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Magnetic susceptibility of EuTe/PbTe Heisenberg antiferromagnetic superlattices:
Experimental and theoretical studies
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We report results on the temperature dependence of the susceptibilities of a set of MBE-grown short-period
EuTe/PbTe antiferromagnetic superlattices having different EuTe layer thicknesses. In-plane and orthogonal
susceptibilities have been measured and display a strong anisotropy at low temperature, confirming the occur-
rence of a magnetic phase transition in the thicker samples, as seen also in neutron-diffraction studies. We
suggest that dipolar interactions stabilize antiferromagnetic long-range order in an otherwise isotropic system
and we present numerical and analytical results for the low-temperature orthogonal susceptibility.
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I. INTRODUCTION

Magnetic films and multilayers have been a subject
intense study since they provide experimental realizations
various two-dimensional~2D! magnetic models.1,2 Most of
the recent literature has focused onmetallic magnetic struc-
tures. However,insulating antiferromagnetic structures pro
vide an opportunity to study magnetic long-range order
2D layered systems oflocalized spins. Among those, the
EuTe/PbTe superlattice~SL! structures are of special intere
since only one of the two components, EuTe, is magneti

Bulk EuTe is a type-II antiferromagnet of the family o
europium chalcogenides, with the structure of NaCl. Its m
netic moments arise from the strongly localized 4f electrons
of the Eu21 atoms which are in a symmetric8S7/2 ground
state. Thus, the europium chalcogenides have long been
sidered ideal realizations of isotropic Heisenberg model3,4

Antiferromagnetic resonance experiments have confirm
that, once dipolar interactions are taken into account,
residual anisotropy in EuTe is negligible.5,6 Bulk EuTe has a
Néel temperature (TN) of 9.8 K. BelowTN , spins belonging
to a single~111! plane are parallel but antiparallel to spins
adjacent~111! planes. The magnetic properties of EuTe a
described by a Heisenberg Hamiltonian with two exchan
constantsJ1 ~nearest neighbors, ferromagnetic! andJ2 ~next-
nearest neighbors, antiferromagnetic!:

Hex5J1(
NN

Si•Sj1J2 (
NNN

Si•Sj . ~1!

The Si vectors denote Eu21 spins, which have magnitud
7/2. J1 and J2 are not known very precisely; currently a
cepted values are J1 /kB520.0460.01 K and
J2 /kB50.1560.01 K, wherekB is the Boltzmann constant.3,7

Although the Hamiltonian in Eq.~1! has full rotational
symmetry, neutron-diffraction experiments show that
spins lie in~111! planes.8 This easy-plane anisotropy is prop
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erly accounted for by adding dipole-dipole interactions to
exchange Hamiltonian in Eq.~1!.9,10

In this article we present experimental and theoreti
studies of the susceptibilities of short-period EuTe/Pb
SL’s. We use the notation EuTe(j)/PbTe(h) to denote a SL
structure whose period consists ofj monolayers of EuTe and
h monolayers of PbTe. Each sample used in the pres
work consisted of 400 such periods and was prepared so
h53j. Since samples are grown in the~111! direction, the
structure within the EuTe monolayers is that of a triangu
lattice and the monolayers are stacked according to
ABC sequence. Section II describes our samples and
sents results for their temperature-dependent zero-field
ceptibilities. Section III presents a discussion of the expe
mental results, and then Sec. IV presents a mean-fi
determination of the order parameter, a Monte Carlo simu
tion of the susceptibilities of an EuTe~3!/PbTe~9! sample,
and a calculation of the out-of-plane susceptibility at lo
temperature. Section V summarizes our findings.

II. EXPERIMENTAL RESULTS

A. Sample characterization

Experiments were conducted on SL samples
EuTe(j)/PbTe(3j) for 1<j<7. In each sample the SL
stack was grown on a 3000 Å PbTe~111! oriented buffer
layer, itself grown on a BaF2 ~111! substrate. A 500 Å PbTe
cap layer was used to prevent oxidation of the highly re
tive EuTe. Details of the molecular beam epitaxy~MBE!
growth process have been published elsewhere.11–13 The
SL’s have approximately square wave composition modu
tion, as reflected by the multiple narrow SL peaks of t
high-resolution x-ray-diffraction data.14 Electron spin reso-
nance~ESR! experiments show very little interdiffusion a
the EuTe-PbTe interface.15 Furthermore, carefulin situ scan-
ning tunneling microscopy~STM! investigations have shown
that the PbTe and EuTe heterointerfaces are quite smoot
3281 © 1997 The American Physical Society
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a length scale of at least 200 Å, with imperfections stric
limited to single monolayer steps.17 The ex situ cross-
sectional transmission electron microscopy~TEM! images
also exhibit smooth PbTe and EuTe interfaces.18

The magnetic properties of the SL’s used have been s
ied previously by superconducting quantum interference
vice ~SQUID! magnetometry,14 and elastic neutron
scattering.19 Magnetic hysteresis curves and neutron diffra
tion spectra taken at 1.8 and 4.2 K show that for all samp
with j>3 a transition to a low-temperature ordered pha
takes place atTN> 4.2 K, the order being that of a type-
antiferromagnet, i.e., identical to that of bulk EuTe. Since
MBE samples are grown along the~111! direction, this im-
plies that the spins in each EuTe monolayer order ferrom
netically and are antiparallel to those in neighboring mo
layers. Moreover, the spins lie within the EuTe monolaye
Static magnetization measurements taken parallel to the
plane show no detectable in-plane anisotropy.16

FIG. 1. The two principal orientations of the sample with r
spect to the ac probing field for thex in ~a! andxout ~b! susceptibility
measurements.
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B. Experimental conditions

Our susceptiblility measurements used a Quantum De
~MPMS5! ac susceptometer. Susceptibilities were measu
in two geometries:x in was measured with the ac probin
field h parallel to the SL plane, andxout was measured with
h orthogonal to the SL plane~see Fig. 1!.

For each sample,x in and xout have been measured as
function of temperature from 15 K in the paramagnetic
gion to below the transition temperature, in a nominal ze
external static magnetic field~i.e., less than 2 G! with a 20
Hz ac probing field of 4 G. Since the probing field is sma
diamagnetic contributions from the BaF2 substrate and the
PbTe buffer layer can safely be ignored. A study of the d
pendence of the susceptibility onh and on the ac frequenc
indicates that our measurements are always in the linea
gime of the static susceptibility.

C. Experimental susceptibilities

Figure 2 displays the temperature dependence of the
plane and ou-of-plane magnetic susceptibilitiesx in and xout
for samples EuTe~2!/PbTe~6!–EuTe~7!/PbTe~21!. The ex-
perimental susceptibilities have been normalized by the n
ber of Eu21 spins, determined using high-temperature s
ceptibility data; no demagnetizing corrections have be
applied to the data. In the following we will be mostly inte
ested inxout, whose magnitude changes little below the te
perature at whichxout and x in separate. Since there is n
observable difference inxout andx in above this temperature
we can assume that demagnetizing corrections are not
nificant.

For all samples withj.1 a plot ofxT2 versusT showed
that, as the temperature is lowered, the Curie behavio
x in and xout persists until they separate at a temperat
FIG. 2. x in @in-plane (d)# and xout @orthogonal (s)# susceptibilities in emu normalized per Eu atom, for samples EuTe~2!/PbTe~6!–
EuTe~7!PbTe~21!.
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Ts .16 Figure 3 shows such a plot for samp
EuTe~3!PbTe~9!. Generically, below the point of separatio
a very anisotropic behavior of the susceptibility is observ
with xout<x in , an unusual feature. Furthermore, whilex in

displays a peak,xout has a very mild temperature dependen
belowTs . In addition, the magnitude ofxout at low tempera-
ture, of the order of 1.10224 emu/spin, has little dependenc
on the thickness of the EuTe layer. Since we do not h
other experimental data~e.g., specific heat! that would allow
us to define more precisely the transition temperatureTN ,
we assumed that it lies in betweenTs and the temperature a
which x in is maximum.TN increases with the thickness o
the EuTe layer, as expected, and reaches values higher
that for bulk EuTe for samples withj>5, an unexpected
result. A possible explanation could be that coupling co
stants have values different from the bulk ones, a point
veloped further in Sec. V. We comment now on samples
show nongeneric behavior.

1. EuTe(1)/PbTe(3)

x in andxout as well asx inT
2 andxoutT

2 have been mea
sured forT.1.8 K. They are plotted in Fig. 4. One sees th
in this temperature regime sample EuTe~1!/PbTe~3! remains
in a paramagnetic phase:x in andxout coincide and exhibit a
Curie behavior. The absence of a transition in this tempe
ture range can be understood by noting that in a monola
geometry theJ2 exchange coupling is not present and t
energy scale is set by the nearest-neighbor exchange
pling only, which is very small. We expect, however, a tra
sition at a lower temperature.

2. EuTe(2)/PbTe(6)

Elastic neutron-scattering spectra show no long-range
der at 4.2 K but they do show a peak corresponding
type-II antiferromagnetic ordering at 1.8 K. Thus the bro
maximum inx in does not signal a transition from the par
magnetic to the antiferromagnetic phase.

FIG. 3. A plot of xT2 for sample EuTe~3!/PbTe~9! in the para-
magnetic phase~squares! and in the ordered phase, in the in-pla
(d) and out-of-plane (s) directions, in emu normalized per E
atom.
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3. EuTe(6)/PbTe(18)

The sharp drop inxout around 5 K is reproducible. How-
ever, we only had one EuTe~6!/PbTe~18! sample. EuTe~6!/
PbTe~18! is the only sample in our series that displays th
feature, as yet unexplained.

III. DISCUSSION

A qualitatively different behavior forx in is expecteda
priori , depending on whether the number of EuTe monol
ers per SL period is odd or even. In the first case, each pe
should behave as a ferromagnet and there should be a pe
x in whereas in the latter case each period should behav
an antiferromagnet and we should see a smooth maxim
Although we use integersj andh to label our samples, the
average thickness of, say, the EuTe layer in an actual
period as determined by x-ray scattering is fractional beca
of the interface structure so that the odd-even effect is in
expected to be blurred.14

In our view, the main issue raised by our data is the
istence of a phase transition in samples withj>3 at tem-
peratures comparable to the bulkTN . As mentioned above
neutron-diffraction spectra unambiguously demonstrate
these samples have a low-temperature ordered phase.
anisotropy in the Hamiltonian for Eu21 spins is negligible,
so that our samples can be considered as representi
model 2D Heisenberg system. In such a system, with iso
pic exchange couplings, the transition should occur atT50
K.20 The Hamiltonian is, however, incomplete and we ne
to supplement the exchange couplings with dipole-dipole
teractions. Although the dipole-dipole coupling may
weak, it breaks the rotational symmetry and is long ran
which prevents application of the Mermin-Wagn

FIG. 4. ~a! x in @in-plane, (d)# and xout @orthogonal (s)# sus-
ceptibilities in emu normalized per Eu atom, for samp
EuTe~1!PbTe~3!. ~b! Same susceptibilities, multiplied byT2.
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theorem.20 Dipolar couplings are known to have large effec
in metallic thin films, in which they compete with uniaxia
anisotropy.21,22

Early work23,24 has demonstrated the possibility of
phase transition driven by dipolar interactions in a 2D is
tropic spin system. More recent work has investigated
dependence ofTN on the magnitude of the dipola
coupling.25–27 It is our hypothesis that dipolar interaction
are responsible for stabilizing magnetic long-range orde
EuTe/PbTe SL’s. In the next section we discuss some im
cations of this hypothesis.

The observation thatxout<x in for all samples can be un
derstood by noting that there are actually three pertinent
ceptibilities in our system:x i , along the direction of the
order parameter in the SL plane;x' , in the SL plane, but
orthogonal to the direction of the order parameter; a
xout, orthogonal to the SL plane. In our case,x' and xout
will be different because of dipolar interactions, andxout will
be smaller thanx' . Usually one hasx i<x' , and in our
case we expectx i<xout<x' . The assumption that in eac
atomic layer the spins belong to domains with random o

entations yieldsx in5 1
2 (x i1x'). It is thus possible for

xout to be smaller thanx in .

IV. THEORY

In this section, we use the following Hamiltonian to d
scribe the interaction of Eu21 spins:

H5J1(
NN

Si•Sj1J2 (
NNN

Si•Sj1 (
i j ,ab

Qab~r j2r i !Si
aSj

b ,

~2!

where the third sum runs over all sitesi and j in the SL and
on spin componentsa, b. Here Qab(r j2r i) is the dipolar
tensor which reads

Qab~r j2r i !5
~gmB!2

2 S dab

r i j
3

23
r i j

a r i j
b

r i j
5 D . ~3!

In this expression,mB is the Bohr magneton andg is the
Landég factor which we will take equal to 2. Throughou
this section we will approximate the spinsSi by classical
vectors. This is justified by the large magnitudeS5 7

2 of the
Eu21 spins and the fact that we do not expect quantum
fects in the temperature range we will be considering. T
structure within the EuTe layers is that of a triangular latt
and the layers are stacked according to theABC sequence.
We will take thex andy axes in the plane of the layer an
the z axis orthogonal to the layer plane.

A. Orders of magnitude

Let us denote byEi andE' the dipolar energies per spi
of an EuTe monolayer, assuming the spins are ferromagn
cally aligned either in the layer plane or orthogonal to t
layer plane.E' is given by

E'5(
i

Qzz~r i !5
~gmBS!2

2 (
i

1

r i
3, ~4!
-
e
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where the sums run on the sites of a single layer.Ei is given
by

Ei5(
i

Qxx~r i !52
~gmBS!2

4 (
i

1

r i
3, ~5!

where we have used the fact thatQ is traceless and rotation
ally invariant in thexy plane. Notice thatEi,0, which fa-
vors in-plane alignment, as observed in neutron-diffract
experiments. Using the value of( i(1/r i

3)511.035/a3 for a
triangular lattice and the value of the in-plane lattice para
eter a54.6 Å taken from x-ray data, we getEi520.86 K
andE'51.72 K, to be compared with the exchange energ
J1S2520.5 K, J2S251.8 K, and the average exchange e
ergy per spinEex526J2S2511 K, which we have esti-
mated using bulk EuTe values forJ1, J2.

Next we estimate the size of the interlayer dipolar en
gies. To this end we have used Ewald summation techniq
that allow one to rewrite 1/r 3 sums as fast-convergin
series.23,28 Let us consider two neighboring EuTe monola
ers~1! and~2! a distanceh apart. Letr be the vector joining
a lattice site in layer~1! to a lattice site in layer~2!. Assum-
ing that the spins in layer~1! and ~2! are all ferromagneti-
cally aligned but with opposite directions depending
which layer they belong to, the interaction energy of a s
in layer ~1! with all spins in layer~2! is

E52
~gmBS!2

2

2p

A(
G

Gx
2

G
e2hGcos~G•r !, ~6!

where the sum runs over all reciprocal lattice vectorsG, and
G and Gx are, respectively, the modulus and thex compo-
nent ofG, andA is the area of the triangular lattice unit ce
in the layer. We thus get

E50.1014
~gmBS!2

a3
50.0317 K.

This energy is much smaller than the intralayer energyEi . If
the spin density in the layer were uniform, no field would
created outside the layer and this energy would be 0.
very existence of a lattice structure within the layer make
finite. Furthermore, the interaction energy is expected to
cay fast as the distance from the layer becomes larger
the in-plane lattice constant. For instance, at a distance
layers away, this energy is28.831025 K, and three layers
away it is 4.731027 K.

As a result, we can safely discard all interlayer couplin
as well as interperiod couplings, which couple spins belo
ing to different SL periods. Although small, the intralay
coupling has to be retained for the reasons mentioned in
III.

B. Mean-field analysis

We now turn to a mean-field treatment of our proble
Our aim here is to identify the order parameter for the ph
transition rather than find the expression forTN . We con-
sider a single period of a SL which consists ofN EuTe
monolayers. The spins are labeled with two indices:i de-
notes their position in a layer,n the layer to which they
belong. We rewrite the Hamiltonian as
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H5 (
i jnm,ab

Hina, jmbSin
a Sjm

b , ~7!

where the matrixH is defined by

Hina, jmb5dabJ~r j2r i ,m2n!1dnmQab~r j2r i !, ~8!

in which J denotes the matrix of the exchange couplings a
its elements are equal toJ1 if ( in) and (jm) are nearest
neighbors, toJ2 if they are next-nearest neighbors, and
zero otherwise. Thednm factor expresses the fact that inte
layer dipolar couplings are neglected.

A mean-field calculation in our context amounts to diag
nalizingH and finding its lowest eigenvalue. The magnitu
of the latter determinesTN while the associated eigenvect
defines the order parameter for the transition.29

SinceQ is diagonal in the layer indices, we concentra
first on J. We define in-plane Fourier transformsSqn for the
spins through

Sqn5
1

AN
(

i
Sineiq•r i, ~9!

whereN is the number of spins per layer. Likewise we d
fine J(q,m2n) as

J~q,m2n!5(
d

J~d,m2n!eiq•d. ~10!

Since we expect the ordered phase to be homogeneous i
plane of the layers, we now restrict ourselves to theq50
sector of the Hamiltonian. The neighbors and nearest ne
bors of a spin in layern all belong to layersn21,n,n11.
The only nonzero matrix elements ofJ(0,m2n) are thus

J~0,0!56J1 and J~0,1!5J~0,21!53~J11J2!.

The q50 part of the Hamiltonian now reads

Hq505(
nm

AnmS0nS0m , ~11!

whereAnm5J(0,m2n). Now A can be diagonalized in th
basis ofN-dimensional orthonormal vectorsTk , whose com-
ponents are

~Tk!n5A 2

N11
sinS nkp

N11D , ~12!

wherek is an integer ranging from 1 toN. The correspond-
ing eigenvalues are

ak56J116~J11J2!cosS kp

N11D . ~13!

In the same way as forJ in Eq. ~10! one can define a
Fourier transformQab(q). It is diagonal forq50 with

Qxx~0!5Qyy~0!52C, ~14!

Qzz~0!52C, ~15!

where
d

-

-

the

h-

C5
~gmB!2

4 (
i

1

r i
3 . ~16!

The lowest eigenvalue of matrixH is thusaN22C and the
mean fieldTN is given by

TN52
2S2

3kB
~aN22C!

5
2S2

3kB
F26J126~J11J2!cosS Np

N11D12CG . ~17!

Using bulk values forJ1, J2 we find TN56.93 K. The asso-
ciated order parameter is a linear combination of the in-pl
projections of the spins with weights (Tk)n defined in Eq.
~12!:

MN5A 2

N11(n
sinS nNp

N11DSn , ~18!

whereSn denotes the in-plane projection of the sum of
spins belonging to layern. Note that, asN→` the usual
antiferromagnetic staggered magnetization is recovered.
will in the next section check thatMN is indeed the correc
order parameter.

C. Monte Carlo simulation

We have performed a Monte Carlo simulation for o
system in order to check that dipolar interactions can driv
transition at a temperatureTN.0 and can generate an aniso
ropy in the susceptibility similar to that observed in expe
ments. We have also checked the relevance of the mean-
order parameter.

We present here results of a Monte Carlo simulation c
ried out on a system of three layers, each consisting of
323 spins, with periodic boundary conditions in the plane
the layers, in order not to introduce in-plane anisotropy. E
layer is thus mapped to a torus. The full Hamiltonian~7! has
been used, where the distancer i j between pairs of sites ha
been taken to be the smallest distance on the torus betw
sites i and j . All couplings in the Hamiltonian have bee
expressed in units ofJ1 and we have used EuTe bulk value
for the ratios J2 /J1523.75 and (gmB)2/(J1a3)50.64,
which are the only parameters of our model. The heat-b
algorithm with sequential updating of the spins has be
used, with 400 equilibration sweeps and 2000 sweeps wi
measurement after each sweep. Error bars have been
fully computed as standard deviations of estimators of
observables. Three susceptibilities have been evaluated:xz ,
along the normal to the layers, corresponding toxout, and
xx and xy in the plane of the layers. The specific heat h
also been measured to check that it has a limit ofkB per spin
asT→0, a general property of classical spin systems.30 It is
shown in Fig. 5 for the EuTe~3!/PbTe~9! system. Suscepti-
bilities have been computed as

xa5
~gmB!2

NNkBT
~^Sa

2&2^Sa&2!,

whereS is the total spin andN is the number of spins pe
layer.
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Because the simulation has been done on a finite sys
the in-plane rotational symmetry is not broken in the orde
phase with the result that the above averages are not
defined. We have thus evaluatedxx andxy only at tempera-
tures higher than the transition temperature.

Experimental and simulated susceptibilities have b
plotted as a function of temperature in Fig. 6. One can
that the simulation qualitatively reproduces the anisotro

FIG. 5. Simulated specific heat for a EuTe~3!/PbTe~9! system in
units of kB .

FIG. 6. ~a! Measuredx in and xout for the EuTe~3!/PbTe~9!
sample.~b! Simulatedx,y,z susceptibilities for a three-layer syste
of size 23323.
m,
d
ell

n
e
y

observed in the experiments, with a remarkable flatnes
xz (xout) at low temperature. We have also run simulatio
on three-layer systems of sizes 29329 and 13313 and these
two systems did not show any significant difference in t
transition temperature or the low-temperature magnitude
xz .

We then checked the relevance of the order param
MN found in the mean-field approach of Sec. IV B. In th
same way asMN in Eq. ~18! has been defined using vecto
Tk5N each vectorTk can be used to build an order parame
M k , defined by

M k5A 2

N11(n
sinS nkp

N11DSn , ~19!

using the same notations as before. TheM k’s are linear com-
binations of the in-plane projection of the spins. One co
similarly define linear combinations of theirz components,
although we know that spins order in-plane. For a three-la
system, three order parameters can be defined:

M15
1

A2
S 1

A2
S11S21

1

A2
S3D ,

M25
1

A2
~S12S3!,

M35
1

A2
S 1

A2
S12S21

1

A2
S3D .

One can define susceptibilitiesxk for the moduli of these
three order parametersk51,2,3 as

xk5
1

NNkBT
~^M k

2&2^uM ku&2!.

Because vectorsTk are normalized, thexk all have the same
leading behavior at high temperature. These susceptibil
are plotted in Fig. 7.x3 is the susceptibility that displays

FIG. 7. Simulated susceptibilities corresponding to order para
etersM k , for a three-layer system of size 23323.
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sharp peak, thus suggesting thatM3 is the appropriate orde
parameter for describing the phase transition.

D. Low-temperature orthogonal susceptibility

Sincexout is flat at low temperature, it is desirable to ha
an estimate of its magnitude. We present here a calcula
of xout using the spin Hamiltonian given in Eq.~7!,

H5Hex1Hd ,

where the exchange term is

Hex5 (
i j ,nm

J~r j2r i ,m2n!Sin•Sjm ~20!

and the dipolar term is

Hd5(
i j ,n

Qab~r j2r i !Sin
a Sjn

b . ~21!

In each layer we define a frame of reference as shown in
8, such that they axis lies along the direction of the laye
magnetization, while the direction of thez axis, orthogonal
to the layers, is the same for all layers. The spin compon
s in

a in the layer-dependent frames are related to theSin
a

through

Sin
x 5~21!ns in

x ,

Sin
y 5~21!ns in

y , ~22!

Sin
z 5s in

z .

At low temperatures in
z ands in

x will be small, whiles in
y will

be finite, with a fixed sign.xout is defined as

xout5
~gmB!2

NNkBT
^~sz!2&,

wheresz5( ins in
z . For classical 3D spinŝ(sz)2& is given

by

^~sz!2&5
1

ZE )
in

ds in
z ds in

x

Sus in
y u

~sz!2e2bH, ~23!

whereb51/kBT. The partition functionZ reads

FIG. 8. Layer-dependent reference frames as defined in
IV D.
on

g.

ts

Z5E )
in

ds in
z ds in

x

Sus in
y u

e2bH.

At low temperature (s in
z )2 and (s in

x )2 will be of orderkBT if
xout is to be finite. We can thus let the integrals run fro
2` to 1`, instead of2S to 1S. We note thats in

y appears
both in the integration measure andH and is given by

s in
y 5AS22~s in

z 21s in
x 2!.

We now expands in
y in powers of (s in

z 21s in
x 2) keeping only

the lowest-order terms. This amounts to an expansion
powers of the temperature. The measure becom
ds in

z ds in
x /S2. In the expression ofbH only the first-order

term need be kept. We are then left with a quadratic form
s in

z ands in
x which we need to diagonalize in order to calc

late ^(sz)2&.
Let us first considerHex. In our approximationSin•Sjm

reads

Sin•Sjm5s in
z s jm

z 1~21!m2nFs in
x s jm

x 1S S2
s in

z 21s in
x 2

2S D
3S S2

s jm
z 21s jm

x 2

2S D G . ~24!

After discarding constant terms, we get the following e
pression forHex:

Hex5 (
i j ,nm

@J~r j2r i ,m2n!1and i j dnm#

3@s in
z s jm

z 1~21!m2ns in
x s jm

x #, ~25!

wherean53(J22J1) if n51 or n5N andan56J2 other-
wise. Let us define Fourier transforms fors in

z , s in
x , and

J(r j2r i ,m2n) in the same way as in Eqs.~9! and~10!. We
now have

Hex5 (
nm,q

@J~q,m2n!1andnm#

3@sqn
z * sqm

z 1~21!nsqn
x * ~21!msqm

x #. ~26!

Let us now turn toHd and expands in
y . Because of the

layer geometry,Qxz5Qyz50. Furthermore, sinceQ(q50)
is diagonal, nondiagonal termsQyx(r j2r i)s in

y s jn
x do not

contribute at the quadratic order, but rather yield a term
ear ins in

x which vanishes when summed onj . We are thus
left with diagonal terms only. The contributions ofQxx and
Qzz are then

(
qn

Qzz~q!usqn
z u21Qyy~q!usqn

x u2 ~27!

and that ofQyy , after expandings in
y to first order, is

2Qyy~q50!(
i

~s in
z 21s in

x 2!5C(
qn

~ usqn
z u21usqn

x u2!.

c.
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Since only theq50 mode contributes tosz , we now
restrictHd to its q50 part. After using Eqs.~14! and~15! we
get

Hd53C(
n

s0n
z 2 ~28!

and

Hex5(
mn

@J~0,m2n!1andnm#

3@s0n
z s0m

z 1~21!ns0n
x ~21!ms0m

x #. ~29!

We only need diagonalize thez part ofH which reads

Hz5(
nm

Bnms0n
z s0m

z , ~30!

with

Bnm5~3C1an!dnm1J~0,m2n!. ~31!

Matrix B has the same form as matrixA used in Sec. IV B
with the difference that the matrix elements at both ends
the principal diagonal are different.B can be diagonalized in
the basis of orthonormal vectorsUk defined by

~Uk!n5
1

Nk
sinF S n2

1

2D kp

N G , ~32!

where the integerk ranges from 1 toN. The normalization
factor Nk is equal toAN if k5N andAN/2 otherwise. The
corresponding eigenvalues are

bk53C16~J11J2!F11cosS kp

N D G . ~33!

Expandingsz on the basis of thes0k
z defined by

s0k
z 5(

n
~Uk!ns0n

z ,

we get

sz5(
k

lk

Nk
s0k

z ,

where

lk5H 0 if k even,

AN
sin~kp/2N!

if k odd.
~34!

The integration over thes in
z in Eq. ~23! is straightforward

since thes0k
z have Gaussian weights and we get the follo

ing result forxout at low temperature:

xout5
~gmB!2

2N2 (
k51

N
f k

3C16~J11J2!@11cos~kp/N!#
,

~35!

where the weightsf k are given by
f

-

f k55
0 if k even,

2

sin2~kp/2N!
if k odd andkÞN,

1

sin2~kp/2N!
if k odd andk5N.

~36!

The energy C is defined in Eq. ~16! and equals
2.759(gmB)2/a3. The f k satisfy the sum rule(kf k5N2.

The xout we have found is temperature independent; it
in fact the first term in an expansion ofxout in powers of
T. Using bulk values for the couplings, we find that for
three-layer systemxout50.025(gmB)2/uJ1u in excellent
agreement with the simulation result in Fig.
(0.02668.1024)(gmb)2/uJ1u. As the number of layers is in
creased,xout slowly decreases. For a seven-layer system,
pression~35! yields xout50.017(gmb)2/uJ1u.

V. DISCUSSION AND CONCLUSION

The simulation results reported in Sec. IV C for a thre
layer system qualitatively reproduce the anisotropy in s
ceptibilities observed in the experiments. However, they
not agree quantitatively with the experimental results. W
list below the experimental and theoretical values ofTN and
xout at low temperature, in dimensionless units:

TN
expt516.1, TN

MC59.560.5, in units of
uJ1uS2

k
,

xout
expt50.013, xout

MC50.02668.1024 in units of
~gmB!2

uJ1u
.

Our Monte Carlo simulations have been run on finite s
tems. AlthoughTN andxout did not change appreciably whe
we increased the size of the system to 29329 or decreased i
to 13313, we cannot rule out finite-size corrections. F
xout, however, analytic and simulation results are in exc
lent agreement which indicates that finite-size corrections
not significant in the low-temperature region. The numeri
values listed above suggest that the effective value ofJ1 in
the samples is approximately twice as large as in the b
However, since the simulation uses bulk values for the ra
J2 /J1 and (gmB)2/(a3J1), this would imply thatJ2 and the
dipolar coupling are rescaled by the same factor. This can
be the case, as the value of the dipolar coupling only depe
on the in-plane lattice parameter, known from x-ray spec
One possible explanation is that the exchange constants
different in the SL’s relative to bulk values. Because of
2.1% lattice mismatch between EuTe and PbTe, the SL
be strained and the in-plane and out-of-plane lattice c
stants will be different from one another, and different fro
their bulk values.14 As a result, the exchange couplings w
also be somewhat different. Within the family of Eu chalc
genides the lattice constant increases as the size of the a
increases from O to Te which makes it possible to study
dependence of the exchange couplings on the lat
parameter.7 In our case the in-plane lattice constant is r
duced with respect to the bulk value while the out-of-pla
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constant is increased. Thus, in the SL’s, the in-planeJ1 is
likely to increase, while the out-of-planeJ1 will decrease.

Although dipolar interactions account for the flatness
xout at low temperature, we can expect a single-ion ani
ropy term of the formk( inSin

z 2 to have the same effect. Le
us replaceHd with such a term. The calculation ofxout is
similar, except that in Eq.~28!, 3C is replaced byk. Thus for
single-ion anisotropy to have the same effect as dipole in
actions,k would have to be of the order of 0.2 K, which
larger than the exchange couplings, an unlikely situation

In conclusion, we have presented experimental susc
bilities of EuTe/PbTe short-period antiferromagnetic sup
lattices. We suggest that dipolar interactions may stab
long-range order in these 2D structures. Additional theor
cal work along with more precise susceptibility data and s
cific heat measurements are needed to confirm this hyp
.

r

o

f
t-

r-

ti-
-
e
i-
-
h-

esis and to study the critical behavior, an aspect not touc
upon in the present work.
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