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Ferromagnetism of Anderson localized electrons: Application to cluster compounds
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A study of the electrical transport and magnetic properties of a series of cluster compounds with the generic
formula A0.5M2X4 suggests that the electrons at the Fermi surface are localized, and the ferromagnetism seen
in these compounds arises from these electrons. The magnetism of these compounds shows some features
characteristic of itinerant models and others which are characteristic of localized models. We construct a model
which has a nondegenerate band of localized states with on-site repulsion. Further, the singly occupied states
interact via direct exchange interaction which is ferromagnetic. Using a mean-field approximation we calculate
the various magnetic properties, which are in qualitative accord with the observed behavior. In particular, we
find that the single-particle excitations play a dominant role in the magnetism of these compounds, even though
the electrons are localized. We also analyze the spin-wave excitations in this model and discuss their effect on
low-temperature thermodynamics.@S0163-1829~97!01330-1#
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I. INTRODUCTION

The transition metal cluster compounds of the fam
A0.5M2 X 4 ~whereA is Ga or Al,M is one of the transition
metals V or Mo, andX is S, Se, or Te! exhibit very interest-
ing ferromagnetic behavior which is a curious mixture
itinerant and localized behavior.1,2 These compounds have
spinel structure with a reduction of the space group sym

try from Fd3m to F 4̄3m and half occupancy of the catio
A sites.3,4 These are termed cluster compounds, beca
there is a significant clustering of the transition metals i
tetrahedral clusters, with intercluster distances betweenM
ions much larger (>4 Å! than the intracluster distances of
Å, which are in the metallic range.3,4

The conductivity of these compounds, both dc and ac,
the classic signature of variable-range hopping over a w
temperature range (,2000 K!,5,6 which implies that there is
a finite density of localized states at the Fermi level. On
other hand these compounds seem to have a rather w
disorder, which is not discernible in x-ray diffraction studie
The possible reasons for the electron localization are
cussed in the next section. These compounds are also f
magnetic with transition temperatures in the range of 10 K
26 K.7 The specific heat exhibits a large linear contributi
in the paramagnetic regime and in the ferromagnetic reg
a weak T3/2 contribution in addition to a reduced linea
contribution.7,8 The magnetic contribution to the specific he
shows a jump at the transition temperature, a behavior t
cal to itinerant ferromagnets. The spontaneous magnetiza
as seen in theM vs H curves corresponds to nonintegr
moments, but the high field saturation magnetization co
sponds to a magnetization of a single electron per clus
Similarly the moment inferred from the high-temperatu
susceptibility measurements is different from the sponta
ous moment. However, the Arrott plots (M2 vs H/M ) show
a pronounced curvature even at small fields, which is in c
trast to the itinerant behavior.7,8

All this points to the fact that the single-particle excit
tions in the system play a dominant role in the magne
560163-1829/97/56~6!/3251~14!/$10.00
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behavior. Though the electrons are not itinerant in the s
tem, there is a finite density of states at the Fermi level,
hence the possibility of low energy charge excitations. T
indicates that the magnetic properties also originate from
band of localized electrons, and the itinerantlike features
magnetism then come from the low energy electronic ex
tations across the Fermi level. Accordingly, in this paper,
investigate the magnetic properties of a model in which
electrons are Anderson localized. The magnetic momen
the model arises due to the fact that part of the band aro
the Fermi level is singly occupied due to on-site Coulom
repulsion U, whose magnitude relative to the bandwid
2W has to be chosen keeping in mind that every transit
metal cluster contributes the same number of electr
(n51) to the magnetic moment and the single-particle ex
tations have no gap. The magnetic moments of the sin
occupied sites then interact ferromagnetically via direct
change. This situation is particularly favorable for th
mechanism of direct exchange, as the electrons occupy
calized states that are mutually orthogonal to each ot
With these inputs, we find that the model exhibits most
the aforementioned features of magnetism. To get qualita
agreement, we attempt to obtain a typical set of values of
parametersU,W and the direct exchange energyJ, for one of
these compounds. A paramagnetic version of this mo
~without the exchange interactionJ) was investigated earlie
by Kaplan, Mohanti, and Hartman~KMH !.9 This study
showed that the magnetic susceptibility of the model h
both Curie behavior and Pauli behavior. The paramagnet
of Anderson localized states and other properties like spe
heat, have also been studied in detail by Kamimura a
co-workers,10,11 especially in the context of phosphoru
doped silicon.

The rest of the paper is organized as follows. In the n
section, we describe the model and its justification for
magnetism of cluster compounds. In Sec. III, we investig
the model in a self-consistent mean-field approximati
Within this approximation this model already exhibits a ri
physical behavior. We present results on various thermo
namic properties. In Sec. IV, we go beyond the mean-fi
3251 © 1997 The American Physical Society
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3252 56LAMBA, RASTOGI, AND KUMAR
approximation by using a functional variational meth
which is equivalent to a self-consistent renormalized h
density expansion. Though we have the formal results,
analysis is done to understand the role of spin-wave exc
tions at low temperatures, as these were missed out in
mean-field analysis. We end the paper with a discussion
summary of our results in the concluding section. A disc
sion on the chemical potential and most of the details of
functional method are discussed in two appendices.

II. MODEL AND PRELIMINARY DISCUSSION

In order to make the discussion concrete, we consider
specific case of one particular cluster compound, GaV4S8. A
simple valence count, keeping in mind that Ga is trivale
and S is divalent, shows that three of the V atoms in
formula unit must be trivalent and one must be tetravale
This suggests that the Fermi level should lie within thed
bands of the V atom. The preliminary band structu
calculations,12 indeed show that the band character at
Fermi level is dominantlyd type.12 Two other features of
note are that the bands at the Fermi level are very narrow
they each seem to disperse only along one family of crys
lographic directions. This suggests a tight binding picture
t2g-like bands in which each of the degenerate levels i
cluster disperses by having overlaps in one direction o
The narrowness and quasi-one-dimensional character o
bands makes it easy for these electrons to become loca
with very weak disorder. This weak disorder may arise eit
due to the occupancy of Ga ions which occupy only half
the A sites of the spinel structure or due to possible cha
disorder of V31 and V41 ions among tetrahedral cluster
Taking these features into account we model the system
considering a localized band of electrons with one elect
per cluster site. The localization length estimated from
transport data suggests that electrons are localized al
within each cluster.5

The two most relevant interactions for our purpose are~a!
the on site Coulomb interactionU, and ~b! the direct ferro-
magnetic exchange,J(R), between singly occupied sites. F
such a localized system, the long range Coulomb Interac
should also be considered. The main physical consequ
of the long range part of the interaction is that the single-
energies have site-occupation-dependent Hartree cont
tions. In an average picture this has two implications. F
there is an increase in the bandwidth,W, due to an additiona
spread of the Hartree energies. Second there is a depleti
the density of states at the Fermi level,g(eF). In the follow-
ing considerations we do not treat these effects, rather
take them as included in parameters adjustable from der
magnetic properties.

There are two further comments in order here. First
on-site interaction parameterU is dependent on the localize
statei , as has been considered by Kamimura.10 Here, how-
ever, we ignore the state dependence ofU, as we are work-
ing in the regime of deeply localized states~with an activa-
tion energyeact.0.2 eV!, whose localization length is ver
small. It would not have been possible to ignore the st
dependence ofU if one was working near the mobility edge
Our second remark is concerned with magnetic interactio
The intersite Coulomb interactions also allow for the kine
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exchange,13 which is antiferromagnetic. Since the com
pounds we are dealing with are ferromagnetic,14 the direct
exchange dominates, but the interaction constantJ(R)
should be interpreted as the sum of the direct and the kin
exchange.

With these assumptions, the Hamiltonian of the mode
the presence of an external magnetic field can be written

H5(
i

e i~ni↑1ni↓!1(
i

Uni↑ni↓2
1

2(i j Ji j SW i•SW j

2gmBHe(
i

Si
z , ~1!

wherei labels the localized states ande i are the energies o
the localized states that form a band of width 2W. Since the
localization radius of these states is of the same order as
cluster size, we takei to label the cluster. The spin operato
SW i are, as usual, represented as

SW i5
1
2 cia

†sW abcib , ~2!

where sW are the Pauli spin matrices andcia
† (cia) are the

creation ~annihilation! operators for the electrons,Ji j
5J(Ri j ), Ri j being the separation between the sitesi and j
andHe the external magnetic field. In order to appreciate
role of U and to fix its magnitude, it is instructive to firs
study the model without the exchange interaction, which
the model considered by KMH.9 WhenU50, in the ground
state half the sites are doubly occupied and the other half
empty, with the Fermi level being at the center of the ba
~assuming the density of states to be symmetric about
center!. In this situation there can be no magnetic mome
In the other extreme whenU@W, all the sites are singly
occupied, and the single-particle excitations have the M
Hubbard gap as usual. Since these compounds exhibit fe

FIG. 1. Variation of the occupation functionf (e) with energye
for U/W50.25, at different temperaturesT and magnetic fieldh,
wheree is in units ofW, T is in units ofW/kB , andh is in units of
W/gmB for ~a! T50.001,h50.2; ~b! T50.001,h50.1; ~c!
T50.1,h50; ~d! T50.01,h50; and ~e! T50,h50. At T50 the
steps are fromf (e)52 to f (e)51, ate5m2U and from f (e)51
to f (e)50 at e5m, the width of singly occupied bands@ f (e)51#
increases withh.
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56 3253FERROMAGNETISM OF ANDERSON LOCALIZED . . .
magnetism and hopping conduction, which requires a fin
density of states at the Fermi level, neither of the abo
situations describe the physics of the problem. IfU,W,
KMH ~Ref. 9! showed that the low lying states will be dou
bly occupied, a fraction of states covering the energyU
around the Fermi level will be singly occupied and the res
the higher energy states will be empty. The singly occup
states are responsible for magnetic properties and give ris
the ferromagnetic behavior when the exchange term is
cluded. Note that the KMH model is soluble as it breaks
into individual site Hamiltonians. It is simple to calculate th
grand canonical free energy and the occupation func
f i . These expressions are

G52kBT(
i

lnS 112cosh
bh

2
e2b~e i2m!1e2b~2e i1U22m!D ,

~3!

f i52F cosh~bh/2!e2b~e i2m!1e2b~2e i1U22m!

@112e2b~e i2m!cosh~bh/2!1e2b~2e i1U22m!#
,G
~4a!

n5
N

N0
5

2

N0
E

2W

W

deg~e!

3F cosh
bh

2
e2b~e2m!1e2b~2e1U22m!

112e2b~e2m!cosh
bh

2
1e2b~2e1U22m!

G ~4b!

wherem is the chemical potential,N0 is the total number of
clusters, andh is gmBHe . In writing Eq. ~4b! we have intro-
duced the density of statesg(e) and taken the zero of th
energy to be the center of the band. We further restrict o
selves only to a symmetric density of states, i.
g(e)5g(2e). In this situation, for the case ofn51, the
chemical potentialm can be exactly obtained to beU/2 at all
temperatures~see Appendix A!. In Fig. 1 we exhibit the oc-
cupation functionf i for different temperatures and fields. F
the zero-field ground state, levelse i,m2U are doubly oc-
cupied, levels betweenm2U,e i,m are singly occupied,
and levelse i.m are unoccupied. Thus there are two ste
across which single-particle excitations can occur as one
in the finite temperature curves. As mentioned above
magnetic moment is contributed by the singly occupied s
which range over an energy ofU. In the presence of a mag
netic field h, at T50 the steps basically occur a
m2U2h/2 from doubly to singly occupied sites which a
have up spin and atm1h/2 from singly occupied to unoccu
pied. We further note that the low energy single-particle
citations involve hops between states that may be well se
rated in space. Thus the equilibration rates for such syste
that depend upon phonon-assisted hopping, may be low
low temperatures.

III. MEAN-FIELD APPROXIMATION

Due to the presence of the exchange term, the Ha
tonian of Eq.~1! is not site separable and its partition fun
tion cannot be obtained exactly. In this section, we exam
the problem in the site averaged mean-field approxima
e
e
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~MFA!. This already leads to many new nontrivial resul
which bear good comparisons with experimental behav
As usual, in MFA, the exchange term is written as

1

2(i j Ji j SW i•SW j5(
i , j

Ji j S mjSi
z2

1

2
mimj D , ~5!

wheremi denotes the thermal average^Si
z& to be determined

self-consistently. This leads to the following site-separa
Hamiltonian:

HMF5(
i 51

N0 F S e i2
h1I i

2 Dni↑1S e i1
h1I i

2 Dni↓1Uni↑ni↓G
1

1

2(i j Ji j mimj , ~6!

where I i denotes the local internal field( j J(Ri j )mj . It
should be noted that the local field is contributed by on
singly occupied sites, whose density is of the ord
(U/2W)ns , wherens is the density of sites. Thus the neare
neighbor distance is of the order of (2W/Uns)

1/3, which
must be kept in mind while estimating the internal fiel
I i . One can now straightforwardly obtain the expression
electron number per siten, local magnetizationmi , and the
internal energyE:

n5
2

N0
(

i
S cosh

b

2
~h1I i !1exp@2b~e i1U2m!# D

3
e2b~e i2m!

Zi
, ~7!

mi5sinh
b

2
~h1I i !

e2b~e i2m!

Zi
, ~8!

E5(
i

H 2~e i2m!cosh
b

2
~h1I i !2~h1I i !sinh

b

2
~h1I i !

1~2e i1U22m!exp@2b~e i1U2m!#J
3

e2b~e i2m!

Zi
1

1

2(i j Ji j mimj , ~9!

where we defineZi as

Zi5112cosh
b

2
~h1I i !exp@2b~e i2m!#

1exp@2b~2e i1U22m!#. ~10!

Though the above set of equations involve site-depend
quantities, which can only be solved numerically, it shou
be realized that the problem has actually rather slight p
tional disorder. Further since we are dealing with a hi
density ferromagnet, it seems very reasonable to assume
the magnetization and the local field are homogenous w
little local fluctuation. The magnetization equation for sit
averaged magnetizationm5(1/N0)( imi can be written as
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3254 56LAMBA, RASTOGI, AND KUMAR
m5E
2W

W

deg~e!

3F sinh„b/2~h1J0m!…

eb~e2m!12 cosh„b/2~h1J0m!…1e2b~e2m1U !G ,
~11!

where we have written the average value ofI asJ0m. Equa-
tion ~7! is to be used for the determination ofm, which as
shown in Appendix A is found to beU/2 for a half-filled
band.

A. Analytical results

Before proceeding with the general analysis of Eq.~11!,
we present the case of a uniform density of stat
g(e)51/2W, as the integral can then be exactly evaluated
yield

m5
sinh„b/2~h1J0m!…ebU/2

2bW

1

Aa221
lnFebW1a2Aa221

ebW1a1Aa221

3
11a1Aa221

11a2Aa221
G ~12!

with

a5ebU/2cosh
b

2
~h1J0m!. ~13!

We now use Eq.~12! for calculating various magneti
properties. The susceptibility in the paramagnetic phas
found to be

x5N0~gmB!2
x0

12J0x0
~14!

with

x05
1

8W~12e2bU!1/2

3 lnF11~acoshbW1Aa221sinhbW!

11~acoshbW2Aa221sinhbW!
G . ~15!

In the interesting temperature rangebW.bU@1,

x0;S ln4

8W
1

U

8WkBTD . ~16!

This result was obtained by KMH,~Ref. 9! and shows the
features of Curie behavior due to moments and a Pauli-t
term due to single-particle excitations. In our case, the s
ceptibility assumes the form

x5N0~gmB!2
C1C1T

kB~T2TC!
, ~17!

where the Curie temperatureTc is given by

kBTC5
UJ0

8W2J0ln4
.

1

4
UJ0g~eF! ~18!
:
o

is

e
s-

andC andC1 are given by

C5
U

8W2J0ln4
, ~19!

C15
kBln4

8W2J0ln4
. ~20!

To shed more light on this expression we calculate
spontaneous magnetizationms(0) at zero temperature to b
~in units of gmB)

ms~0!.
U

4W22J0
. ~21!

Recalling the discussion of the Sec. II, we see that the sp
taneous magnetization is nearly the same as the numbe
singly occupied sites. Note that the constantC is not simply
related tomS(0), which would have been the case for
localized model. Further, from the form of Eq.~17!, one sees
that the effective Curie constant shows a slight increase w
temperature, which is a consequence of single-particle e
tations. Next, we calculate the saturation magnetizat
which is easily calculated from Eq.~12! by taking theh→`
limit and is found to be 0.5gmB , which is again quite differ-
ent from the spontaneous magnetizationms(0). Finally it is
worth making a remark about the expression forTC . It in-
volves both the interaction constantsU and J0. Ug(eF)
roughly determines the zero-temperature spontaneous m
netization andJ0 the coupling strength of the internal mag
netization.

The results of the calculations with a constant DOS m
miss some of the important physical features, so we n
present the results of the analysis with a more general, s
metric DOS. We first analyze the spontaneous magnetiza
in the T→0 limit. In this limit Eq. ~11! can be written as

ms5
1

2E2W

W

deg~e!F 1

eb~e2U/22J0m/2!111e2b~e1U/21J0m/2!G .

~22!

Here we have dropped terms of the order of (e2bJ0m/2). As
b→`, the integrandI has the following behavior;

I50, e.~U1J0m!/2

51, ~U1J0m!/2>e>2~U1J0m!/2

50, e,2~U/21J0m!/2. ~23!

Thus we obtain

ms~0!5
1

2E2~U1J0m!/2

~U1J0m!/2
deg~e!

5
1

2FNS U1J0m

2 D2NS 2
U1J0m

2 D G , ~24!

whereN(e) is the integrated density of states,

N~e!5E
2W

e

d~e!g~e!. ~25!
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For a constant DOS, Eq.~24! yields the same results as E
~21!. It can be easily solved for the case of weak magnet
tion, that isms(0)!1
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ms~0!5
N~U/2!2N~2U/2!

2$12~J0 /4!@g~U/2!1g~2U/2!#%
. ~26!

Next we consider the susceptibility in the paramagnetic
gime. For this we write Eq.~11! in the following form:

3255DERSON LOCALIZED . . .
m5
1

2E2W

W

deg~e!
eb~h1J0m!/22e2b~h1J0m!/2

eb~e2U/2!1eb~h1J0m!/21e2b~h1J0m!/21e2b~e1U/2! 5
1

2
~n↑2n↓! ~27!

and

n↑5E de
g~e!

11e2b~h1J0m!1eb S e2
U1h1J0m

2 D1eb S e1
U1h1J0m

2 D ~28!
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Again for large b (T.TC ,kBT!U,W) the integrand
has a nonzero value@11exp2b(h1J0m)/2# only when

2
U1h1J0m

2
,e,

U1h1J0m

2

and is zero otherwise. Thus

n↑5
1

11exp„2b~h1J0m!/2…

3HNS U1h1J0m

2 D2NS 2
U1h1J0m

2 D J . ~29!

A similar analysis forn↓ yields

n↓5
1

11exp„b~h1J0m!/2…

3HNS U2h2J0m

2 D2NS 2
U2h2J0m

2 D J . ~30!

From these expressions the susceptibility is easily obta
in the same form as in Eq.~14!, with x0 given by

x05
1

kBT
@N~U/2!2N~2U/2!#1@g~U/2!1g~2U/2!#

~31!

which is the generalization of Eq.~16!. It is worth remarking
that in the above results the DOS atU/2 and2U/2 occur, as
these are the points of discontinuity of the occupation fu
tion when the magnetizationm50. The large field case ca
also be analyzed for a general DOS. From the earlier dis
sion it is clear that the singly occupied sites that are alig
to the field lie in the energy range (U1h1J0m)/2>e
>2(U1h1J0m)/2. For a sufficiently large magnetic fiel
h, this would cover the entire band, yielding a saturat
magnetization of 0.5gmB . It might be thought that a gener
alized version of the Sommerfeld expansion may be de
oped but our efforts in those directions have not been s
cessful.
d

-

s-
d

l-
c-

B. Numerical results

We now present some numerical results for various th
modynamic quantities, within the mean-field approximatio
We again work with a symmetric density of states, in whi
case the chemical potential is fixed to beU/2, for a half-filled
band. These restrictions do make the analysis simpler,
the general results are quite representative. Our analys
done for the following density of states, which is rather typ
cal:

g~e!5
2

pW2AW22e2, 2W<e<W. ~32!

Most of the results presented are for the specific value
U/W50.25, and forJ0 /W50.1 and 0.2, though variation
with U andJ0 have also been examined. We have chosen
value ofW to be 1 eV.

The spontaneous magnetization in theT→0 limit can be
directly evaluated from Eq.~24!, which for the density of
states Eq.~32! is

ms~0!5
1

p
@sin21x1xA12x2#, ~33!

wherex5@U1J0ms(0)#/2W. We plot the solutions of this
equation for different values ofU/W over a range ofJ0 /W
in Fig. 2. One notes that the value ofms(0) depends mainly
on U, which as mentioned earlier controls the number
singly occupied states in the occupied band and is not m
influenced by the choice ofJ0 /W and it is always less than
the high field saturation magnetization of 0.5gmB .

The critical temperatureTC where the spontaneous ma
netization becomes zero can be determined from the e
tion

kBTC5J0E
0

W

deg~e!@ebC~e2U/2!121e2bC~e1U/2!#21,

~34!

wherebC51/(kBTC). The variation of the temperatureTC
with U/W andJ0 /W is shown in Fig. 3 which compares we
with the approximate solutions of Eq.~18!.

The general variation of the spontaneous magnetiza
ms(T) with temperature, can be studied from theh→0 limit
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3256 56LAMBA, RASTOGI, AND KUMAR
of Eq. ~11!. The typical plots forms(T) are presented in Fig
4. The high-temperature variation ofms(T) with temperature
is typically mean-field like@(T2TC)1/2#. But to focus on the
low-temperature behavior, a plot ofms(0)2ms(T), is shown
in the inset of Fig. 4. In this, no clear-cut variation likeT2 as
expected from single-particle excitations in the band mo
or exp@22J0ms(T)/T# as expected in the localized model c
be discerned.

We next consider the susceptibility in the paramagne
phase. We first calculatex0 for the chosen density of state
from the equation

x05
b

2E2W

W

deg~e!F 1

eb~e2U/2!121e2b~e1U/2!G . ~35!

x0 for a circular DOS has the same general features as
the uniform density of states@Eq. ~16!#, i.e., a combination of
the 1/T behavior due to localized moments and the Pa
like contribution from the single-particle excitations. We pl
x(T2TC) @where x is the enhanced susceptibility in th

FIG. 2. Variation of the spontaneous magnetizationms(0), mea-
sured in units ofgmB , with the exchange interactionJ0 /W for ~a!
U/W50.125,~b! U/W50.25, and~c! U/W50.375.
l

c

or

i-

paramagnetic phase, given by Eq.~14!#, with temperature in
Fig. 5. We find that the effective Curie consta
C8(x;C8/T) actually increases with temperature, indicati
that there is a contribution to the magnetization from t
single-particle excitations accords the Fermi level. We fit
curves obtained to the general law Eq.~17!. The values of
both C and C1 are different for the the different values o
J0 /W, andC.0.04 is indeed smaller than the correspondi
saturation magnetization. In Fig. 6 we plot the variation
the enhanced susceptibility with temperature, in the pa
magnetic phase, for different values of the on-site Coulo
repulsionU/W for both a zero and nonzeroJ0 /W. The di-
vergence in the curves for the nonzeroJ0 /W indicates the
transition to the ferromagnetic phase.

In Fig. 7 we study the variation of the isothermal magn
tization with the magnetic field from Eq.~11!. The magneti-
zation saturates to a value of 0.5gmB at rather high fields
(h;1). For T50 the saturating fieldhsat is in fact
.2W2U22J0. Below the critical temperatures one not
that before saturation there is actually a large range of fie

FIG. 3. Variation of the critical temperatureTC ~in units of
W/kB) with J0 /W for ~a! U/W50.125, ~b! U/W50.25 and~c!
U/W50.375.
e-

f

FIG. 4. Variation of the spontaneous magn
tization ms(T), in units ofgmB with temperature
T for ~a! J0 /W50.1 and~b! J0 /W50.2, the inset
shows the corresponding variation o
ms(0)2ms(T) with temperatureT for very low
temperaturesT!TC , where T is measured in
units of W/kB .
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56 3257FERROMAGNETISM OF ANDERSON LOCALIZED . . .
over which the magnetization increases linearly with
field strength. AboveTC also, after an initial nonlinear rise
the magnetization increases linearly with field over a cons
erable range of fields. These features are quite different f
the localized model and are in accord with the high fie
magnetization behavior of the cluster compounds.

For any magnetic system the Arrott plots offer a use
insight into the type of magnetic behavior. We present
Arrott plots for this model in Fig. 8, for the density of stat
given in Eq.~32!. The plots, which are over a large rang
of temperatures, both below and aboveTC (0.006,T
,0.015), show a large deviation from the linear behav
expected in weak itinerant ferromagnets like ZrZn2 and
Ni xPt12x .15 In such ferromagnets, the plots enable us
obtain the parameters of the Landau theory and the curva
of the Arrott plots is reflective of the shape of the density
states. In our model one can observe strong curvature ev

FIG. 5. Variation of the enhanced susceptibilityx(T2TC) in
the nonmagnetic phase, with temperatureT. The best possible fit to
the general formx5(C1C1T)/(T2TC), gives us the values o
C andC1 to be~a! J0 /W50.1,C50.0396, andC150.254 and for
~b! J0 /W50.2, C50.0401, andC150.279, the unit ofx being
W/(gmB)2.

FIG. 6. Variation of the enhanced susceptibilityx with T/U in
the paramagnetic phase for~a! J0 /W50.5 and~b! J0 /W50, for
different strengths ofU, the on-site Coulomb repulsion.
e

-
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small fields. To understand this, we show in Fig. 9 the oc
pation function for up and down spins at two values of t
field at a fixed temperature. From this, one sees how
magnetization which is related to the difference in the ar
under the up-spin and down-spin curves changes nonline
In contrast to the itinerant situation the nonlinearity, bei
rather strong, is not very dependent on the shape of the
sity of states. Only at higher temperatures the plots beco
almost parallel to each other, characteristic of typical itin
ant ferromagnets. These plots bear a good resemblance t
experimental plots for the cluster compounds presented
~Ref. 8!.

We calculate the zero-field specific heat in the ferro- a
paramagnetic phases for the circular DOS for two differ
values ofJ0 /W. These are shown in Fig. 10. Note that th
specific heat shows a huge jump just before the magn
transition takes place. The magnitude of the jumpDC seems
to increase with the critical temperature, and also w
J0 /W for a fixed value ofU/W though we are unable to
pinpoint an exact dependance with eitherTC or mS(0). In the
ferromagnetic phase the specific heat is quite distinct for

FIG. 7. Variation of isothermal magnetizationm(h) with mag-
netic field strengthh, for different temperatures 0.006<T<0.015,
with J0 /W50.2, the magnetization saturates to 0.5, in units
gmB , at very high fields (h.W).

FIG. 8. Arrott plots forJ0 /W50.2, at temperatures~a! 0.007,
~b! 0.009,~c! 0.01,~d! 0.011,~e! 0.012,~e! 0.013,~f! 0.014, and~g!
0.015 ,whereT is kBT/W.
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3258 56LAMBA, RASTOGI, AND KUMAR
ferent values of the parameterJ0 /W, but beyond theTC the
two curve merge to one, which is an artefact of the me
field approximation. In both the para- and ferro-magne
phases the specific heat is found to be linear in tempera
over a wide range of temperatureCV5gT with g dependant
on the shape of the density of states studied and in the
romagnetic phase on the value ofJ0 /W. This feature is also
in accord with the experimental observations.

IV. BEYOND MEAN-FIELD THEORY

The mean-field approximation discussed above is in
equate in many respects. Being a single-site approxima
it misses the correct low energy magnetic excitations wh
are cooperative spin waves. It also cannot give an accoun
magnetic correlations between different sites. Moreover

FIG. 9. Variation of the occupation function for the singly o
cupied sites with energye ~in units of W) at a temperature o
0.05 ~in units of W/kB), for the up-spin band at~a! h50.1 and~b!
h50.2 and for the down-spin band at~c! h50.1 and~d! h50.2
whereh is the magnetic field, and finally,~e! the density of states
g(e).

FIG. 10. Variation of the specific heatCV with temperature for
~a! J0 /W50.1 and~b! J0 /W50.2. g in the paramagnetic phase
estimated from this to be 3.5 mJ/mol K2, the specific heat shows
huge jump at the onset of the magnetic transition.
-
c
re,

r-

-
n,
h
of
n

this model one also has to consider the interaction betw
spin excitations and particle excitations. Since the analysi
these problems is a difficult exercise, in this section we c
fine ourselves to the inclusion of spin-wave excitations. W
do this by developing a version of renormalized high dens
expansion,16,17 by using a functional method combined wit
a variational technique.18,19 Such methods have been used
a number of similar quantum statistical problems. For
present calculation, as far as longitudinal degrees of freed
are concerned, the results are equivalent to the self-consi
high density expansion to first order, while the transve
degrees of freedom are treated to include spin-wave co
butions to the leading order.19 Since the techniques used a
available in literature, in this section we outline the ma
steps and approximations, relegating the details of the d
vation to Appendix B.

Since the Hamiltonian involves noncommuting variable
the grand canonical partition functionZG5exp@2G(T,m,h)#
is written as

ZG5TrTFexpH 2E
0

b

dt(
i

@ ẽ i↑ni↑~t!1 ẽ i↓ni↓~t!

1Uni↑~t!ni↓~t!#2
1

2(i j Ji j SW i~t!•SW j~t!J G , ~36!

where T stands for the ordering of thet labels and
ẽ i↑(↓)5e i2m7h. Now, as usual, auxiliary integrations ar
introduced over the variablesRW i(t) to express the exchang
term as a single-site term, to yield

ZG5exp~2bG!5E DR~t!exp2@C$RW i~t!%#, ~37!

whereDR(t) stands for a functional integral~see Appendix
B for the definition!, and

C$RW i~t!%5E
0

b

dtS 1

2(i , j r i j RW i~t!•RW j~t!

2(
i

f 1i@RW i~t!,e i # D , ~38!

where the matrixr5„J…

21, and

exp$2 f 1i@RW i~t!,e i #%

5TrTH expF E
0

b

dt$ ẽ i↑ni↑~t!1 ẽ i↓ni↓~t!

1Uni↑~t!ni↓~t!2SW i~t!•RW i~t!%G J . ~39!

The one-site problem implied in Eq.~39! cannot be solved
for arbitrary RW i(t). So we introduce a symmetry breakin
assumption implying that the static fluctuations can oc
only in one direction, taken to be thez-axis, i.e., we write

RW i~t!5Ri
zk̂1rW i~t! ~40!

and
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E rW i~t!dt50. ~41!

Using the above assumptions, one evaluates Eq.~39! to qua-
dratic order inrW i(t) , which then yields the following expres
sion for C$RW i(t)% ~see Appendix B!:

C$RW i~t!%5
b

2(
i j

r i j Ri
zRj

z2(
i

lnZi~hi !

1
1

2b(
i j

r i j ( 8
n

S r i
z~vn!r j

z~2vn!

1
1

2
r i

1~vn!r j
2~2vn!1

1

2
r i

2~vn!r j
1~2vn! D

2
1

4S ( 8
vn ,i

r i
2~2vn!r i

1~vn!Gi~vn! D , ~42!

whereZi is defined in Eq.~10! with hi5h1Ri
z replacing

(h1I i), and

Gi~vn!5
2

Zi~hi !

sinh~bhi /2!

ivn1hi
e2b~e i2m!, ~43!

wherevn5(2pn)/b, with n taking integer values and th
prime on then summation means exclusion of then50
term. Also

r i
a~vn!5

1

2E2b

b

dteivntr i
a~t! ~44!
w

re
and

r i
6~vn!5r i

x6r i
y . ~45!

With this C$RW i(t)%, the functional integral of Eq.~37! is
evaluated by adopting a suitable generalization of the va
tional method due to Muhlshlegal and Zittarz.16 In this
method a quadratic trial functionC t$RW i(t)% is chosen and
the functional integral is evaluated in a perturbative exp
sion aboutC t . Here we chooseC t$RW i(t)% to be translation-
ally invariant. Though our problem does not have the tra
lational symmetry, we recall that the disorder is rather we
and the homogeneity of the magnetic properties should
be much affected. This amounts to seeking a translation
symmetric quadratic form that is variationally the best for t
problem. The general form forC t$RW i(t)% is

C t$RW i~t!%5
1

4(i j E dt1E dt2$Si j
22~t12t2!@Ri

z~t1!2a#

3@Rj
z~t2!2a#1Ti j

22~t12t2!

3@Ri
x~t1!Rj

x~t2!1Ri
y~t1!Rj

y~t2!#%, ~46!

whereSi j
22 , Ti j

22 , anda are the variational functions to b
determined,a is later identified to be the local internal fiel
related to the magnetization asa5J0m. In Appendix B we
describe the calculation ofG to the first order in (C2C t)
and the determination of the variational parameters from
resulting expression. The result of this calculation yields
following expression for the free energyG:
G5
1

2
N0J0m22

1

b(
i

lnZi~J0m!1
1

b(
q

( 8
n

lnS 12
1

2
bJqG0~vn! D1

1

2b(
q

lnF12
Jq

bJ0
2H 1

N0
(

i
lnZi9~J0m!

1( 8
n

G09~vn!̄T~vn!J G1
1

2b(
q

F12
Jq

bJ0
2H 1

N0
(

i
lnZi9~J0m!1( 8

n
G09~vn!̄T~vn!J G21

~47!
with

Jq5(
j

eiqW •RW i j J~Ri j !, G0~vn!5
1

N0
(

i
Gi~vn!,

and the horizontal bar over certain terms implies the follo
ing averaging:

f ~J0m!5
1

2pE dye2y2/2f ~J0m1ys!. ~48!

The double prime stands for the double derivative with
spect tom and
-

-

T~vn!5(
q

bJq

12~1/2!bJqG0~vn!
. ~49!

These equations involvem ands, which are determined from
the following equations:

m5
1

bJ0

1

N0
F(

i

Zi8~J0m!

Zi~ j 0m!

1
]

]m(
q

( 8
n

lnS 12
1

2
bJqG0~vn!̄ D G ~50!
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and

s25
1

bN0
(

k
JkF12

Jk

bJ0
2H 1

N0
(

i
lnZi~J0m!9

1( 8
n

G09~vn!T~vn!J G21

. ~51!

The above two equations are a rather formidable set of s
consistent equations which to our knowledge have not b
solved even for the simpler system like the Heisenb
Hamiltonian, so here we limit the discussion to some phy
cal effects in the low-temperature limit. On examining E
~47! for G, we note that the first two terms would correspo
to the mean-field approximation but for the Gaussian av
aging over the internal fields implied by Eq.~48!. The third
term corresponds to the spin-wave contribution, again c
rected by fluctuations over internal fields. The last two ter
are the fluctuation contribution of the internal field. At lo
de
o

ve
ne
o
th
it
b
io
fo
s
s
f
d.
th
en

a

lf-
n

g
i-
.

r-

r-
s

temperatures we expect the contribution due to longitud
fluctuations to be small on physical grounds. So if we negl
these, which amounts to neglecting the last two terms of
~47! and settings50, one arrives at the following expressio
for G:

G5
1

2
N0J0m22

1

b(
i

lnZi~J0m!

1
1

b(
q

lnF 12e2bvq

12e2b~h1J0m!G , ~52!

where the last term here is the result of the frequency s
mation in the third term of Eq.~48!, and

vq5h1m@J02Jq# ~53!

which is the usual spin-wave frequency in the random -ph
approximation. Within this approximation the equation d
termining the magnetization takes the form,
m5
1

N0
(

i

sinhb~h1J0m!/2

@eb~e i2m!12coshb~h1J0m!/21e2b~e i2m1U !#
1

1

eb~h1J0m!21
2

1

N0
(

q

1

eb~h1vq!21
. ~54!

The spin-wave contribution represented by the last term yields the well-knownT3/2 term, so that Eq.~54! for h50 can be
written as

m5E
2W

W

deg~e!F sinh~b/2!~h1J0m!

eb~e2m!12 cosh~b/2!~h1J0m!1e2b~e2m1U !G1
1

eb~h1J0m!21
2z~3/2!H kBT

4pDmJ 3/2

, ~55!
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whereD is the coefficient ofq2 in the small-q expansion of
J02Jq.Dq2.

The second term is again contributing terms of the or
of exp(2bJ0) which are insignificant at low temperatures. S
one can write the solution of Eq.~55! as

m~T!5mMF~T!2z~3/2!F kBT

4pDmMF~0!G
3/2

, ~56!

wheremMF(T) is the mean-field solution whose plots ha
been exhibited in Fig. 4. This result is exactly what o
would expect because spin-wave contributions occur in b
the itinerant and local models. Here, however, much like
itinerant situation, the spin-wave contribution can be qu
weak as part of the band of spin-wave excitations can
come degenerate to the single-particle spin-flip excitat
continuum. Note that the spin-up band is singly occupied
(U1J0m)/2>e>2(U1J0m)/2, and the spin-down band i
empty atT50. Thus the single-particle spin-flip excitation
whose energy ise i2e j1J0m will span an energy range o
0 to U12J0m, which clearly engulfs the spin-wave ban
The corresponding situation for itinerant magnets is that
single-particle excitations lie between betwe
J0m1(1/2m)(q212kFq) and J0m1(1/2m)(q222kFq),
but here the momentum selection rule saves the spin-w
excitations, as for smallq there is a window for which no
r

th
e
e
e-
n
r

e

ve

single-particle excitations exist. In the present situati
since the single-particle excitations are not characterized
momentum, the existence of such a window is not cle
Thus one can expect only a rather weak contribution fr
spin-wave excitations.

V. DISCUSSIONS

In this paper, we have presented a model for the mag
tism of cluster compounds. Here both spin-flip and sing
particle excitations play important roles in determining t
magnetic behavior. The main results derived within t
mean-field approximation, are in broad agreement with
experimental behavior. These are~i! the high field saturation
magnetization corresponds to one electron moment per c
ter, whereas spontaneous magnetization even at zero
perature corresponds to the nonintegral moment and is
siderably smaller than the saturation magnetization.~ii !
Similarly the moment inferred from high-temperature su
ceptibility measurements is different from the saturati
magnetization.~iii ! The susceptibility shows a behavio
which is a mixture of localized and itinerant behavior.~iv!
The calculated Arrott plots have shapes that are much
the experimental plots, showing a pronounced curvat
even at low fields which is indicative of departure from t
theory of weak itinerant magnets.~v! The specific heat
shows a contribution linear in temperature, both below a
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above the transition temperature, which is doubtless du
single-particle excitations. On the other hand, it show
large jump at the transition temperature, which is a char
teristic of localized models.~vi! We have also worked ou
the spin-wave excitations in the model. However since
spin-wave branch overlaps strongly with the particle-hole
citation spectrum, their contribution to the thermodynam
are not clear cut. Experimentally also, the specific heat d
show possibly only a weakT3/2 term.

Now we turn to quantitative comparisons to the data. U
fortunately data available on any one compound are
enough to verify all the quantitative features. We have
tempted to obtain a fit for the compound GaMo4Se8. From
the transport measurement on pure and zinc doped Ga4S

8, we estimate a bandwidth of 1 eV. Assuming this to be t
also for GaMo4Se8, one can use the expressions forTC , and
the specific heat jump at the transition temperatureDC, to
obtain the parametersU andJ0. A choice ofU/W50.45 and
J0 /W50.032 yields aTC of 26.9 K ~experimental value 26.7
K! and DC53 J/K/mol ~the experimental value being 3.7
J/K/mol!. This yields a zero-temperature spontaneous m
netization of 1.63103 emu/mol, against the experiment
value of 5.33103 emu/mol. The linear coefficient of the spe
cific heatg aboveTC has a value of 4.0 mJ/mol K2 in our
model for the above-mentioned values ofU andJ0, whereas
the experimental value ofg5620 mJ/mol K2. The agree-
ment with the specific heat data can improve by a factor
10 by choosing a much smaller bandwidth for these co
pounds,W50.1 eV, for which theg in the paramagnetic
phase;30 mJ/mol K2, for U/W50.4 andJ0 /W50.325.

Though the qualitative shapes of the Arrott plots are l
the experimental ones, the scales of the magnetization
the fields are off by factors of order 10. The calculated s
ceptibility is lower than the measured value by a factor
8 to 10. Thus the quantitative comparisons leave much to
desired. Some of the discrepancies can be ascribed to
uncertainties regarding the bandwidth and the density
states. We have done all our calculations with a rat
smooth DOS, whereas preliminary band structure calc
tions indicate that the DOS is rather spiky. Also the ban
width involved in the transport measurements may be dif
ent from those entering thermodynamic properties,
localized electrons are involved here. There may also
genuine physical interactions which affect these propert
but are not included in this model. These are~a! long range
Coulomb interactions and associated correlations which,
instance, give rise to the Coulomb gap;~b! disorder effects
which cause variations in the on-site Coulomb interactio
U and the exchange parameterJ0, and~c! degeneracy of the
bands. In fact, preliminary computer simulations of th
model, incorporating positional disorder effects, seem to
dicate that the magnetization would differ from that es
mated in our calculations. Finally, we have not understo
the agency causing electron localization, which is possib
combination of the weak disorder, long range Coulomb
teractions and dispersion of bands in a few directions only
further understanding of these should clearly improve
model. Some of these questions should be taken up e
cially when more extensive and precise data become a
able.
to
a
c-

e
-
s
ta

-
ot
t-

e

g-

f
-

nd
-
f
e

the
f
r

a-
-
r-
s
e
s,

or

s

-
-
d
a
-
A
e
e-
il-

ACKNOWLEDGMENTS

We gratefully acknowledge the help from Professor D.
Sarma, who calculated the band structure of a cluster c
pound at our request and made the preliminary results av
able to us. We are also grateful to Professor S. D. Mah
for very useful discussions. S.L. acknowledges financial
sistance from the University Grants Commission of India

APPENDIX A: CHEMICAL POTENTIAL

Since the site occupation is not affected by the excha
term, the calculation of the chemical potential can be do
without the exchange term. Under these circumstances,
number of particles per site,n5N/N0 , is given by

n52E
2W

W

deg~e!

3F cosh~bh/2!e2b~e2m!1e2b~2e1U22m!

@112e2b~e2m!cosh~bh/2!1e2b~2e1U22m!#
G .
~A1!

Recalling that*deg(e)51, we can write Eq.~A1!, for
n51 , in the form

E
2W

W

deg~e!

3F12
2 cosh~bh/2!e2b~e2m!12e2b~2e1U22m!

112cosh~bh/2!e2b~e2m!1e2b~2e1U22m!G50

~A2!

which can be further written as

E
2W

W

deg~e!F eb~e2m!

eb~e2m!12cosh~bh/2!1e2b~e1U2m!G
5E

2W

W

deg~e!F e2b~e1U2m!

eb~e2m!12cosh~bh/2!1e2b~e1U2m!G
5E

2W

W

deg~e!F eb~e2U1m!

eb~e2U1m!12 cosh~bh/2!1e2b~e1m!G
~A3!

where in writing the last equation we have changed variab
from e to 2e and made use of the fact thatg(e)5g(2e) .
From Eq. ~A3! it is clear that the equation is satisfied
m5U2m.

APPENDIX B: FUNCTIONAL METHOD

We start with Eq.~36! of Sec. IV. This can be written in
terms of the matrixr and f 1i defined in Eq.~39! as
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ZG5TF E DRW ~t!expS 2E dt(
i j

r i j

2
RW i~t!•RW j~t!

2(
i

f 1i@RW i~t!,e i # D G , ~B1!

whereDRW (t) stands for the functional integration

DR~t!5T)
n50

L

)
i 51

N
D3dRi

x~tn!dRi
y~tn!dRi

z~tn!

~2p!3N/2~detJ!3/2 ~B2!

with D5b/L, tn5nD.
Because of the quantum nature of the problem, the tr

in Eq. ~39! cannot be calculated exactly for any arbitra
RW i(t). So we introduce the symmetry breaking assumpt
implied in Eqs.~40! and ~41!. With these we can write Eq
~39! as

exp@2 f 1i #5TrTexpH 2E
0

b

dt@H0i1VIi ~t!#J , ~B3!

where

H0i5 ẽ i↑ni↑~t!1 ẽ i↓ni↓~t!1Uni↑~t!ni↓~t!2Si
zRi

z

~B4!

and

VIi ~t!52@r i
z~t!Si

z~t!1 1
2 $r i

1~t!Si
2~t!1r i

2~t!Si
1~t!%#.

~B5!

The idea of this decomposition is to obtainf 1i in a perturba-
tion expansion inVIi t. Thus

exp@2 f 1i #5Zi~hi !K TexpS 2E
0

b

dtVIi ~t! D L
0

, ~B6!

where ^&0 indicates averaging with the density matr
exp(2bH0i) andZi has been defined earlier in Eq.~10!, with
hi5h1Ri

z . Further

VIi ~t!5etH0iVI~t!e2tH0i

52r i
z~t!Si

z2 1
2 $r i

1~t!ethiSi
21r i

2~t!e2thiSi
1%.

~B7!

The first order term of the perturbation term expansion
VIi vanishes, and the second-order term yields

1

2E0

b

dt1E
0

b

dt2^T@VI~t1!VI~t2!#&

5
1

8E0

b

dt1E
0

b

dt2$r i
1~t1!r i

2~t2!Gi~t1 ,t2!

1r i
2~t1!r i

1~t2!Gi~t2 ,t1!%, ~B8!

where
ce

n

n

Gi~t1 ,t2!5^T@Si
2~t1!Si

1~t2!#&0

5
1

Zi~hi !
e2b~e i2m!e~t12t2!hi$u~t12t2!e2bhi /2

1u~t22t1!ebhi /2%. ~B9!

Keeping terms up to the second order inrW i(t), one can write
the grand canonical free energyG(T,m) in the following
expression:

ZG5exp~2bG!5E DR~t!exp2@C$RW i~t!%#,

~B10!

where C$RW i(t)% is expressed in Eq.~42!. To evaluate the
functional integrals of Eq.~B10! a suitable generalization o
the the variational method due to Muhlschlegal and Zittar16

has been adopted. The quadratic trial functionC t$RW i(t)%
given in Eq.~46! is chosen and Eq.~B10! is evaluated in a
perturbation expansion aboutC$RW i(t)%. To the first order in

@C$RW i(t)%2C t$RW i(t)%# the free energyG can be written as

bG5bGt1^C$RW i~t!%2C t$RW i~t!%& t , ~B11!

where

exp~2bGt!5E DR~t!exp@2C t$RW i~t!%# ~B12!

and the averaging is done with respect toC t$RW i(t)%. Since
C t$RW i(t)% is translationally invariant, a more convenie
form of C t$RW i(t)% can be obtained by making the followin
change of variables. First we replacerW i(t) by the Fourier
transform defined as

rWq~t!5
1

AN0
(

i
eiqW .RW i rW i~t!, ~B13!

whereRW i denotes the coordinates of the site. The static v
ablesRi

z are changed toyi by the following equation:

Ri
z5a1(

j
si j y j , ~B14!

where

si j
225

1

2bE0

b

dt1E
0

b

dt2Si j
22~t12t2! ~B15!

and the Fourier transformed variational parameters are
fined through

si j
22~vn!5

1

2bE2b

b

Si j
22~t!e2 ivnt ~B16!
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and similarly forTi j (t). In terms of these variables

C t$RW i~t!%5
b

2(
i

yi
21

1

4(q
( 8

n
F ur q

z~vn!u2

sq~vn!2

1
@ ur q

x~vn!u21ur q
y~vn!u2#

tq~vn!2 G . ~B17!

The prime on the summation implies the exclusion of
 e

vn50 term. The trial free energyGt , apart from an unim-
portant constant, is given by

Gt52kBT(
q

F lnsq~0!1( 8
vn

$ lnsq~vn!12lntq~vn!%G ,
~B18!

wheresq is the spatial Fourier transform ofsi j defined in Eq.
~B15!. Next we have to evaluate the expectation value
C$RW i(t)%2C t$RW i(t)%, which in terms of the above vari
ables can be written as
y

ed:
C$RW i~t!%2C t$RW i~t!%5
b

2(
i j

r i j S a1(
ik

sikykD S a1(
j l

sj l yl D 2
b

2(
i

yi
22(

i
lnF112e2b~e i2m!

3cosh
b

2S h1a1(
k

sikykD 1e2b~2e i1U22m!G1
1

2(q
(

n

8 F S rq1q2

b
2

1

2sq1

2 dq1q2D r q1

z ~vn!r 2q2

z

3~2vn!1S 1

b
rq1q2

2
1

2tq1

2 ~vn!
dq1q2

2
1

2
Gq1q2D $r q1

x ~vn!r 2q2

x ~2vn!1r q1

y ~vn!r 2q2

y ~2vn!%G ,

~B19!

where

rq1 ,q2
5

1

N0
(
i , j

r i j exp@ i ~qW 1•RW i2qW 2•RW j !#, ~B20!

Gq1 ,q2
~vn!5

1

N0
(

i
Gi~vn!exp@ i ~qW 12qW 2!•RW i !], ~B21!

whereGi is as in Eq.~43!, with hi5h1a1( j si j y j . Using the above expressions, Eq.~B19!, one can evaluate the free energ
G in the approximation given in Eq.~B11! to be

G5
r0,0N0a2

2
2

1

b(
q

ln
sq~0!

b
2

1

b ( 8
q,vn

H ln
sq~vn!

b
12ln

tq~vn!

b J 2
1

b
lnZi1

1

2b2(
q

@sq~0!2rq,q2b/2#

1
1

2b2 (
vn ,q

@rq,qsq~vn!22b/2#1
1

b2 (
vn ,q

@rq,qtq~vn!22b/2G0~vn!tq
22b/2# ~B22!

where the upper bar represents the averaging of quantities which involve the variables$yi%, in the following way:

f ~a!5E f S a1(
k

sikykDexpS 2
b

2(
i

yi
2D)

i
A b

2p
dyi5

1

A2p
E dye2y2/2f ~a1ys!, ~B23!

where

s25
1

bN0
(

q
sq

2 . ~B24!

Next, we determine the variational parameters by minimizingG with respect to them. The following equations are obtain

sq
2~vn!5bJq ,tq

2~vn!5
bJq

12
b

2
JqG0

, ~B25!

whereJq5(rq,q)21. Writing a5J0m, one finds that the site-averaged magnetization,m, obeys the equation

m5
1

bN0
(

i

Zi8~J0 ,m!̄

Zi~J0 ,m!
1

1

N0bJ0

]

]m(
q

( 8
n

lnS 12
1

2
bJqG0~vn! D . ~B26!
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yi8 denotes the derivative ofyi with respect tom. Finally, for sk’s, we have

sk
25

Jk

12 ~Jk
2/bJ0

2! F 1

N0
(

i
lnZi~J0m! 9̄1(

n
G09~vn!̄T~vn!G , ~B27!

where

T~vn!5
1

N0
(

q
t2~q,vn!. ~B28!

For the RHS of Eq.~B27!, Eq. ~B25! and Eq.~B26! involve only the quantitys, one can reduce the number of entangl
self-consistent equations to just two, those determiningm ands2, the equation fors2 being

s25
1

N0b(
k

JkF12
Jk

bJ0
2S 1

N0
(

i
lnZi~J0m! 9̄1( 8

n
G09~vn!T~vn!D G21

. ~B29!

The substitution of these parameters in Eq.~B22! leads to theG given in Eq.~47!.
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