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Decay of metastable states: Sharp transition from quantum to classical behavior

D. A. Gorokhov and G. Blatter
Theoretische Physik, ETH-Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland

~Received 27 February 1997!

The decay rate of metastable states is determined at high temperatures by thermal activation, whereas at
temperatures close to zero, quantum tunneling is relevant. At some temperatureTc the transition from classical
to quantum-dominated decay occurs. The transition can be first-order-like, with a discontinuous first derivative
of the Euclidean action, or smooth with only a second derivative developing a jump. In the former case the
crossover temperatureTc cannot be calculated perturbatively and must be found as the intersection point of the
Euclidean actions calculated at low and high temperatures. In this paper we present a sufficient criterion for a
first-order transition in tunneling problems and apply it to the problem of the tunneling of strings. It is shown
that the problem of the depinning of a massive string from a linear defect in the presence of an arbitrarily
strong dissipation exhibits a first-order transition.@S0163-1829~97!05629-4#
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I. INTRODUCTION

Investigations of the decay rate of metastable states h
a long history, going back to Kramers1 who calculated the
lifetime of a classical trapped particle separated from the
equilibrium state by a high potential barrier. Since then, d
ferent decay phenomena have been investigated. The m
of dislocations across the Peierls barrier,2,3 the decay of the
current in a Josephson loop,4 and the creep of vortices in
superconductors5 are typical and well-known examples o
metastability. At sufficiently high temperatures a metasta
system decays due to thermal activation and the decay
G obeys the Arrhenius lawG;exp(2U/T), whereas at tem-
peratures close to absolute zero, quantum tunneling is
evant andG;exp(2S/\), with S the action at zero tempera
ture. Below we shall consider systems for which t
semiclassical description is applicable. In this caseU/T and
S/\ are large; otherwise, the system would not be truly me
stable.

Let u(t,r ) denote the coordinates of the system un
consideration, depending in general on imaginary timet and
spatial variablesr . Within the semiclassical approximatio
the decay rate at a temperatureT is determined by the con
tribution of the trajectories close to the one extremizing
Euclidean action and satisfying the periodicity conditi
u(0,r )5u(\/T,r ). In the high-temperature regime the fun
tion extremizing the action is time independent and, con
quently, the activation barrier in the Arrhenius lawU does
not depend on the dynamic properties of the system; me
while, the bounce solution at low temperatures is time
pendent and the dynamics enters. At some temperaturTc
the transition from the time-independent to the tim
dependent solution occurs. In some cases the bounce sol
just below the crossover point can be written in the form

u~ t,r !5uth~r !1du~r !cosS 2pTct

\ D , ~1!

where the functiondu(r ) is considered to be small. Such a
assumption leads to an actionSEucl(T) with a continuous first
derivative in the crossover point~see Fig. 1!. The second
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derivative has a jump atT5Tc . Following Ref. 6 we shall
call this situation a ‘‘second-order transition in the crosso
point.’’ In this case the bounce solution with the minim
Euclidean action at low temperatures can be obtained b
continuous deformation of the thermal solution. However,
general such a deformation is not possible: The traject
corresponding to the minimal action may jump at a cert
temperature. In this case we deal with a first-order transiti
It can be shown that the first derivative ofSEucl(T) has a
jump at the transition point~see Fig. 2! and the expansion~1!
is not valid.

Strictly speaking, even if we deal with a first-order tra
sition in a tunneling problem, there is a narrow crosso
region from one solution to another because contributi
originate from several saddle points and we need to take
account all of them. However, the better the semiclass
approximation is applicable, the narrower this region b
comes.

The problem considered here is related to the mean-fi
theory of phase transitions. The Euclidean action can
identified with the free energy in the Landau theory with
order parameter d(r ,T) defined as d(r ,T)
5maxtuu(t,r )2uth(r )u, for example. At high temperature

FIG. 1. Euclidean actionS as a function of temperatureT for the
case of a second-order transition. The second derivative ofS is
discontinuous at the pointTc .
3130 © 1997 The American Physical Society
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56 3131DECAY OF METASTABLE STATES: SHARP . . .
u(t,r )5uth(r ) and d(r ,T)[0, whereas atT,Tc , d(r ,T)
Þ0. The order parameter changes continuously at the p
T5Tc in the case of a second-order transition and disc
tinuously if a first-order transition takes place.

In this paper we present a simple criterion for the appe
ance of a first-order transition from quantum to classical
havior in tunneling problems and apply it to the problem
the tunneling of strings.

II. OSCILLATIONS CLOSE TO
THE THERMAL SADDLE-POINT SOLUTION

In this section we study the behavior of the imagina
time oscillation period of the solution of the equation
motion close to the thermal saddle-point solution. In S
II A we describe the general theory for one-dimensional~1D!
Hamiltonian systems. We briefly summarize the results
Lifshitz and Kagan7 and Chudnovsky8 for 1D Hamiltonian
systems and provide an expression for the jump of the
rivative of the Euclidean action@see Eq.~13!# for the case of
a first-order transition. In Sec. II B we use a perturbat
approach for the calculation of the imaginary time oscillati
period in the vicinity of the thermal saddle-point solutio
and define a criterion for a first-order transition.

A. General theory for 1D Hamiltonian systems

As shown by Chudnovsky,8 if the imaginary time oscilla-
tion period of a massive particle is not a monotonous fu
tion of energy, a first-order transition from quantum to cla
sical behavior takes place. This statement remains true
any one-dimensional Hamiltonian system: Consider a
system subject to potential which allows tunneling in o
direction~Fig. 3!. We choose the metastable minimum of t
potential as our zero energy. Let us define the height of
potential barrier asU0 . Using the semiclassical approxima
tion we can write the imaginary parts\Gn of the energy
En of the eigenstates in the form9

\Gn5
\v~En!

4p
expS 2

2

\Ean

bnUpUdxD[
\v~En!

4p
expS 2

Sn

\ D ,

~2!

FIG. 2. Euclidean actionS as a function of temperatureT for the
case of a first-order transition. The first derivative ofS is discon-
tinuous at the pointTc .
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wherep is the generalized momentum,En,U0 are the en-
ergy levels in the equivalent potential without tunneling, a
v(En) are the corresponding classical oscillation freque
cies. At finite temperatureT the decay rate can be easi
found by averaging over the Boltzmann distribution

G5
2

Z(
n

v~En!

4p
expS 2

En

T
2

Sn

\ D , ~3!

whereZ5(nexp(2En /T) is the partition function of the par
ticle in the well. With Eq. (3) we reproduce the well-know
expressionG5(2/\)ImF for the decay rate at lowT ~see
Ref. 10!.

Equation (3) is applicable only at sufficiently low tem
peratures. At high temperatures the excitations with ener
larger than the barrier height are relevant in the determ
tion of the preexponential factor. The decay rate then
given by the equation1,11,12

G5
v~E0!

2p
expS 2

U0

T D , ~4!

wherev(E0) is the oscillation frequency of the system ne
the metastable minimum. It is necessary to emphasize
the above expressions for the decay rate are applicable in
case of intermediate frictionh. E.g., for a particle of mass
m the criterionvT/U0!h/m!v, wherev252U9(u0)/m
with u0 the position of the maximum of the metastable p
tential ~see Refs. 1, 11, and 12!, guarantees that on the on
hand the system in the well is properly equilibrated, while
the other hand the dynamics is not affected by the damp

The sum in Eq. (3) can be well approximated by the te
where the functionf T(E)52E/T2S(E)/\ takes its maxi-
mal value and the problem reduces to the calculation of
maximum off T(E) within the interval@0,U0#. The extremal
condition for f T(E) takes the form

d fT

dE
52

1

T
2

1

\

dS

dE
50. ~5!

It is well known from standard courses of classic
mechanics13 that for a periodic problem the derivative of th
action with respect to the energy is equal to the oscillat
time t at this energy. In our case the energy axis has

FIG. 3. 1D potential well with a metastable state. A partic
trapped atu50 can tunnel out to the right in order to reach the tr
ground state.
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3132 56D. A. GOROKHOV AND G. BLATTER
opposite direction@the actionS(E) corresponds to the mo
tion in the inverse potential with energyE#. Hence,

dS

dE
52

\

T
52t~E!; ~6!

i.e., the decay is dominated by the Euclidean action with
trajectory periodic in the time interval\/T.

If the function t(E) is a monotonously decreasing fun
tion of energy, Eq. ~6! has one solution forT,\/t0
@t05t(U0)# and no solutions forT.\/t0 . At temperature
Tc5\/t0 a second-order transition takes place.

Next, let us suppose thatt(E) goes through a minimum in
the interval (0,U0) ~see Fig. 4!. In this case it can be shown8

that there is an energyE1P(0,Emin), and associated with it a
temperatureTc5\/t(E1), where a first-order transition
takes place.

Let us show that if E1ÞU0 , the Euclidean action
SEucl(T) determining the decay rateG indeed has a discon
tinuous derivative at the pointT5Tc @see Eq. ~4!#. At
T.Tc ,

SEucl~T!

\
5

Sthermal~T!

\
5

U0

T
. ~7!

The action just belowTc can be written as@see Eq.~3!#

SEucl~T!

\
5

Squantum~T!

\
5

E1~T!

T
1

S~E1!

\
~8!

~note thatE1 is a function of temperature!.
The variations ofSthermal andSquantumwith respect to the

T near the pointTc are

dSthermal

\
52

U0

Tc
2 dT, ~9!

dSquantum

\
52

E1~Tc!

Tc
2 dT1S 1

Tc
1

1

\

dS

dEU
E5E1~Tc!

D dE1

dT
dT.

~10!

Taking into account that at the pointE1,

FIG. 4. Non-monotonous dependence of the oscillation timet in
the inverse potential on the energyE. The arrow indicates the jump
of the semiclassical trajectory from the thermal-assisted quan
solution to the classical one.
e

d fT

dEUE5E1
52

1

Tc
2

1

\

dS

dEU
E5E1

50, ~11!

we obtain

dSquantum

\
52

E1

Tc
2 dT. ~12!

Thus, the jump of the derivative at the pointTc is

D
dSEucl

dT
5

\~E12U0!

Tc
2 ,0, ~13!

and the thermal action always decays more rapidly than
quantum one. We thus have shown that if the imaginary ti
oscillation timet is not a monotonous function of energ
E, a first-order transition takes place. Equation~13! quanti-
fies the strength of the first-order transition:
E1(Tc).U0 , the difference in the bounce solutions is sm
and the first-order transition is weak. In the opposite w
caseE1(Tc).0 the saddle-point solution deforms signifi
cantly and we have a strong first-order transition.

For a 1D massive particle the above physics can be ea
realized. Consider a given functiont(E) for a trapped par-
ticle. Then there exist infinitely many potentials reproduci
t(E) as their oscillation times.13 A simple way to obtain a
nonmonotonous behavior is to choose a functiont(E) with
one minimum. For more complicated nonmonotonous dep
dences the system can exhibit several transitions. In gene
system may exhibit several first-order transitions but
more than one of second order.

All the results obtained in this section remain true for
arbitrary 1D metastable Hamiltonian system as Eq.~6! is
applicable in this case.

B. Nonlinear perturbation
near the thermal saddle-point solution

Consider a metastable system whose oscillation perio
the imaginary timet is a function of a scalar parametera,
t5t(a). For Hamiltonian systems it is convenient to choo
this parameter to be equal to the energy, i.e.,a5E; see Sec.
II A. However, for dissipative systems one cannot use
energy as it is no longer a conserved quantity. In this case
can parametrize the periodic imaginary time solutions of
equation of motion by the amplitudea of the oscillations:
The amplitudea quantifies the difference between the the
mal and the weakly time-dependent solutions in the vicin
of the thermal saddle-point solution~later we will show how
to define such a notion as the ‘‘amplitude’’ for any met
stable system!. It can be easily understood that ift(a) is not
a monotonous function of the amplitude, the system exhi
a first-order transition: Starting from the zero temperat
bounce solution the periodt5\/T decreases with increasin
temperature. However, we cannot carry this solution bey
the temperature\/tmin and thus will encounter a first-orde
jump to the thermal solution at some temperatu
Tc,\/tmin ~in the simplest case of at dependence with one
minimum!.

The basic idea leading to the criterion for a sharp tran
tion from quantum to classical behavior is the following: L
us investigate the imaginary time oscillation period in t

m
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56 3133DECAY OF METASTABLE STATES: SHARP . . .
vicinity of the thermal saddle point, wherea50. From the
above discussion follows that ift(a)2t(0),0, the system
will exhibit a first-order transition. It turns out that a gener
expression fort(a) can be obtained for a wide class of sy
tems.

At high temperatures the saddle-point solution is time
dependent. Let us slightly perturb this solution and calcu
its oscillation time in the vicinity of the pointa50. We
suppose that the imaginary time LagrangianL of the system
under consideration can be written in the form

L5T~u,u̇,r !1V~u,r !, ~14!

where the termT(u,u̇,r ) is responsible for the dynamica
properties of the system andV(u,r ) is the potential energy
The equation of motion corresponding to the Lagrang
~14! takes the form

l̂ u5
dV

du
. ~15!

Later we shall suppose that the operatorl̂ is linear and that
d l̂ /dr50. This is not a strong restriction as the dynamic
terms traditionally considered in the Lagrangian~14! consist
of dissipative, massive, and Hall terms. Dissipation is usu
described by the Caldeira-Leggett formalism,14 leading to a
linear term in the equation of motion. Massive and H
terms also lead to linear equations; i.e., the operatorl̂ satis-
fies the conditions discussed above. For a massive par
the operatorl̂ takes the forml̂ 5m]2/]t2.

In the high-temperature regime the solution of Eq.~15!,
uth(r ), is time independent. Let us expand Eq.~15! into a
series around this solution. Substitutingu(r ,t)
5uth(r )1du(r ,t) into Eq. ~15! and expanding indu we ob-
tain

l̂ du5ĥdu1Ĝ2@du‡1Ĝ3@du#, ~16!

where l̂ 5d2V/du2 is a linear operator andĜ2 and Ĝ3 are
nonlinear operators satisfying the conditions

Ĝ2@ly#5l2Ĝ2@y# and Ĝ3@ly#5l3Ĝ3@y#, ~17!

wherey is an arbitrary vector andl is a constant. Our goal is
to solve Eq.~16! for du(r ,t) and find the correction to the
oscillation period away from the thermal saddle point.
lowest order in perturbation theory we separate variab
with the ansatz

du5au0~r !cosv0t, ~18!

and substituting Eq.~18! into Eq.~16! while neglecting terms
of order higher thana2 and higher we obtain

u0~r !@ l̂ cosv0t#5@ ĥu0~r !#cosv0t. ~19!
l

-
te

n

l

ly

l

le

s

The function cosv0t is an eigenfunction of the operatorl̂ ,
l̂ cosv0t5l(v0)cosv0t, and we obtain the eigenvalue equatio
for u0(r ),

l ~v0!u0~r !5ĥu0~r !. ~20!

The operatorĥ has one negative eigenvalue due to t
unstable direction in phase space. On the other ha
l (v0),0; i.e., Eq.~20! has only one solution. The functio
u0(r ) then is the eigenfunction of the operatorĥ correspond-
ing to its lowest eigenvalueh0 and the frequencyv0 is de-
termined by the condition l (v0)5h0 . Note that
Tc5\v0/2p is the transition temperature in the case of
second-order transition. At this stage it becomes clear how
define such a notion as an ‘‘amplitude’’ for any tunnelin
problem: It is the expansion coefficient of the unstable mo

Next, let us write

du5au0~r !cosvt1du2~r ,t !, v5v01v2 , ~21!

where v2 is the correction to the frequencyv0 and
du2;a2. Substituting Eq.~21! into Eq. ~16!, neglecting
terms of ordera3 and higher, and using Eq.~17! we obtain
the equation fordu2,

l ~v!au0~r !cosvt1 l̂ du25 l ~v0!au0~r !cosvt1ĥdu2

1a2Ĝ2@u0~r !#cos2vt. ~22!

Rearranging terms, we arrive at

du25~ l̂ 2ĥ!21F @ l ~v0!2 l ~v!#au0~r !cos~vt !

1
a2

2
Ĝ2@u0~r !#@11cos~2vt !#G . ~23!

Since (l̂ 2ĥ)u0(r )cosvt50, the first term has to vanish an
we obtain no shift in the frequency,l (v)5 l (v0), i.e.,
v5v0 , v250. The solution of Eq.~22! then reads

du25g1~r !1g2~r !cos2v0t, ~24!

where

g1~r !52
1

2
a2ĥ21Ĝ2@u0~r !#, ~25!

g2~r !52
1

2
a2@ ĥ2 l ~2v0!#21Ĝ2@u0~r !#. ~26!

To third order in perturbation theory we make theansatz

du5au0~r !cosvt1du2~r ,t !1du3~r ,t !, v5v01v3 .
~27!

Substituting Eq.~27! into Eq. ~16! and neglecting terms o
ordera4 and higher we obtain the equation fordu3 ,
l ~v!au0~r !cosvt1 l ~2v!g2~r !cos2vt1 l̂ du35 l ~v0!au0~r !cosvt1ĥg11ĥg2cos2vt1ĥdu3

1Ĝ2@au0~r !cosvt1g11g2cos2vt#1Ĝ3@au0~r !cosvt#. ~28!

As g1(r ), g2(r );a2, we can expand the termĜ2@au0(r )cosvt1g11g2cos2vt# around the functionau0(r )cosvt,
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Ĝ2@au0~r !cosvt1g1~r !1g2~r !cos2vt#>Ĝ2@au0~r !cosvt#1acosvt
dĜ2

du
U

u5u0~r !

„g1~r !1g2~r !cos2vt…. ~29!
.
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Note that the opeatordĜ2 /duuu0
is a linear operator; see Eq

~17!.
As before we sum up all the resonant term

;cosvtu0(r ) and obtain the following equation for the shi
in the oscillation frequency:

l ~v!2 l ~v0!5
a2

~u0 ,u0!
„u0 ,f@u0~r !#…, ~30!

where

f@u0~r !#52
1

2

dĜ2

du
U

u5u0~r !

3F ĥ211
1

2
@ ĥ2 l ~2v0!#21GĜ2@u0~r !#

1
3

4
Ĝ3@u0~r !# ~31!

and (x,y) denotes a scalar product~see the Appendix for a
general discussion!. The criterion for a first-order transition
readst(a)2t(0),0 and usingdl/dv,0 we find

„u0~r !,f@u0~r !#…,0. ~32!

In the next section we apply the criterion~32! to the tunnel-
ing of strings.

III. TUNNELING OF STRINGS

A. General theory

In this section we apply Eqs.~31! and~32! to the problem
of a driven string~i! tunneling between two potential well
and~ii ! depinning from a columnar defect. Within the line
elasticity theory the imaginary time Lagrangian of the stri
takes the form

L5E
2L/2

L/2

dzFLD~u,] tu!1
e

2S ]u

]zD 2

1V~u!2FuG . ~33!

Below we consider the dynamical termLD(u,] tu) to be the
sum of massive and dissipative terms~we ignore the trans-
verse contribution from the Hall term!

LD~u,] tu!5
r

2
~] tu!22

h

2p
] tu

3E
2\/2T

1\/2T

dt1lnUsinFp~ t2t1!
T

\GU] t1
u. ~34!

L ande are, respectively, the length and the elasticity of
string, V(u) is the potential, and the external force is a
sumed to be small,F!Fc , with Fc the depinning force. The
thermal saddle-point solutionuth(r ) corresponding to the La
grangian satisfies the equation

e
]2u

]z2 5
]V

]u
2F. ~35!
e
-

The operatorsĥ, Ĝ2 , Ĝ3 , and dĜ2 /duuu0(z) take the
form

ĥ52e
]2

]z2 1
]2V

]u2 U
uth~z!

, ~36!

Ĝ2@y#5
1

2

]3V

]u3Uuth
y2, Ĝ3@y#5

1

6

]4V

]u4U
uth

y3,

dĜ2

du Uu0
~y!5

]3V

]u3U
uth

u0~z!y, ~37!

where y is an arbitrary function ofz. The scalar product
(y1 ,y2) of two arbitrary functionsy1(z) andy2(z) is defined
as*2L/2

1L/2y1(z)y2(z)dz.
Equation~32! takes the form

~u0 , f @u0# !52
1

4E2L/2

L/2

dz
]3V

]u3 U
uth

3u0
2S ĥ211

1

2
@ ĥ2 l ~2v0!#21D ]3V

]u3Uuth
u0

2

1
1

8E2L/2

L/2

dz
]4V

]u4U
uth

u0
4,0, ~38!

wherel (v)52rv22huvu. It is appropriate to mention tha
the operatorĥ has one zero eigenvalue in the limitL→`

~see Sec. III B! such that taking its inverseĥ21 needs some
care: The eigenfunction corresponding to the zero eigenv
is an odd function ofz, whereasu0

2]3V/]u3uuth
is an even

function and there is no contribution to the integral in E
~38!. Consequently, the contribution of the eigenfuncti
corresponding to the zero eigenvalue is equal to zero.

Let us investigate the sign of Eq.~38! in the two cases
mentioned above.

B. Motion of a string across a slightly tilted periodic potential

The tunneling of a string across a tilted periodic poten
is a convenient model for the description of the motion
dislocations across the Peierls barrier. In the case being s
ied V(u) is the periodic part of the potential@see Eq.~33!#.
Below we denote time byt and the oscillation period byt.
This problem shows a smooth crossover from a purely th
mal to a thermal-assisted quantum activation at a temp
ture Tc5T0 of order \(F/rd)1/2 ~see Ref. 3! with d the
period of the potentialV(u). The schematic evolution of the
nucleus is shown in Figs. 5~a!–5~c!. At temperatures smalle
thanT1;\F/(rV0)1/2, with V0 the amplitude of the poten
tial, the nucleus is of circular shape@see Fig. 5~a!# with the
bounce solutionu(z,t)>aQ(R2r ), R;AV0/F is the radius
of the nucleus (r 25z2/e1t2/r[ z̃21 t̃ 2), and the Euclidean
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56 3135DECAY OF METASTABLE STATES: SHARP . . .
action S;AredV0 /F. At T.T1 we have to take into ac
count the interaction of the nucleus’ walls@Fig. 5~b!#. At
T.Tc5T0 the string overcomes the barrier due to therm
activation withU;dAeV0 @Fig. 5~c!#. The thermal solution
then can be obtained by a continuous deformation of
zero-temperature bounce.

As the problem exhibits a second-order transition fro
quantum to classical behavior, we should exp
l (v)2 l (v0).0. Let us prove this inequality. The ‘‘poten
tial’’ in the one-dimensional Schro¨dinger operatorĥ @see Eq.
~36!# is shown in Fig. 6. The spectrum ofĥ consists of one
negative, one zero~in the limit L→`), and positive eigen-
values~one can easily verify that the function]uth /]z is an
eigenfunction of the operatorĥ with zero eigenvalue, but on
the other hand,]uth /]z has one node; i.e., there is one eige
function with a negative eigenvalue!. In the limit F→0 the
negative eigenvalueh0 tends to zero as2F; see Ref. 3. The
positive eigenvalues of the discrete spectrum of the oper
ĥ are of orderV0 /d2. Analyzing the terms in Eq.~38! we
note that the operator$ĥ2111/2@ ĥ2 l (2v0)#21% has a large
negative eigenvalue;21/F originating from the unstable
direction in the phase space. The remaining spectrum is p
tive and does not depend onF, as is also the case for th

FIG. 5. Evolution of the nucleus~in coordinatesz̃5z/Ae and

t̃ 5t/Ar). ~a! Nucleus at low temperatures.~b! Nucleus at interme-
diate temperatures where the interaction between the nucleus’ w
is relevant.~c! Nucleus at high temperatures. The string overcom
the barrier due to thermal activation.

FIG. 6. The potential in the 1D Schro¨dinger operator for the
linearized problem of a string tunneling of a string across a sligh
tilted periodic potential.U lin(z)5]2U/]z2uuth(z) . The negative ei-
genvalue appears because of the interaction of the two wells.
distance between the negative and zero eigenvalues is much sm
than the distance between possible positive eigenvalues of the
crete spectrum and the zero-eigenvalue level.
l

e

t

-

or

si-

other factors appearing in Eq.~38!. Thus we can approximate
(u0 , f @u0#) by the contribution from the unstable directio
and arrive at the estimate

~u0 , f @u0# !.2
1

4S 1

h0
1

1

2@h02 l ~2v0!# D S E2L/2

L/2 ]3V

]u3 u0
3dzD 2

.

~39!

The second term in Eq.~38! does not involve the small pa
rameterF and can always be neglected in the limitF→0. As
l (v)52rv22huvu, h05 l (v0) we obtain

1

h0
1

1

2@h02 l ~2v0!#
,0, ~40!

and, consequently,l (v)2 l (v0).0. We have shown there
fore that in the vicinity of the pointa50, t(a) is an increas-
ing function ofa. This is in agreement with the fact that th
problem of the tunneling of a massive string across a sligh
tilted periodic potential exhibits a second-order transition3

C. Depinning of a string from a linear defect

The behavior described above should be contrasted
the sharp transition obtained recently for the tunneling o
massive string from a linear defect.15 The imaginary time
Lagrangian has the form (33) (h50) with the potential
U(u) describing a single potential well of depthV0 and ra-
diusd. At low temperatures the nucleus has a circular sh
as well. The macroscopic part of the bounce solution can
written in the form

u~z,t !52
F

4
r 21

2V0

F
, r 25

z2

e
1

t2

r
[ z̃21 t̃ 2. ~41!

The substitution of Eq.~41! into Eq.~33! gives the Euclidean
action

Sq

\
5

1

\E L@u~z,t !#dt5
4p

\
AreS V0

F D 2

. ~42!

The thermal exponent is given b
U/T5(4A2/3)AeV0(V0 /FT). Sq /\ andU/T become equal
at Tc5(A2/3p)\F/(rV0)1/2. On the other hand, the dy
namical solution~41! remains valid as long as the radius
the nucleus is smaller than the periodicity int, i.e., for
T,T153p/8Tc . The formal application of the perturbativ
procedure~see Sec. II B! gives the following linearized prob
lem determining the crossover temperatureT0:

2e
]2u0

]z2 1
]2V

]u2 U
uth~z!

u052rS 2pT0

\ D 2

u0 . ~43!

The 1D Schro¨dinger operator in Eq.~43! has again one nega
tive eigenvalue which does not depend on the details of
potentialV(u) in the limit F→0 ~Refs. 15 and 16!. T0 then
is given by the formulaT05(m/23/2p)\F/ArV050.900Tc
with m51.199 the root of the equationmtanhm51; see Ref.
16. AsT0,Tc,T1 , the string exhibits a first-order transitio
at the temperatureTc . In this case the quantum solution@see
Fig. 5~a!# jumps atTc to the thermal solution@Fig. 5~c!#. The
intermediate regime@Fig. 5~b!# is absent.
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This sharp transition is again in agreement with the ab
considerations: There exist solutions of the equation of m
tion in imaginary time with periodstP(\/T1 ,`) and energy
close to zero~we consider a massive dynamics here!. On the
other hand, at the temperatureT0 there appears a time
dependent solution of the equation of motion with a per
\/T0 and an energy equal to the energy of the thermal s
tion U. As \/T1,\/T0 , the dependence of the oscillatio
period on energy is not monotonous and a first-order tra
tion takes place. In the present case the jump of the der
tive @E1(Tc)2U#/Tc

2 in the action is large:E1(Tc) is close
to zero, U and Tc

21 are proportional to 1/F, and hence
D(]SEucl/]T);21/F3, and one can see that we deal with
strong first-order transition.

Let us find the sign ofl (v)2 l (v0) in Eq. ~30! for the
casehÞ0, rÞ0. The ‘‘potential’’ in the one-dimensiona
Schrödinger operatorĥ is shown in Fig. 7. In the limit
F→0 the most significant contribution to the integrals in E
~38! arises from the regionuzu.D5A2eV0/F. The spectrum
of the operatorĥ consists of one negative, one zero, a
positive eigenvalues. In the limitF→0 the negative eigen
o

e
-

d
-

i-
a-

.

value and the lowest positive eigenvalues of the discr
spectrum are proportional toF2 and we need to analyze th
first integral in Eq.~38! more carefully than before. The sec
ond integral in Eq.~38! is again irrelevant. In the limit
F→0, the eigenfunctions of the lowest levels take the sa
form in the regionuzu.D; i.e., we can write

FIG. 7. The potential in the 1D Schro¨dinger operator for the
linearized problem of the depinning of a string from a linear defe
U lin(z)5]2U/]z2uuth(z) . The modulus of the negative eigenvalue
of the same order as positive eigenvalues in the discrete spect
.

~u0 , f @u0# !>2
1

4E2L/2

L/2

dz
]3V

]u3 U
uth

u0
2S ĥ211

1

2
@ ĥ2 l ~2v0!#21D ]3V

]u3Uuth
u0

2

52
1

4E2L/2

L/2

dz
]3V

]u3U
uth

u0
2F(

n
S hn

211
1

2
@hn2 l ~2v0!#21D uun&^unuG ]3V

]u3U
uth

u0
2

>2
1

4(n
S hn

211
1

2
@hn2 l ~2v0!#21D S E

uzu.D
dzun

]3V

]u3U
uth

u0
2D 2

. ~44!

Here, we have used that]3V/]u3uuth
.0 for uzu,D. In the regionuzu.D, un56Cnu0 /C0 with Cn denoting the normalizers

Consequently,

~u0 , f @u0# !>2
1

4S Euzu.D

]3V

]u3U
uth

u0
3dzD 2

(
n

Cn
2S hn

211
1

2
@ ĥn2 l ~2v0!#21D . ~45!
For the lowest eigenvalue we haveu0(uzu,D)
5C0cosh@(Auh0u/e)z# and the eigenfunction belonging t
the zero eigenvalue takes the formu1(uzu,D)5C1z. In the
limit F→0 we have un8/unuz5D25un8/unuz5D1

5u08/u0uz5D1, i.e., un8/unuz5D25u08/u0uz5D2 ~we use the
condition of continuity of the logarithm derivative!; i.e., for
the lowest eigenvalue we obtain the condition

Auh0u
e

DtanhSAuh0u
e

D D 51. ~46!

Only even levels contribute to the integral in Eq.~38! and
their eigenfunctions are given byCncos@(Ahne)z#; hence we
obtain forhn

Ahn

e
DtanSAhn

e
D D 521. ~47!
The most significant contribution to the integrals*2L/2
L/2 un

2dz
arises from the intervaluzu,D, i.e.,

C0
25

1

E
2D

D

cosh2@~Auh0u/e!z#dz

5
1

Dcosh2@~Auh0u/e!D#

~48!

and

Cn
25

1

E
2D

D

cos2@~Ahn /e!z#dz

5
1

Dcos2@~Ahn /e!D#
,

n52,4 . . . . ~49!

In Eqs.~48! and ~49! we have used Eqs.~46! and ~47!.
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Let us suppose thath50. Later we will show that if the
problem exhibits a first-order transition forh50, the kind of
transition remains the same for anyhÞ0. Numerical solu-
tion of Eqs.~46! and ~47! shows thath0521.439 229e/D2

and h257.830 964e/D2. For the case of a purely massiv
dynamics l (2v0)54l (v0)54h0 . The operator ĥ21

1(1/2)@ ĥ2 l (2v0)#21 has only one negative eigenvalu
i.e., if we show that the sum

S5(
n

M

Cn
2S 1

hn
1

1

2@hn2 l ~2v0!# D , n50,2 . . . , ~50!

is positive for some finiteM , a first-order transition take
place. WithM52 we obtain

C0
2S 1

h0
1

1

2@h02 l ~2v0!# D1C2
2S 1

h2
1

1

2@h22 l ~2v0!# D
50.008 796D/e.0; ~51!

i.e., the transition from quantum to classical behavior is
first order.

Finally, let us show that the kind of transition remains t
same for anyhÞ0. We can write for the ratio

l ~2v0!

l ~v0!
5

4rv0
212hv0

rv0
21hv0

542
2hv0

rv0
21hv0

,4; ~52!

i.e., the relative contribution of the operato
(1/2)@ ĥ2 l (2v0)#21 becomes even larger compared to t
contribution of the operatorĥ21.

Comparing the problems considered in Secs. III B a
III C the main difference appears because of the differ
character of the spectrum of the linearized problem. For
case of a string tunneling across a slightly tilted perio
potential the most significant contribution arises from t
negative eigenvalue. The contributions of the positive eig
values are negligible in the limitF→0. On the other hand
for a string depinning from a linear defect the contributio
of the positive eigenvalues are of the same order as tha
the negative eigenvalue.

IV. CONCLUSION

If a second-order transition takes place, it is possible
use a perturbative approach for the calculation of the cro
over temperature. In this case we have to substitute Eq~1!
into the equation of motion. Close toTc the functiondu(r … is
small and we obtain the linearized eigenvalue problem@see
also Eq.~20!#

d2SEucl@u#

du2 U
u5u0~r !

du5ldu, ~53!

where the only negative eigenvalue of Eq.~53! ~due to the
single unstable direction in the phase space! determines the
transition temperatureTc . For the case of a first-order tran
sition atTc the formal application of the perturbative proc
dure again gives some ‘‘crossover’’ temperatureT0 which
comes to lie below the true transition atTc , however. For the
dependence of the oscillation time on energy conside
above~see Fig. 4! T05\/t0 . In Fig. 8 we plot the actions fo
f

d
t
e

c

-

of

o
s-

d

the various extremal solutions corresponding to the situa
in Fig. 4. The solid lineAC corresponds to quantum tunne
ing. At point C, a first-order transition takes place and t
solid line CB shows the thermal action. At pointE the
‘‘false’’ crossover takes place. The lineEF corresponds to
the oscillating motion of the tunneling system with ener
EP(Emin ,U0) ~see Fig. 4!. The dashed lineCF is obtained
by the continuation of the quantum action into the regi
T.Tc and corresponds to the motion with energyE
P„E1(Tc),Emin…. At point F this line and the ‘‘false’’ cross-
over action intersect each other. The dashed lineEC is a
formal continuation of the thermal action into the regio
T,Tc ; see also Ref. 8.

The above discussion shows that in the case of a fi
order transition one cannot use the perturbative represe
tion of the bounce solution@see Eq. (1)#. The transition takes
place at a temperature higher than that given by the for
solution of the linearized eigenvalue problem. In this ca
one has to find the low-temperature expression for the
clidean action and determine the point where it is equa
the thermal action.

There are a number of articles concerning the decay
metastable states, where a sharp transition from quantu
classical behavior has been discovered. A first-order tra
tion has been obtained by Lifshitz and Kagan in Ref. 7 co
cerning phase transitions at low temperatures,
Chudnovsky8 for a massive particle in a 1D potential for th
case of a nonmonotonous dependence of the imaginary
oscillation period on energy, by Morais-Smith, Ivlev, an
Blatter in Ref. 17 where macroscopic quantum tunneling i
dc superconducting quantum interference device~SQUID!
has been investigated, by Garriga in Ref. 18 concerning
vacuum decay in two and three dimensions in the thin w
limit, by Ferrera19 for a bubble nucleation in thef4 model,
and by Skvortsov15 for the case of the depinning of a ma
sive string from a linear defect.

It would be interesting to observe a first-order transiti
in an experiment. Measurements of the escape rate of
sephson junctions from their zero-voltage state20 show that
the transition from quantum to classical behavior is of t
second kind. The criterion described above allows us to fi
metastable systems exhibiting a sharp transition withou
complicated solution of the equation of motion in the who
temperature range. The problem considered in Sec. III C
the depinning of a string with finite mass and friction coe

FIG. 8. Euclidean actionS as a function of temperatureT for a
nonmonotonous oscillation timet(E) as given in Fig. 4.
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3138 56D. A. GOROKHOV AND G. BLATTER
ficients is related to the problem of the depinning of vortic
from columnar defects produced by the irradiation of hea
ions in high-Tc superconductors. As has been shown, t
problem exhibits a first-order transition. In principle, th
sharp behavior can be observed in an experiment. Howe
one should take into account that the point of transition
smeared due to the different radii of the defects. Hen
samples with defects of one radius should be taken for
experiment. An appropriate method to produce defects w
identical radii is based on lithographic technique; see R
21–24.

Finally, let us discuss theF-T ‘‘phase diagram’’ of a mas-
sive string depinning from a columnar defect. At smallF,
Tc increases;F and the transition is first-order-like. A
F&Fc , with Fc the critical force, the problem exhibits
second-order transition withTc5T0;AFc2F; see Ref. 25.
Consequently, there is a ‘‘tricritical’’ pointC ~see also Ref.
15!, where the nature of the transition changes; see Fig. 9
the vicinity of the pointF/Fc51 the transition curve is
shown to be dashed as in the limitF→Fc the potential bar-
rier disappears and the semiclassical approximation is
applicable.

As has already been mentioned, the kind of transit
is determined by the ‘‘competition’’ of the negative an
positive eigenvalues of the operator $ĥ21

1(1/2)@ ĥ2 l (2v0)#21%; see Sec. III B. Let us investigat
possible spectra of this operator for the case of the tunne
of a string. Consider a 1D Schro¨dinger operator
ĥ52e]2/]z21U lin(z) of the linearized problem, where th
function U lin(z) is such that the operatorĥ has one negative
and one zero eigenvalue. Let us try to reconstruct the in
metastable potentialV(u). As has been mentioned in Se
III B, the function C5]uth /]z is a solution of the equation
ĥC50; i.e.,uth(z) satisfies the equation

e

2S ]uth

]z D 2

2V„uth~z!…50, ~54!

where we used the boundary conditionuth ,uth8→0 if
uzu→` and V(0),V8(0)50. Inverting the equation

FIG. 9. PossibleF-T ‘‘phase diagram’’ of a massive string de
pinning from a columnar defect. InC the kind of transition change
from first to second order; i.e., it is a tricritical point. In the vicini
of the pointF/Fc51 the curve is dashed as in the limitF→Fc the
barrier disappears and the semiclassical approximation is not a
cable.
s
y
s

er,
s
e,
n

th
s.

In

ot

n

g

al

u5uth(z)→z5uth
21(u) we obtain

U~u!5
e

2S ]uth~z!

]z D 2U
z5u

th
21~u!

. ~55!

Hence, we have shown that for an arbitrary 1D Schro¨dinger
operator of the linearized problem there is only one cor
sponding ‘‘original’’ metastable potentialV(u). We have
shown therefore that the mappingV(u)→ĥ is one to one.
Consequently, one can construct a potentialV(u) such that
the linearized ‘‘quantum-mechanical’’ problem has the a
propriate spectrum. Let the potentialV(u) be dependent on
some parametera which might be multicomponent, in gen
eral. Changing this parameter we are modifying the spect
of the operator$ĥ211(1/2)@ ĥ2 l (2v0)#21% and thus we can
tune the kind of the transition from quantum to classic
behavior. In general the ‘‘phase diagram’’ might be mo
complicated than that in Fig. 9.

Briefly summarizing, we have studied the behavior of t
imaginary time oscillation period of a metastable system
the vicinity of the saddle-point solution and have derived
sufficient criterion for a sharp first-order transition fro
quantum to thermal decay of a metastable state. The re
have been applied to a comparative study of the tunnelin
a massive string across a slightly tilted periodic potential a
the depinning of a string from a columnar defect in the pr
ence of arbitrarily strong dissipation. The former proble
shows a positive derivative of the oscillation period wi
respect to the amplitude of the motion, in agreement with
second-order transition for a purely massive problem3

whereas the latter problem shows a sharp behavior for
mass and friction coefficient.

Note added in proof. An extensive discussion of the sha
crossover in a 1D Hamiltonian system has been given
Ioselevich and Roshba@in Quantum Tunneling in Condense
Media, edited by Yu. Kagan and A. J. Leggett~Elsevier,
Amsterdam, 1992!#. See also S. V. Meshkov, Zh. Eksp
Teor. Fiz. 89, 1734 ~1985! @Sov. Phys. JETP62, 1000
~1985!# and A. S. Ioselevich and E. I. Roshba,ibid. 91, 1917
~1986! @64, 1137~1986!#.
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APPENDIX: CONDITION OF DISAPPEARENCE
OF RESONANT TERMS

Consider the equation

l̂ y5ĥy1s~r ,t !, ~A1!

where the operatorsl̂ andĥ act on time and spatial variables
respectively, ands(r ,t) is a given vector. The spectrum o
the operatorl̂ is negative and the spectrum ofĥ shall be
non-negative except for one eigenvalue. The solution of
~A1! takes the form

li-



-

-

e.
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y5~ l̂ 2ĥ!21s~r ,t !. ~A2!

As @ l̂ ,ĥ#50, the eigenfunctions of the operator (l̂ 2ĥ) are
products of the eigenfunctions of the operatorsl̂ and ĥ, re-
spectively. The operator (l̂ 2ĥ) might have one zero eigen
value, in which case its inverse (l̂ 2ĥ)21 is not properly
in

z.

-

defined. One then can use Eq.~A2! only if the coefficient of
the zero eigenvalue eigenfunction of the operator (l̂ 2ĥ) in
the expansion ofs(r ,t) over the eigenfunctions of the opera
tor ( l̂ 2ĥ) is equal to zero, i.e., if

~s,V0!50, ~A3!

where (x,y) is a scalar product andV0 is the eigenfunction
of the operator (l̂ 2ĥ) corresponding to the zero eigenvalu
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