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Ferromagnetism of Anderson localized electrons: Application to cluster compounds
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A study of the electrical transport and magnetic properties of a series of cluster compounds with the generic
formulaAg sM ,X, suggests that the electrons at the Fermi surface are localized, and the ferromagnetism seen
in these compounds arises from these electrons. The magnetism of these compounds shows some features
characteristic of itinerant models and others which are characteristic of localized models. We construct a model
which has a nondegenerate band of localized states with on-site repulsion. Further, the singly occupied states
interact via direct exchange interaction which is ferromagnetic. Using a mean-field approximation we calculate
the various magnetic properties, which are in qualitative accord with the observed behavior. In particular, we
find that the single-particle excitations play a dominant role in the magnetism of these compounds, even though
the electrons are localized. We also analyze the spin-wave excitations in this model and discuss their effect on
low-temperature thermodynamid$0163-18207)01330-1

I. INTRODUCTION behavior. Though the electrons are not itinerant in the sys-

tem, there is a finite density of states at the Fermi level, and

The transition metal cluster compounds of the familyhence the possibility of low energy charge excitations. This
ApsM, X, (whereA is Ga or Al,M is one of the transition indicates that the magnetic properties also originate from this
metals V or Mo, anX is S, Se, or Teexhibit very interest- band of localized electrons, and the itinerantlike features of
ing ferromagnetic behavior which is a curious mixture of magnetism then come from the low energy electronic exci-
itinerant and localized behavid? These compounds have a tations across the Fermi level. Accordingly, in this paper, we
spinel structure with a reduction of the space group symmelnvestigate the magnetic properties of a model in which the

try from Ed3m to E23m and half occupancy of the cation electrons are Anderson localized. The magnetic moment in
. a3g the model arises due to the fact that part of the band around
A sites?” These are termed cluster compounds, becau

: A : " . e Fermi level is singly occupied due to on-site Coulomb
there is a significant clustering of the transition metals into aly P

. } repulsion U, whose magnitude relative to the bandwidth
tetrahedral clusters, with intercluster distances betwden P 9

. hi A) than the | | ) ¢ 2W has to be chosen keeping in mind that every transition
ions much larger£4 A) than the Intrac uster distances of 3 el cluster contributes the same number of electrons
A, which are in the metallic rang&*

- (n=1) to the magnetic moment and the single-particle exci-
The conductivity of these compounds, both dc and ac, hagytions have no gap. The magnetic moments of the singly

the classic signature of variable-range hopping over a widgccupied sites then interact ferromagnetically via direct ex-
temperature range<(20° K),>® which implies that there is change. This situation is particularly favorable for the
a finite density of localized states at the Fermi level. On thanechanism of direct exchange, as the electrons occupy lo-
other hand these compounds seem to have a rather weaklized states that are mutually orthogonal to each other.
disorder, which is not discernible in x-ray diffraction studies. With these inputs, we find that the model exhibits most of
The possible reasons for the electron localization are disthe aforementioned features of magnetism. To get qualitative
cussed in the next section. These compounds are also ferragreement, we attempt to obtain a typical set of values of the
magnetic with transition temperatures in the range of 10 K tqparameters),W and the direct exchange enerdyfor one of
26 K.” The specific heat exhibits a large linear contributionthese compounds. A paramagnetic version of this model
in the paramagnetic regime and in the ferromagnetic regiméwithout the exchange interactiat) was investigated earlier
a weak T¥/2 contribution in addition to a reduced linear by Kaplan, Mohanti, and HartmatKMH).> This study
contribution!® The magnetic contribution to the specific heat showed that the magnetic susceptibility of the model has
shows a jump at the transition temperature, a behavior typiboth Curie behavior and Pauli behavior. The paramagnetism
cal to itinerant ferromagnets. The spontaneous magnetizatiosf Anderson localized states and other properties like specific
as seen in theM vs H curves corresponds to nonintegral heat, have also been studied in detail by Kamimura and
moments, but the high field saturation magnetization correco-workersi®!! especially in the context of phosphorus-
sponds to a magnetization of a single electron per clustedoped silicon.
Similarly the moment inferred from the high-temperature The rest of the paper is organized as follows. In the next
susceptibility measurements is different from the spontanesection, we describe the model and its justification for the
ous moment. However, the Arrott plotM@ vs H/M) show  magnetism of cluster compounds. In Sec. lll, we investigate
a pronounced curvature even at small fields, which is in conthe model in a self-consistent mean-field approximation.
trast to the itinerant behaviée Within this approximation this model already exhibits a rich
All this points to the fact that the single-particle excita- physical behavior. We present results on various thermody-
tions in the system play a dominant role in the magnetimmamic properties. In Sec. IV, we go beyond the mean-field
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approximation by using a functional variational method 2.0 r=r=r= T T T T T T T T
which is equivalent to a self-consistent renormalized high - ]
density expansion. Though we have the formal results, our C ]
analysis is done to understand the role of spin-wave excita- 15 |- N @ ]
tions at low temperatures, as these were missed out in the B L == (b) |-
mean-field analysis. We end the paper with a discussion and - \ — (© |
summary of our results in the concluding section. A discus- '3\1 ok = (d) |7
sion on the chemical potential and most of the details of the * B \ — (g) |-
functional method are discussed in two appendices. L \ ]
0.5 - N\ .
Il. MODEL AND PRELIMINARY DISCUSSION i \ ]
In order to make the discussion concrete, we consider the TN B ) N C ]
specific case of one particular cluster compound, G/ A 1.0 05 0 0.5 1.0

simple valence count, keeping in mind that Ga is trivalent

and S is divalent, shows that three of the V atoms in the

formula unit must be trivalent and one must be tetravalent. FIG. 1. Variation of the occupation functidife) with energye
This suggests that the Fermi level should lie within the for U/W=0.25, at different temperaturds and magnetic field,
bands of the V atom. The preliminary band structureWheree is in units of W, T is in units of W/kg , andh is in units of
calculations'? indeed show that the band character at theV/9us for (@ T=0.001h=0.2; (b) T=0.001h=0.1; (c)
Fermi level is dominantlyd type? Two other features of |- 0-1h=0;(d) T=0.01h=0; and(e) T=0h=0. At T=0 the
note are that the bands at the Fermi level are very narrow arfiePs are froni(e)=2tof(e)=1, ate=x—U and fromf(e)=1
they each seem to disperse only along one family of crystall® f(€) =0 ate=yp, the width of singly occupied bands(e)=1]
lographic directions. This suggests a tight binding picture of "creases with.

tyg-like bands in which each of the degenerate levels in %xchangé? which is antiferromagnetic. Since the com-

cluster disperses by having overlaps in one direction only; ounds we are dealing with are ferromagnéithe direct

The narrowness and quasi-one-dimensional character of tfﬁe change dominates, but the interaction CONSta¢R)
bands makes it easy for these electrons to become localize g€ ' ) N
ould be interpreted as the sum of the direct and the kinetic

with very weak disorder. This weak disorder may arise eitheexchange
due to the occupancy of Ga ions which occupy only half of With these assumptions, the Hamiltonian of the model in

theA sites of t+he splnist.tructure or due to possible charg?he presence of an external magnetic field can be written as,
disorder of V' and V** ions among tetrahedral clusters.

Taking these features into account we model the system by 1 L
considering a localized band of electrons with one electron  H=>} fi(”iTJF”iL)JFZ Unin; — => JiS-S
per cluster site. The localization length estimated from the [ i 29
transport data suggests that electrons are localized almost

within each cluster. —gugHeY, &, (1)
The two most relevant interactions for our purpose(aye i

the on site Coulomb interactiod, and(b) the direct ferro- . . i .
magnetic exchangd(R), between singly occupied sites. For wherei I{ibels the localized states adare.the energies of
' ' he localized states that form a band of widt¥W2Since the

such a localized system, the long range Coulomb Interactlof calization radius of these states is of the same order as the

should also be considered. The main physical CoNSEqUEN G ster size, we taketo label the cluster. The spin operators
of the long range part of the interaction is that the single-site; ' ' pin op

energies have site-occupation-dependent Hartree contribg are, as usual, represented as

tions. In an average picture this has two implications. First . .

there is an increase in the bandwiditi, due to an additional S=3Cia TugCip, 2

spread of the Hartree energies. Second there is a depletion in .

the density of states at the Fermi levg{er). In the follow-  where o are the Pauli spin matrices amxﬁa (ci,) are the

ing considerations we do not treat these effects, rather wereation (annihilation operators for the electrons);;

take them as included in parameters adjustable from derived J(R;;), R;; being the separation between the sitemnd |

magnetic properties. andH, the external magnetic field. In order to appreciate the
There are two further comments in order here. First theole of U and to fix its magnitude, it is instructive to first

on-site interaction parameter is dependent on the localized study the model without the exchange interaction, which is

statei, as has been considered by Kamimtft#dere, how- the model considered by KMPIWhenU =0, in the ground

ever, we ignore the state dependencéJofas we are work- state half the sites are doubly occupied and the other half are

ing in the regime of deeply localized stat@gith an activa- empty, with the Fermi level being at the center of the band

tion energye,.=0.2 eV), whose localization length is very (assuming the density of states to be symmetric about the

small. It would not have been possible to ignore the stateentej. In this situation there can be no magnetic moment.

dependence dfl if one was working near the mobility edge. In the other extreme whel>W, all the sites are singly

Our second remark is concerned with magnetic interactionsaccupied, and the single-particle excitations have the Mott-

The intersite Coulomb interactions also allow for the kineticHubbard gap as usual. Since these compounds exhibit ferro-
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magnetism and hopping conduction, which requires a finitdMFA). This already leads to many new nontrivial results,
density of states at the Fermi level, neither of the abovevhich bear good comparisons with experimental behavior.
situations describe the physics of the problemUKW,  As usual, in MFA, the exchange term is written as

KMH (Ref. 9 showed that the low lying states will be dou-

bly occupied, a fraction of states covering the eneldy 1 S

1
m;S'— 5 mm,

around the Fermi level will be singly occupied and the rest of 2

the higher energy states will be empty. The singly occupied
states are responsible for magnetic properties and give rise {gherem; denotes the thermal averaf®) to be determined

the ferromagnetic behavior when the exchange term is inself-consistently. This leads to the following site-separable
cluded. Note that the KMH model is soluble as it breaks upHamiltonian:

into individual site Hamiltonians. It is simple to calculate the

grand canonical free energy and the occupation function No h+1; +1;
f;. These expressions are Hye= (ei—T ni+ 6i+T N +Unjn;,
1=
G=—kgTY, In(1+Zcosh@e‘ﬁ(fi‘”hre‘Wfi*U‘z“)) 1
B4 2 ’ +§§j: Jijmim;, (6)

()
where |; denotes the local internal field;J(R;;)m;. It
should be noted that the local field is contributed by only
singly occupied sites, whose density is of the order

(48 (U/2W)ng, whereny is the density of sites. Thus the nearest
N 2w neighbor distance is of the order of {@Ung)Y® which
nz_:_f deg(e) must be kept in mind while estimating the internal fields
No No J-w I;. One can now straightforwardly obtain the expression for
electron number per site, local magnetizatiom;, and the

cosh{Bh/2)e Al w) g A2atU~-2u)

fi=2 [1+2e Alsi~#cosh Bhl2) + e P& TU=2m)7’

cosh%h e Ble—p) 4 o= B2etU—2u) internal energyE:
X ah (4b) 2 B
1+2e Ple-mcosh—+e A2etU—21) n=- 72, | coshy(h+1))+exd —Ble+U—p)]
2 No4
whereu is the chemical potentialyy is the total number of e Ble—w)
clusters, andh is gugHe. In writing Eq. (4b) we have intro- X, (7)
|

duced the density of statege) and taken the zero of the

energy to be the center of the band. We further restrict our-

selves only to a symmetric density of states, i.e., mi=sinh'§(h+ 1)
g(e)=g(—€). In this situation, for the case af=1, the 2
chemical potential. can be exactly obtained to &2 at all
temperatureg¢see Appendix A In Fig. 1 we exhibit the oc-
cupation functiorf; for different temperatures and fields. For
the zero-field ground state, leveds<u—U are doubly oc-
cupied, levels betweep—U<¢<u are singly occupied,
and levelse;> u are unoccupied. Thus there are two steps
across which single-particle excitations can occur as one sees
in the finite temperature curves. As mentioned above the + 23 g.mm 9
magnetic moment is contributed by the singly occupied sites Z 247 T

which range over an energy bf. In the presence of a mag-

netic field h, at T=0 the steps basically occur at Where we defineZ; as

pn—U—h/2 from doubly to singly occupied sites which all
have up spin and at +h/2 from singly occupied to unoccu-
pied. We further note that the low energy single-particle ex-
citations involve hops between states that may be well sepa-

e Ble—n)

—Zz 8
_ B B

E=> 2(&— picoshy (h+1) = (h+1)sinh (h+1))

+(2i+U—-2u)exd — B(e+U—pu)]

e Ble—nm 1

Zi=1+2005h§(h+Ii)exp{—ﬂ(ei—,u)]

rated in space. Thus the equilibration rates for such systems, +exd —B(2+U—2u)]. (10
that depend upon phonon-assisted hopping, may be low, at ) ] ]
low temperatures. Though the above set of equations involve site-dependent

quantities, which can only be solved numerically, it should
be realized that the problem has actually rather slight posi-
tional disorder. Further since we are dealing with a high

Due to the presence of the exchange term, the Hamildensity ferromagnet, it seems very reasonable to assume that
tonian of Eq.(1) is not site separable and its partition func- the magnetization and the local field are homogenous with
tion cannot be obtained exactly. In this section, we examindittle local fluctuation. The magnetization equation for site-
the problem in the site averaged mean-field approximatiomveraged magnetizatian=(1/A;)=;m; can be written as

Ill. MEAN-FIELD APPROXIMATION
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m= fiNWdeg(e)

y sinh(B/2(h+Jym))
ePle=#+2 coshB/2(h+ Jom))+ e Ple-wtUI ]
(11)
where we have written the average valud @flsJ,m. Equa-
tion (7) is to be used for the determination pf which as

shown in Appendix A is found to b&J/2 for a half-filled
band.

A. Analytical results

Before proceeding with the general analysis of Ex),
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andC andC; are given by

U
C=sW_34na’ (19
_ kgln4 20
17 8wW—Jgin4" 20

To shed more light on this expression we calculate the
spontaneous magnetizatiom(0) at zero temperature to be
(in units ofgug)

my(0)= (21)

AW—-23,

we present the case of a uniform density of statesRecalling the discussion of the Sec. II, we see that the spon-
g(€) =1/2W, as the integral can then be exactly evaluated taaneous magnetization is nearly the same as the number of

yield
_sinh(B/2(h+Jom))efV” 1 n eVt q— \/az— 1
2pW Var—1 | e+ a+a?—
1+a+a’—1
X—— (12
1+a—a’-1

with

a= eBU’Zcostg(h+ Jom). (13

singly occupied sites. Note that the const@nis not simply
related tomg(0), which would have been the case for a
localized model. Further, from the form of E{.7), one sees
that the effective Curie constant shows a slight increase with
temperature, which is a consequence of single-particle exci-
tations. Next, we calculate the saturation magnetization
which is easily calculated from E¢1l2) by taking theh— oo

limit and is found to be 0&ug, which is again quite differ-
ent from the spontaneous magnetizating(0). Finally it is

worth making a remark about the expression Ter. It in-

volves both the interaction constants and J,. Ug(eg)
roughly determines the zero-temperature spontaneous mag-
netization and], the coupling strength of the internal mag-

We now use Eq(12) for calculating various magnetic netization.
properties. The susceptibility in the paramagnetic phase is The results of the calculations with a constant DOS may

found to be
Xo
=N 2 14
X o(gup) 1= Joxo (14
with
B 1
X°_8W(1—e*'3u)12
<In 1+ (acoshBBW+ ya?— 1sinhBW) (15
1+ (acosiBBW— \a? —1sthW)
In the interesting temperature rang&V>gU>1,
In4 . U 16
X0 8W T 8BWkgT )" (16)

This result was obtained by KMHRef. 9 and shows the

miss some of the important physical features, so we now
present the results of the analysis with a more general, sym-
metric DOS. We first analyze the spontaneous magnetization
in the T—0 limit. In this limit Eq. (11) can be written as

w 1
mS:EJ_Wdeg(E)Lﬁ(EU/2Jom/2)+ 1+ e BlerUz+3gm2) |°
(22

Here we have dropped terms of the order ef £0™?), As
B—oo, the integrandl has the following behavior;
=0, e>(U+Jm)/2

=1, (U+Jym)/2=e=—(U+Jym)/2

features of Curie behavior due to moments and a Pauli-type

term due to single-particle excitations. In our case, the sus-

ceptibility assumes the form

N 2 C+C,T 17
X=/No glu'B k (T TC)
where the Curie temperatufig, is given by
kgTo= o0 Lus 18
elc=gW—dona 4 09(€p) (18

=0, e<—(U/2+Jgmy/2. (23
Thus we obtain
(U+Jgm)/2
S zf Eg(&')
(U+Jpm)/2

1 U+Jgm U+Jgm 04

whereN(e) is the integrated density of states,
o= [ d@gte @9
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For a constant DOS, E@24) yields the same results as Eq.
(21). It can be easily solved for the case of weak magnetizas

tion, that ismg(0)<<1

3255

MUI2)—=M~-U/2) 26

2{1-(Jo/H[9(U/2)+g(-U/2)]}"

Next we consider the susceptibility in the paramagnetic re-
gime. For this we write Eq(11) in the following form:

mg(0) =

1w eB(h+3gm)/2_ o= B(h+Jom)/2 1
m= Ejiwdeg(é) oB(e= Ul | gBhT g2 o= BhTIomIIZ | g Ble+ U E(nT—nl) (27)
and
g(e)
nTZJ de UTh+dom UFh+Jom (28)
Lt Bihiigm | bl e — 4 ebler—

Again for large 8 (T>T¢ ,kgT<U<W) the integrand
has a nonzero valuel + exp— B(h+J;m)/2] only when

U+h+Jom U+h+Jom
— e<

2 2

and is zero otherwise. Thus

1
M= T+ exp(— B(h+dom)/2)

U+h+Jom U+h+Jom 29
M=M= @
A similar analysis fom, yields
B 1
M= T exp(B(h+ I;m)/2)
U—h—-Jym U—h—-Jym 30
M=M=

B. Numerical results

We now present some numerical results for various ther-
modynamic quantities, within the mean-field approximation.
We again work with a symmetric density of states, in which
case the chemical potential is fixed tob&, for a half-filled
band. These restrictions do make the analysis simpler, but
the general results are quite representative. Our analysis is
done for the following density of states, which is rather typi-
cal:

g(e)= Wiwf‘/wz_ €, —W=sesW. (32
Most of the results presented are for the specific value of
U/W=0.25, and forJ,/W=0.1 and 0.2, though variations
with U andJ, have also been examined. We have chosen the
value of W to be 1 eV.

The spontaneous magnetization in fhe>0 limit can be
directly evaluated from Eq(24), which for the density of
states Eq(32) is

mg(0)= %[sin‘lirx\/l—xz], (33

From these expressions the susceptibility is easily obtaine@nerex=[U +J,m(0)]/2W. We plot the solutions of this

in the same form as in Eq14), with x4 given by

1
Xo=kB—T[N(U/2)—N(—U/2)]+[9(U/2)+9(— U/2)]
(31

which is the generalization of E¢16). It is worth remarking
that in the above results the DOSW@2 and— U/2 occur, as

equation for different values d#/W over a range ofl,/W
in Fig. 2. One notes that the value wE(0) depends mainly
on U, which as mentioned earlier controls the number of
singly occupied states in the occupied band and is not much
influenced by the choice af,/W and it is always less than
the high field saturation magnetization of b5 .

The critical temperatur@ - where the spontaneous mag-
netization becomes zero can be determined from the equa-

these are the points of discontinuity of the occupation functjgn

tion when the magnetizatiom=0. The large field case can
also be analyzed for a general DOS. From the earlier discus-
sion it is clear that the singly occupied sites that are aligned

to the field lie in the energy rangeUh+Jym)/2=¢

=—(U+h+Jym)/2. For a sufficiently large magnetic field

W
kBTC=JofO deg(e)[efcle V2424 AcletUi] -1

(34)

h, this would cover the entire band, yielding a saturationwhere B8-=1/(kgT¢). The variation of the temperaturg:
magnetization of 0Gug. It might be thought that a gener- with U/W andJy/W is shown in Fig. 3 which compares well
alized version of the Sommerfeld expansion may be develwith the approximate solutions of E(L8).

oped but our efforts in those directions have not been suc- The general variation of the spontaneous magnetization

cessful.

mg(T) with temperature, can be studied from the:0 limit
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FIG. 2. Variation of the spontaneous magnetizatigg0), mea-
sured in units ofgug, with the exchange interactialy /W for (a)
U/W=0.125,(b) U/W=0.25, and(c) U/W=0.375.

FIG. 3. Variation of the critical temperatur: (in units of
Wi/kg) with Jo/W for (8 U/W=0.125, (b) U/W=0.25 and(c)
U/W=0.375.

of Eq. (11). The typical plots fomy(T) are presented in Fig. paramagnetic phase, given by Efi4)], with temperature in
4. Th_e high-tempe_ratur.e variation r.ln/fs(T) with temperature Fig. 5. We find that the effective Curie constant
is typically mean-field like (T—Tc) ?]. But to focusonthe  cr(,—c/T) actually increases with temperature, indicating
low-temperature behavior, a plot 0f,(0) —my(T), is Shown 4t there is a contribution to the magnetization from the
in the inset of Fig. 4. In this, no clear-cut variation liK& as  single-particle excitations accords the Fermi level. We fit the
expected from single-particle excitations in the band mode},rves obtained to the general law EG7). The values of
or exy —2Jomy(T)/T] as expected in the localized model can photh ¢ and C, are different for the the different values of
be discerned. o _Jo/W, andC=0.04 is indeed smaller than the corresponding

We next consider the susceptibility in the paramagnetiGaiyration magnetization. In Fig. 6 we plot the variation of
phase. We first calculatg, for the chosen density of states the enhanced susceptibility with temperature, in the para-
from the equation magnetic phase, for different values of the on-site Coulomb
repulsionU/W for both a zero and nonzerd,/W. The di-
(35) vergence in the curves for the nonzelg/W indicates the
efle=UR) 4 ot g BlerUR) " transition to the ferromagnetic phase.

In Fig. 7 we study the variation of the isothermal magne-

Xo for a circular DOS has the same general features as faization with the magnetic field from E@l1). The magneti-
the uniform density of statd&q. (16)], i.e., a combination of zation saturates to a value of §&g at rather high fields
the 1T behavior due to localized moments and the Pauli{h~1). For T=0 the saturating fieldhy, is in fact
like contribution from the single-particle excitations. We plot =2W—U —2J,. Below the critical temperatures one notes
x(T—T¢) [where x is the enhanced susceptibility in the that before saturation there is actually a large range of fields,

W
ongj,wdfg(f)

0.10

0.08

. 006 FIG. 4. Variation of the spontaneous magne-
tization mg(T), in units ofgug with temperature
E(D T for (a) Jo/W=0.1 and(b) J,/W=0.2, the inset

shows the corresponding variation of
my(0)—my(T) with temperaturel for very low
temperaturesT<T., where T is measured in
units of W/kg .
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0.02

0 0.002 0.004 0.006 0.008 0.010
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FIG. 7. Variation of isothermal magnetizatiom(h) with mag-
FIG. 5. Variation of the enhanced susceptibilgyT—T¢) in netic field strengtth, for different temperatures 0.0667<0.015,
the nonmagnetic phase, with temperatlirdrhe best possible fit to  with J,/W=0.2, the magnetization saturates to 0.5, in units of
the general formy=(C+C,T)/(T—Tc¢), gives us the values of gy, at very high fields fj=W).
C andC; to be(a) Jo/W=0.1,C=0.0396, andC;=0.254 and for
(b) Jo/W=0.2, C=0.0401, andC,=0.279, the unit ofy being  small fields. To understand this, we show in Fig. 9 the occu-
W/(gpe)®. pation function for up and down spins at two values of the
field at a fixed temperature. From this, one sees how the
over which the magnetization increases linearly with themagnetization which is related to the difference in the areas
field strength. Abovel ¢ also, after an initial nonlinear rise, under the up-spin and down-spin curves changes nonlinearly.
the magnetization increases linearly with field over a considin contrast to the itinerant situation the nonlinearity, being
erable range of fields. These features are quite different frorather strong, is not very dependent on the shape of the den-
the localized model and are in accord with the high fieldsity of states. Only at higher temperatures the plots become
magnetization behavior of the cluster compounds. almost parallel to each other, characteristic of typical itiner-
For any magnetic system the Arrott plots offer a usefulant ferromagnets. These plots bear a good resemblance to the
insight into the type of magnetic behavior. We present thexperimental plots for the cluster compounds presented in
Arrott plots for this model in Fig. 8, for the density of states (Ref. 8.
given in Eq.(32). The plots, which are over a large range  We calculate the zero-field specific heat in the ferro- and
of temperatures, both below and aboVWe (0.006<T  paramagnetic phases for the circular DOS for two different
<0.015), show a large deviation from the linear behaviorvalues ofJ,/W. These are shown in Fig. 10. Note that the
expected in weak itinerant ferromagnets like ZgZand  specific heat shows a huge jump just before the magnetic
NiPt;_,." In such ferromagnets, the plots enable us totransition takes place. The magnitude of the jul(® seems
obtain the parameters of the Landau theory and the curvatute increase with the critical temperature, and also with
of the Arrott plots is reflective of the shape of the density ofJ,/W for a fixed value ofU/W though we are unable to
states. In our model one can observe strong curvature even gihpoint an exact dependance with eitfigror mg(0). In the
ferromagnetic phase the specific heat is quite distinct for dif-

T T IIIIII| T T II|III| T T |IIIII| T
. 0.005
10 :—‘z E
N E 0.004 —:
@) ] ]
o -
o | i N
3— (b) 0.003 p- ]
= - - L =
- - 0.002 [~ .
i | 0.001 :— _:
0.1 Lol ! L ]
0.1 1 10 100 °; 012
kgT/U
FIG. 6. Variation of the enhanced susceptibiligywith T/U in FIG. 8. Arrott plots forJ,/W=0.2, at temperature@) 0.007,

the paramagnetic phase f@) Jo/W=0.5 and(b) Jo/W=0, for (b) 0.009,(c) 0.01,(d) 0.011,(e) 0.012,(e) 0.013,(f) 0.014, andg)
different strengths obJ, the on-site Coulomb repulsion. 0.015 ,whereT is kgT/W.
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12T T T 7T T T T T T T T T T T T this model one also has to consider the interaction between
spin excitations and particle excitations. Since the analysis of
these problems is a difficult exercise, in this section we con-
fine ourselves to the inclusion of spin-wave excitations. We
do this by developing a version of renormalized high density
expansiont®!’ by using a functional method combined with
a variational techniqu&'® Such methods have been used in
a number of similar quantum statistical problems. For the
present calculation, as far as longitudinal degrees of freedom
are concerned, the results are equivalent to the self-consistent
high density expansion to first order, while the transverse
degrees of freedom are treated to include spin-wave contri-
butions to the leading ordéf.Since the techniques used are
available in literature, in this section we outline the main
steps and approximations, relegating the details of the deri-
vation to Appendix B.

€ Since the Hamiltonian involves noncommuting variables,

FIG. 9. Variation of the occupation function for the singly oc- f[he grand canonical partition functiaf =exy —G(T,x.h)]

cupied sites with energy (in units of W) at a temperature of IS Written as

0.05 (in units of W/kg), for the up-spin band ag) h=0.1 and(b)
h=0.2 and for the down-spin band &) h=0.1 and(d) h=0.2

0.9

0.6

0.3

B ~ ~
whereh is the magnetic field, and finallyg) the density of states, Ze=TrT eXp[ B fo dTEi Leinip(7)+ € ni (7)
9(e). L
ferent values of the parametés/W, but beyond thél ¢ the +Uni(n)ni (7)]- E; JijSi(7)- Si(T)} . (36

two curve merge to one, which is an artefact of the mean-
field approximation. In both the para- and ferro-magneticwhere T stands for the ordering of the- labels and

phases the specific heat is found to be linear in temperaturt%’,im): €,— u+h. Now, as usual, auxiliary integrations are

over a wide range of temperatuly, = yT with y dependant i o4y ced over the variabld® (7) to express the exchange
on the shape of the density of states studied and in the feférm as a single-site term, to yield

romagnetic phase on the value R/ W. This feature is also
in accord with the experimental observations. .
Zo=exit— 56) - | DR(Iexp-[¥(R()1, (3D
IV. BEYOND MEAN-FIELD THEORY

] o . ~ whereDR(r) stands for a functional integrgéee Appendix
The mean-field approximation discussed above is inadB for the definition, and

equate in many respects. Being a single-site approximation,

it misses the correct low energy magnetic excitations which . 8 (1 . .
are cooperative spin waves. It also cannot give an account of WY{Ri(7)}= J'o dr 52 pijRi(7)-Rj(7)
magnetic correlations between different sites. Moreover in h
0.3 T Tt T ] T T Tt T [ 1 T T 1 —2 fli[F_ii(T),Ei]>, (38)
- — 1

J where the matrixp=(J)"*, and

02—

. exp{— f[Ri(7), €1}

Cy/kg

B ~ ~
- :TrT[eXF{fo dT{EiTniT(T)‘f‘EiLnil(T)

01—

e +Un (0 (1) = S(7)-Ri(7)}

] . (39

. The one-site problem implied in E439) cannot be solved
0015 for arbitrary ﬁi(f). So we introduce a symmetry breaking
assumption implying that the static fluctuations can occur
only in one direction, taken to be tleaxis, i.e., we write

FIG. 10. Variation of the specific he&, with temperature for
(@ Jo/W=0.1 and(b) J,/W=0.2. y in the paramagnetic phase is Ri(7)= R+ ri(7) (40)
estimated from this to be 3.5 mJ/mofKthe specific heat shows a
huge jump at the onset of the magnetic transition. and
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and

f ri(r)dr=0. (41)

Using the above assumptions, one evaluates #3).to qua- (o) =ri=ry. (45
dratic order irﬂ(r) , which then yields the following expres-

) - _ With this W{R;(7)}, the functional integral of Eq(37) is
sion forW{R;(7)} (see Appendix B

evaluated by adopting a suitable generalization of the varia-
tional method due to Muhlshlegal and ZittdfzIn this

= B 797 method a quadratic trial functiod {R;(7)} is chosen and

V{R(D}=52 piR Ri_z InZi(hy) the functional integral is evaluated in a perturbative expan-
sion about¥, . Here we choos& {R;(7)} to be translation-

E 2 (o )r — o) ally invariant. Though our problem does not have the trans-

Pij n n lational symmetry, we recall that the disorder is rather weak

and the homogeneity of the magnetic properties should not

1 _ N be much affected. This amounts to seeking a translationally

5l (@n)rj (—wp)+ ST (@) (—op) symmetric quadratic form that is variationally the best for the

problem. The general form fob {R;(7)} is
1 —, _ .
—Z( 21 (—wgr, (wn>Gi<wn>), (42)

o - 1
PYR(7)} =~ e C
where Z; is defined in Eq.(10) with h;=h+R? replacing dRi(7)} 4%—“ delj A{S; " (r1~ 72)[Ri(r2) —a]
(h+1;), and .
X[Ri(mp) —al+ T (11— 72)
2 sinh(Bh;/2)
Zi(hi) | wn-i- hi
72 72 . . .
where w,=(2mn)/ B, with n taking integer values and the \é\’here%J (’jT‘J I and'g argf'tk:je Val‘)”at'r?n?l fulrlpt|ons ﬁ bﬁ
prime on then summation means exclusion of te=0 etermineda Is later '_ent' led to be the loca mtgrna e
related to the magnetization as=Jym. In Appendix B we
term. Also : : . X
describe the calculation d& to the first order in ¢ —¥,)
and the determination of the variational parameters from the
Y )= lf’g dTeiwnTria(T) (44) resulti.ng expressi_on. The result of this calculation yields the
2 following expression for the free ener@y.

Gi(wy)= g Bla—n), (43) X[RY( Tl)R}(( 75) +RY(711) R}/( 7)1}, (46)

1 1 — 1
G=§NOJOm2_ EZ |nzi(30m)+E§ 2 (l——,BJ Go wn)) 2 In{ B { Z InZ/'(Jgm)

1
285

-1
[1— —{—Z NZ/(Jgm)+ 3" Gilwn) T( wn>H (47)

+2'G (wn>T<wn>]

with BJ
T(wn) Z :
4 1-(12BI, Go(wn)

(49)

P 1
Jg=2 €TRII(Ry),  Go(wn)= 172 Gi(wy),
) o These equations involve ands, which are determined from

and the horizontal bar over certain terms implies the follow—the following equations:

ing averaging:
1 11 3 ZUom Z/ (Jgm)
- ., m=
f(Jom):ZJ dye Y2f(Jom+ys). (48) ,BJONO i Z(Jom)

. L . 1
The double prime stands for the double derivative with re- 9 ! _Z
+am% > In(l 5BoGol@p) (50)

spect tom and
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and temperatures we expect the contribution due to longitudinal
1 3 fluctuations to be small on physical grounds. So if we neglect
2_ Pe—— these, which amounts to neglecting the last two terms of Eq.
S BN 2 [ ,8_2[ El InZi(Jom) (47) and settings=0, one arrives at the following expression
for G:

-1
(51

+2' G <wn>T<wn)]

The above two equations are a rather formidable set of self-

consistent equations which to our knowledge have not been

solved even for the simpler system like the Heisenberg —E In
Hamiltonian, so here we limit the discussion to some physi-

cal effects in the low-temperature limit. On examining Eq.where the last term here is the result of the frequency sum-
(47) for G, we note that the first two terms would correspondmation in the third term of Eq48), and

to the mean-field approximation but for the Gaussian aver-

aging over the internal fields implied by E@8). The third wq=h+mlJo—Jg] (53
term corresponds to the spin-wave contribution, again corwhich is the usual spin-wave frequency in the random -phase
rected by fluctuations over internal fields. The last two termsapproximation. Within this approximation the equation de-
are the fluctuation contribution of the internal field. At low termining the magnetization takes the form,

1 1
G= ENO\]OmZ_ EZI |nZi(Jom)

1—e Aq

1o AT Igm | (52

1 sinhB(h+Jgm)/2 1 1 1

m= /\_/OZ [efl&i~#+2coshB(h+Jom)/2+e Fle—#TU)] eﬁ(h*JOle_J\_/o% ePhFog) 1"

(54

The spin-wave contribution represented by the last term yields the well-kAd{&nerm, so that Eq(54) for h=0 can be
written as

m= fWWdeg(e)

sinh( /2)(h+Jom) 1 oT 1%
ePle=m 12 coslti B/2) (h+Jgm) + e~ Alemrt) PGS ) v B ®9

whereD is the coefficient ofy? in the smallg expansion of — single-particle excitations exist. In the present situation,
Jo—ququ. since the single-particle excitations are not characterized by

The second term is again contributing terms of the ordemomentum, the existence of such a window is not clear.
of exp(—BJp) which are insignificant at low temperatures. So Thus one can expect only a rather weak contribution from

one can write the solution of E¢55) as spin-wave excitations.
keT 132 V. DISCUSSIONS
m(T):m“"F(T)_g(slz)[MrDmMF(O) ' (56) In this paper, we have presented a model for the magne-

tism of cluster compounds. Here both spin-flip and single-
wheremyg(T) is the mean-field solution whose plots have particle excitations play important roles in determining the
been exhibited in Fig. 4. This result is exactly what onemagnetic behavior. The main results derived within the
would expect because spin-wave contributions occur in botimean-field approximation, are in broad agreement with the
the itinerant and local models. Here, however, much like theexperimental behavior. These digthe high field saturation
itinerant situation, the spin-wave contribution can be quitemagnetization corresponds to one electron moment per clus-
weak as part of the band of spin-wave excitations can beter, whereas spontaneous magnetization even at zero tem-
come degenerate to the single-particle spin-flip excitatiorperature corresponds to the nonintegral moment and is con-
continuum. Note that the spin-up band is singly occupied fosiderably smaller than the saturation magnetizati@i.
(U+JIgm)/2=e=— (U +Jym)/2, and the spin-down band is Similarly the moment inferred from high-temperature sus-
empty atT=0. Thus the single-particle spin-flip excitations ceptibility measurements is different from the saturation
whose energy is;— €;+Jom will span an energy range of magnetization.(iii) The susceptibility shows a behavior
0 to U+2Jym, which clearly engulfs the spin-wave band. which is a mixture of localized and itinerant behavi@w)
The corresponding situation for itinerant magnets is that th&he calculated Arrott plots have shapes that are much like
single-particle  excitations lie  between  betweenthe experimental plots, showing a pronounced curvature
Jom+(1/2m)(g%+2keq) and Jom+ (1/2m)(q2— 2kgQq), even at low fields which is indicative of departure from the
but here the momentum selection rule saves the spin-wavieory of weak itinerant magnetsy) The specific heat
excitations, as for smalj there is a window for which no shows a contribution linear in temperature, both below and
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above the transition temperature, which is doubtless due to ACKNOWLEDGMENTS

single-particle excitations. On the other hand, it shows a
large jump at the transition temperature, which is a charac—S
teristic of localized modelslvi) We have also worked out 1,14 at our request and made the preliminary results avail-
the spin-wave excitations in the model. However since thgyne to us. We are also grateful to Professor S. D. Mahanti
spin-wave branch overlaps strongly with the particle-hole extor very useful discussions. S.L. acknowledges financial as-

citation spectrum, their contribution to the thermodynamicsgistance from the University Grants Commission of India.
are not clear cut. Experimentally also, the specific heat data

show possibly only a weak®? term.
Now we turn to quantitative comparisons to the data. Un- APPENDIX A: CHEMICAL POTENTIAL

fortunately data available on any one compound are not gjnce the site occupation is not affected by the exchange
enough to verify all the quantitative features. We have atyerm, the calculation of the chemical potential can be done

tempted to obtain a fit for the compound GaMies. From  yjithout the exchange term. Under these circumstances, the

the transport measurement on pure and zinc doped SaV number of particles per site=N/Aj , is given by

g, We estimate a bandwidth of 1 eV. Assuming this to be true

also for GaM@ Seg, one can use the expressions Ty, and

the specific heat jump at the transition temperati@, to w

obtain the parametets andJ,. A choice ofU/W=0.45 and n=2f_wdeg(e)

Jo/W=0.032 yields al - of 26.9 K (experimental value 26.7

K) and AC=3 J/K/mol (the experimental value being 3.75

J/IK/mol). This yields a zero-temperature spontaneous mag-

netization of 1. 10° emu/mol, against the experimental

value of 5.3 10° emu/mol. The linear coefficient of the spe-

cific heaty aboveT¢ has a value of 4.0 mJ/molKin our

model for the above-mentioned valueslbfandJ,, whereas

the experimental value of=620 mJ/mol K. The agree-

ment with the specific heat data can improve by a factor of

10 by choosing a much smaller bandwidth for these com- w

pounds,W=0.1 eV, for which they in the paramagnetic f deg(e)

phase~ 30 mJ/mol K2, for U/W=0.4 andJ,/W=0.325.
Though the qualitative shapes of the Arrott plots are like 2 costigh/2)e~Ale~w) 4 pg=B2e+U=2u)

the experimental ones, the scales of the magnetization and x|1— e BT U=

the fields are off by factors of order 10. The calculated sus- 1+2coshiphi2)e te

ceptibility is lower than the measured value by a factor of (A2)

8 to 10. Thus the quantitative comparisons leave much to be

desired. Some of the discrepancies can be ascribed to t

uncertainties regarding the bandwidth and the density o

states. We have done all our calculations with a rather

smooth DOS, whereas preliminary band structure calcula-

tions indicate that the DOS is rather spiky. Also the band- deg(e)

width involved in the transport measurements may be differ- /-w

ent from those entering thermodynamic properties, as

localized electrons are involved here. There may also be :fw deg(e)

genuine physical interactions which affect these properties, ~W

but are not included in this model. These &glong range

We gratefully acknowledge the help from Professor D. D.
arma, who calculated the band structure of a cluster com-

cosh{ Bh/2)e~Ble~#) 4 g~ B(2e+U=2u)
[1+2e Ple#Wcosh Bh/2) + e A2etU=2m] )"
(A1)

Recalling thatfdeg(e)=1, we can write Eq.(Al), for
n=1, in the form

1 =0

ich can be further written as

eBle 1)
ePfle=#)+ 2cosliBh/2) + e~ AletU—w)

e BletU—w)
ePle=#w 1+ 2coskigh/2)+e AletU-w

Coulomb interactions and associated correlations which, for (v ehle=Utn)
instance, give rise to the Coulomb g4p) disorder effects - _Wdeg(e) ef(e= Ut 1 2 cosliBh/2) + e AleT 1)
which cause variations in the on-site Coulomb interactions

U and the exchange paramefgr and(c) degeneracy of the (A3)
bands. In fact, preliminary computer simulations of this

model, incorporating positional disorder effects, seem to inwhere in writing the last equation we have changed variables
dicate that the magnetization would differ from that esti-from e to — e and made use of the fact thgfe)=g(—¢) .
mated in our calculations. Finally, we have not understood-rom Eqg. (A3) it is clear that the equation is satisfied if
the agency causing electron localization, which is possibly g,=U— .

combination of the weak disorder, long range Coulomb in-

teractions and dispersion of bands in a few directions only. A

further understanding of these should clearly improve the APPENDIX B: FUNCTIONAL METHOD

model. Some of these questions should be taken up espe-

cially when more extensive and precise data become avail- We start with Eq(36) of Sec. IV. This can be written in
able. terms of the matrixp andf,; defined in Eq(39) as
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- i = - Gi(1y,70)=(T[S (71)S'
Zg=T JDR(T)GX[{— de %Ri(T)'Rj(T) (71, 72) =(T[S (11§ (72)])o
ij
1
— *ﬁ(éi*/.L) (T — T )hl _ 7,8hi/2
A Zi(hi)e el 2N o(r—1)e
-2 fulRi(n.el] |, (B1)
+ 0( To— Tl)eﬂhilz}. (Bg)
whereDR( 1) stands for the functional integration .
Keeping terms up to the second order (), one can write
L the grand canonical free ener@y(T,u) in the following
ASdR,X('Tn)dRy(Tn)dR, (7n) ;
- expression:
DR(7) Tnl;[ 1:[1 2m) (e 2 (B2) P

with A=gB/L, 7,=nA. -
Because of the quantum nature of the problem, the trace ZG=exp(—,BG)=f DR(7)exp-[W{Ri(7)}],
in Eq. (39) cannot be calculated exactly for any arbitrary (B10)
R /(7). So we introduce the symmetry breaking assumption
implied in Egs.(40) and (41). With these we can write Eq. Where W{Ri(7)} is expressed in Eq42). To evaluate the
(39) as functional integrals of Eq(B10) a suitable generalization of
the the variational method due to Muhlschlegal and Zitfarz
B has been adopted. The quadratic trial functdp{R;()}
eXF{—fli]:TfTeXP( —f dT[HOi"_VIi(T)]}a (B3)  given in Eq.(46) is chosen and EqB10) is evaluated in a
° perturbation expansion aboWt{R;(7)}. To the first order in

where [W{R(7)}—V{R(7)}] the free energy can be written as
Ho= eimia(n eumu(+ Una(nmy() -8R BG=FG+(W{R (D} = VR (D, (BLY
and where
Vii(n)=—[ri(nS(n+ %{rﬁ(r)S{(rHrf(r)SWr)(}é-s) exp(—,eet)zf DR(nexd -V JRi(1}] (B12)

The idea of this decomposition is to obtdip in a perturba- and the averaging is done with respecmg{ﬁi(r)}. Since
tion expansion irV,; 7. Thus \Ift{lii(r)} is translationally invariant, a more convenient
form of ¥ {R;(7)} can be obtained by making the following

exd — f1;1=Z(h;) Texp( — fﬁdTVy(T)) (B6) change of variables. First we repIaEﬁ(r) by the Fourier
D 0 ' o transform defined as

where (), indicates averaging with the density matrix
exp(—BHq) and Z; has been defined earlier in E4.0), with P (7)= 1 E eid.ﬁi;_(T) (B13)
h;=h+R?. Further d ' n

V,i(7)=e™oiv,(1)e” ™o whereR; denotes the coordinates of the site. The static vari-
ablesRY are changed tg; by the following equation:

=—ri(nS— 3 {r (ne™MS +r ()e" ™S}

(B7) Rf=a+; SiYj (B14)
The first order term of the perturbation term expansion in
V|; vanishes, and the second-order term yields where
1(8 B
Efo dTlfo dr(T[Vi(T)Vi(72)]) Sij ZBJ drlf dr.S; 27— 7p) (B15)
1(8 B . .
- + - and the Fourier transformed variational parameters are de-
f dTlf Aot (r)ri (72)Gil71,72) fined through

+ri ()1 (72)Gi(72, 7))}, (B8) 1 g _
i = 55 USifmeTer (@19

where
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and similarly forT;;(7). In terms of these variables w,=0 term. The trial free energ(;, apart from an unim-
portant constant, is given by

|rq(wn)|2

{R(T)}_ _E 2 Sq( n)2

[Ifé(wn)|2+|fé(wn)|2]

tq(wn)2

Gi=—kgT>, |Insy(0)+ X" {Insy(w,) +2Inty(wy)}|,
q “n
(B19)

(B17) wheres; is the spatial Fourier transform ef; defined in Eq.
(B15). Next we have to evaluate the expectation value of
W{R(7)}— ¥ {R;(7)}, which in terms of the above vari-

The prime on the summation implies the exclusion of theables can be written as

- - B B e
‘I’{R|(T)}_\Ift{R|(T)}:§; Pij a+% SikY«k a.‘f‘; Sjlyl)_izi yIZ_EI In| 1+ 2e Blej—p)
B CB(2e+U— Ie < | [ Pag 1
X coshy h+a+§k: SiYi | +e ARaru-2w +§§q: En: {(—éz—géqlqz)ra(wn)rzqz
1
1 1 1 « « y y
X(—wy)+ qulqz_mb‘qlqz_ Equq2 {rql(wn)r,qz(—mn)+rql(wn)r,q2(—wn)} )
1
(B19
where
1 e s s o
Pay.ay= A—/OE] pijexili(dy- Ri—dz R))], (B20)
1 s s o
qu,qz(wn):j\_/oii: Gi(wp)exdi(g:—d2) - Ri)l, (B21)

whereG; is as in Eq(43), with hj=h+a+Z;s;;y; . Using the above expressions, E§19), one can evaluate the free energy
G in the approximation given in EqB11) to be

2
.00,0-/\[0a . EE Insq(o) _ i > ' [Insq(wn) +2|ntq(;n)]

=% 2" s & " s

1— 1
— Elnzi + 2_,32% [54(0)%pq.q— B/2]

1 1 —
o 2, [PaaSalon)®=BI21+ 23 2, [patel@n)®~ Bl2Go(wn)tg—Ai2] (822)

where the upper bar represents the averaging of quantities which involve the vafigbles the following way:

Y B 2 B _ 1 f —y212
f(a)—ff a+§k‘, SiYk exp( EZ y: H \/%dyi—\/? dye Y2f(a+ys), (B23)
where
1
P=——> 2, B24
BNo“g ™ (B29
Next, we determine the variational parameters by minimiZngith respect to them. The following equations are obtained:
BJ
Sa@n)=Blg G0 = — = —, (B25)
1- EJqGO
wherequ(pq,q)*l. Writing a=Jym, one finds that the site-averaged magnetizationpbeys the equation
1 Z{(Jg,m) 1 ( 1 —)
= + = .
m BN Zi(Jg,m) NOBJO om4 2 In Z’BJqGO(w”) (B26)
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y{ denotes the derivative gf, with respect tam. Finally, for s’s, we have

J
s2= X , (B27)

1
1= (31 BI5) | 772 NZi(Jom)"+ X Gy wn) T(wp)
01 n

where

1
T(wn) = A—[Og t2(g, wp)- (B29)

For the RHS of Eq(B27), Eq. (B25) and Eq.(B26) involve only the quantitys, one can reduce the number of entangled
self-consistent equations to just two, those determiningnds?, the equation fos? being

BIG\ No

-1
1 I [ 1 -
2__ _ : " ”
s _Noﬁ; Jk{l (NOZ.‘ INZi(Jom)"+ 2> Go(wn)T(wn)” . (B29)
The substitution of these parameters in E8R2) leads to theG given in Eq.(47).
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