PHYSICAL REVIEW B VOLUME 56, NUMBER 6 1 AUGUST 1997-lI

Weak disorder in the two-dimensional XY dipole ferromagnet
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The effects of random field and random anisotropy axis disorder on the two-dimenXigrdipole ferro-
magnet are studied. It is shown that the disorder leads to an instability of the ferromagnetic phase. The
correlation function of the magnetization is calculated at low temperatures using the self-consistent harmonic
approximation. In the random-field case, the correlation function obeys a power law as a function of the
distance. For random axis disorder, a logarithmically slow decrease of the correlation function is found.
[S0163-182607)02030-4

[. INTRODUCTION 2D XY ferromagnet with the dipoléand exchangeforces is
studied at low temperatures. In the Heisenberg dipole mag-
Recently a renewed interest of dipole effects in thin magnet, the magnetization normal to the film has a finite corre-
netic films has appeared. The dipole forces are inevitablyation radius®® Hence, the results are also applicable to the
present in any magnetic matter. Albeit weak, these longHeisenberg case. Two types of disorder will be considered:
range forces lead to new physics at large scales. In thregandom field and random anisotropy axis. From symmetry
dimensional(3D) magnets, dipole forces produce domainconsideration, one can expect that for other types of locally
structures and modify critical behavibiThe dipole effects in  correlated disorder, the system will belong to one of these
2D magnetic films are even stronger. A remarkable propertywo universality classes.
of the dipole forces is their ability to stabilize long-range Despite a lot of effort, our present understanding of the
order in 2D degenerate ferromagnéfRkecently, it was sug- random field and random anisotropy syst&hsis still in-
gested that dipole stabilization of long-range order is alsacomplete. The standard perturbation methods are not appli-
possible in 2D Heisenberg antiferromagrfefhe properties  cable for these systems because of the multiplicity of energy
of the low-temperature phases in these systems are not yetinima in the system®:1’ To deal with problems including
fully understood. Recent theoretical studidsuggest an un- complicated energy landscapes, the technique of replica
usual behavior for 2D dipole ferromagnets. It is argued thasymmetry breaking was develop&t-® Originally, this tech-
at low temperatures, the properties of these systems are inique was suggested for the mean-field probfnonly
termediate between the usual long-range order and criticaimple non-mean-field toy models were completely studied
point behavior. with the aid of replica symmetry-breaking calculatidhs.
An experimental test of these theoretical predictions isHowever, recently suggested was the variational procedure
difficult since real magnetic films lack continuous symmetry.regarding replica symmetry-breaking effectthe self-
Even a weak in-plane anisotropy strongly modifies the propconsistent harmonic approximatfén®3. In contrast to other
erties of the 2D magnet. The only exception is the case ofmethods(e.g., renormalization groupthis procedure takes
hexagonal anisotropy. It is expected that for a certain rang#to account peculiarities of complicated energy landscapes
of low temperatures such anisotropy is irrelevant and that thef disordered systems, and thus allows us to obtain reason-
isotropic XY behavior is restored at large scalésAnother  able result$® In particular, this approach seems to be effec-
appropriate system is the ferroelectric smectic-C film. Unfor-tive for the pure exchange random-fietc¥ model?>-%’
tunately, the dipole force in such a system becomes relevant Below we assume that in the low-temperature phase the
only at very large scal€. effects of topological defects can be neglected. Recent
During the past decade considerable advances in theumericaf® and theoreticdP~3*studies support this assump-
growth of magnetic films with hexagonal symmetry havetion for disordered systems with short-range interactions in
been achieved. Growing iron films on tkigl1) face of the spatial dimension®>2. As seen below, the behavior of the
fcc Ag was reported in Ref. 11. Recently, the Ru film hasrandom axis dipole magnet can be interpreted as an effective
been grown on an hexagonal graphite substaiédhus, one increase of the dimension. This allows us to hope that for the
can hope to observe the dipole stabilization of the long-rangeandom axis disorder the vortexless approximation is correct.
order experimentally in such films. These advances and alsm the random-field case, the dipole force turns out to be
the recent observation of dipolar induced striped domainrrelevant. The role of vortices in the 2D short-range random-
structuré® in a 2D magnet have simulated theoretical inves-field XY model is not very well studied. Numerical wéPk
tigations of the dipole effects in the 2D systefesg., Refs.  suggests that the system has a finite correlation radius, and
4-7. the results of the vortexless approximatior’ are valid
There are many theoretical works devoted to the ideabnly for not too large scales.
case of the pure film. At the same time, the effect of disorder The aim of the article consists in calculating the correla-
on the properties of the dipolar films has not been investition function of the magnetization for random field and ran-
gated. In the present work, the effect of weak disorder on thelom anisotropy axis disorder with the self-consistent har-
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monic approximation. In both cases, the disorder leads to the -
destruction of the ferromagnetic phase. In the random-field Vinp=— > him, i~ 8,48 12, 8=X.y. (2
case, the correlation function of the magnetization obeys the '
same power law as for the random-field magnet with the
only exchange forceS -2’ In the random axis case, the cor- For the random axis disorder
relation function is a logarithmically slow decreasing func-
tion of the distance.
The results of this work are valid at scales where unbound Vimp=— 2 (,,imi)Z;,,ia_Vjﬁw Sapdij i, B=Xy. (3
vortices are absent. The role of topological defects deserves [
further attention.

The dipolar interaction of neighboring spins is assumed to be
Il. THE MODEL small in comparison with their exchange interactions. Thus,
: . , G the ground state of the pure system is ferromagnetic.
Consider the system with the following Hamiltonian: Consider the continuous limit of the Hamiltonidg). In-
o Mim;—3(m;ng;)(m;n;;) plane anisotropy related to the discrete symmetry of the lat-
H=—> Kmm+u3>, 5 +Vimp,  tice will not be considered further. In the low-temperature
(i b Iri=ril limit, one can neglect the fluctuations of the absolute value
@) of the local magnetizatioassuming that vortices are irrel-
whereX ;, denotes summation over neighboring siteef  evani. Hence, the Hamiltonian can be expressed in terms of
the lattice with spinsm;; n;; =(ri—rj)/|ri—rj|; Vimp is the  the angle¢(r) between the magnetization vector and some
disorder energy. The spin vectary lie in the plane of the fixed spatial direction. For the types of disorder considered,
film. For the random-field disorder the continuous Hamiltonian is

J
H= [ @z ver | fdzrdzr'—glr_gr,| [Cos($(r) = (1)) —300gb(r) — A(r =1 ))cod b(r) = B(r—1"))]

+f [hy(r)cospe(r))+hy(r)sin(pe(r))]d?r, (4)

where 6(r—r’) is the angle between the vector<r’) and the fixed direction; the parametprequalsp=1 for the
random-field disorder ang=2 for the random axis disordeln,(r) andhy(r) are random fields. We assume that these fields
are Gaussian and correlated, i.e.,

ho(Nhg(r')=A8,50(r—r");a,B=X,y. (5)
After disorder averaging, with the aid of the replica method, the effective Hamiltonian takes the form

J
Hem S [ 5 vanze | [ a2 cod )~ 4713041 = or—r Dok (r') = ar =)

A
- —f >, cof p(¢3(r)— ¢P(r))]d?r, (6)
2T a’b
|
wherea,b are the replica indiced, is the temperature. symmetry. Thus, there are two different universality classes:

The dipole force leads to the lowering of the symmetry inthe class including systems with the spin inversion symmetry
comparison with systems with short-range interactions. Ir&nd the class without such a symmetry. _
presence of dipolar interactions, there is no symmetry with 1he symmetry group of the disorder averaged effective
respect to the rotations in either spin or coordinate spaces. [{2miltonian (6) includes(for any integerp) the following
the pure system, this is not an important point since simul€'ements:

taneous spin and coordinate rotations still remain symmetrie, (1) the rotations of all replicas of the magnetization vector
P . Y (cosp?,sing?) and the spatial coordinates on the same angle;
of the magnet, and generation of new relevant operators i

) : & (2) the axis symmetries simultaneously in spin and coor-
not expected. However, in the impure system, the disorder ginate spaces;

leads to the loss of symmetry with respect to transformations (3) the simultaneous change of the sign of all spin vector
of the spatial coordinates. Hence, for the dipole system theeplicas:®— ¢+ 7.

spin rotational symmetry is also lost. The only symmetry Forp=2 (and for any evemp) there is also the symmetry
which is not broken by the dipole forces is the spin inversionwith respect to changing the sign of any dioe several spin
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replica. This means that there are two different universality 1( d%q . )

classes in the problem with arbitrary orderof anisotropy: Hozzf WE Gap () () d°(— ). (8)
odd p (the random field clagsand everp (the random axis ab

clasg. The disorder which conserves symmetry with respect

to the spin rotations, i.g., random temperature disorder, be;, Eq. (7) the HamiltonianHp, is determined from Eq(6),
longs to the random axis class. Fo=—TInTrexp(—Hy/T) is the free energy corresponding to
the trial Hamiltonian,{ .. .), denotes Gibbsian averaging
with the HamiltonianH . For the sake of simplicity, we as-
The procedure used for the calculations consists in obtairsume that the temperatufie=1. The low-temperature limit

[ll. SELF-CONSISTENT HARMONIC APPROXIMATION

ing an extremum of the variational free energy then corresponds to the case of ladyén the Hamiltonian
(4).
Fvar=Fo+(Hr—Ho)o (7 To average the Hamiltoniai) it is convenient to rewrite
with respect to the quadratic trial Hamiltonian its second term in the form

1
Ear=—5] | drdr’ s, [Cod (1)~ 42(r')+ 3oL (1) + (") )cos26(r 1)

+3sin(¢?(r)+ ¢2(r’))sin2o(r —r"))]. 9

The Gaussian average of the third term in B).is zero since this term is odd . The second term in E¢9) also gives zero
after averaging. To show this, it suffices to note that for the self-consistent solbiig{ig), which will be found below, the
integral [ G,,(q)[d?q/(27)?] diverges in the infrared limit.

One can find the variational free energy per volume

10 dq [, . A p? g [ d’x 1 )
FVAR_EJ (ZT)z[Jq ; Gaa(d) —IndeG,p(q) _Ea%) ex —7Bab)—§f Wg exp — 5 ((¢a(¥)— ¢a(0)))o|,
(10
where an irrelevant constant term is omitted and
2 d’

Bap=((ha(X) = ¢u(X)) >0:f(ZT)Z[Gaa(Q)+be(q)_Gab(Q)_Gba(Q)]- (11

Variation of Eq.(10) over G, gives an equation for the replica correlation function

o ) d*x . d’q .

Gap () =Jq 5ab—0ab+95abJ W[l—exqu)]ex —fw[l—exqu)]Gaa(Q) : (12

where 1
(m(R)mM(0))=(cod»*(R) — ¢%(0)))~ S s=2

(14

' Eb oap=0. (13 4 largeR. Substituting the correlation functidi4) into the

right-hand side(rhg) of Eq. (12), one sees that the dipole
contribution to the rhs

p2
0'ablavéb: ApzeXF{ - ? Bab

Below the solution of Eq(12) is found in the form of the &
replica nonsymmetric Parisi matrt®:*® Such a structure of f ax - Ao A )
the solution reflects a complicated energy landscape of theqﬁab |x|3(1 expliax)}(cod¢%(x) — $%(0))) =9 O(q").
systemf® (15)

Sinceg is small, the dipole contribution is small in compari-
son with the exchange terdg?s,, at anyq. Hence, the
solutiorf® and the correlation functiofl4) remains valid in

In the random-field casepE 1), it is easy to solve Eq. our problem.
(12). The solution is the same, up to a small correction, as We see that the dipole force is irrelevant for such a type
the one found for the system without the dipole fofedo  of disorder. One can estimate the scaling dimension of the
verify this, one can use the restilfor the correlation func- dipole energy ad 4jp,=1—s. This scaling dimension is nega-
tion tive in agreement with our conclusion.

IV. RANDOM FIELD
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The exponens is nonuniversal and depends both on the

temperature and the disord@f’ For low temperatures and
sufficiently weak disordes=2 .2’

V. RANDOM ANISOTROPY

In this case one needs to rewrite replica matrices with the

aid of the Parisi parametrizatidf!® The matrixG_,}(q) is

parametrized by the diagonal eIeme@gj(q)=T(q)—5
and the function—o(y), O<y=<1, where

d?x &
T(q):Jq2+9fW[l_exqu)]exi{_fﬁ

X[1-exp(igx)]Gaa(a) |, (16)

o(y) and 5=f(1)a(y)dy correspond to the parametrization
of the matrixo,p, Eq. (13). Using the formulas of inversion
of the Parisi matrice$® one finds for the parametrization

[Gaa(a),b(q;y)] of the matrixG,p(q)

D. E. FELDMAN

p2
o(y) = Apzexp[ - 7B<y>}, (21)
where
B( >—2(E [5( >]—f1dz [5(z)]) (22
y)=2| jeloy)l- | 2o :

Differentiating Eqgs.(19), (21), and (22) with respect toy,
and excludingo(y) andB(y), one finds

d(dgls(y)]\ "t p?
) - )

ds oy

Equations(16), (17), (20), and(23) constitute a closed sys-

tem to be solved fop=2.
We search foif(q) Eqg. (16) in the form of

, (29)

T(q)= f(ll
(1)=q nq

where f(In(1/q))
f(In(1/q))—0 asq—0, and the ultraviolet cutoff is set equal

is a slow varying function ofq,

1] fl dya(y) } :
G = 1+ : 1 to 1. The scales of interest ag<1, wheref(In(1/g))<1.
ad @) T(a)| 0 YA(8(y) +T(a)) @ Calculation ofg[ 5] Eq. (20) gives
G b(dx) = 1 Jl dy [5]= 1 dq 3 dq
ol PS50 @l JoyAsw @1 9T 2a ) finwe) ) Fn(2ia)iatn(1)+ 5]
(18 S (In(s dz ) s<l 95
where ~const- 5— 2 (6<1). (25
y .
5(y):f dz0” (2)2. (19 Then, one obtains from E¢23)
° p> [ 1\[ s dz ]?
Equation (17) is written in the form corresponding to the Y[5]255f In~ 20| (26)
case ofo(0)=0. This condition can be justifiea posteriori
Let us introduce an auxiliary variable Expressings as a function ofy produces
5 f d?q 1 20 — 27y [fn(w dz ]2 o7
W= | Gy Tgrv sy (20 YI=ermann) e
The matrixo,, can be expressed vigf 6] as follows Substitution ofé[y] into Eq. (17) yields
s B 1 lJrJ'ldm (27/p?)m -
o8 GF(n(1/a)) o M* (2a/p?)m+qf(n(1/a))f2(n(Lim){ [" ™[ d 2/ t2(2)]}2 | @

With change of the variablg= p?/27m, one can rewrite Eq.
(28) in the form

- 1 27 1
Gaal D= Gfinczian| 1 p2atan(i) I(qf(ln(l/q))zl;)

where

H(b)= f 2i2ny PANY) T dZ T2 12+ b

(30

The main contribution td (b) at largeb comes from the
region

b
y> f2(|nb){f|nb[dZ/f2(Z)]}2 =Ye- (31)
This allows us to calculate the integr&0)
(" dy 3 1 Ye
(b)= fycyf2<lny>{f'“y[dz/f2<z)]}2‘f'“y[dﬂfz(zn\m |
(32
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Sincef(z)—0 asz—ox, the integral/*[dz/f2(z)] diverges. extract from G, the partition function for the quantity
Thus, after substitution of Eq32) into Eq. (29), one finds  (¢#(R)— ¢(0)). The effective potential corresponding to this
(at smallq) partition function is organized hierarchicaflyThe structure

of the effective potential determines the dynamics of the sys-

Gaa(q)~ 2m i) dz |71 (33 tem. Proceeding as in Ref. 34, one can estimate the typical
aald p2q2f2(In(1/q)) f2(2) height of the highest potential barriethat is the barriers

This allows us to calculate the correlation function of thecorrespondmg to the lowest hierarchy levas U(R)~R.

angles$®(x): VI. CONCLUSION
E((¢>a(x)— ¢a(0))2> In conclusion, we find that there is no long-range order in
2 the impure magnetic film. This result agrees with the Imry-
42 Ma-type argument?’ If the ferromagnetic order is destroyed
a : in a region of sizel, then the loss in dipole energy is
= | 5—31- G '
j (2m) (1= expliax))Gaq(d) AE4~12P73 whereD=2 is the spatial dimension. At the
1 q i d same time, the gain in disorder energyig;~1°’2. Since in
=— | (1-35(gx)—In q _Zd the 2D caseAE;~AEy one can expect the typical lower
2 o(ax d f2 q e ; : . .
p q (2) critical dimension behavior, that is the absence of the long-
range order.

1 d?x .
qf Ina =const W(l_exqu))

—1/p%+0(1)
(36)

~ iszlnxg_zy (34) The effect of the dipole forces on the random-field Ising
p f<(2) model (RFIM) has been studied in Ref. 36. The Imry-Ma-
whereJo(gx) is a Bessel function. Substituting the correla- tYP€ arguments show that in this system the dipole forces do
tion function (34) into Eq. (16), one obtains a closed equa- Not shift the lower critical dimension. However, as well as in
tion for f(In(1/q)): the XY model, these forces damp fluctuations in the RFIM.
In particular the roughness exponent decred%es.
inx dz ]~ p*+o(1) Since we have worked with the continuous Hamiltonian
f fz(_z) 4 the effec_t of the vorticgs has been neglecteq. This ap-
(35) proximation is reasonable if the correlation function varies
slowly with distance. Hence, one expects that for the random
The slow x dependence of the expression in the squarexis disorder, vortices are irrelevant. The effects of the vor-
brackets allows us to reduce E@5) to the form tices on the random-field magnet are deferred for later inves-
tigations.
f( In}) =cons{ f‘”“"”i The behavior(38) of the random axis dipole ferromagnet
q f2(2) for not too large a system can be interpreted as the existence
. . : . of the ferromagnetic long-range order. In the absence of di-
The asymptotic solution of this equation at smaltan be 46 forces the correlation function of the imputd model
found in the form of a power law as, obeys a power law for any spatial dimensior<4.25-2" On
1 1|~ UpP-2) 1) -12 the other hand, in the “clean” 2IXY ferromagnet, the di-
f( In= N( In—) =(In—) (37)  Ppole forces stabilize the long-range ordérThus, one can
q q q conclude that the ability of the dipole force to stabilize the
One can now calculate the correlation function of the magiOng-range order persists in impure systems—but only if the
netization. With the accuracy up to the double logarithmicdisorder does not break the spin inversion symmetry.
correction
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