif-
be combined to form the drift-diffusion equation by taking fusion length. To see this, we expand the eigenvectors and
the divergence of Eqs2.1) and (2.2) and substituting in  eigenvalues of the matrix in E@2.6) to lowest order in the

Egs.(2.39—(2.9: ratio of thex, ? to the Dy 7¢r ¢ in EQ. (2.6). The k' are
1 1 of the order of the(charge screening length, while the
K2 K2 (Dg 7o _¢) " Y2 are of the order of the spin-diffusion length.
n, Di7yy D7y n Since the screening length is of the order of an Angstrom and
VZ( ) = 1 1 ( ) (2.6)  the spin-diffusion length is of the order of 100 A or larger,
N K Kf n this is a good approximation. The resulting eigenvectors and
D7y D7y ; :
eigenvalues for the spin mode are
where e 1+al2 ()\ )2_ ﬁ—i_ﬁ i (2 12
k2= 0/(Ds€o) = €*Ny(E)/ o, 2.7 S \=1+ar)” % Dy Djrs’ 7
and « is the inverse of the screening length, which is by farwhere the spin-relaxation rate is
the smallest length scale in the problem.
We first examine the case when the spin-up and spin- 1 1 1
down electrons are not coupled, i.e.71/~1/7;,=0. In this T_s = ﬁJrE (2.13
case the matrix on the right-hand side of E2.6) is easily
diagonalized. We will call the two eigenvectors the spin andand the dimensionless facteris
charge modes and label themwasandv . The eigenvalues
have units of inverse length squared so we denote them by 1 1 1)1
(Ng)? and (\g)?, where\ has units of inverse length. With a= P D, D,/7s (2.14

these conventions the eigenvectors and eigenvalues are

y Thus, if we allow electrons to scatter from one spin to the
7 2.2, 2 other, the spin mode has a finite but long decay leitgjpin-
va ( 71)’ (AQ)"=ri+ i, 28 diffusion length, and it has a finite but small charge density.
Because of the relation Ed2.11), the eigenvector of the
) charge mode remains the same. The eigenvalue does change,
UsT| _q ) (Ag)*=0, (29 put the change is small and can be neglected. This is differ-
ent from the spin mode, where the spin-coupling correction
where y, is the fraction of the density of states at the Fermicould not be neglected because both the charge carried by the
surface due to spin-up and spin-down electrons: spin mode and g * are zero without spin coupling.
In actually matching boundary conditions and solving the
y= Ns(Ef) _ (2.10 drift-diffusion equation, it is more convenient to work with
* Ns(Ep)+N_g(Eg) the spin-dependent electrochemical potenjia(x), than the
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density, ny(x), of Eq. (2.6). The spin-dependent electro-
chemical potential is defined by

Ng(X) = —eNs(Ep)[ us(x) +eV(X)] (2.19

or equivalently by

s(X) . Ns(X)
—e VIt N (B

(2.19

where V(x) is the electrical potentialE=—VV(x). From
Egs.(2.1) and (2.2) the electrochemical potential is simply
related to the current via

js:_UsV(M_Se)- (2.1

Although both the densityj(x), and the electrical potential,

V(x), vary over a charge screening length near a boundary, I\]/
the electrochemical potential defined in Eg.16) is smooth
over a charge screening length. This can be readily seen by (©) /,,’/
computing the equation for the electrochemical potentials I ‘ ,I’ I%
from Eqgs.(2.1)—(2.6): N F1 ".: p 1
1 1 )
+ —
D7 D7
uw 171l 1T [
V2< T) = 1 1 . 18 v
M) + My

D7y Dyr . . o
FIG. 2. Idealized two-terminal and three-terminal spin-injection

L . . geometries(a) In the two-terminal geometry used in Sec. Il cur-
The matrix in Eq.(2.18 has two eigenvalues and eigenvec- rent flows from the ferromagnet F to the paramagnetbpPin the

tors, which again correspond to the charge and spin modeg,ee-terminal geometry used in Sec. IV current enters through the

Because the electrochemical potential is a linear combmatmnzrromagnetic current probe F1 and exits through the paramagnetic

of the excess charge density and the electrical potential current probe P. The ferromagnetic voltage probe F2, is used to

V, the eigenvectors are changed. The new charge mode &heasure the nonequilibrium magnetization in(®. In the three-

genvector and eigenvalue are terminal geometry used in the Appendix current enters through F1
and exits through F2. The voltageé measured ir(b) and(c) is the

1 )0 same because of the Onsager relations for a resistance measure-

1)’ ()\Q) =0. (2.19 ment. The dashed lines indicate a typical slab used to reduce the
three-dimensional problem to an effective one-dimensional problem

The fact that the charge eigenvalue is zero does not meat#ia the divergence theorem.

that there is no screening, but only that the electrochemical

potential does not vary over a charge screening length. The l1l. ONE JUNCTION

new spin mode eigenvector and eigenvalue are

!

UQ:

Before going to the three-terminal case we first consider
the simpler two-terminal geometry shown in FigaR Al-

), ()\’5)2: (\g)2. (2.20 though this case has been treated by a number of authors, we
go through it in detail because it will allow us to introduce

, 1
Vea=
s UT+Ul

gy

—a,
The electrochemical potential varies over the same spini—ﬂe batsm t_)oulndary C(?[ndltlogshused n ther m?rr]e compllgi;_ed
diffusion length as the density. ree-terminal geometry and hence simplify the more diffi-

The reason that the electrochemical potential is more useC—UIt case. . . .
As a first step we reduce the three-dimensional equations

ful than the density in solving this problem is that it varies . ! ; : i
over only one length scale, the spin-diffusion length, Whichto OF‘e'd'me”S'of‘a' equations. A set .Of one-d_|mens_|onal
is much larger than a mean free path. We can expect a dhf_unctlons are defined by mtegratmg their three-dimensional
fusion equation to describe behavior on length scales |arg(éounterparts over a cross-sectional area

compared to a mean free path, but not behavior on length

scales much smaller than the mean free path, e.g., the charge 1 )

screening length. Furthermore, we will see in the next sec- m(x)= Zf dx, m(x), 3.1

tion that the difference in the electrochemical potential is

what enters into our Landauer formula boundary condition 1

describing the current across a boundary between two mate j(x)= Zf A2, (X)),

rials. (3.2
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The x direction is the direction of current flow as shown in -1
Fig. 2(a@). If one assumes that there is no current flowing out AL:ﬁ: (3.7
the sides of the wire, then applying the divergence theorem a1
to a slab like the one in Fig.( allows one to reduce Eq. 1
(2.18 to a one-dimensional equation: AR=_— = . 3.9
o + o
1 1
) + D.r “D.r 3. The spin current is continuous across the interface.
a7 (| T P 33 Spin-flip scattering could be included; however, this would
dx? i N 1 n 1 I ' tend to reduce the spin polarization, since it allows the mag-

D7, D7y netization to relax. Because we are interested in seeing how
large the effect can be theoretically, we do not include spin-
flip scattering. Again using Eq3.4) to compute the current,

The current in thex direction is also given by a one- i . g
9 y the spin current boundary condition yields

dimensional equation

L
dudx)/(—e 9179 LR
js(x)=—os%. (3.4 e (3.9

Equations(3.3 and (3.4 are satisfied on both the left- 4, 5. The current across the junction is determined by the

hand side(ferromagnet, Fand right-hand sidéparamagnet difference in the electrochemical potential across the junc-
P) of the junction. We denote the different values of thetion- Up to this point we have not said anything about the

screening lengths, conductivities, etc., on the two sides of thifansparency or opacity of thedilgtterface between the two re-
junction with superscriptd. and R. Using the eigenvalues gions. Using a Landauer formutethe current is determined

and eigenvectors of Eq¢2.19 and (2.20, the solution of by the difference in the electrochemical potential on the left

Eq. (3.3 on the left-hand sidex<0) has the form side and right side of the junctiop(0") and u5(0"), re-
spectively. Letting the conductances per unit area for spin-up
B L Ly—1 and spin-down electrons b8, and G, the spin-up and
.E('“T/( e)):(ALX+BL) 1 +J—|_ +)\Lx( (o7) ) spin-down currents are
I l(—e) 1) 2hg —(a)7!
(3.5 . pi(07)  py(07)
o 11(0=6| ~ =~~~ (3.10
In Eq. (3.5 we have explicitly divided out the net current
density, j, which is the sum of the spin-up and spin-down B .
current densities. The net current density is constant because ; _ py(07) _f“l(o )
; o ; j (0)=G, . (3.1)
of current conservation. The solution is determined from —e —e

three constant-, BY, andj‘, which will be determined by

matching boundary conditions at the interface between the Before solving Eqs(3.7)—(3.11) we introduce some no-
two regions. The solution on the right-hand side>(0) has tation which will simplify the equations. We let the polariza-
a similar form and also contains three unknowns, which wdion of the current far to the left of the junction be defined as

denote a#AR, BR, andj®: P,
L L
1 MT/(—e)) 1\ R e[+ _o o
- = (ARX+BR)| | +o—ge ts* P=—T T (3.12
N\ul(—e) ( ) 1 2)\2 —(o-lRY1 oy to)
(3.6

For this junction, there is no polarization far to the right of
the junction because the right-hand side is a paramagnet. As

F :qu\:vatlor;rs(r?;l.st)hanq r(13.t6i3) nhat\;1e a |t0t?r| OI] Srlr)1(i unlkno':/vnﬁ. | described in the introduction, we define the spin polarization
foa: sain{ilz f(;nd S einJ-L(Ijo(\:/vg e’lec(taroen(sacarzcthee SC;Grlnep OT?werz Sf'Jlt the interface o bey, [see Eq(1.4]. The voltage drop

pin-up p! . s ' € Beross the interface due to the charge mode is defined as
an arbitrary offset in defining the electrochemical potential.

This offset can be fixed by one of the variables, Bay This Vi

leaves five remaining unknowns, which are solved via five V=BL—BR (3.13
boundary conditions. Below we examine these boundary ' ’
conditions one at a time. Finally, we introduce two quantities which have the dimen-

1,2. The net current at %+ is the same as the net sions of resistance per unit area:
current at x= —o and equal to j.The electrical current is
related to the electrochemical potential via Eg.4). Since L1
the spin modes decay, the currentstat are entirely deter- Rs:m: (3.14
mined by the electric fields at «: j=(o,+ 0 )E. Taking sTs
the derivative of the electrochemical potentials in E§sH 1
and(3.6), this boundary condition determines the coefficients RR=W.
Al andAR: ® oghs

(3.1
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They are the resistance per unit area of a region one spirsame result based on the Onsager relations for resistance
diffusion length long. Consequently, a longer spin-diffusionmeasurements.

length means a largd®" or RR. As in Sec. lll, we apply the divergence theorem to a thin
With these definitions, the now three equations whichslab. In the ferromagnetic regions, F1 and F2, the integrals
must be solved are over the sides of the wire vanish because no current flows
LR out the sides. Thus, one-dimensional equations can be de-
nm=p —j =], (3.16  rived for x<0,
1+ vV RL'L RR'R _ _ _ S L Ly—1
e ] e . P U Ly
J i\ l(=e))  or+o; \1] 2xg (o))"
. . (4.)
-9 _ [V _Ri" R"
2 G722 T2 (318 and forx>d
The solution forn, from these equations is }(MT/(—G)) _ R( 1) +£ex§<xd)< +(U$)—1)
UG, 1/G,+p-(R-+RY) Nul(-e) 1) 2\g —(H )
71 (3.19 4.2

T UG, + UG+ R+ R+ RTHRY
In Eqg. (4.1) the boundary condition that the net incoming

There are several limits of Eq3.19 which can be easily L : . ;
understood. First if the junction has a large resistanceSU/™eNt density ig has been included by setting the coeffi-

1G> Rls', RE: then the expression fop; of Johnson and cient ofx for the charge mode equal tol/(o;+ o). Simi-

: : - - : larly, the fact there is no net current going into the voltage
Silsbee is reproduced exacflysecond, if the spin relaxation ; . o .
in the leads is weak, i.eRL, RR>1/G,, then 7, is deter- probe has been included by taking the coefficiert af Eq.

mined by the polarizatiop of the electrons coming from the (4.2 1o be zero,

ferromagnet. In the intermediate regime, E8.19 interpo- The situation is more complicated in t_he paramagnetic
o . . region P, where the lower edge of the slab is not on a bound-
lates between the two limits. Note that in no case{of Eq.

ary [see Fig. 20)]. At this boundary,js=— oV us is defi-
(3.19 larger than one. nitely not zero because the current exits there. The key here

is to look at the spin current instead of the charge current. By
IV. THREE-TERMINAL DEVICE subtracting the spin-up and spin-down electrochemical po-

There are two important observations to make to reducd&ntials in Eq.(2.18, we obtain
the actual experimental geometry shown in Fig. 1 to a three-
terminal geometry. First, the voltage probes are perpendicu- 2 _
lar to the electrical current flow. Consequently, there is no v ['“T(X)_“1(X)]_D_TS[MT(X)_M(X)]’
Ohmic voltage drop between the two voltage probes. Sec-
ond, the length scale of the cross-sectional area of the voliwhereD=D;=D | is the diffusion constant in the paramag-
age probes is much larger than the spin-diffusion lengthnet. There is a leakage of the spin curreﬂtr'\"(m—,ul),
Thus, the leakage of the nonequilibrium magnetization fronout the lower boundary; however, the reduction of the non-
the region under one voltage probe to the other is negligibleequilibrium magnetization due to this spin current is small
We can regard the two voltage probes independently. Insteazbmpared to the decay due to spin-flip scattering) (be-
of working with a four-terminal geometry, we can use thecause the size of the voltage pads is much larger than the
three-terminal geometry shown in Fig(b2 Since the volt-  spin-diffusion length. In Johnson’s experiment, the voltage
age between the paramagnet P and the paramagnetic voltagads have an area of 1@ mm?, which is large compared to
probeN is independent of the relative orientation of the fer- spin-diffusion length, which is at most of order a micron.
romagnets, the experimentally relevant voltage is the voltag&his means that even though(u,— ) is not zero at the
of the ferromagnetic voltage probe relative to some referenclkower boundary, it is small, and one can derive a one-
voltage. Remember, the signal is determined by the differdimensional equation for the difference in the electrochemi-
ence between the voltage when the ferromagnets have paralal potentials in the paramagnet:
lel magnetizationsy,, minus the voltage when they have
antiparallel magnetizationy/;, . We will take as our refer- A2y (%) =y (X)]
ence voltage a point far into the left lead,<0, where the T :D_TS['“T(X)_’%(X)]' (4.9
electrochemical potentials for spin-up and spin-down elec-

trons are equal. The voltage at this point is taken to be zercgp;g equation has a solution of the form<(&<d):

0=y (X)) =p (XL).
‘M1
i+i){ J ef)\g'x

4.3

The actual current flows in Fig(B) are complex because

o : X)— (X
the current must change direction as it goes from the ferro- M:

. _ i M M M
magnet F1 to the paramagnet P. None the less one can derive (—e)j oy o /|2\s
effective one-dimensional equations. In this section we vz
present a derivation similar to the one used in the previous +-— _ersx=d (4.5
i i ivati 2\g
section. In the Appendix we present another derivation of the s
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We now match boundary conditions between the two rethe same. The signal measured is the difference of the volt-
gions as in the previous section. The conditions for continuage,V, shown in Fig. 2b) for F1 and F2 with parallel mag-

ity of the spin current ak=0 andx=d are netizations(configuration } minus the voltage measured for
" F1 and F2 with antiparallel magnetizatio@e®nfiguration I).
p_'L:le_jMZef)\Sd, ( )
55 52
jR:leef)\gd_jMZ, @.7) S\jA), LjAl '

wherep is defined in Eq(3.12. The other important bound- To go from configuration | to configuration Il in Eq5.2)
ary conditions are the Landauer formula boundary conditiongne interchanges the spin-up and spin-down parameters,

like Egs.(3.10 and(3.11). Equation(4.5) allows us to relate 4, D, G, .. .. in one of theferromagnets. This corre-
the difference in the electrochemical potentials betweerponds to flipping the magnetization in that ferromagnet.
spin-up and spin-down electronsat 0 and atx=d, but it The voltageV is the sum of several different contribu-

does not relate the average electrochemical potential betwegidns. There are voltage drops in going frorex, to
the two sides. Fortunately, the Landauer formula boundary=0~ from x=0" to x=0", from x=0" to x=d~, from
condition only involves the difference in the electrochemicaly=q~ to x=d*, and fromx=d* to x=xg. These terms

potential between pointg=0~ andx=0" and between the may be computed using Eq&t.1), (4.2), and (4.5), as well
pointsx=d™~ andx=d™. The part of the voltage drop at the as the definitions o¥/- and VR used in computing the drop

interface due to the charge mofié in Eq. (3.13] can be  across the interface in Eqet.8—(4.11). The result is
treated as an unknown. In analogy with E8.13 we define

VL to be the voltage drop at=0 due to the charge mode [X_| Lo () +p(d7)
and VR to be corresponding the voltage dropxatd. The V=- ot + ob —Voe 2(—e)
four equations for the two junctions with two possible spin o
orientations is then 0")+u,(0F
(07 ( )) _VWR 53
L 2(—e)

2V M
1+p_JL:GIf(J-_+R%1L_R¥[1Ml+lme Asd])' The first term in Eq.(5.3 is invariant upon changing the
(4.8)  direction of the magnetizations in either ferromagnet. Con-
sequently, it drops out of the difference in E§.2). Upon
AL 2Vt Ll oMe:ML L M2 Mg solving for V', one finds that it is also unchanged after re-
1-p+i~=G] J-__RU TRILT e s, versing the magnetization direction in one of the ferromag-
(4.9 nets. The third term in Eq5.3) is the voltage drop in the
paramagnet due to the charge current flow. It is not associ-
ated with the nonequilibrium magnetization because it is the
average of the electrochemical potentials for spin-up and
(4.10  spin-down electrons. One would thus expect it to also be
independent of the orientation of the ferromagnets. Unfortu-
. ] M, ] nately, within this approach we cannot compute it directly;
_JR:G?(T_Ry[JMle}‘Sd+JM2]+R?JR : however, by comparison to the Onsager relation approach
(4.17  described in the Appendix we will see that this term is in-
deed invariant under magnetization reversal. We are left with

‘R_ ~R 2VF MriM1la—AMd, M2 R:R
j7=Gj T+R¢[J e s+ =R,

R
The factors of 2 appear in these equations because wenly the last termvVR as contributing to the sign@®s:
have multiplied by 2 on both sides of the equatipsese Eqgs. o )
-V -V
(3.14 and (3.15. The six equations, Eq$4.6)—(4.11), are Rs= jA ) _( jA ) ' (5.4
the equations which must be solved in order to compute the ! !

(3.17 and(3.18]. The resistanceR, are defined as in Egs.
signal measured in the experiment. In the next section we |n order to write the signaRs in as simple a manner as

discuss the results of the solution. possible we introduce two dimensionless quantitigsand
75, which will reduce precisely to the), and 7, expres-
V. RESULTS sions of Johnson in some limiting cases.
The voltageV measured in Fig. ®) is measured relative . UGT—1/G-+p(R;+RY))
to the x,. In terms of the electrochemical potentials it is M= GG A RLARE (5.9
ven b ! TR TR]
given by
R_1/~R, pR_ DR
Hs(XR) Ms(XL) T UG, ~UGT+RI—Ry (5.6)
V=T || T=¢ | 5.2 72T GRF 1UGTH R+ R '

wheres is T or | . Implicit in Eq. (5.1) is that the ends of the In these equations and all subsequent equations the param-
voltage probes are further than a spin-diffusion length awagters,G,, G;, R, andR;, are those in the parallel mag-
from the interfaces ak=0 andx=d so that the electro- netization configuratioriconfiguration }. We also introduce
chemical potentials for spin-up and spin-down electrons aréwo dimensionless ratios of resistances,and rg, which
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compare the junction resistancezl/to the resistance asso- 102 —r——rrrm I — e
ciated with the spin diffusion in the leadk;: c 3
L L L L I~ o 7
_UG+UGTHRIHR] 57 . 10'L o o _=
- RY+RY ' ' N, 2 3
] N ]

R R R R ~—
- _UGTHUGH+RIAR] sy S 100 R
TTORART R - ;
With these definitions, the result féts is & 10-1 L _ i
E - 7 o 3
L RV +RY r(d)(l 1) - =10 oy V3
=5mny— Cosh — || —+ — - o= A ]
S 2771772 A 55 . re 10—2 el Lol Lot

d 1 \)t 1072 1071 100 10!
+smr<§5 1+ m)} , (5.9 d/8s

where ds is the spin-diffusion length in the paramagnet. In  FIG. 3. The scaled spin-injection signak vs the thickness of
the notation of the previous secti(ﬁgz()\“s")‘l. Below we the film d. The curves are the theoretical result of E§.9) for
examine several limiting cases of this equation Ray. different values of the dimensionless ratigs=rg=r of Egs.(5.7)
When the junction resistance is large compared to th@nd(5.8) with »;7,=1. Ford larger than the spin-diffusion length
resistance associated with spin diffusion, the dimensionlesss. the signal decays exponentially. For large junction resistance
ratiosr, andrg are much larger than one. In this limit we (7=100), the producRsd is roughly constant for a wide range of

recover the Johnson and SilsBeesult for 71 and 7, d<ég, while for sma_ller junction resista_nces_=€ 10 or r=1),
Rsd decays more rapidly. Even for large junction resistarisl
GIT-_ G|I does eventually decay for small The points are from the experi-
771—> P (5.10 ment of Ref. 12 for the case where Permalloy is the ferromagnet. In
Gr+Gy plotting the data we have used two different values for the spin-

GR_GR diﬁus?on Ie.ngth:55=1. um (sqqareband {5524 um (circles. As
r 21 ! (5.11) explained in Ref. 12 if one adjusi to fit the falloff at larged,
72 G$+ G'f' ' then the signal is larger than the theory, and if one adjast® fit

. . ) the smalld data, then the experiment decays more quickly than the
Provided thatd/ ds is not too small, the resistand®s also  theory at largal. The resistivity of the paramagnet Psand.A is
reduces in this limit to the cross-sectional area of the current probe in Fig. 2.

1, RY+RY 1 :
Rs~ = 7175 : i (5.12  roughly constant for a wide range dfbelow 55. Note that
2 A sinh(d/5s) Rsd does eventually go to zero becalgggoes to the finite
This is again in agreement with Johnson’s res[see Egs. value in Eq.(5.13. For smaller junction resistancesf( 10
(1.2 and(1.3)]. One of the most interesting features of Eq.@nd r=1) the product decays more and more quickly for
(5.12 is that the signaRs becomes larger as the sample small d. The overall magnitude also decreasesr as de-
becomes smaller. Indeed fdr< s, the signal diverges as Creased.

Rs~1/d. This is clearly not physical. The full result, Eq. !N the same figure we have also plotted the data of Ref. 12
(5.9, does not diverge for very thin samples, but rather apWith Permalloy as the ferromagnet and gold as the paramag-
proaches net. Since the plot in Fig. 3 is scaled by the diffusion length
in both the abscissa and ordinate, we have chosen two dif-
1, ,R$"+R’l\" 1 1)°¢ ferent diffusion lengths in plotting the datais=1 um
Rs—smm——1— T a] (5.13  (squaresandss=4 um (circles. The 1 um spin-diffusion

length correctly describes the decay of the signal at large
The origin of the divergence in Eq5.12) is that we have d, but produces too large a signal at sm@ll The 4 um
effectively taken the resistance of the junction to be infinitelyspin-diffusion length produces agreement at smalbut de-
large(compared tdR). If we keep the current fixed, then the cays too rapidly at largd. Thus, it is not possible to fit the
magnetization density is proportional tes/.Ad. In reality,  data quantitatively with this theory for all, even though the
though, this density will not become infinite, but some of thelength dependence of the data looks qualitatively similar to
magnetization will leak out into the ferromagnetic current orthe theoretical curve for large junction resistance.

voltage probes. The length at which this happens is set by the
dimensionless ratios, andrg.

In Fig. 3 we have plottedRs as a function ofd/ dg for
different values of =r =rg. The producty; 7, is set equal In this paper we have used a two-component drift-
to one, which is the largest possible value of the product. Agliffusion equation for spin-up and spin-down electrons to
expected, all the curves decay exponentiallydors. The  compute the signal for recent spin-injection experiments.
d<<ég behavior is different for the three values of For  The length dependence of the signal is determined by the
large junction resistancer€£100) the productRsd is  ratio of two resistances. The first resistance is the resistance

VI. CONCLUSION
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of the junctions between the ferromagnets and the paramag- 1 puil(—e) 1 —X xt
net. The second resistance is determined by how quickly the0<<x<d:— ) :( ) MM T T —V'-]
magnetization relaxes in the metals. This resistance is larger Nu (=) \1]|oy +o ojtoy
for long spin-relaxation times.

When the junction resistances are large, we reproduce the My—1 w1
results of Johnson and Silsbee: the spin-injection sigtal (o) l_e,X,Lgl
decays exponentially for large sample thicknes$eand is _(UTA)_l 2)\g"
proportional to 1d for sample thicknesses less than the spin-

diffusion length. However, for sufficiently small sample +£eﬂg(x,d) (A2)
thicknesses we do find that the signal eventually saturates. 2)\g" ’
This saturation is due to the leakage of nonequilibrium mag-
netization out of the paramagnet into the current and voltage
probes. For smaller junctiqn resistances the.size of the signal 1( o /(—e)) (1) { —(x—d) d
is smaller and the saturation of thedldehavior occurs for x>d:— = — T
largerd. Thus, to enhance the spin-injection signal for thin Nu (=€) 1l oytep oy+to
samples one should use a large junction resistance.
The theory does fit qualitatively the length dependence of L
the data assuming large junction resistances. This includes a + —yL_\R
possible beginning of the saturation of thel hehavior for a%+a'l-
the smallest sample thickness measured. However, as with Rv—1 .
earlier analyses, it is not possible to quantitatively fit both the (o7) s Bx-a| (a3
smalld and larged data with the theory. _(U'f)—l zy\ge -(A3)
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APPENDIX: ONSAGER RELATIONS pR+j R:lee—Ad_jMZ, (A5)

In this appendix we provide an alternate derivation of the
results of Secs. IV and V for the signRk. This approach wherept is p of Eq. (3.12 andpR is the same with.<R.

has the advantage that the current flow is very nearly on§he | andauer formula applied to the left and right junctions
dimensional, and hence the reduction to and interpretation Cﬁives

our effective one-dimensional equation is more direct.

The Onsager relations for a resistance measurement ap-
plied to this problem state that the voltage measured is un- AV
changed upon interchanging current and voltage prbbes. 1+ pL—j"=G'T'(.—+R'T'j'-—R'T\"[jM1+jMze_)‘d]>,
Thus, the voltage measured by the probe configuration J (AB)
shown in Fig. 2b) is the same as the voltage measured by
the probe configuration in Fig.(®. This is a big advantage
because the current flow in Fig(2 does not change direc- L
tions, but goes directly from left to right. There will be some  1— pL+jL=Gt(
fringing of the current flows in the paramagnetic region P;

however, provided that the dimensions of the cross-sectional (A7)
areaA are large compared to the thickness of the paramag-
netic regime, this fringing is small compared to the net cur- SR
rent. . ' ' ' 1+pR+jR=GTR(.—+R'T\A[lee_)‘d-i-jMz]—R?jR),
For the current flow shown in Fig.(@ we again derive J
effective one-dimensional equations and solve them. The so- (A8)
lutions in the three regimes have the following form:
2VR
O_E(VT(X)):(:L)[—(X—XL)] (A1) 1—pR—iR=GT(]——RT”[iMle‘”dﬂMzHR?iR)-
FARAIES) 1/| o+o (A9)
(Ulf)_l jL ik . .
+ Loq | {=cet e As in Sec. V the voltage measured has several different
(o)) 2\g contributions. The voltage drop betwegh and 0 is again
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independent of the orientation of the ferromagnets. The volt- ERVE -yt
Tl AT, o
| I

age drop across the left interface has a contribution of Rs=| = A A
— VL. Although it is not clear where in the middle paramag- : J
netic region the voltage probe measures the voltage, for any
choice of position, 8x<d, the voltage measured by the Upon solving Eqs(A4)—(A9) for V- and substituting into
average electrochemical potential is invariant under magnekq. (A10), we obtain exactly the same result as E§19). In
tization reversalsee Eq(A2)]. Thus, in this case the voltage this manner we can infer that the third term in E§.3) is
measured is just V': indeed invariant under magnetization reversal.
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