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Weak disorder in the two-dimensionalXY dipole ferromagnet

D. E. Feldman
Landau Institute for Theoretical Physics RAS, 142432, Chernogolovka, Moscow region, Russia

~Received 11 December 1996; revised manuscript received 9 April 1997!

The effects of random field and random anisotropy axis disorder on the two-dimensionalXY dipole ferro-
magnet are studied. It is shown that the disorder leads to an instability of the ferromagnetic phase. The
correlation function of the magnetization is calculated at low temperatures using the self-consistent harmonic
approximation. In the random-field case, the correlation function obeys a power law as a function of the
distance. For random axis disorder, a logarithmically slow decrease of the correlation function is found.
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I. INTRODUCTION

Recently a renewed interest of dipole effects in thin m
netic films has appeared. The dipole forces are inevita
present in any magnetic matter. Albeit weak, these lo
range forces lead to new physics at large scales. In th
dimensional~3D! magnets, dipole forces produce doma
structures and modify critical behavior.1 The dipole effects in
2D magnetic films are even stronger. A remarkable prope
of the dipole forces is their ability to stabilize long-rang
order in 2D degenerate ferromagnets.2,3 Recently, it was sug-
gested that dipole stabilization of long-range order is a
possible in 2D Heisenberg antiferromagnets.4 The properties
of the low-temperature phases in these systems are no
fully understood. Recent theoretical studies5–7 suggest an un-
usual behavior for 2D dipole ferromagnets. It is argued t
at low temperatures, the properties of these systems ar
termediate between the usual long-range order and cri
point behavior.

An experimental test of these theoretical predictions
difficult since real magnetic films lack continuous symmet
Even a weak in-plane anisotropy strongly modifies the pr
erties of the 2D magnet. The only exception is the case
hexagonal anisotropy. It is expected that for a certain ra
of low temperatures such anisotropy is irrelevant and that
isotropicXY behavior is restored at large scales.8,9 Another
appropriate system is the ferroelectric smectic-C film. Unf
tunately, the dipole force in such a system becomes rele
only at very large scales.10

During the past decade considerable advances in
growth of magnetic films with hexagonal symmetry ha
been achieved. Growing iron films on the~111! face of the
fcc Ag was reported in Ref. 11. Recently, the Ru film h
been grown on an hexagonal graphite substrate.12 Thus, one
can hope to observe the dipole stabilization of the long-ra
order experimentally in such films. These advances and
the recent observation of dipolar induced striped dom
structure13 in a 2D magnet have simulated theoretical inve
tigations of the dipole effects in the 2D systems~e.g., Refs.
4–7!.

There are many theoretical works devoted to the id
case of the pure film. At the same time, the effect of disor
on the properties of the dipolar films has not been inve
gated. In the present work, the effect of weak disorder on
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2D XY ferromagnet with the dipole~and exchange! forces is
studied at low temperatures. In the Heisenberg dipole m
net, the magnetization normal to the film has a finite cor
lation radius.2,3 Hence, the results are also applicable to t
Heisenberg case. Two types of disorder will be consider
random field and random anisotropy axis. From symme
consideration, one can expect that for other types of loc
correlated disorder, the system will belong to one of the
two universality classes.

Despite a lot of effort, our present understanding of t
random field and random anisotropy systems14,15 is still in-
complete. The standard perturbation methods are not ap
cable for these systems because of the multiplicity of ene
minima in the systems.16,17 To deal with problems including
complicated energy landscapes, the technique of rep
symmetry breaking was developed.18,19 Originally, this tech-
nique was suggested for the mean-field problem.20 Only
simple non-mean-field toy models were completely stud
with the aid of replica symmetry-breaking calculations21

However, recently suggested was the variational proced
regarding replica symmetry-breaking effects~the self-
consistent harmonic approximation22–28!. In contrast to other
methods~e.g., renormalization group!, this procedure takes
into account peculiarities of complicated energy landsca
of disordered systems, and thus allows us to obtain rea
able results.28 In particular, this approach seems to be effe
tive for the pure exchange random-fieldXY model.25–27

Below we assume that in the low-temperature phase
effects of topological defects can be neglected. Rec
numerical29 and theoretical30–33studies support this assump
tion for disordered systems with short-range interactions
spatial dimensionsD.2. As seen below, the behavior of th
random axis dipole magnet can be interpreted as an effec
increase of the dimension. This allows us to hope that for
random axis disorder the vortexless approximation is corr
In the random-field case, the dipole force turns out to
irrelevant. The role of vortices in the 2D short-range rando
field XY model is not very well studied. Numerical work29

suggests that the system has a finite correlation radius,
the results of the vortexless approximation25–27 are valid
only for not too large scales.

The aim of the article consists in calculating the corre
tion function of the magnetization for random field and ra
dom anisotropy axis disorder with the self-consistent h
3167 © 1997 The American Physical Society
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3168 56D. E. FELDMAN
monic approximation. In both cases, the disorder leads to
destruction of the ferromagnetic phase. In the random-fi
case, the correlation function of the magnetization obeys
same power law as for the random-field magnet with
only exchange forces.25–27 In the random axis case, the co
relation function is a logarithmically slow decreasing fun
tion of the distance.

The results of this work are valid at scales where unbo
vortices are absent. The role of topological defects dese
further attention.

II. THE MODEL

Consider the system with the following Hamiltonian:

H52(̂
i j &

Kmimj1mB
2(

i , j

mimj23~mini j !~mjni j !

ur i2r j u3
1Vimp ,

~1!

where(^ i j & denotes summation over neighboring sitesr i of
the lattice with spinsmi ; ni j 5(r i2r j )/ur i2r j u; Vimp is the
disorder energy. The spin vectorsmi lie in the plane of the
film. For the random-field disorder
in
I
it

s.
u

tri
s
er
on
th
try
io
e
ld
e

e

d
es

Vimp52(
i

himi ;hi
ahj

b;dabd i j ;a,b5x,y. ~2!

For the random axis disorder

Vimp52(
i

~n imi !
2;n i

an j
b;dabd i j ;a,b5x,y. ~3!

The dipolar interaction of neighboring spins is assumed to
small in comparison with their exchange interactions. Th
the ground state of the pure system is ferromagnetic.

Consider the continuous limit of the Hamiltonian~1!. In-
plane anisotropy related to the discrete symmetry of the
tice will not be considered further. In the low-temperatu
limit, one can neglect the fluctuations of the absolute va
of the local magnetization~assuming that vortices are irre
evant!. Hence, the Hamiltonian can be expressed in terms
the anglef(r ) between the magnetization vector and so
fixed spatial direction. For the types of disorder consider
the continuous Hamiltonian is
lds
H5E d2r
J

2
~¹f!21E E d2rd2r 8

g

ur2r 8u3 @cos„f~r !2f~r 8!…23cos„f~r !2u~r2r 8!…cos„f~r 8!2u~r2r 8!…#

1E @hx~r !cos„pf~r !…1hy~r !sin„pf~r !…#d2r , ~4!

where u(r2r 8) is the angle between the vector (r2r 8) and the fixed direction; the parameterp equalsp51 for the
random-field disorder andp52 for the random axis disorder;hx(r ) andhy(r ) are random fields. We assume that these fie
are Gaussian andd correlated, i.e.,

ha~r !hb~r 8!5Ddabd~r2r 8!;a,b5x,y. ~5!

After disorder averaging, with the aid of the replica method, the effective Hamiltonian takes the form

HR5(
a
E d2r

J

2
~¹fa!21E E d2rd2r 8

g

ur2r 8u3(a
@cos„fa~r !2fa~r 8!…23cos„fa~r !2u~r2r 8!…cos„fa~r 8!2u~r2r 8!…#

2
D

2TE (
a,b

cos@p„fa~r !2fb~r !…#d2r , ~6!
es:
try

ive

tor
gle;
or-

tor

y

wherea,b are the replica indices,T is the temperature.
The dipole force leads to the lowering of the symmetry

comparison with systems with short-range interactions.
presence of dipolar interactions, there is no symmetry w
respect to the rotations in either spin or coordinate space
the pure system, this is not an important point since sim
taneous spin and coordinate rotations still remain symme
of the magnet, and generation of new relevant operator
not expected.5 However, in the impure system, the disord
leads to the loss of symmetry with respect to transformati
of the spatial coordinates. Hence, for the dipole system
spin rotational symmetry is also lost. The only symme
which is not broken by the dipole forces is the spin invers
n
h
In
l-
es
is

s
e

n

symmetry. Thus, there are two different universality class
the class including systems with the spin inversion symme
and the class without such a symmetry.

The symmetry group of the disorder averaged effect
Hamiltonian ~6! includes~for any integerp) the following
elements:

~1! the rotations of all replicas of the magnetization vec
(cosfa,sinfa) and the spatial coordinates on the same an

~2! the axis symmetries simultaneously in spin and co
dinate spaces;

~3! the simultaneous change of the sign of all spin vec
replicas:fa→fa1p.

For p52 ~and for any evenp) there is also the symmetr
with respect to changing the sign of any one~or several! spin
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56 3169WEAK DISORDER IN THE TWO-DIMENSIONALXY . . .
replica. This means that there are two different universa
classes in the problem with arbitrary orderp of anisotropy:
odd p ~the random field class! and evenp ~the random axis
class!. The disorder which conserves symmetry with resp
to the spin rotations, i.e., random temperature disorder,
longs to the random axis class.

III. SELF-CONSISTENT HARMONIC APPROXIMATION

The procedure used for the calculations consists in obt
ing an extremum of the variational free energy

FVAR5F01^HR2H0&0 ~7!

with respect to the quadratic trial Hamiltonian
f
th

.
a

y

t
e-

n-

H05
1

2E d2q

~2p!2(
ab

Gab
21~q!fa~q!fb~2q!. ~8!

In Eq. ~7! the HamiltonianHR is determined from Eq.~6!,
F052TlnTrexp(2H0 /T) is the free energy corresponding
the trial Hamiltonian,^ . . . &0 denotes Gibbsian averagin
with the HamiltonianH0. For the sake of simplicity, we as
sume that the temperatureT51. The low-temperature limit
then corresponds to the case of largeJ in the Hamiltonian
~4!.

To average the Hamiltonian~6! it is convenient to rewrite
its second term in the form
Edip52
1

2E E d2rd2r 8
g

ur2r 8u3(a
@cos„fa~r !2fa~r 8!…13cos„fa~r !1fa~r 8!…cos„2u~r2r 8!…

13sin„fa~r !1fa~r 8!…sin„2u~r2r 8!…#. ~9!

The Gaussian average of the third term in Eq.~9! is zero since this term is odd inf. The second term in Eq.~9! also gives zero
after averaging. To show this, it suffices to note that for the self-consistent solutionGab(q), which will be found below, the
integral*Gaa(q)@d2q/(2p)2# diverges in the infrared limit.

One can find the variational free energy per volume

FVAR5
1

2E d2q

~2p!2FJq2(
a

Gaa~q!2 lndetĜab~q!G2
D

2 (
a5” b

expS 2
p2

2
BabD2

g

2E d2x

uxu3(
a

expF2
1

2
^„fa~x!2fa~0!…2&0G ,

~10!

where an irrelevant constant term is omitted and

Bab5^„fa~x!2fb~x!…2&05E d2q

~2p!2 @Gaa~q!1Gbb~q!2Gab~q!2Gba~q!#. ~11!

Variation of Eq.~10! over Gab gives an equation for the replica correlation function

Gab
21~q!5Jq2dab2sab1gdabE d2x

uxu3 @12exp~ iqx!#expF2E d2q

~2p!2 @12exp~ iqx!#Gaa~q!G , ~12!
e

i-

pe
the
-

where

sabua5” b5Dp2expF2
p2

2
BabG ; (

b
sab50. ~13!

Below the solution of Eq.~12! is found in the form of the
replica nonsymmetric Parisi matrix.18,19 Such a structure o
the solution reflects a complicated energy landscape of
system.28

IV. RANDOM FIELD

In the random-field case (p51), it is easy to solve Eq
~12!. The solution is the same, up to a small correction,
the one found for the system without the dipole force.25 To
verify this, one can use the result25 for the correlation func-
tion
e

s

^m~R!m~0!&5^cos„fa~R!2fa~0!…&;
1

Rs ; s>2

~14!

at largeR. Substituting the correlation function~14! into the
right-hand side~rhs! of Eq. ~12!, one sees that the dipol
contribution to the rhs

gdabE d2x

uxu3 „12exp~ iqx!…^cos„fa~x!2fa~0!…&5gO~q2!.

~15!

Sinceg is small, the dipole contribution is small in compar
son with the exchange termJq2dab at any q. Hence, the
solution25 and the correlation function~14! remains valid in
our problem.

We see that the dipole force is irrelevant for such a ty
of disorder. One can estimate the scaling dimension of
dipole energy asDdip512s. This scaling dimension is nega
tive in agreement with our conclusion.
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The exponents is nonuniversal and depends both on t
temperature and the disorder.25,27 For low temperatures an
sufficiently weak disorders52.27

V. RANDOM ANISOTROPY

In this case one needs to rewrite replica matrices with
aid of the Parisi parametrization.18,19 The matrixGab

21(q) is

parametrized by the diagonal elementGaa
21(q)5T(q)2s̃

and the function2s(y), 0<y<1, where

T~q!5Jq21gE d2x

uxu3 @12exp~ iqx!#expF2E d2q

~2p!2

3@12exp~ iqx!#Gaa~q!G , ~16!

s(y) and s̃5*0
1s(y)dy correspond to the parametrizatio

of the matrixsab Eq. ~13!. Using the formulas of inversion
of the Parisi matrices,23 one finds for the parametrizatio
@Gaa(q),b(q;y)# of the matrixGab(q)

Gaa~q!5
1

T~q!F11E
0

1 dyd~y!

y2
„d~y!1T~q!…G ; ~17!

Gaa~q!2b~q;x!5
1

x@d~x!1T~q!#
2E

x

1 dy

y2@d~y!1T~q!#
,

~18!

where

d~y!5E
0

y

dzs8~z!z. ~19!

Equation ~17! is written in the form corresponding to th
case ofs(0)50. This condition can be justifieda posteriori.

Let us introduce an auxiliary variable

g@d~y!#5E d2q

~2p!2

1

T~q!1d~y!
. ~20!

The matrixsab can be expressed viag@d# as follows
.

e

s~y!5Dp2expF2
p2

2
B~y!G , ~21!

where

B~y!52S 1

y
g@d~y!#2E

y

1dz

z2 g@d~z!# D . ~22!

Differentiating Eqs.~19!, ~21!, and ~22! with respect toy,
and excludings(y) andB(y), one finds

d

ddS dg@d~y!#

dd D 21

52
p2

y
. ~23!

Equations~16!, ~17!, ~20!, and ~23! constitute a closed sys
tem to be solved forp52.

We search forT(q) Eq. ~16! in the form of

T~q!5q fS ln
1

qD , ~24!

where f „ln(1/q)… is a slow varying function of q,
f „ln(1/q)…→0 asq→0, and the ultraviolet cutoff is set equa
to 1. The scales of interest areq!1, where f „ln(1/q)…!1.
Calculation ofg@d# Eq. ~20! gives

g@d#5
1

2pF E dq

f „ln~1/q!…
2dE dq

f „ln~1/q!…@q f„ln~1/q!…1d#G
'const2

d

2pE ln~1/d! dz

f 2~z!
; ~d!1!. ~25!

Then, one obtains from Eq.~23!

y@d#5
p2

2p
d f 2S ln

1

d D F E ln~1/d! dz

f 2~z!G
2

. ~26!

Expressingd as a function ofy produces

d@y#5
2py

p2f 2
„ln~1/y!…F E ln~1/y! dz

f 2~z!G
22

. ~27!

Substitution ofd@y# into Eq. ~17! yields
Gaa~q!5
1

q f„ln~1/q!…F11E
0

1dm

m2

~2p/p2!m

~2p/p2!m1q f„ln~1/q!…f 2
„ln~1/m!…$* ln~1/m!@dz/ f 2~z!#%2G . ~28!
With change of the variabley5p2/2pm, one can rewrite Eq
~28! in the form

Gaa~q!5
1

q f„ln~1/q!…F11
2p

p2q f„ln~1/q!…
I S 1

q f„ln~1/q!…D G ,
~29!

where

I ~b!5E
p2/2p

` dy

y f2~ lny!$* lny@dz/ f 2~z!#%21b
. ~30!
The main contribution toI (b) at largeb comes from the
region

y@
b

f 2~ lnb!$* lnb@dz/ f 2~z!#%2 5yc . ~31!

This allows us to calculate the integral~30!

I ~b!5E
yc

` dy

y f2~ lny!$* lny@dz/ f 2~z!#%2 5
1

* lny@dz/ f 2~z!#U
`

yc

.

~32!



he

a-
-

ar

ag
i

is

ys-
ical

in
ry-
d
s

r
ng-

ng
a-

do
in
M.

an
ap-
ies
om
or-
es-

t
nce
di-

he
the

l-
are
S.
rk

56 3171WEAK DISORDER IN THE TWO-DIMENSIONALXY . . .
Since f (z)→0 asz→`, the integral*`@dz/ f 2(z)# diverges.
Thus, after substitution of Eq.~32! into Eq. ~29!, one finds
~at smallq)

Gaa~q!'
2p

p2q2f 2
„ln~1/q!…F E ln~1/q! dz

f 2~z!G
21

. ~33!

This allows us to calculate the correlation function of t
anglesfa(x):

1

2
^„fa~x!2fa~0!…2&

5E d2q

~2p!2 „12exp~ iqx!…Gaa~q!

52
1

p2E „12J0~qx!…
d

dq
lnE ln~1/q! dz

f 2~z!
dq

'
1

p2 lnE lnx dz

f 2~z!
, ~34!

whereJ0(qx) is a Bessel function. Substituting the correl
tion function ~34! into Eq. ~16!, one obtains a closed equa
tion for f „ln(1/q)…:

q fS ln
1

qD5constE d2x

uxu3 „12exp~ iqx!…F E lnx dz

f 2~z!G
21/p21o~1!

.

~35!

The slow x dependence of the expression in the squ
brackets allows us to reduce Eq.~35! to the form

f S ln
1

qD5constF E ln~1/q! dz

f 2~z!G
21/p21o~1!

. ~36!

The asymptotic solution of this equation at smallq can be
found in the form of a power law as,

f S ln
1

qD;S ln
1

qD 21/~p222!

5S ln
1

qD 21/2

. ~37!

One can now calculate the correlation function of the m
netization. With the accuracy up to the double logarithm
correction

^m~R!m~0!&5^cos„fa~R!2fa~0!…&;
1

AlnR
. ~38!

The replica Green function,Gab(q), contains more infor-
mation than simply the correlation function~38!. One can
e

-
c

extract from Gab the partition function for the quantity
„f(R)2f(0)…. The effective potential corresponding to th
partition function is organized hierarchically.24 The structure
of the effective potential determines the dynamics of the s
tem. Proceeding as in Ref. 34, one can estimate the typ
height of the highest potential barriers~that is the barriers
corresponding to the lowest hierarchy level! asU(R);R.

VI. CONCLUSION

In conclusion, we find that there is no long-range order
the impure magnetic film. This result agrees with the Im
Ma-type arguments.35 If the ferromagnetic order is destroye
in a region of sizel , then the loss in dipole energy i
DEd; l 2D23, whereD52 is the spatial dimension. At the
same time, the gain in disorder energy isDEi; l D/2. Since in
the 2D caseDEi;DEd one can expect the typical lowe
critical dimension behavior, that is the absence of the lo
range order.

The effect of the dipole forces on the random-field Isi
model ~RFIM! has been studied in Ref. 36. The Imry-M
type arguments show that in this system the dipole forces
not shift the lower critical dimension. However, as well as
the XY model, these forces damp fluctuations in the RFI
In particular the roughness exponent decreases.36

Since we have worked with the continuous Hamiltoni
~4! the effect of the vortices has been neglected. This
proximation is reasonable if the correlation function var
slowly with distance. Hence, one expects that for the rand
axis disorder, vortices are irrelevant. The effects of the v
tices on the random-field magnet are deferred for later inv
tigations.

The behavior~38! of the random axis dipole ferromagne
for not too large a system can be interpreted as the existe
of the ferromagnetic long-range order. In the absence of
pole forces the correlation function of the impureXY model
obeys a power law for any spatial dimensionD,4.25–27 On
the other hand, in the ‘‘clean’’ 2DXY ferromagnet, the di-
pole forces stabilize the long-range order.2,3 Thus, one can
conclude that the ability of the dipole force to stabilize t
long-range order persists in impure systems—but only if
disorder does not break the spin inversion symmetry.
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