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Magnetic phases near the Van Hove singularity irs- and d-band Hubbard models
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We investigate the magnetic instabilities of the nondegenesabaiid and a degeneratel{band Hubbard
model in two dimensions using many-body effects due to particle-particle diagrams and Hund’s rule local
correlations. The density of states and the position of the Van Hove singularity change depending on the value
of next-nearest-neighbor hopping The Stoner parameter is strongly reduced ingH®nd case, and ferro-
magnetism survives only if the electron density is small and the band has flat regions. Due to next-nearest-
neighbor hopping there are flat regionsinX and I'-Y directions. In contrast, for thd-band case the
reduction of the Stoner parameter which follows from particle-particle correlations is much smaller and fer-
romagnetism survives to a large extent. Inclusion of local spin-spin correlations has a limited destabilizing
effect on the magnetic statd$0163-182607)00330-3

I. INTRODUCTION metals. Therefore, we investigate here the FM and antiferro-
magnetic (AFM) instabilities of thed band and compare
Although efforts to understand the microscopic origin ofthem with those found in the band for the same two-
itinerant magnetism have continued for over three decadesiimensional(2D) lattice near the VHS. It is important to
there is still no consensus whether the nondegeneraificlude electron correlations, if magnetic instabilities are
(s-band Hubbard model, originally introduced as a model considered. Using the Kadanoff-Baym technique of deriving
for d electrons in transition metalsgan serve as a simple conserving approximations, we find by including particle-
model which describes itinerant ferromagnetism. On theyarticle scattering a similar expression as postulated and
mean-flelq Ie_\vel it seems to be a good starting point as thggeq by Cheret al. in the s-band casé’ Note that this ap-
Stoner criterion predicts a ferromagnetfeM) ground state 040k is different from fluctuation exchange approximation
(g.s) in a broad range of parameters. However, the inclusio FLEX),'81° and avoids self-consistency in the conserving

afosxyea\c/g?tholga?:g?esing;ab?gIiznetshclat l:&?gfii'tsat;gis' approximation, but nevertheless gives a magnetic structure
' P factor of the same quality as the Monte Carlo simulations in

critical doping, being chse o= O.'29 for a square lattick: . 2D (Refs. 17 and 20and in infinite-dimensional Hubbard
Recently, a few mechanisms which stabilize ferromagnetism

l .
in the Hubbard model with moderate Coulomb repulsibn models?! In contrast, the experimental data suggest that the

have been proposed. They are realized either by extendir@und’s rule exchange interactidnremains practically equal
t

. . 2 . . e
the model by additional intersite Coulomb interactfasin its atomic valué? but the atomic correlationsstabilize
the flat-band scenariol? While the former mechanism l0cal moments fod>0. In the Hartree-FockHF) approxi-

might work in liquid hydrogen rather than in transition mation these moments exist only in the symmetry-broken
metals® the question of whether the spin-independent on-sit®hases, and they are absent in nonmagnetic Statisus,
Coulomb interactionU alone can give ferromagnetism re- both particle-particle scattering and atomic correlations con-
mains intriguing. tribute to the reduction of the magnetic energy in ¢hieand,

Rather extreme situations in which the g.s. is FM are enconventionally expressed by the Stoner paramkgerThis
countered in low-dimensional systems. First, high-spin g.s.’snotivated us to make a more extended study, in which we
are found in finite systems with open-shell electronic statesanalyze the FM and AFM instabilities and discuss two ques-
like in a tetrahedrod® and in some other few-atom tions:(i) Does ferromagnetism exist in tiseband model in a
clusterst* Second, the enhanced degeneracy at the Fernfinite-density range near the VHS? If it does, it might be
level realized in one dimension by extended hopping stabipossible to stabilize it also in three dimensions, provided a
lizes the FM g.£7'2 The mean-field analysis of Lin and high density of states would exist at the Fermi levig). How
Hirsch’ suggests that the FM instability is enhanced in twodoes the picture change when we go to dhband case?
dimensions by the next-nearest-neighbor hoppingnd in- The paper starts with the presentation sband and
deed the summation of the most divergent diagrams confirmd-band Hubbard models with next-nearest-neighbor hopping
the FM instability at the Van Hove singularitHS) intwo  in Sec. Il. Thed-band case is treated by a generalization of
dimensions? There are also indications from the enhancedthe treatment of the particle-particle scattering presented in
stability of the Nagaoka state Ity at theU =« limit thatthe =~ Ref. 17. We also include atomic spin-spin correlations by a
kinetic energy changing slowly with electron filling favors local ansatz method and evaluate the renormalized Stoner
ferromagnetism in a square lattit®. parameters. The magnetic phase diagrams ofstteend d

Yet in spite of this revived interest in the magnetic stateshands are presented and discussed in Sec. lll. The paper is
of the nondegenerate Hubbard model, magnetic states aoencluded in Sec. IV, where we also give estimations of the
realized in nature in degenerate bands of @ transition parameters used for realistic transition metals.
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Il. MODELS AND RENORMALIZED oGl (7,7 +€)
STONER PARAMETERS Xii (7= 7)) = lim X % , (6
. . —o™ B i.B T
First, we consider a nondegenerate Hubbasebdnd ‘ b=0

model on a square lattice with neare$t>Q) and next-

) o which is determined by the full one-particle Green function
nearest neighbort (>0) hopping;

G. Using a well-known identity we rewrite the functional

derivative as

HS:—tE;, clciptt’ X ciTocj(,JrUEi: N -
ij

(i), (i) &éjj’a(T,,T"f‘E)‘

D —
. . , . . &bi,,g( 7) |b:0

An increasingt’ makes the kinetic energy

ex=— 2t(CoKy+ COK,) + 4t coK,COK, 2 f A (9éi_1i12,a(7'i117'i2)

=—| Gy, 7 1) —————

to increase slower from thE to the X(Y) point, and finally jigal 7 7iy) by 5(7)
to become flat folR=1, whereR=2t'/t. We do not con-
sider the unrealistic cases with 'Iarael'. Se'c'ond., we stu.dy XGizj,a( 70T+ peos @
a deger;irated-band model, with a simplified intraorbital
hopping; where [=3; fdr; stands for integration and summation

over all internal variablegi,}. Using the Dyson equation
He=—t >, CFHVUCJQVUH’ > cfra'(,cja',, (5), we find a formal integral equation for the transverse
(L) (L) ae susceptibility,

J
u- §>i’a2<ﬁ NioNig

+U Ny Nyt ~ A
02 fo e xﬁ,aw—r'):xﬁ?a(f—r%% fTr[a*Gjil,wznl)

— ) ol oo : - . A /
2Ji];ﬁ Sa S'B—’—‘]i'az;&ﬁ C|a,TC|a,LCIBvlCI,&T’ Xraﬁ(l1Ti1!|27i2||37i3)Gi2j,a(7i21T )]

©) XXﬁ3,ﬁ(T_Ti3)|b:0a 8

wheren;,=2,n;, , andS,={S,,.5, .S} are density and
spin operators for orbita at sitei, andUy=U+2J. The
d bands have the same dispersignas in thes-band model

wherea™ =c*—ioY is a Pauli matrix, and theffective two
particle interaction is defined as

(2). A
Following the approach of Kadanoff and Baympne S 9%, ,o(Tips i)

may construct a “conserving approximation” to tkeband Loplivmiion,|igr )= IIer(?GH (rim te) ©)

Hubbard model which motivates the approach of Chen =07 sls A et T

et all’ Therefore, we have considered a system coupled ®ne observes immediately that a random-phase-

an infinitesimal external fielth,= (bf, b/, ,bf.), approximation{RPA) like expression for the transverse sus-

ceptibility would be obtained, if the self-energy;; .(7)
Hd(b)sz—Z biySa, (4) were local in space and time, as is, e.g., the HF self-energy.
la

We will now use the Kadanoff-Baym technique which
and derived a self-energy by taking the functional derivative™@y be used to obtain conserving approximatiSrirst, we
with respect to the full Green functioB of the Kadanoff- rewrite the expression fory, Eq. (3), in a more explicit
Baym potentiakb, 3 = 5®/5G. In a finite fieldb;,, one finds form which separates the spin-spin interaction into transverse
the Dyson equation for the one-particle Green function of thénd longitudinal terms,
d-band Hamiltonian4),

_ t T
Hq=—t 2 ciaygcja,gﬂ’ E Ciw.oCjac

G LN=CY D=3 ) +b08(D8; (5 o (i as
whereG;; , is the nonlAnteractmgLe., U=J=0) (diagona) +U02 NiaNia|—J > Ci-ra,g-cia,f(rcrﬂ,faciﬁ,(r
Green function matrix%.;; , is the(nondiagonal self-energy te ha<po

matrix labeled by spin indices, andis a vector composed
out of Pauli matrices. Due to the symmetry of the hypercubic + 2 [UnigoNig ot (U=D)Nig Nig ]
lattice considered here, there are no interorbital hopping pro- haspo
cesses, and therefore the one-particle Green function
& () isd . ) +3 > cf el cigicigr. (10)
i «(7) is diagonal in orbital space. atp el HBLHAT
The magnetic instabilities follow from the instabilities of
the linear response functidthe transverse susceptibilitfo ~ The diagrams to lowest order in the Kadanoff-Baym func-
a local spin-flip excitationlg;,=b,—ib’ tional ® (see Fig. 1 are obtained by taking the g.s. expec-

la/?
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) 4 @T ) 4 | | + FIG. 2. Schematic representation of thidiagrammatic expansion
3 Uo y Uo + 3 Uo | ;g ; Uo i to of the effective Kadanof'f-Baym potentiab,, with the effective
4 @& ¢ - Iy intraorbital Coulomb interactiok) 5, defined by Eq(13).
i,7T, i,T i,T j.T

i 1 T B! with 8=1/kgT. Within this approximation one may replace
FIG. 1. Schematic representation of the diagrammatic expansioHje Interaction bet.ween two el-ectrons |.InT>. and |al)

of the Kadanoff-Baym potential part which originates from states, shown byﬂgher-order diagrams in Fig. 1, by the ef-

electron-electron interaction with a representativerbital, ®,.  fective interaction,, and we can mag@® onto an effective

The first- and second-order diagrams are shown; higher-order digadanoff-Baym potentiakITZEaf(}Ta, shown by its dia-

grams include multiple particle-particle scattering and dress the i”grammatic representation in Fig. 2. The interaction vertex in

traorbital Coulomb interactiobl, further. the effective Kadanoff-Baym potential obeys the equation
tation values of all possible contractions of the operators in — 0Py
Hq. Since we have a spin-flip term due to the infinitesimal Uo=Uo—Uoxe (0)Uo, (12)

PP(0)= PP i i i }
higher-order terms, we have only kept diagrams correspon vhere f\? ﬁo.) X..,,T(O) lfor dattrapslanonafI]!y [[rllvarlle;nt Sf.t |
ing to particle-particle scattering, similarly as in the FLEX em, which 1S €aslly solved 10 give an elfective intraorbrta

method in Ref. 19. Coulomb interaction in the band,

For Kadanoff-Baym diagrams we only keep those which U
contribute both to the Green function and to the susceptibil- U.= 0 _
ity. In this way we avoid inconsistencies when we calculate % 1+ UoxPP(0)
phase boundaries from total energy, using the Green func-
tion, and from finding singularities in the susceptibility. This It is now straightforward to calculate the self-energy in
means that we only keep diagrams of second order ithe one-particle Green function. Performing explicitly the
<CiTa,(rCi,B,0">’ since diagrams of higher and lower order give functional derivatives = é®/6G, we find the local self-
vanishing contributions when we take the two functional de-energy matrix
rivatives and the limit of zero external fieldh,,—0. The
leading diagrams of a consistent theory are shown in Fig. 1. - , ELI E.Ti
The generating functional for the self-energy is obtained by Zijalr=7)= six oyl
summing up to infinite order the class of diagrams in the @ o
particle-particle channel, which leads to an alternating geowith elements
metric series, shown in Fig. 1. One then integrates over all
internal variables and sums over orbitals=> ,[®,,. so0_

Short-range electron-electron correlation effects, ne- ta
glected within the RPA, consist of local particle-particle
scattering processes. Here we udecal approximationand
thus the contribution of each higher-order diagrambtp is EJ$= -
o 5i,j .

Compared to other dynamical electronic processesThe adopted approximation to the self-energy has the same
particle-particle scattering can be considered as instantdunctional form as the usual Hartree-Fock approximation,
neous process. Focusing on the local particle-particle kerneind therefore we call it a generalized KEHF) approxima-
xXiP(ri— 1) =Gl (7i— 7)) G}’ (ri—7;), shown in the tion. Self-consistency for the presentbaderivable GHF ap-
second-order diagrams of Fig. 1, it is reasonable to writgoroximation is required only for the GHF occupation num-

field b;,, also spin-flip Green functions appear. In choosin(i1N

(13

)5(7'—’7'/)5”, (14)

Oa-a)+ 3, (Ut =300,

(15

Uo(Sia) =3 2 (Sip) |-

x8Pu(7i— 1)~ xEP(0=0) (7 — 7)), where bers(ni,.o)-
1 Next, a RPA-like expression for the transverse suscepti-
PP 0)==> G ()G (=i , 11 bility is obtained, using the Green function with the self-
Xit.ol 0) B; iall@n)Gii o —Twn) A3 energy, Eq(15), in Egs.(9) and(8),
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0.8 . . . 1.0 i i . obtained from Eq(12) with J=0. In the 2D Hubbard model
R=0 one finds thatg is only weakly dependent on the band filling
0.6 T~ — | 08 [ ) n, with a minimum at the filling which corresponds to the
F~—~—u. — 1 06 VHS, but isfinite as long asR<<1. With increasingR, the
—ur—] 04} ] VHS moves towards the lower band edge, the reduction of
| s gets stronger, and one finds thgt-0 for R—1. Such a
0.2 strong renormalization df; follows from the singular behav-
08 | ior of the particle-particle vertex.
0.6 The Stoner parameter is further decreased indimand
case by atomic interorbital correlatioffsThis results from
0.4 1 the formation of local moments which can be built into the
0.2 + ' t g.s. by modifying a single-Slater-determinant HF wave func-

08 | tion | W) into?®

06
0.4 ] |q,0({nia,a})>=ex _Em: 7/mom |\PHF({nia,0'})>a
' I,/1

0.0 5 0.2 Lo ST (18)
0.0 05 1.0 15 20 00 25 50 75100 where 7, are variational parameters, a@y, are local op-

n n erators which in the case ofcaband have the form

FIG. 3. Stoner parameters,/l 4 for the s band (left) and

I4/1 e for the d band (right) as a function of filling for different Oi(,"ifnianig. ngt)yﬁzsa,sﬁ, (19

R values. The three solid curves in each panel refer to
(U+6J)/W=0.5, 1.0, and 2.0 from top to bottom. The dashedand describe local densinoé’”iﬁ) and spin Qi(’sllﬁ) correla-
curves in thed-band case are results with spin-spin correlationstions, respectively. The contribution of spin correlations to

(from the local ansajzincluded. the magnetic energy follows from a comparison of the en-
ergy obtained with the wave functig® o({n;, })) given by
. x2(9,0) Eq. (18) with that found with density correlations orfyWe
Xa(0,00= T-1%(q0)" (16)  note that the HF and correlated wave functions in &)

are obtained for the same electronic distribution. The Stoner

which we will call generalized RPAGRPA), since it has the parameter 4 is obtained as a derivative of the interaction
same functional form as in the RPA. In teeband case the energy with respect to magnetization squared, and is addi-

above formula contains,=U (instead ofl ), whereU is tionally reduced by up to 12% of, if (U +6J)/W=1 (Fig.

defined by the same renormalization due to the particle3): Therefore, —one finds at U+6J)/W=1 that

particle vertex as in Eq12), but withU, replaced byJ, and ~ !d/!ne=0.65 which agrees well with the valges deduced
gives an excellent agreement with the Monte Carlo data. within a realistic model for @ transition metalé’ Interest-

There seems no reason that this approximation should ndgly, atR=0 the largest corrections due to spin-spin corre-
work well also in thed-band case. lations are found atn—5|=2.5, which indicates that the

As an important difference to the RPA, the HF value of différence between local moments in the pararr;g\gr(E’M)
the Stoner parameter for thed-band model, I, and weakly FM states is there larger thamat5.

=(U+6J)/5, is now replaced by the renormalized Stoner
parameter Ill. MAGNETIC PHASE DIAGRAMS

L — The instability of the system towards either FM or AFM
lg=5(Up+4J). (17 order(16) is driven by the value of the Stoner paramelgr
(Is). We illustrate this by considering the phases with a uni-

We note that the Stoner parameter in theband is just 5 ang with a two-sublattice magnetic structdte,

equivalent to the renormalized value 0f |;=U.

The reduction of the Stoner parameter due to the screen- (Nig.o)=3[No+ N oM+ (n+A,v)e TR, (20
ing of the intraorbital Coulomb interactiod, may be sub-
stantial in ad band, but not quite as large as in tséband Wherem, », and» are order parameters, ang.==1 for
case, as we show below. In contrast, the screening of th&= | |- The quasiparticles are givénp to constant energy
exchange interactiod is provided by similar expressions SiftS by
which involve the interorbital transitions on the same site,
Giyig,» and is thus of second order Kru:;ra’gciﬁygy If the
interorbital hopping vanishe@s it does for hypercubic lat- and Q= () is the nesting vector @&=0. The value of
tices, J is unscreened; otherwise, this screening is expectethe gap at half-filling fi,=1) is given by the effective inter-
to be small. This is confirmed by the values bdeduced actionA,=A=14v/2 in thed-band casef,=A=Iv/2 in
from the experimental data in transition metals which arehe s-band case
close to the atomic valuéd.We note that the renormaliza-  The alternating magnetic order results in a two-sublattice
tion of Iy is therefore substantially weaker than in the magnetic structure and opens a gapfor o-spin electrons.
s-band Hubbard modell) (Fig. 3), wherel;=U, andU is  Assuming the filling byn, electrons(per one band sub-

Eiw.o=2(ekrote) =3[ (exrq—e1)*+ AZ1Y2 (21
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band ors band, we analyze only the following commensu- 6.0
rate  magnetic phases: (i) ferromagnetic (FM),
m=min{ny,2—ng}, v=7=0; (ii) partial ferromagnetic
(PFM), m#0, m<min{ny,2—ng}, v=5=0; (iii) antiferro- 50}
magneticAFM), v# 0, m= »=0; and(iv) special ferrimag-
netic (SFIM), m=|1—n,|, v#0, #0; here, the stability R=0.7
follows from the Fermi level lying within the gap between — 4.0 |
two majority Slater subbands. .
In the region of their stability, the energies of magnetic 5_,
phases are determined using the total energy expression:/§

Iy T 1
within the GHF approximation, -
pp g \?
E({Nia,0}) =Ecret Ecor, (22 =207
whereEgye is determined as in the HF approximation from !
the quasiparticle energi€g1). For simplicity, we give only 10 | !
the formula for less than half-fillingng<1), !
// ¢
1 — - 0.0 L=zl . N
Echr== 2 Erait o > Ep—(Hin, ~0.50 -0.25 0.00 025 050 0.75 1.00
N Kk (1) N, KeK(1) /W
(23 ‘”

FIG. 4. Free susceptibility°(Q,w) as obtained at the nesting
where K(o) is a set of the occupied quasiparticle statesyectorQ=(,) for the 2D densities of states wik=0, 0.7, and
Ee.o+ EQ.(21), in the lower Slater subband for spin. The 1.0 (W=8t). The corresponding densities of stal(s») are shown
interaction energyH;,,) is subtracted to avoid double count- in the inset.
ing, with the form ofH;,; determined by the used Hamil-
tonian, eitherHs or Hy. hanced at lown for increasingt’.” One finds that these in-

The correlation energy depends on the magnetic ordektabilities occur towards the saturated FM stafeith a
and is calculated using the local ansét8),***° maximum value ofm=|1—n,|) in most cases. As expected,
the AFM (SFIM) order is more stable near half-filling.
(Po({Niq, o) Hd Vo({Nia,0}))

ECOTF <\PO({nia,tf})|\P0({nia,a'})> EGHF. (24) 3.0 :-: 3.0

In thes-band case we adopted the value=f,,= 0, which is sof F ," ". F 1ol
exact for the FM states, and avoids double counting of the ,,' \
correlation contributions in the PM and AFM states. The 1.0 | 'S 10|
treatment of atomic correlations in thte band beyond the N
GRPA is only approximate, but suffices to get qualitative 0.0 | 0.0
results for the magnetic phase diagrams reported below. 4 o0 b
These correlations vanish in the FM phase, but are finite in
the PM state, and therefore the value of the Stoner paramete 1.0 L 1.0 |
at the FM instability is found in an approximation. On the
contrary, they have no influence on the lines of the AFM % 0.0 0.0
instabilities, where the order parameteincreases continu- 20 | 50 | SF |
osly from zero. Here we used the local approximation to )
evaluate the respective averages, when the exponentials it 10 [ 10 =
the wave functionsVy({n;, ,}), EQ. (18), are expanded in
Eq. (24). More details may be found in Ref. 24. The mag- 0.0 ¢ 0.0 BaRS*
netic phase diagrams are next found using the instabilities of 50 | i 50 | skl ¥ P
the nonmagnetic states, and by comparing the total energies ' ki ' F
(22 of the magnetic phases in the region of their stability. 10t AF/| 10

As an illustrative example, we limit ourselves here to the PF. S X P AF
2D models(1) and (3) with nearest- {) and next-nearest- 0.0 . . . 0.0 . . .
(t") neighbor hopping. By changing the value RE2t'/t, 00 05 10 15 20 00 05 1.0 15 20
the band<2) become flat in"-X andI'-Y direction and the n n
noninteracting susceptibilitieg®(k,w) change. The singu- FIG. 5. RPA(left) and GRPA(right) phase diagrams for the

larity in the AFM Susceptibi"ty XO(Q"{’) [Q=(m7)]  s.pand case and foR=0, 0.4, 0.7, and 1.0 from top to bottom.
moves to lower energies, as shown in Fig. 4, and graduallglid lines give the instabilities with increasitd of paramagnetic
disappears, while the FM susceptibiligy(0,w) = N(w) de- (P) to ferromagnetidF) or antiferromagneti¢AF) states. The spe-
velops a peak at low energiésee the inset of Fig.)4There-  cial ferrimagnetic state$SFl) are separated by dot-dashed lines.
fore, the RPA instabilities of the-band model towards FM Ferromagnetic states are saturaEyl except for small regions in
states occur at all electron densiti/Sig. 5), and are en- the three lowest panels to the I€RP).
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If correlation effects(renormalization ofU within the 50 ' T ' '
GRPA) are included, the phase diagrams change drastically X
(Fig. 5. The FM instability disappears almost entirely in the 40
GRPA if R<1, except just in a narrow region around the | (a)
VHS for larger values oR. At R=0 it is suppressed at any ; 3.0
n, in agreement with Rudin and Matti$ As also no insta- ~
bility of the PM state towards the FM order is found in ©20
infinite dimensior?? it is likely that it does not exist in hy- -’
percubic lattices aR=023! The situation changes when 1.0
particle-hole symmetry is broken faf>0, and the FM or-

der is stabilized by infinitesimal at the VHS point, if
R>0.55° Remarkably, aR=1 ferromagnetism is stable at
low densityn<0.45, as a consequence of flat-band behavior,
g=—2t, if k=(k,,0) ork=(0ky).

The AFM order is found to be more robust and exists
around half-filling at any value odR<1, with electron cor-
relations included. In agreement with expectations, the re-
gion of AFM order at intermediate values bff W=1.0 ex-
pands when the kinetic energy in the ordered state increases ;
with the increasing intrasublattice hopping both in the
RPA and in the GRPA, as shown in Fig. 5. On the contrary, =
at R=1 the region of antiferromagnetism is much reduced =X
compared withR=0. It is expected that incommensurate |
magnetic order with AFM correlations is stable in between
the AFM and PM phases, as shown recently within this
method in infinite dimension&:32

In contrast to ferromagnetism, the tendency towards AFM
order at and near half-filling is weakened by the increasing T X S T
next-nearest-neighbor hopping as the shape of the Fermi
surface changes and the perfect nesting condition is not sat- FIG. 6. Instability of a paramagnetic metalieM) to antiferro-
isfied. At R=0, the transition to the AFM state occurs at magnetic insulatingAFI) ground state at half-fillingr{=1) in
infinitesimal U>0, and the magnetic moment increases the Hubbard model): (a) critical value of the Coulomb interaction
gradually from zero with increasinty. This behavior is U, as function ofR=2t'/t, (b) electronic structure in an almost
characteristic of perfect nested band structures, and is réasulating(weakly metalli¢ AFM state obtained at) =4.04V and
placed by a jump to a finite magnetizatierwhich occurs at R=1.
finite U>0, if R>0. With increasingR the lower quasipar-

ticle subbande™(k), Eq. (21) becomes more flat and it is cyitical values ofU obtained for the onset of AFM long-
gradually more difficult to stabilize an AFM state. Therefore, range ordefLRO) might be overestimated at finif, as we

the critical value of the Coulomb interactiod /W, in-  find the AFM instability atU.=4.5 for R=0.4, while the

cr<e|a§e_s with mcreasﬂ% aﬁ SEOW?] n F'gl' 6 AFM guantum Monte Carlo calculations suggest a value
tis interesting to ask whether the insulating state atucz2.5t.7'33 However, they agree with the metal-insulator

half filing and R=0 is replaced by itinerant antiferromag- transition estimated to be somewhere in the range of
netism with increasing values @f. The gap in the AFM 4t<U.<6t if R=0.4

state at the transition point is determined by the energy dif- Thec RPA,\ phase diégram of tieband model is similar to
ference between the top of the lower Slater subbandat . ¢ thes-band model(Fig. 7), but the SFIM phase is

k= (/2,7/2) and the minimum of the upper Slater subband g pijized by the interorbital exchange interactiprand

E" atk=(m,0). Using the effective Coulomb interaction s the AFM state is found instead in a broader range of
U, we find that the AFM state is always insulating at theparameters. As a consequence of the weaker screening by
transition point, except &=1, where the gap between the particle-particle diagramél2), the conditions for FM LRO
Slater subbands closes and the AFM state is weakly metalligre |ess restrictivé* and the FM instabilities occur in the
as shown in Fig. 6. The onset of metallic behavior occurs iInGRPA at any value oR, but for larger interactionéFig. 7).
GRPA at 2'=A, where A,=A=I/2 in Eq. (21). If  Asin thes-band case, FM order is favored at low electronic
R=1, one finds at the transition poitd.=0.409V, and filling for 0.4<R<1.0 due to weaker dispersion. As already
v=0.606, and the splittingA=0.124V, just somewhat seen in the screening of the Stoner paramkjerthe spin-
smaller than 2’ =0.125N. This results in a very small dif- spin correlations restrict the region of FM states, in particular
ference of the energiesAE=E"(X)—E (S =-2.2 atR=0, and forn>7.5, if R=0.4. Furthermore, one finds

X 10 3W, and supports the recent conclusion of Duffy andthat weak ferromagnetism is somewhat more pronounced
Mored® that itinerant magnetism is difficult to realize in the than in thes band and survives for the screened interactions,
U-t-t’ Hubbard model, without the second-neighbor hoppingbut occurs only in a relatively narrow rangerof This shows

t” along thex andy directions. Morever, it seems that the that partly polarized FM states are more likely to result from
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3.0

netic interaction for these elements dfl ¢ 6J)/W=1.23,
1.49, and 1.79, respectively. We assumed the electron filling
of n=7.3, 8.3, and 9.4 in thd band andR=0 in our model

(3) to simulate qualitatively the situation in Fe, Co, and Ni,
and found a reduction of the respective Stoner parameter due
to particle-particle renormalization and the spin-spin correla-
tions of the order ofl 4/I;z=0.61, 0.58, and 0.54, respec-
tively. Interestingly, these values are almost constant as the

20 |

]
mn ]
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\
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1/ >
m .
e

B

1.0

0.0

20 |

1.0 L increasing values ofy{ +6J)/W are counterbalanced by the
g smaller reduction ol 4 (both by particle-particle and even
= 0.0 . . . L
) more by spin-spin correlationsvhen the electronic filling
< 20 | increases towards the filled band. TakidfJ=0.25 in a
2 realistic model with canonicad bands*® one finds instead

1.0 | that 14/14==0.63, 0.57, and 0.52. The agreement is very

good indeed granted the simplicity of the model.

Furthermore, using the values bf derived above and
realistic values ofi-band widths’® one finds the Stoner pa-
rametersl 4=0.72, 0.82, and 0.92 eV for Fe, Co, and Ni,
respectively. These values are significantly lower than those
0.0 : . . 0.0 : . . deduced by Gunnarsson from the local-density approxima-

00 25 50 75 100 0.0 25 50 75 10.0 tion (LDA) calculations, being 0.92, 0.99, and 1.01,

n n respectively®® In spite of the qualitative nature of this com-
parison, this allows us to conclude that important corrections

FIG. 7. The same as in Fig. 5, but for tHeband model2) with  of the Stoner parameter exist due to nonlocal electron corre-
J/IU=0.25. The magnetic instabilities are shown by solid lines,|ation effects, as in particular due to the spin-spin interorbital
while dotted lines indicate the same instabilities if the 5pi“'5pi”correlations, which cannot be dealt with in the standard band
correlations are neglected. structure calculations based on the LDA. Thus, in spite of
some attempts which exist in the literatdfehere is no way
to deduce reliable values of the Stoner parameter from band
structure calculations performed within the LDA.

An additional factor which might stabilize ferromag-
netism in thed-band model is the flattening of the bands
IV. SUMMARY AND CONCLUSIONS with increasing values oR. Then magnetic states are pos-
sible even for rather small interactiots. Of course, this
not only at, but also in the neighborhood of the VHS in the\?nOIenCy s pverem_phasize_d _in the present 2D model by the

an Hove singularity, but it is expected that strong next-

s-band model, if the band fillingn is small. This suggests . : .
that ferromagnetism might be realized in the Hubbard moder|1earest—ne|ghbor hopping may lead to FM instabilities

also in three dimensions, but only if the particle-hole sym-als‘0 in threg-dimen_sional or quasil—ZD sy_stems gt low filling.

metry is broken and the kinetic energy satisfies ragmer It vyould be interesting tq verify this prediction, if such ma-

tremeconditions. Therefore, the-band model cannot serve (€rials could be synthesized. o

as a generic description of itinerant magnetism in transition Altogether, we have shown that a correct quantitative de-

metals. Instead the orbital degeneracy of thstates is cru-  SCription of ferromagnetism in transition metals is only pos-

cial to explain magnetic states, and the interorbital exchanggible within a realisticd-band model(3), and when the

couplingJ plays an important role. particle-particle screening and spin-spin correlations are in-
Although no more than qualitative statements can becluded. In order to obtain more quantitative results, however,

made for realistic transition metals, it is interesting to com-realistic densities of states have to be used. A somewhat

pare the obtained phase diagrams with the known interactiodifferent situation, however, is found for the AFM states,

parameters of @ systems. The values & andJ are ap- where band structure effectke perfect nestingdominate,

proximately known for 8 transition metals and may be ob- at least at weak and intermediate values Wbf and the

tained from the multiplet splittings, as discussed in detail bys-band model might then suffice to explain qualitatively the

van der Marel and SawatzKy. This analysis leads to experimental data for AFM Cr and its a||0§,g,

U=2.55, 2.76, and 2.97 eV, for Fe, Co, and Ni, respectively,

while the values ofJ are given by the same ratio

JJU=0.27% These values ob are close to those consid- ACKNOWLEDGMENTS
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either the local maxima or the splittings betwegnandt,,
orbitals in realistic band structures ofl 3ransition metals.

Summarizing, we conclude that the FM states are stabl
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