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Magnetic phases near the Van Hove singularity ins- and d-band Hubbard models

Marcus Fleck, Andrzej M. Oles´,* and Lars Hedin
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

~Received 21 March 1997!

We investigate the magnetic instabilities of the nondegenerate (s-band! and a degenerate (d-band! Hubbard
model in two dimensions using many-body effects due to particle-particle diagrams and Hund’s rule local
correlations. The density of states and the position of the Van Hove singularity change depending on the value
of next-nearest-neighbor hoppingt8. The Stoner parameter is strongly reduced in thes-band case, and ferro-
magnetism survives only if the electron density is small and the band has flat regions. Due to next-nearest-
neighbor hopping there are flat regions inG-X and G-Y directions. In contrast, for thed-band case the
reduction of the Stoner parameter which follows from particle-particle correlations is much smaller and fer-
romagnetism survives to a large extent. Inclusion of local spin-spin correlations has a limited destabilizing
effect on the magnetic states.@S0163-1829~97!00330-5#
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I. INTRODUCTION

Although efforts to understand the microscopic origin
itinerant magnetism have continued for over three deca
there is still no consensus whether the nondegene
(s-band! Hubbard model, originally introduced as a mod
for d electrons in transition metals,1 can serve as a simpl
model which describes itinerant ferromagnetism. On
mean-field level it seems to be a good starting point as
Stoner criterion predicts a ferromagnetic~FM! ground state
~g.s.! in a broad range of parameters. However, the inclus
of electron correlations destabilizes it in most situations1–5

However, the FM state is stable in the limit ofU→` up to a
critical doping, being close tod50.29 for a square lattice.4,5

Recently, a few mechanisms which stabilize ferromagnet
in the Hubbard model with moderate Coulomb repulsionU
have been proposed. They are realized either by exten
the model by additional intersite Coulomb interactions6 or in
the flat-band scenario.7–12 While the former mechanism
might work in liquid hydrogen rather than in transitio
metals,6 the question of whether the spin-independent on-
Coulomb interactionU alone can give ferromagnetism re
mains intriguing.

Rather extreme situations in which the g.s. is FM are
countered in low-dimensional systems. First, high-spin g.
are found in finite systems with open-shell electronic sta
like in a tetrahedron,13 and in some other few-atom
clusters.14 Second, the enhanced degeneracy at the Fe
level realized in one dimension by extended hopping sta
lizes the FM g.s.8–12 The mean-field analysis of Lin an
Hirsch7 suggests that the FM instability is enhanced in t
dimensions by the next-nearest-neighbor hoppingt8, and in-
deed the summation of the most divergent diagrams confi
the FM instability at the Van Hove singularity~VHS! in two
dimensions.15 There are also indications from the enhanc
stability of the Nagaoka state byt8 at theU5` limit that the
kinetic energy changing slowly with electron filling favo
ferromagnetism in a square lattice.16

Yet in spite of this revived interest in the magnetic sta
of the nondegenerate Hubbard model, magnetic states
realized in nature in degenerated bands of 3d transition
560163-1829/97/56~6!/3159~8!/$10.00
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metals. Therefore, we investigate here the FM and antife
magnetic ~AFM! instabilities of thed band and compare
them with those found in thes band for the same two
dimensional~2D! lattice near the VHS. It is important to
include electron correlations, if magnetic instabilities a
considered. Using the Kadanoff-Baym technique of deriv
conserving approximations, we find by including particl
particle scattering a similar expression as postulated
used by Chenet al. in the s-band case.17 Note that this ap-
proach is different from fluctuation exchange approximat
~FLEX!,18,19 and avoids self-consistency in the conservi
approximation, but nevertheless gives a magnetic struc
factor of the same quality as the Monte Carlo simulations
2D ~Refs. 17 and 20! and in infinite-dimensional Hubbard
models.21 In contrast, the experimental data suggest that
Hund’s rule exchange interactionJ remains practically equa
to its atomic value,22 but the atomic correlationsstabilize
local moments forJ.0. In the Hartree-Fock~HF! approxi-
mation these moments exist only in the symmetry-brok
phases, and they are absent in nonmagnetic states.23 Thus,
both particle-particle scattering and atomic correlations c
tribute to the reduction of the magnetic energy in thed band,
conventionally expressed by the Stoner parameterI d . This
motivated us to make a more extended study, in which
analyze the FM and AFM instabilities and discuss two qu
tions: ~i! Does ferromagnetism exist in thes-band model in a
finite-density range near the VHS? If it does, it might
possible to stabilize it also in three dimensions, provide
high density of states would exist at the Fermi level.~ii ! How
does the picture change when we go to thed-band case?

The paper starts with the presentation ofs-band and
d-band Hubbard models with next-nearest-neighbor hopp
in Sec. II. Thed-band case is treated by a generalization
the treatment of the particle-particle scattering presente
Ref. 17. We also include atomic spin-spin correlations b
local ansatz method and evaluate the renormalized St
parameters. The magnetic phase diagrams of thes and d
bands are presented and discussed in Sec. III. The pap
concluded in Sec. IV, where we also give estimations of
parameters used for realistic transition metals.
3159 © 1997 The American Physical Society
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II. MODELS AND RENORMALIZED
STONER PARAMETERS

First, we consider a nondegenerate Hubbard (s-band!
model on a square lattice with nearest (t.0) and next-
nearest neighbor (t8.0) hopping,7

Hs52t (
^ i j &,s

cis
† cj s1t8 (

^^ i j &&,s
cis

† cj s1U(
i

ni↑ni↓ .

~1!

An increasingt8 makes the kinetic energy

«k522t~coskx1cosky!14t8coskxcosky ~2!

to increase slower from theG to theX(Y) point, and finally
to become flat forR51, whereR52t8/t. We do not con-
sider the unrealistic cases with largeR.1. Second, we study
a degenerated-band model, with a simplified intraorbita
hopping,24

Hd52t (
^ i , j &,a,s

cia,s
† cj a,s1t8 (

^^ i , j &&,a,s
cia,s

† cj a,s

1U0(
i ,a

nia,↑nia,↓1S U2
J

2D (
i ,a,b

nianib

22J (
i ,a,b

Sia•Sib1J (
i ,aÞb

cia,↑
† cia,↓

† cib,↓cib,↑ ,

~3!

wherenia5(snia,s andSia5$Sia
x ,Sia

y ,Sia
z % are density and

spin operators for orbitala at site i , andU05U12J. The
d bands have the same dispersion«k as in thes-band model
~1!.

Following the approach of Kadanoff and Baym,25 one
may construct a ‘‘conserving approximation’’ to thed-band
Hubbard model which motivates the approach of Ch
et al.17 Therefore, we have considered a system coupled
an infinitesimal external fieldbia5(bia

x ,bia
y ,bia

z ),

Hd~b!5Hd2(
ia

bia•Sia , ~4!

and derived a self-energy by taking the functional derivat
with respect to the full Green functionG of the Kadanoff-
Baym potentialF, S5dF/dG. In a finite fieldbia one finds
the Dyson equation for the one-particle Green function of
d-band Hamiltonian~4!,

Ĝi j ,a
21 ~t!5Ĝi j ,a

021~t!2Ŝ i j ,a~t!1bia•ŝd~t!d i , j , ~5!

whereĜi j ,a
0 is the noninteracting~i.e., U5J50) ~diagonal!

Green function matrix,Ŝ i j ,a is the~nondiagonal! self-energy
matrix labeled by spin indices, andŝ is a vector composed
out of Pauli matrices. Due to the symmetry of the hypercu
lattice considered here, there are no interorbital hopping p
cesses, and therefore the one-particle Green func
Ĝi j ,a(t) is diagonal in orbital space.

The magnetic instabilities follow from the instabilities o
the linear response function~the transverse susceptibility! to
a local spin-flip excitation (bia

2 5bia
x 2 ibia

y ),
n
to

e

e

c
o-
n

x i j ,a
' ~t2t8!5 lim

e→01
(
b

]Gj j ,a
↑↓ ~t8,t81e!

]bi ,b
2 ~t! U

b50

, ~6!

which is determined by the full one-particle Green functi
G. Using a well-known identity we rewrite the functiona
derivative as

]Ĝj j ,a~t8,t81e!

]bi ,b
2 ~t!

U
b50

52E Ĝji 1 ,a~t8,t i 1
!
]Ĝi 1i 2 ,a

21 ~t i 1
,t i 2

!

]bi ,b
2 ~t!

3Ĝi 2 j ,a~t i 2
,t81e!b50 , ~7!

where *[( i h
*dt i h

stands for integration and summatio

over all internal variables$ i h%. Using the Dyson equation
~5!, we find a formal integral equation for the transver
susceptibility,

x i j ,a
' ~t2t8!5x i j ,a

'0 ~t2t8!1(
b

E Tr@ŝ2Ĝji 1 ,a~t8,t i 1
!

3Gab~ i 1t i 1
,i 2t i 2

u i 3t i 3
!Ĝi 2 j ,a~t i 2

,t8!#

3x i i 3 ,b
' ~t2t i 3

!ub50 , ~8!

whereŝ25ŝx2 i ŝy is a Pauli matrix, and theeffective two
particle interaction is defined as

Gab~ i 1t i 1
,i 2t i 2

u i 3t i 3
![ lim

e→01

]Ŝ i 1i 2 ,a~t i 1
,t i 2

!

]Gi 3i 3 ,b
↑↓ ~t i 3

,t i 3
1e!

. ~9!

One observes immediately that a random-pha
approximation-~RPA! like expression for the transverse su

ceptibility would be obtained, if the self-energyŜ i j ,a(t)
were local in space and time, as is, e.g., the HF self-ene

We will now use the Kadanoff-Baym technique whic
may be used to obtain conserving approximations.25 First, we
rewrite the expression forHd , Eq. ~3!, in a more explicit
form which separates the spin-spin interaction into transve
and longitudinal terms,

Hd52t (
^ i , j &,a,s

cia,s
† cj a,s1t8 (

^^ i , j &&,a,s
cia,s

† cj a,s

1U0(
ia

nia↑nia↓2J (
i ,a,b,s

cia,s
† cia,2scib,2s

† cib,s

1 (
i ,a,b,s

@Unia,snib,2s1~U2J!nia,snib,s#

1J (
i ,aÞb

cia,↑
† cia,↓

† cib,↓cib,↑ . ~10!

The diagrams to lowest order in the Kadanoff-Baym fun
tional F ~see Fig. 1! are obtained by taking the g.s. expe
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56 3161MAGNETIC PHASES NEAR THE VAN HOVE . . .
tation values of all possible contractions of the operators
Hd . Since we have a spin-flip term due to the infinitesim
field bia , also spin-flip Green functions appear. In choos
higher-order terms, we have only kept diagrams correspo
ing to particle-particle scattering, similarly as in the FLE
method in Ref. 19.

For Kadanoff-Baym diagrams we only keep those wh
contribute both to the Green function and to the suscept
ity. In this way we avoid inconsistencies when we calcul
phase boundaries from total energy, using the Green fu
tion, and from finding singularities in the susceptibility. Th
means that we only keep diagrams of second order
^cia,s

† cib,s8&, since diagrams of higher and lower order gi
vanishing contributions when we take the two functional d
rivatives and the limit of zero external field,bia→0. The
leading diagrams of a consistent theory are shown in Fig
The generating functional for the self-energy is obtained
summing up to infinite order the class of diagrams in
particle-particle channel, which leads to an alternating g
metric series, shown in Fig. 1. One then integrates over
internal variables and sums over orbitals,F5(a*Fa .

Short-range electron-electron correlation effects,
glected within the RPA, consist of local particle-partic
scattering processes. Here we use alocal approximation,and
thus the contribution of each higher-order diagram toFa is
}d i , j .

Compared to other dynamical electronic process
particle-particle scattering can be considered as insta
neous process. Focusing on the local particle-particle ke
x i i ,a

pp (t i2t j )5Gii ,a
↑↑ (t i2t j )Gii ,a

↓↓ (t i2t j ), shown in the
second-order diagrams of Fig. 1, it is reasonable to w
x i i ,a

pp (t i2t j )'x i i ,a
pp (v50)d(t i2t j ), where

x i i ,a
pp ~0!5

1

b(
n

Gii ,a
↑↑ ~ ivn!Gii ,a

↓↓ ~2 ivn!, ~11!

FIG. 1. Schematic representation of the diagrammatic expan
of the Kadanoff-Baym potential part which originates fro
electron-electron interaction with a representatived orbital, Fa .
The first- and second-order diagrams are shown; higher-order
grams include multiple particle-particle scattering and dress the
traorbital Coulomb interactionU0 further.
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with b51/kBT. Within this approximation one may replac
the interaction between two electrons inua↑& and ua↓&
states, shown by higher-order diagrams in Fig. 1, by the
fective interactionŪ0, and we can mapF onto an effective

Kadanoff-Baym potentialF̄5(a*F̄a , shown by its dia-
grammatic representation in Fig. 2. The interaction vertex
the effective Kadanoff-Baym potential obeys the equation

Ū05U02U0xa
pp~0!Ū0 , ~12!

where xa
pp(0)5x i i ,a

pp (0) for a translationally invariant sys
tem, which is easily solved to give an effective intraorbi
Coulomb interaction in thed band,

Ū05
U0

11U0xa
pp~0!

. ~13!

It is now straightforward to calculate the self-energy
the one-particle Green function. Performing explicitly th
functional derivatives,S5dF/dG, we find the local self-
energy matrix

Ŝ i j ,a~t2t8!5S S ia
↑↑ S ia

↑↓

S ia
↑↓* S ia

↓↓D d~t2t8!d i , j , ~14!

with elements

S ia
ss5F Ū0^nia,2s&1 (

bÞa
~U^nib&2J^nib,2s&!G ,

S ia
↑↓52F Ū0^Sia

2 &2J (
bÞa

^Sib
2 &G . ~15!

The adopted approximation to the self-energy has the s
functional form as the usual Hartree-Fock approximatio
and therefore we call it a generalized HF~GHF! approxima-
tion. Self-consistency for the presentedF-derivable GHF ap-
proximation is required only for the GHF occupation num
bers^nia,s&.

Next, a RPA-like expression for the transverse susce
bility is obtained, using the Green function with the se
energy, Eq.~15!, in Eqs.~9! and ~8!,

on

ia-
n-

FIG. 2. Schematic representation of the diagrammatic expan

of the effective Kadanoff-Baym potentialF̄a with the effective

intraorbital Coulomb interactionŪ0, defined by Eq.~13!.
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xa
'~q,0!5

xa
0~q,0!

12I dxa
0~q,0!

, ~16!

which we will call generalized RPA~GRPA!, since it has the
same functional form as in the RPA. In thes-band case the
above formula containsI s5Ū ~instead ofI d), where Ū is
defined by the same renormalization due to the parti
particle vertex as in Eq.~12!, but withU0 replaced byU, and
gives an excellent agreement with the Monte Carlo dat17

There seems no reason that this approximation should
work well also in thed-band case.

As an important difference to the RPA, the HF value
the Stoner parameter for thed-band model, I HF
5(U16J)/5, is now replaced by the renormalized Ston
parameter

I d5 1
5 ~Ū014J!. ~17!

We note that the Stoner parameter in thes band is just
equivalent to the renormalized value ofU, I s5Ū.

The reduction of the Stoner parameter due to the scre
ing of the intraorbital Coulomb interactionU0 may be sub-
stantial in ad band, but not quite as large as in thes-band
case, as we show below. In contrast, the screening of
exchange interactionJ is provided by similar expression
which involve the interorbital transitions on the same s
Gia,ib

ss , and is thus of second order in̂cia,s
† cib,s&. If the

interorbital hopping vanishes~as it does for hypercubic lat
tices!, J is unscreened; otherwise, this screening is expec
to be small. This is confirmed by the values ofJ deduced
from the experimental data in transition metals which
close to the atomic values.22 We note that the renormaliza
tion of I d is therefore substantially weaker than in t
s-band Hubbard model~1! ~Fig. 3!, whereI s5Ū, and Ū is

FIG. 3. Stoner parametersI s /I HF for the s band ~left! and
I d /I HF for the d band ~right! as a function of filling for different
R values. The three solid curves in each panel refer
(U16J)/W50.5, 1.0, and 2.0 from top to bottom. The dash
curves in thed-band case are results with spin-spin correlatio
~from the local ansatz! included.
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obtained from Eq.~12! with J50. In the 2D Hubbard mode
one finds thatI s is only weakly dependent on the band fillin
n, with a minimum at the filling which corresponds to th
VHS, but isfinite as long asR,1. With increasingR, the
VHS moves towards the lower band edge, the reduction
I s gets stronger, and one finds thatI s→0 for R→1. Such a
strong renormalization ofI s follows from the singular behav
ior of the particle-particle vertex.

The Stoner parameter is further decreased in thed-band
case by atomic interorbital correlations.23 This results from
the formation of local moments which can be built into t
g.s. by modifying a single-Slater-determinant HF wave fun
tion uCHF& into26

uC0~$nia,s%!&5expS 2(
m

hmOmD uCHF~$nia,s%!&,

~18!

wherehm are variational parameters, andOm are local op-
erators which in the case of ad band have the form

Oi ,ab
~n! 5nianib , Oi ,ab

~s! 5Sia•Sib , ~19!

and describe local density (Oi ,ab
(n) ) and spin (Oi ,ab

(s) ) correla-
tions, respectively. The contribution of spin correlations
the magnetic energy follows from a comparison of the e
ergy obtained with the wave functionuC0($nia,s%)& given by
Eq. ~18! with that found with density correlations only.23 We
note that the HF and correlated wave functions in Eq.~18!
are obtained for the same electronic distribution. The Sto
parameterI d is obtained as a derivative of the interactio
energy with respect to magnetization squared, and is a
tionally reduced by up to 12% ofI d , if ( U16J)/W51 ~Fig.
3!. Therefore, one finds at (U16J)/W51 that
I d /I HF.0.65 which agrees well with the values deduc
within a realistic model for 3d transition metals.27 Interest-
ingly, at R50 the largest corrections due to spin-spin cor
lations are found atun25u.2.5, which indicates that the
difference between local moments in the paramagnetic~PM!
and weakly FM states is there larger than atn55.28

III. MAGNETIC PHASE DIAGRAMS

The instability of the system towards either FM or AF
order ~16! is driven by the value of the Stoner parameterI d
(I s). We illustrate this by considering the phases with a u
form and with a two-sublattice magnetic structure,29

^nia,s&5 1
2 @n01lsm1~h1lsn!eiQ•Ri#, ~20!

wherem, h, and n are order parameters, andls561 for
s5↑,↓. The quasiparticles are given~up to constant energy
shifts! by

Eka,s
6 5 1

2 ~«k1Q1«k!6 1
2 @~«k1Q2«k!21Ds

2 #1/2, ~21!

and Q5(p,p) is the nesting vector atR50. The value of
the gap at half-filling (n051) is given by the effective inter-
actionDs5D5I dn/2 in thed-band case (Ds5D5I sn/2 in
the s-band case!.

The alternating magnetic order results in a two-sublatt
magnetic structure and opens a gapDs for s-spin electrons.
Assuming the filling byn0 electrons~per one bandd sub-
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56 3163MAGNETIC PHASES NEAR THE VAN HOVE . . .
band ors band!, we analyze only the following commensu
rate magnetic phases: ~i! ferromagnetic ~FM!,
m5min$n0,22n0%, n5h50; ~ii ! partial ferromagnetic
~PFM!, mÞ0, m,min$n0,22n0%, n5h50; ~iii ! antiferro-
magnetic~AFM!, nÞ0, m5h50; and~iv! special ferrimag-
netic ~SFIM!, m5u12n0u, nÞ0, hÞ0; here, the stability
follows from the Fermi level lying within the gap betwee
two majority Slater subbands.

In the region of their stability, the energies of magne
phases are determined using the total energy express
within the GHF approximation,

E~$nia,s%!5EGHF1Ecorr, ~22!

whereEGHF is determined as in the HF approximation fro
the quasiparticle energies~21!. For simplicity, we give only
the formula for less than half-filling (n0<1),

EGHF5
1

N (
a,kPK~↑ !

Eka,↑
2 1

1

N (
a,kPK~↓ !

Eka,↓
2 2^H int&,

~23!

where K(s) is a set of the occupied quasiparticle sta
Eka,s

2 , Eq. ~21!, in the lower Slater subband fors spin. The
interaction energŷH int& is subtracted to avoid double coun
ing, with the form ofH int determined by the used Hami
tonian, eitherHs or Hd .

The correlation energy depends on the magnetic or
and is calculated using the local ansatz~18!,24,26

Ecorr5
^C0~$nia,s%!uHduC0~$nia,s%!&

^C0~$nia,s%!uC0~$nia,s%!&
2EGHF. ~24!

In thes-band case we adopted the value ofEcorr50, which is
exact for the FM states, and avoids double counting of
correlation contributions in the PM and AFM states. T
treatment of atomic correlations in thed band beyond the
GRPA is only approximate, but suffices to get qualitati
results for the magnetic phase diagrams reported be
These correlations vanish in the FM phase, but are finite
the PM state, and therefore the value of the Stoner param
at the FM instability is found in an approximation. On th
contrary, they have no influence on the lines of the AF
instabilities, where the order parametern increases continu
osly from zero. Here we used the local approximation
evaluate the respective averages, when the exponentia
the wave functionsC0($nia,s%), Eq. ~18!, are expanded in
Eq. ~24!. More details may be found in Ref. 24. The ma
netic phase diagrams are next found using the instabilitie
the nonmagnetic states, and by comparing the total ener
~22! of the magnetic phases in the region of their stability

As an illustrative example, we limit ourselves here to t
2D models~1! and ~3! with nearest- (t) and next-nearest
(t8) neighbor hopping. By changing the value ofR52t8/t,
the bands~2! become flat inG-X andG-Y direction and the
noninteracting susceptibilitiesx0(k,v) change. The singu
larity in the AFM susceptibility x0(Q,v) @Q5(p,p)#
moves to lower energies, as shown in Fig. 4, and gradu
disappears, while the FM susceptibilityx0(0,v)5N(v) de-
velops a peak at low energies~see the inset of Fig. 4!. There-
fore, the RPA instabilities of thes-band model towards FM
states occur at all electron densities~Fig. 5!, and are en-
ns
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e
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hanced at lown for increasingt8.7 One finds that these in
stabilities occur towards the saturated FM states~with a
maximum value ofm5u12n0u) in most cases. As expected
the AFM ~SFIM! order is more stable near half-filling.

FIG. 4. Free susceptibilityx0(Q,v) as obtained at the nestin
vectorQ5(p,p) for the 2D densities of states withR50, 0.7, and
1.0 (W58t). The corresponding densities of statesN(v) are shown
in the inset.

FIG. 5. RPA ~left! and GRPA~right! phase diagrams for the
s-band case and forR50, 0.4, 0.7, and 1.0 from top to bottom
Solid lines give the instabilities with increasingU of paramagnetic
~P! to ferromagnetic~F! or antiferromagnetic~AF! states. The spe-
cial ferrimagnetic states~SFI! are separated by dot-dashed line
Ferromagnetic states are saturated~F! except for small regions in
the three lowest panels to the left~PF!.
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If correlation effects~renormalization ofU within the
GRPA! are included, the phase diagrams change drastic
~Fig. 5!. The FM instability disappears almost entirely in th
GRPA if R,1, except just in a narrow region around th
VHS for larger values ofR. At R50 it is suppressed at an
n, in agreement with Rudin and Mattis.30 As also no insta-
bility of the PM state towards the FM order is found
infinite dimension,21 it is likely that it does not exist in hy-
percubic lattices atR50.31 The situation changes whe
particle-hole symmetry is broken fort8.0, and the FM or-
der is stabilized by infinitesimalU at the VHS point, if
R.0.55.15 Remarkably, atR51 ferromagnetism is stable a
low density, n,0.45, as a consequence of flat-band behav
«k522t, if k5(kx,0) or k5(0,ky).

The AFM order is found to be more robust and exi
around half-filling at any value ofR<1, with electron cor-
relations included. In agreement with expectations, the
gion of AFM order at intermediate values ofU/W>1.0 ex-
pands when the kinetic energy in the ordered state incre
with the increasing intrasublattice hoppingt8, both in the
RPA and in the GRPA, as shown in Fig. 5. On the contra
at R51 the region of antiferromagnetism is much reduc
compared withR50. It is expected that incommensura
magnetic order with AFM correlations is stable in betwe
the AFM and PM phases, as shown recently within t
method in infinite dimensions.21,32

In contrast to ferromagnetism, the tendency towards A
order at and near half-filling is weakened by the increas
next-nearest-neighbor hoppingt8, as the shape of the Ferm
surface changes and the perfect nesting condition is not
isfied. At R50, the transition to the AFM state occurs
infinitesimal U.0, and the magnetic momentn increases
gradually from zero with increasingU. This behavior is
characteristic of perfect nested band structures, and is
placed by a jump to a finite magnetizationn which occurs at
finite U.0, if R.0. With increasingR the lower quasipar-
ticle subbandE2(k), Eq. ~21! becomes more flat and it i
gradually more difficult to stabilize an AFM state. Therefo
the critical value of the Coulomb interactionUc /W, in-
creases with increasingR, as shown in Fig. 6.

It is interesting to ask whether the insulating AFM state
half filling and R50 is replaced by itinerant antiferromag
netism with increasing values oft8. The gap in the AFM
state at the transition point is determined by the energy
ference between the top of the lower Slater subbandE2 at
k5(p/2,p/2) and the minimum of the upper Slater subba
E1 at k5(p,0). Using the effective Coulomb interactio
Ū, we find that the AFM state is always insulating at t
transition point, except atR51, where the gap between th
Slater subbands closes and the AFM state is weakly meta
as shown in Fig. 6. The onset of metallic behavior occurs
GRPA at 2t85D, where Ds5D5I sn/2 in Eq. ~21!. If
R51, one finds at the transition pointŪc50.409W, and
n50.606, and the splittingD50.124W, just somewhat
smaller than 2t850.125W. This results in a very small dif-
ference of the energies,DE5E1(X)2E2(S)522.2
31023W, and supports the recent conclusion of Duffy a
Moreo33 that itinerant magnetism is difficult to realize in th
U-t-t8 Hubbard model, without the second-neighbor hopp
t9 along thex and y directions. Morever, it seems that th
lly
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critical values ofU obtained for the onset of AFM long
range order~LRO! might be overestimated at finiteR, as we
find the AFM instability atUc.4.5t for R50.4, while the
quantum Monte Carlo calculations suggest a va
Uc.2.5t.7,33 However, they agree with the metal-insulat
transition estimated to be somewhere in the range
4t,Uc,6t, if R50.4.

The RPA phase diagram of thed-band model is similar to
that of thes-band model~Fig. 7!, but the SFIM phase is
destabilized by the interorbital exchange interactionJ, and
thus the AFM state is found instead in a broader range
parameters. As a consequence of the weaker screenin
particle-particle diagrams~12!, the conditions for FM LRO
are less restrictive,34 and the FM instabilities occur in the
GRPA at any value ofR, but for larger interactions~Fig. 7!.
As in thes-band case, FM order is favored at low electron
filling for 0.4,R,1.0 due to weaker dispersion. As alrea
seen in the screening of the Stoner parameterI d , the spin-
spin correlations restrict the region of FM states, in particu
at R50, and forn.7.5, if R>0.4. Furthermore, one find
that weak ferromagnetism is somewhat more pronoun
than in thes band and survives for the screened interactio
but occurs only in a relatively narrow range ofn. This shows
that partly polarized FM states are more likely to result fro

FIG. 6. Instability of a paramagnetic metallic~PM! to antiferro-
magnetic insulating~AFI! ground state at half-filling (n51) in
the Hubbard model~1!: ~a! critical value of the Coulomb interaction
Uc as function ofR52t8/t, ~b! electronic structure in an almos
insulating~weakly metallic! AFM state obtained atU54.04W and
R51.
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either the local maxima or the splittings betweeneg and t2g
orbitals in realistic band structures of 3d transition metals.

IV. SUMMARY AND CONCLUSIONS

Summarizing, we conclude that the FM states are sta
not only at, but also in the neighborhood of the VHS in t
s-band model, if the band fillingn is small. This suggests
that ferromagnetism might be realized in the Hubbard mo
also in three dimensions, but only if the particle-hole sy
metry is broken and the kinetic energy satisfies ratherex-
tremeconditions. Therefore, thes-band model cannot serv
as a generic description of itinerant magnetism in transit
metals. Instead the orbital degeneracy of thed states is cru-
cial to explain magnetic states, and the interorbital excha
couplingJ plays an important role.

Although no more than qualitative statements can
made for realistic transition metals, it is interesting to co
pare the obtained phase diagrams with the known interac
parameters of 3d systems. The values ofU and J are ap-
proximately known for 3d transition metals and may be ob
tained from the multiplet splittings, as discussed in detail
van der Marel and Sawatzky.22 This analysis leads to
U52.55, 2.76, and 2.97 eV, for Fe, Co, and Ni, respective
while the values of J are given by the same rati
J/U50.27.23 These values ofU are close to those consid
ered by one of us in an earlier study of ferromagnetism
3d metals,23 and we treat them here as representative on
Taking the bandwidths of Fe, Co, and Ni as determined
Andersen, Jepsen, and Glo¨tzel,35 W55.43, 4.84, and 4.35
eV, respectively, this results in the HF values of the m

FIG. 7. The same as in Fig. 5, but for thed-band model~2! with
J/U50.25. The magnetic instabilities are shown by solid lin
while dotted lines indicate the same instabilities if the spin-s
correlations are neglected.
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netic interaction for these elements of (U16J)/W51.23,
1.49, and 1.79, respectively. We assumed the electron fil
of n57.3, 8.3, and 9.4 in thed band andR50 in our model
~3! to simulate qualitatively the situation in Fe, Co, and N
and found a reduction of the respective Stoner parameter
to particle-particle renormalization and the spin-spin corre
tions of the order ofI d /I HF.0.61, 0.58, and 0.54, respec
tively. Interestingly, these values are almost constant as
increasing values of (U16J)/W are counterbalanced by th
smaller reduction ofI d ~both by particle-particle and eve
more by spin-spin correlations! when the electronic filling
increases towards the filled band. TakingJ/U50.25 in a
realistic model with canonicald bands,26 one finds instead
that I d /I HF.0.63, 0.57, and 0.52. The agreement is ve
good indeed granted the simplicity of the model.

Furthermore, using the values ofI d derived above and
realistic values ofd-band widths,35 one finds the Stoner pa
rametersI d.0.72, 0.82, and 0.92 eV for Fe, Co, and N
respectively. These values are significantly lower than th
deduced by Gunnarsson from the local-density approxim
tion ~LDA ! calculations, being 0.92, 0.99, and 1.0
respectively.36 In spite of the qualitative nature of this com
parison, this allows us to conclude that important correctio
of the Stoner parameter exist due to nonlocal electron co
lation effects, as in particular due to the spin-spin interorb
correlations, which cannot be dealt with in the standard b
structure calculations based on the LDA. Thus, in spite
some attempts which exist in the literature,37 there is no way
to deduce reliable values of the Stoner parameter from b
structure calculations performed within the LDA.

An additional factor which might stabilize ferromag
netism in thed-band model is the flattening of the band
with increasing values ofR. Then magnetic states are po
sible even for rather small interactionsU. Of course, this
tendency is overemphasized in the present 2D model by
Van Hove singularity, but it is expected that strong ne
nearest-neighbor hoppingt8 may lead to FM instabilities
also in three-dimensional or quasi-2D systems at low fillin
It would be interesting to verify this prediction, if such ma
terials could be synthesized.

Altogether, we have shown that a correct quantitative
scription of ferromagnetism in transition metals is only po
sible within a realisticd-band model~3!, and when the
particle-particle screening and spin-spin correlations are
cluded. In order to obtain more quantitative results, howev
realistic densities of states have to be used. A somew
different situation, however, is found for the AFM state
where band structure effects~like perfect nesting! dominate,
at least at weak and intermediate values ofU, and the
s-band model might then suffice to explain qualitatively t
experimental data for AFM Cr and its alloys.21
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