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Decay of metastable states: Sharp transition from quantum to classical behavior
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The decay rate of metastable states is determined at high temperatures by thermal activation, whereas at
temperatures close to zero, quantum tunneling is relevant. At some températheetransition from classical
to quantum-dominated decay occurs. The transition can be first-order-like, with a discontinuous first derivative
of the Euclidean action, or smooth with only a second derivative developing a jump. In the former case the
crossover temperatufie, cannot be calculated perturbatively and must be found as the intersection point of the
Euclidean actions calculated at low and high temperatures. In this paper we present a sufficient criterion for a
first-order transition in tunneling problems and apply it to the problem of the tunneling of strings. It is shown
that the problem of the depinning of a massive string from a linear defect in the presence of an arbitrarily
strong dissipation exhibits a first-order transitip80163-18207)05629-4

I. INTRODUCTION derivative has a jump a=T.. Following Ref. 6 we shall
call this situation a “second-order transition in the crossover
Investigations of the decay rate of metastable states haymint.” In this case the bounce solution with the minimal
a long history, going back to Kramérsvsho calculated the Euclidean action at low temperatures can be obtained by a
lifetime of a classical trapped particle separated from the trueontinuous deformation of the thermal solution. However, in
equilibrium state by a high potential barrier. Since then, dif-general such a deformation is not possible: The trajectory
ferent decay phenomena have been investigated. The moti@orresponding to the minimal action may jump at a certain
of dislocations across the Peierls barfiéthe decay of the temperature. In this case we deal with a first-order transition:
current in a Josephson lo8pand the creep of vortices in It can be shown that the first derivative 8f,,(T) has a
superconductorsare typical and well-known examples of jump at the transition poirsee Fig. 2and the expansiofi)
metastability. At sufficiently high temperatures a metastablds not valid.
system decays due to thermal activation and the decay rate Strictly speaking, even if we deal with a first-order tran-
I' obeys the Arrhenius laW ~exp(—U/T), whereas at tem- sition in a tunneling problem, there is a narrow crossover
peratures close to absolute zero, quantum tunneling is retegion from one solution to another because contributions
evant and” ~exp(—S/%), with S the action at zero tempera- originate from several saddle points and we need to take into
ture. Below we shall consider systems for which theaccount all of them. However, the better the semiclassical
semiclassical description is applicable. In this cbid@d and  approximation is applicable, the narrower this region be-
S/t are large; otherwise, the system would not be truly metacomes.
stable. The problem considered here is related to the mean-field
Let u(t,r) denote the coordinates of the system undeitheory of phase transitions. The Euclidean action can be
consideration, depending in general on imaginary tiraed  identified with the free energy in the Landau theory with an
spatial variableg. Within the semiclassical approximation order parameter &(r,T) defined as o(r,T)
the decay rate at a temperatttds determined by the con- =maxu(t,r) —ug(r)|, for example. At high temperatures
tribution of the trajectories close to the one extremizing the
Euclidean action and satisfying the periodicity condition
u(0r)=u(n/T,r). In the high-temperature regime the func- S
tion extremizing the action is time independent and, conse-
quently, the activation barrier in the Arrhenius lawdoes
not depend on the dynamic properties of the system; mean-
while, the bounce solution at low temperatures is time de-
pendent and the dynamics enters. At some temperdture
the transition from the time-independent to the time-
dependent solution occurs. In some cases the bounce solution
just below the crossover point can be written in the form

guantum

classical

) +8 27Tt 1 ‘

U(t,r)=up(r)+ou(rjco§ ——|, 1) 0 Te T
where th_e functiomsu(r) is gonsidered_ to be small. Suc_h an  FIG. 1. Euclidean actio8 as a function of temperatufiefor the
assumption leads to an acti®ga,(T) with a continuous first case of a second-order transition. The second derivative isf

derivative in the crossover poirfsee Fig. 1L The second discontinuous at the poirf,.
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FIG. 3. 1D potential well with a metastable state. A particle

FIG. 2. Euclidean actio§ as a function of temperatuflefor the  trapped au=0 can tunnel out to the right in order to reach the true
case of a first-order transition. The first derivative®fs discon-  ground state.
tinuous at the point .

wherep is the generalized momentug,<U, are the en-

u(t,r)=ug(r) and &(r,T)=0, whereas aff<T,, &(r,T)  €rgy levelsin the equivalent potential without tunneling, and
#0. The order parameter changes continuously at the poirf¢(En) are the corresponding classical oscillation frequen-
T=T, in the case of a second-order transition and discon¢i€s- At finite temperaturd’ the decay rate can be easily

tinuously if a first-order transition takes place. found by averaging over the Boltzmann distribution

In this paper we present a simple criterion for the appear-
ance of a first-order transition from quantum to classical be- = 32 w(En) exp( _ E _ %) 3)
havior in tunneling problems and apply it to the problem of 5% Aw T 4)

the tunneling of strings. ) - _
whereZ=X exp(—E,/T) is the partition function of the par-

ticle in the well. With Eq. (3) we reproduce the well-known
[l. OSCILLATIONS CLOSE TO expressionl’ = (2/#)ImF for the decay rate at loWl (see
THE THERMAL SADDLE-POINT SOLUTION Ref. 10.

Equation (3) is applicable only at sufficiently low tem-
peratures. At high temperatures the excitations with energies
larger than the barrier height are relevant in the determina-
tion of the preexponential factor. The decay rate then is
given by the equatidn'12

In this section we study the behavior of the imaginary
time oscillation period of the solution of the equation of
motion close to the thermal saddle-point solution. In Sec
I A we describe the general theory for one-dimensidi#l)
Hamiltonian systems. We briefly summarize the results o
Lifshitz and Kagah and Chudnovsi/for 1D Hamiltonian

: . . w(Eop) Uo
systems and provide an expression for the jump of the de- = ex;{ — _) (4)
rivative of the Euclidean actiofsee Eq(13)] for the case of 2m T

a first-order transition. In Sec. Il B we use a perturbative . _
. . i ; ... wherew(Ey) is the oscillation frequency of the system near
approach for the calculation of the imaginary time oscillation

Lo o . . 'the metastable minimum. It is necessary to emphasize that
period in the vicinity of the thermal saddle-point solution, : . i
and define a criterion for a first-order transition. the abov_e EXpressions _fOT the decay rate are appllcable in the
case of intermediate frictiow. E.g., for a particle of mass
m the criterionoT/U < 7/m<w, wherew?=—U"(ug)/m
A. General theory for 1D Hamiltonian systems with ug the position of the maximum of the metastable po-
As shown by Chudnovskyjf the imaginary time oscilla- tential (see Refs._l, 11, anq )l,zguarantees_t.hat on the_one
tion period of a massive particle is not a monotonous func-hand the system in the Wel.l IS 'properly equilibrated, while on
tion of energy, a first-order transition from quantum to clas—the other ha.nd the dynamics is not affectgd by the damping.
sical behavior takes place. This statement remains true for The sum in E_q. (3) can be well approxmated.by the Ferm
any one-dimensional Hamiltonian system: Consider a 10Vhere the functiorf(E) =—E/T—S(E)/% takes its maxi-
system subject to potential which allows tunneling in Onemal yalue and the p.roplem rgduces to the calculation of the
direction(Fig. 3). We choose the metastable minimum of the Maximum off+(E) within the interval[0,Uo]. The extremal
potential as our zero energy. Let us define the height of thgondition forf+(E) takes the form
potential barrier a¥J,. Using the semiclassical approxima-
tion we can write the imaginary partsl’,, of the energy dir_ 1 _1dS_ (5)

E,, of the eigenstates in the fofm dE T AdE

ho(E 2 (b
Al = 4(W”)exp(—%fa

It is well known from standard courses of classical

x) — ho(En) exp( _ i) mechanic¥’ that for a periodic problem the derivative of the
4w h)’ action with respect to the energy is equal to the oscillation
(2)  time 7 at this energy. In our case the energy axis has the

p|d
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FIG. 4. Non-monotonous dependence of the oscillation tirire
the inverse potential on the enerfy The arrow indicates the jump

dfy 1 1dS 0 11
E=E,~ T 7 A =Y,
dE 1 T. #dE EE
we obtain
5Squantum El
% T_§5T' (12

Thus, the jump of the derivative at the poifi is

dSEucI:h(El_ UO)
dT T2 ’

(13

and the thermal action always decays more rapidly than the
guantum one. We thus have shown that if the imaginary time

of the semiclassical trajectory from the thermal-assisted quanturﬂsc'"at'on time 7 is not a monotonous function of energy

solution to the classical one.

opposite directiorithe actionS(E) corresponds to the mo-
tion in the inverse potential with enerdy]. Hence,

ds h _
i.e., the decay is dominated by the Euclidean action with th
trajectory periodic in the time interval/T.

If the function 7(E) is a monotonously decreasing func-
tion of energy, Eq.(6) has one solution forT<#/rg
[7o=7(Uy)] and no solutions foll >#/7,. At temperature
T.=#/7y a second-order transition takes place.

Next, let us suppose tha{E) goes through a minimum in
the interval (OJ,) (see Fig. 4 In this case it can be shofn
that there is an enerdy; € (0,E,,), and associated with it a
temperatureT,=%/7(E;), where a first-order transition
takes place.

Let us show that ifE;#U,, the Euclidean action
Seue(T) determining the decay rafé indeed has a discon-
tinuous derivative at the poinT=T, [see Egq.(4)]. At
T>T,,

SEucl(T) _Stherma(T) . U
R T @

The action just belowl, can be written agsee Eq.(3)]

SEucl(T) _ Squantun(T) _ El(T) S(El)
P ®

(note thatE; is a function of temperatuye
The variations 0fSierma @and SyyanwmWith respect to the
T near the poinfl. are

5Sthermal_ Uop
S A ®

c

6S E (T 1 1dS
quantum: - 1( , c) ST+ — 4 = ==
T. *#

h T

dE

dE
——L5T.
E=E,(T

Taking into account that at the poift;,

E, a first-order transition takes place. Equatid®) quanti-

fies the strength of the first-order transition: If
E.(T;)=U,, the difference in the bounce solutions is small
and the first-order transition is weak. In the opposite with
caseE(T;)=0 the saddle-point solution deforms signifi-
cantly and we have a strong first-order transition.

For a 1D massive particle the above physics can be easily

realized. Consider a given functio{E) for a trapped par-

dicle. Then there exist infinitely many potentials reproducing

7(E) as their oscillation time&® A simple way to obtain a
nonmonotonous behavior is to choose a funct¢i) with
one minimum. For more complicated nonmonotonous depen-
dences the system can exhibit several transitions. In general a
system may exhibit several first-order transitions but not
more than one of second order.

All the results obtained in this section remain true for an
arbitrary 1D metastable Hamiltonian system as HEj. is
applicable in this case.

B. Nonlinear perturbation
near the thermal saddle-point solution

Consider a metastable system whose oscillation period in
the imaginary timer is a function of a scalar parametay
7= 7(a). For Hamiltonian systems it is convenient to choose
this parameter to be equal to the energy, aesE; see Sec.
Il A. However, for dissipative systems one cannot use the
energy as it is no longer a conserved quantity. In this case we
can parametrize the periodic imaginary time solutions of the
equation of motion by the amplitude of the oscillations:
The amplitudea quantifies the difference between the ther-
mal and the weakly time-dependent solutions in the vicinity
of the thermal saddle-point solutidgrater we will show how
to define such a notion as the “amplitude” for any meta-
stable system It can be easily understood thatsifa) is not
a monotonous function of the amplitude, the system exhibits
a first-order transition: Starting from the zero temperature
bounce solution the periot=7/T decreases with increasing
temperature. However, we cannot carry this solution beyond
the temperaturé/ 7, and thus will encounter a first-order
jump to the thermal solution at some temperature
T.<hlyiy (in the simplest case of adependence with one
minimum).

The basic idea leading to the criterion for a sharp transi-
tion from quantum to classical behavior is the following: Let
us investigate the imaginary time oscillation period in the



56 DECAY OF METASTABLE STATES: SHARP ... 3133

vicinity of the thermal saddle point, whege=0. From the  The function cosgt is an eigenfunction of the operatbr

above discussion follows that #f(a) — 7(0)<0, the system  jqqq, t—|(w)coswt, and we obtain the eigenvalue equation
will exhibit a first-order transition. It turns out that a general 5, Uo(r)

expression forr(a) can be obtained for a wide class of sys-
tems. | (@) Ug(r)=hug(r). (20

At high temperatures the saddle-point solution is time in- ~
dependent. Let us slightly perturb this solution and calculate The operatoth has one negative eigenvalue due to the
its oscillation time in the vicinity of the poine=0. We  unstable direction in phase space. On the other hand,
suppose that the imaginary time Lagrangiaof the system |(wo)<O0; i.e., Eq.(20) has only one solution. The function

under consideration can be written in the form Uo(r) then is the eigenfunction of the operafocorrespond-
i ing to its lowest eigenvalub, and the frequencw is de-
L=T(u,u,r)+V(u,r), (149 termined by the condition I(wg)=h,. Note that

T.=hwe/27 is the transition temperature in the case of a

where the termT(u,U,r) is responsible for the dynamical h o . .
; . . second-order transition. At this stage it becomes clear how to
properties of the system andu,r) is the potential energy. define such a notion as an “amplitude” for any tunneling

The equation of motion corresponding to the Lagrangian

problem: It is the expansion coefficient of the unstable mode.
(14) takes the form Next, let us write
Tu:ﬂ (15) Su=aug(r)coswt+ du,(r,t), w=wotwsy, (21)
ou’

where w, is the correction to the frequencw, and
Later we shall suppose that the operdtds linear and that ~ du,~a’. Substsituting Eq.(21) into Eq. (16), neglecting
s1/6r=0. This is not a strong restriction as the dynamicall€ms of order” and higher, and using E¢17) we obtain
terms traditionally considered in the Lagrangidd) consist e equation forsu,,
of dissipative, massive, and Hall terms. Dissipation is usually
described by the Caldeira-Leggett formalistieading to a
linear term in the equation of motion. Massive and Hall +a2G2[uo(r)]cos’-wt. (22)

terms also lead to linear equations; i.e., the operbtmtis-
fies the conditions discussed above. For a massive partic

the operatol takes the formi =mg?/at?. N

In the high-temperature regime the solution of ELp), 8u;=(I=h) "% [1(wo) — (@) ]aue(r)coq wt)
un(r), is time independent. Let us expand Ef5) into a
series around this solution.  Substitutingu(r,t)
=Uy(r) + du(r,t) into Eq.(15) and expanding idu we ob-
tain

| (w)aug(r)coswt +18u,=1(wg)aug(r)coswt+hsu,

’gearranging terms, we arrive at

2
+a?é2[u0(r)][1+cos(2wt)] . (23

Since {—h)ug(r)coswt=0, the first term has to vanish and
Tsu=hou+G,[ sul+ Gy 8u], (16) we obtain no shift in the frequency(w)=1(wy), ie.,
. ~ . w=wq, w,=0. The solution of Eq(22) then reads
wherel = 62V/5u? is a linear operator an, and G; are
nonlinear operators satisfying the conditions OUy=g1(r) +go(r)coswgt, (24)
N 0 a . 3A where
GaNY]=N"Galy] and Ga[Ay]=N"Ggly],  (17) L
wherey is an arbitrary vector antl is a constant. Our goal is gu(r)=— Eazﬁ‘léz[uo(r)], (25
to solve Eq.(16) for su(r,t) and find the correction to the
oscillation period away from the thermal saddle point. To 1
onvest order in perturbation theory we separate variables gz(r):—Eaz[ﬁ—|(2w0)]‘1éz[uo(r)]_ (26)
with the ansatz

SU= auy(r)Coswt (18) To third order in perturbation theory we make thesatz
- 0 ot
and substituting Eq18) into Eq.(16) while neglecting terms ~ 9U=aUo(r)COSwt+ §Ua(r, 1)+ dug(r,1),  ©=wot w3.
of order higher thara? and higher we obtain (27)
) . Substituting Eq.(27) into Eq. (16) and neglecting terms of
Ug(r)[1cosmgt]=[hug(r)]coswet. (19 ordera* and higher we obtain the equation féu;,

| (w)auy(r)coswt+1(2w)gy(r)cos2wt +1 dus=I(wg)auy(r)coswt + hg; + hg,cos2wt + hdu,
+ G, [auy(r)coswt + g; + g,cos2wt ]+ Gz aug(r)coswt].  (28)

As g;(r), go(r)~a2, we can expand the teréz[auo(r)coaot+gl+ 0,C0s2wt] around the functioraug(r)coswt,
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R - 6G
Gl aug(r)coswt+gy(r)+gs(r)cosZwt]=G,[auy(r)coswt]+ acost—

50 (91(r) + ga(r)cos2wt). (29

u=ug(r)

Note that the opeatasG,/sul, is a linear operator; see Eq. ~ The operatorsh, G,, G;, and 6G,/éul,(, take the

17). form
As before we sum up all the resonant terms ) )
~ coswtug(r) and obtain the following equation for the shift e 9= IV
. . ] =—€To 1t , (36
in the oscillation frequency: 9z°  du| @
a2 3 " 4
(@) = (@) = ———=(Ug,f[up(r)]), (30) - 15°V ~ 1V
(Uo, Uo) Galyl=5 73 6> Galyl= 5 90° v,
where Uh
166G, 5G, &
fluo(N]==5 > Su Y =553 Ue(2)Y, (37)
u=ug(r) Uth

R 1. R wherey is an arbitrary function ofz. The scalar product
h1+§[h—|(2wo)]l}G2[uo(r)] (y1,Y») of two arbitrary functions/,(z) andy.(z) is defined
as [1[75y1(2)y2(2)dz.

X

3. Equation(32) takes the form
+ZGS[UO(r)] (3D
1 (2 g3V
and (x,y) denotes a scalar produgtee the Appendix for a (Uo, fluol)=~— Zf,ugdzﬁ
general discussignThe criterion for a first-order transition Ui
reads7(a) — 7(0)<0 and usingdl/dw<0 we find 1 53
2 p-14 ZrR_ 1|2V 2
(Uo(1),f[ug(r) ) <0. (32 Ko N+ 5=l (2eo)] )ﬁu3 gt
In the next section we apply the criteri¢82) to the tunnel- 172 gty
ing of strings. + _f dz—| u?<o (38
8J)_Lp “out| O
Ill. TUNNELING OF STRINGS th

wherel (0) = — pw?— 7|w|. It is appropriate to mention that

In thi . v Eq€31) and (32 h bl the operatorﬁ has one zero eigenvalue in the linkit>~
n this section we apply Eq#31) and(32) to the problem (see Sec. Il B such that taking its inverse ! needs some

of a driven string(i) tunneling between two potential wells . . . . .
and (i) depinning from a columnar defect. Within the linear care: The eigenfunction corresponding to the zero eigenvalue

; 2.3 3
elasticity theory the imaginary time Lagrangian of the string'S @n odd function ofz, whereasuyd*V/du®|y, is an even
takes the form function and there is no contribution to the integral in Eqg.
Lo (38). Consequently, the contribution of the eigenfunction
L= j dz
-L2

. (33 corresponding to the zero eigenvalue is equal to zero.
Let us investigate the sign of E¢38) in the two cases
Below we consider the dynamical ter (u,d;u) to be the mentioned above.
sum of massive and dissipative terifvge ignore the trans-
verse contribution from the Hall tepm

A. General theory

o 2+V F
7z (uy—Fu

€
LD(u,&tu)+§

B. Motion of a string across a slightly tilted periodic potential

The tunneling of a string across a tilted periodic potential
p 7 is a convenient model for the description of the motion of
Lp(u,du)==(du)%>—=—a,u _ _ . . .
p(U, i) 2( ) 27" dislocations across the Peierls barrier. In the case being stud-
hlT ied V(u) is the periodic part of the potentipdee Eq.(33)].
X f dtyIn d.u. (34  Below we denote time by and the oscillation period by.
—hI2T ! This problem shows a smooth crossover from a purely ther-

L and e are, respectively, the length and the elasticity of the™2! 10 @ thermal-assisted quantum activation at a tempera-

— 1/2 H
string, V(u) is the potential, and the external force is as-turé Te=To of order 7(F/pd)™ (see Ref. Bwith d the
sumed to be smalF <F., with F the depinning force. The period of the potential/(u). The schematic evolution of the

: : : leus is shown in Figs.(&-5(c). At temperatures smaller
thermal saddle-point solutiam,(r) corresponding to the La- NYC : .
grangian satisfies the equation thanT,~#AF/(pVo) Y2 with V, the amplitude of the poten-

tial, the nucleus is of circular shapsee Fig. 5a)] with the
Fu oV e 35 bounce solutiomi(z,t)=a®(R—r), R~ \Vo/F is the radius
€922 au of the nucleusi(?=2z% e+1%/p=7%+1?), and the Euclidean

sin

T
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FIG. 5. Evolution of the nucleuén coordinatesz =z/+/e and i+;< 0,
T=t/\p). (8 Nucleus at low temperatureg) Nucleus at interme- ho  2[ho=1(2w)]
gliate temperatures where t_he interaction between th_e nucleus’ wallgnq, consequentlyi{ w) — | (wp) >0. We have shown there-
is releve}nt.(c) Nucleus at hlgh_terr_lperatures. The string OVercomeggre that in the vicinity of the poina=0, 7(a) is an increas-
the barrier due to thermal activation. ing function ofa. This is in agreement with the fact that the

problem of the tunneling of a massive string across a slightly
action S~/pedV,/F. At T>T; we have to take into ac- tilted periodic potential exhibits a second-order transifion.
count the interaction of the nucleus’ wallfig. 5b)]. At
T>T.=T, the string overcomes the barrier due to thermal C. Depinning of a string from a linear defect
activation withU ~d+/eV, [Fig. 5(c)]. The thermal solution
then can be obtained by a continuous deformation of th

Zer,gstet?ep%rracl)tglreemboel:(';?t()ai:ts a second-order transition frommaSS'Ve. string from a linear defe’ét.Thg imaginary t|me
guantum to classical behavior, we should expec Lagrang|an_ has the_ form (33)?# 0) with the potential
L . o tLJ(u) describing a single potential well of depth, and ra-
| (@) =1(w)>0. Let us prove this inequality. The “poten- diusd. At low temperatures the nucleus has a circular shape
tial” in the one-dimensional Schedinger operatoh [see Ed. s well. The macroscopic part of the bounce solution can be
(36)] is shown in Fig. 6. The spectrum bf consists of one written in the form
negative, one zer@in the limit L—~), and positive eigen-
values(one can easily verify that the functiotu,,/dz is an
eigenfunction of the operatdr with zero eigenvalue, but on
the other handjuy,/dz has one node; i.e., there is one eigen-
function with a negative eigenvaludn the limit F—0 the
negative eigenvaluk, tends to zero as F; see Ref. 3. The
positive eigenvalues of the discrete spectrum of the operator

other factors appearing in EB8). Thus we can approximate
(ug,f[ug]) by the contribution from the unstable direction
and arrive at the estimate

. 11 1 L2 33V 3, 2
X e e e L

Q)
Gl

The second term in E438) does not involve the small pa-
rameter and can always be neglected in the lifait> 0. As
(© l(w)=—pw?— 7]o|, hy=1(wy) we obtain

AAVAAVARY

x
x

(b):

(40)

The behavior described above should be contrasted with
She sharp transition obtained recently for the tunneling of a

F 2V, 22 2
__ 2, 2% 2.5 L _Z2.72
u(zt) 77t T 6+p Z2+t2% (4D
The substitution of Eq41) into Eq.(33) gives the Euclidean
action

A 2 H . q 1 4’7T VO 2

h are of orderV,/d“. Analyzing the terms in Eq(38) we 7 %J Llu(zt)]dt= 7\/,0 =k (42
note that the operatdh '+ 1/2h—1(2wo)] "1} has a large

negative eigenvalue-—1/F originating from the unstable The thermal exponent is given by

direction in the phase space. The remaining spectrum is posid/ T= (4+/2/3)\/eVo(Vo/FT). S/t andU/T become equal
tive and does not depend én as is also the case for the at T.=(\/2/37)AF/(pVy)*2. On the other hand, the dy-
namical solution41) remains valid as long as the radius of
the nucleus is smaller than the periodicity tn i.e., for
T<T,=3#/8T;. The formal application of the perturbative

procedurgsee Sec. Il Bgives the following linearized prob-
_____________________ lem determining the crossover temperatiige

Vo Puy PV 27To) 2
- 0 D~In(1/F) 0z Jdu
D u

Upg= _p( h Ug. (43)

v 7 H2)
~F v The 1D Schrdinger operator in Eq43) has again one nega-
tive eigenvalue which does not depend on the details of the

FIG. 6. The potential in the 1D Schiinger operator for the PotentialV(u) in the limit F—0 (Refs. 15 and 16 T, then
linearized problem of a string tunneling of a string across a slightlyis_ given by the formulal,= (M/ZS/ZT)ﬁF/m: 0.900r,
tiited periodic potentialUj(z) = 3°U/dz%|, (. The negative ei- With 1 =1.199 the root of the equatigntantu=1; see Ref,
genvalue appears because of the interaction of the two wells. Th&6. AsTo<T.<Tj, the string exhibits a first-order transition
distance between the negative and zero eigenvalues is much smali the temperatur& . In this case the quantum solutifsee
than the distance between possible positive eigenvalues of the difig. 5(@)] jumps atT to the thermal solutiofiFig. 5(c)]. The
crete spectrum and the zero-eigenvalue level. intermediate regimgFig. 5b)] is absent.
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This sharp transition is again in agreement with the above
considerations: There exist solutions of the equation of mo- w Vo U;n(2) f

tion in imaginary time with periodse (%/T4,%°) and energy
close to zerqwe consider a massive dynamics hef@n the

other hand, at the temperatufig, there appears a time-

. ¢ X ; . -D 0/ y D~/F
dependent solution of the equation of motion with a period 7 7
h/Ty and an energy equal to the energy of the thermal solu- ~F? T~F?

tion U. As #/T,<#h/T,, the dependence of the oscillation
period on energy is not monotonous and a first-order transi-
tion takes place. In the present case the jump of the deriva-

. 2 . . . .

tive [El(Tc)_U]/-[cl in the action is largeE4(T) is close FIG. 7. The potential in the 1D Schiimger operator for the
to zero,U and T~ are proportional to H, and hence |inearized problem of the depinning of a string from a linear defect.
A(8Sg,a/dT)~— 1/F3, and one can see that we deal with aUjn(2)=°U12%|,( - The modulus of the negative eigenvalue is

strong first-order transition. of the same order as positive eigenvalues in the discrete spectrum.
Let us find the sign of (w)—I(wp) in Eq. (30) for the

caseum&o, p#0. TheA “potential” in the one-dimensional value and the lowest positive eigenvalues of the discrete
Schralinger operatorh is shown in Fig. 7. In the limit gpectrum are proportional #2 and we need to analyze the
F—0 the most significant contribution to the integrals in Eq.first integral in Eq.(38) more carefully than before. The sec-
(38) arises from the regiofz|>D = y2€V,/F. The spectrum  ond integral in Eq.(38) is again irrelevant. In the limit

of the operatorh consists of one negative, one zero, andF—0, the eigenfunctions of the lowest levels take the same
positive eigenvalues. In the limE—0 the negative eigen- form in the regionz|>D; i.e., we can write

Y L) I O PV,
e I BT L L TCY0) e
th
12 PV 1 . PV,
Z—ZJ s U3l 2 | et 5[ = 1(2w0) ] lun)(unl | =051 g
B Uth " Uth
1 1 Y 2
E_Z; (hn1+§[hn—l(2wo)]1)(LI>DdZLhW ug) : (44)
Uth

Here, we have used thafV/&u3|uthzO for |z|<D. In the regionz|>D, u,= = C,uy/C, with C,, denoting the normalizers.
Consequently,
PV

-3
|2|>p U~ |

1 2 1.
(uO.f[uO])E—Z( ; Cﬁ(hn‘1+ E[hn_l(zwo)]_l)- (45)

3
updz
h

For the lowest eigenvalue we haveuy(|z|<D) The most significant contribution to the integrg(l‘;{f,zuﬁdz
=Cqcosh(\/|hol/€)z] and the eigenfunction belonging to arises from the intervdk| <D, i.e.,
the zero eigenvalue takes the fory(|z| <D)=C;z. In the

limit F—0 we have Uu/Upl,—p-=U\Up|,—p+ c2_ 1 3 1
=Ug/Ug|,=p+, i-€., Up/Upl,—p-=Ug/Ug|,—p- (we use the 0" D " DeosBl(VhA/e)D
condition of continuity of the logarithm derivatiyei.e., for LDCOSW[(Whon)Z]dZ [(V]hol/€)D]
the lowest eigenvalue we obtain the condition (49)

/Ih /lh and

MDtan}‘( ﬂD) =1. (46)

€ €
o2 1 1
Only even levels contribute to the integral in E§8) and nT (D - Dcol (Vh.le)D1’

their eigenfunctions are given I,cog(vh,e)z]; hence we j_Dco§[(\/hn/e)z]dz cos{(vha/e)D]

obtain forh,

\/I,Tn hn n=24... (49)
:Dtar( ?D) =1 @D Egs.(48) and (49) we have used Eq$46) and (47).
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Let us suppose thap=0. Later we will show that if the
problem exhibits a first-order transition fe=0, the kind of S \
transition remains the same for amy* 0. Numerical solu- \
tion of Egs.(46) and (47) shows thathy= —1.439 22@/D? E
and h,=7.830 964/D2. For the case of a purely massive
dynamics 1(2w)=4l(wg)=4h,. The operator h~!
+(1/2)[F1—I(2a)0)]‘1 has only one negative eigenvalue;
i.e., if we show that the sum

M 1 1
s=>c 4+
En: " hy 2[hy—1(2wg)]

is positive for some finiteM, a first-order transition takes
place. WithM =2 we obtain

0 TO Tc Tmin T

), n=0,2..., (50

FIG. 8. Euclidean actio® as a function of temperatuiE for a

1 1 nonmonotonous oscillation time(E) as given in Fig. 4.
2 2
Co(h_o+2[h0— [(2wg) ] +C2 h_2 * 2[h,—I (Zwo)]> the various extremal solutions corresponding to the situation
in Fig. 4. The solid lineAC corresponds to quantum tunnel-
=0.008 79®/e>0; (51 ing. At point C, a first-order transition takes place and the
i.e., the transition from quantum to classical behavior is ofsolid line CB shows the thermal action. At poir the
first order. “false” crossover takes place. The lireF corresponds to
Finally, let us show that the kind of transition remains thethe oscillating motion of the tunneling system with energy
same for anyp# 0. We can write for the ratio E e (Emin,Uo) (see Fig. 4 The dashed lin€F is obtained
by the continuation of the quantum action into the region
1(2w0) 4pwo®+2nwy 2nwg _ T>T, and corresponds to the motion with enerdy
l(wg)  pwo’+pwy _pw02+ 7w 4. (52 € (E1(T),Emin). At point F this line and the “false” cross-

, i o over action intersect each other. The dashed H is a

Le., the relative contribution —of the operator formal continuation of the thermal action into the region

(1/2)[h—1(2wg)]~* becomes even larger compared to theT<T,; see also Ref. 8.

contribution of the operatdn~?. The above discussion shows that in the case of a first-
Comparing the problems considered in Secs. lll B andorder transition one cannot use the perturbative representa-

Il C the main difference appears because of the differention of the bounce solutiofsee Eq. (1). The transition takes

character of the spectrum of the linearized problem. For th@lace at a temperature higher than that given by the formal

case of a string tunneling across a slightly tilted periodicsolution of the linearized eigenvalue problem. In this case

potential the most significant contribution arises from theone has to find the low-temperature expression for the Eu-

negative eigenvalue. The contributions of the positive eigenelidean action and determine the point where it is equal to

values are negligible in the limiE—0. On the other hand, the thermal action.

for a string depinning from a linear defect the contributions There are a number of articles concerning the decay of

of the positive eigenvalues are of the same order as that sghetastable states, where a sharp transition from quantum to

the negative eigenvalue. classical behavior has been discovered. A first-order transi-
tion has been obtained by Lifshitz and Kagan in Ref. 7 con-
IV. CONCLUSION cerning phase transitions at low temperatures, by

Chudnovsk§ for a massive particle in a 1D potential for the

If a second-order transition takes place, it is possible t@ase of a nonmonotonous dependence of the imaginary time
use a perturbative approach for the calculation of the crossyscillation period on energy, by Morais-Smith, Ivlev, and
over temperature. In this case we have to substitute(8q. Bjatter in Ref. 17 where macroscopic quantum tunneling in a
into the equation of motion. Close Tq the functionsu(r) is  dc superconducting quantum interference devi8®UID)
small and we obtain the linearized eigenvalue probfeee  has been investigated, by Garriga in Ref. 18 concerning the
also Eq.(20)] vacuum decay in two and three dimensions in the thin wall
limit, by Ferrerd® for a bubble nucleation in thé* model,

5%Seuel U] o o
Su=\du, 53 and by SkvortsoV for the case of the depinning of a mas-
su? ®3 sive string from a linear defect.

u=ug(r) . R . -
° It would be interesting to observe a first-order transition

where the only negative eigenvalue of E§3) (due to the in an experiment. Measurements of the escape rate of Jo-
single unstable direction in the phase spatetermines the sephson junctions from their zero-voltage staghow that
transition temperaturé@.. For the case of a first-order tran- the transition from quantum to classical behavior is of the
sition atT, the formal application of the perturbative proce- second kind. The criterion described above allows us to find
dure again gives some ‘“crossover” temperatdig which  metastable systems exhibiting a sharp transition without a
comes to lie below the true transition®t, however. For the complicated solution of the equation of motion in the whole
dependence of the oscillation time on energy considere¢emperature range. The problem considered in Sec. Ill C of
above(see Fig. 4 To=7%/7y. In Fig. 8 we plot the actions for the depinning of a string with finite mass and friction coef-
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u=up(z) —z=uy'(u) we obtain

T .
classical ()|
oo €
activation (W)= _( [ ) 55
2\ oz R
C — z=uy “(u)
2nd ) , ,
s Hence, we have shown that for an arbitrary 1D Sdiwger
1t quantum operator of the linearized problem there is only one corre-

tunneling sponding “original” metastable potentiaV(u). We have
¥ shown therefore that the mappingu)—h is one to one.

Consequently, one can construct a poterii@ll) such that

0 1 F/E; the linearized “quantum-mechanical” problem has the ap-
propriate spectrum. Let the potentM{u) be dependent on
FIG. 9. Possiblé=-T “phase diagram” of a massive string de- Some parametex which might be multicomponent, in gen-
pinning from a columnar defect. @ the kind of transition changes eral. Changing this parameter we are modifying the spectrum
from first to second order; i.e., it is a tricritical point. In the vicinity of the operato{ﬁ_l-F (1/2)[ﬁ_ I (2w0)]_1} and thus we can
of the pointF/F =1 the curve is dashed as in the lirkit-F . the  tune the kind of the transition from quantum to classical
barrier disappears and the semiclassical approximation is not applyehavior. In general the “phase diagram” might be more
cable. complicated than that in Fig. 9.
Briefly summarizing, we have studied the behavior of the

. : Lo . imaginary time oscillation period of a metastable system in
ficients is related to the problem of the depinning of vortices he vicinity of the saddle-point solution and have derived a

from columnar defects produced by the irradiation of heav;} L L ' ”
ions in highT, superconductors. As has been shown, thissufﬂment cntr(]arlon |f(()jr a sh?rp flrst—ord;r transmorr: fromI
problem exhibits a first-order transition. In principle, this ﬂuantgm tot el_rrr:ja ecay of a metasta:j € fStﬂte' T elfesu th
sharp behavior can be observed in an experiment. However,ave een applie toa com_paratlv_e stu yo t € tunn(_a Ing o
massive string across a slightly tilted periodic potential and

one should take into account that the point of transition IShe depinning of a string from a columnar defect in the pres-

smeared due to the different radii of the defects. Hence nce of arbitrarilv strona dissipation. The former problem
samples with defects of one radius should be taken for aﬁ arlly strong P T P ;
hows a positive derivative of the oscillation period with

experiment. An appropriate method to produce defects with} : ST .
identical radii is based on lithographic technique; see Refsr.GSpeCt to the ampllt_u'de of the motion, in agreement with the
21-24. Second-order transition for a purely massive prob?em,
whereas the latter problem shows a sharp behavior for any
mass and friction coefficient.

Note added in proofAn extensive discussion of the sharp
) . g crossover in a 1D Hamiltonian system has been given by
F=<Fc, with Fe thg .lecz_il force, the prob.lem exhibits a loselevich and Roshban Quantum Tunneling in Condensed
second-order transition witl,=T,~F.—F; see Ref. 25. Media, edited by Yu. Kagan and A. J. LeggefElsevier,

Consequently, there is a “tricritical” poin€ (see also Ref. Amsterdam, 1998. See also S. V. Meshkov, Zh. Eksp
15), where the nature of the transition changes; see Fig. 9. IR0 Eiz. 89 1734 (1985 [SO\}. |5hys. JETP62 1000

the vicinity of the pointF/F.=1 the transition curve is (1989] and A. S. loselevich and E. I. Roshhiid. 91, 1917
shown to be dashed as in the linfit-F the potential bar- 19gg 764 11.37.(1986)]. o T

rier disappears and the semiclassical approximation is not
applicable.
As has already been mentioned, the kind of transition ACKNOWLEDGMENTS

is determined by the “competition” of the negative and  \ye thank M.A. Skvortsov for helpful discussions and for
positive eigenvalues of the operator {h™!  sending us his results before publication. One of.G.)
+(1/2)[ﬁ—|(2w0)]—1}; see Sec. Il B. Let us investigate acknowleges financial support from the Swiss National
possible spectra of this operator for the case of the tunnelingoundation.

of a string. Consider a 1D Schiimger operator

h=— €d?/9z°+ U;;,(2) of the linearized problem, where the APPENDIX: CONDITION OF DISAPPEARENCE
functionU;;,(2) is such that the operatér has one negative OF RESONANT TERMS

and one zero eigenvalue. Let us try to reconstruct the initial
metastable potentid¥(u). As has been mentioned in Sec.
Il B, the function ¥ = duy,/dz is a solution of the equation
h¥=0; i.e.,uy(2) satisfies the equation

€[ AU 2 where the operatoﬁsandﬁ act on time and spatial variables,
(E) —V(uy(z))=0, (54) respectively, and(r,t) is a given vector. The spectrum of
the operatoﬁ is negative and the spectrum bf shall be
where we used the boundary conditiam,,us,—0 if  non-negative except for one eigenvalue. The solution of Eq.
|zl —e and V(0),V'(0)=0. Inverting the equation (Al) takes the form

Finally, let us discuss the-T “phase diagram” of a mas-
sive string depinning from a columnar defect. At snfall
T. increases~F and the transition is first-order-like. At

Consider the equation

Ty=hy+s(r,t), (A1)

2
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y=(T— ﬁ)—ls(r’t)_ (A2) defined. One then can use E2) only if the coefficient of

the zero eigenvalue eigenfunction of the operator ff) in
the expansion of(r,t) over the eigenfunctions of the opera-

As [1,A]=0, the eigenfunctions of the operatdr—(h) are " (I=h) is equal to zero, i.e., if

products of the eigenfunctions of the operatbmnd h, re- (s,Vo)=0, (A3)
spectively. The operatorl - h) might have one zero eigen- where ,y) is a scalar product and, is the eigenfunction
value, in which case its inversd £h) ™! is not properly of the operator i(—h) corresponding to the zero eigenvalue.
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