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Polaron and bipolaron formation in a cubic perovskite lattice

Vladimir N. Kostur and Philip B. Allen
Department of Physics, State University of New York, Stony Brook, New York 11794-3800

~Received 8 August 1996; revised manuscript received 25 November 1996!

The Rice-Sneddon model for BaBiO3 offers a starting point for discussing polarons and bipolarons in a
three-dimensional oxide crystal. We use exact diagonalization methods on finite samples to study the stability
and properties of polarons and bipolarons. Because polarons, when they form, turn out to be very well
localized, we are able to converge accurately our calculations for two-electron bipolaron wave functions,
accounting for the Coulomb interaction without approximation. Some of our results are compared with and
interpreted by reference to the variational method of Landau and Pekar. We calculate both electronic and
vibrational excitations of the small polaron solutions, finding a single vibrational state localized with the full
symmetry of the polaron, which has its energy significantly decreased at the onset of polaron formation. Both
on-site~Hubbard! and long-range Coulomb repulsion are included in the bipolaron calculation, but due to the
high degree of localization, the long-range part has only a small influence. For a reasonable on-site repulsion
U equal to two times the band widthW, bipolaron formation is significantly suppressed; there is a large
window of electron-phonon coupling where the polaron is stable but the bipolaron decays into two polarons.
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I. INTRODUCTION

The electron localized on an ion~or a few ions! can cause
displacements of neighboring ions from their positions in
crystal lattice. The quasiparticle formed by an electron a
corresponding lattice displacements is called apolaron.1–5

The polaron is asmall polaron if the electron is localized
mostly on one ion~more than 50%! or an intermediate po-
laron if localized on a group of ions. We reserve the te
large polaronfor a delocalized polaron which is an electro
moving together with polarization of the surrounding m
dium. It is possible that the surrounding ions ‘‘overscree
the negative charge of the localized electron and attract
other electron to the same site. Two electrons bound in s
way form abipolaron.2,6 The important issue for bipolaro
formation is a quantitative analysis of the relative strength
the electron-lattice interaction responsible for two electro
being coupled and the electron-electron~Coulomb! forces
which try to break the bipolaron apart. If the Coulomb rep
sion between electrons exceeds some critical value the b
laron is less stable than two separated polarons.

Theoretical interest in perovskites continues due to
variety of interesting physical properties exhibited by the
compounds. The ideal structure ofABX3 perovskite is cubic
~Fig. 1! with cationB surrounded by six anionsX. Localiza-
tion of an electron on cationB causes the anions to mov
away from B.7 The displacements of anions decrease
total energy of the system and can result in self-trapping
electron on the siteB. A model describing such process
must take into account whichB-atom orbitals are occupied
the electron-lattice coupling, and the electron-electron co
lations.

In the present paper we study polaron and bipolaron
mation in a model originally proposed by Rice and Snedd8

for doped BaBiO3, such as Ba12xKxBiO3 ~BKBO!. These
materials are nearly cubic perovskites, with a fairly simp
set of valence electron states, exhibiting superconduc
560163-1829/97/56~6!/3105~9!/$10.00
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transition temperatures as high as 32 K at optimal dopin
The oxygen atoms are relatively easy to move and polar
formation is mainly caused by the displacements of the
ions. We choose this model both because of its relation
physically important materials~SrTiO3 and WO3 could be
studied by a closely related model withT2g d states instead
of s-electron states9! and also because it makes a nice te
model for looking at the criteria for polaron formation and
the properties of polarons on a three-dimensional~3D! mi-
croscopic basis. In this study, for simplicity, we consider th
hypothetical case of an almost empty band, corresponding
KBiO 3, or BKBO with x51.

FIG. 1. The ideal structure of anABX3 perovskite. (A is a larger
cation,B is a smaller cation, andX is an anion.! The larger cation
A has usually smaller positive charge than cationB. The substitu-
tion of A by another ionA8 with valence different fromA changes
the number of carriers in the system. If the carrier is localized o
cationB, Coulomb forces cause the anionsX to be displaced away
from B.
3105 © 1997 The American Physical Society
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3106 56VLADIMIR N. KOSTUR AND PHILIP B. ALLEN
Our principal results are~1! there is a sudden jump at
critical coupling strength from a large~delocalized! polaron
to a very small, well-localized polaron with radius small
than interionic distance. There is no self-localized solut
with larger polaron radius. This agrees with the results
Toyozawa10 and with the general classification of Emin an
Holstein.11 ~2! The bipolaron breaks apart even at moder
strength of on-site Coulomb repulsion and~3! small polaron
formation is accompanied by a characteristic formation
localized vibrations of shifted energy which may serve a
good experimental signature.

II. MODEL HAMILTONIAN

The generic Hamiltonian is

H5H01HC5Ht1He-ph1Hph1HC, ~1!

whereHt , He-ph, Hph, andHC are , correspondingly, hop
ping, electron-phonon, phonon, and Coulomb terms. W
the BKBO system in mind we use for the hopping term, on
one bismuths orbital per cell with hopping only to neares
bismuth neighbors:

Ht52t (
^ i , j &s

ĉis
† ĉ j s. ~2!

This has the usual cosine dispersion relation with bandw
W equal to 12t. We take the value oft to be 200 meV
following band-structure calculations.12 The effective mass
m* is 1.04 of bare electron mass at thek 5 0 band mini-
mum, using the lattice parametera54.28 Å of BaBiO3. We
assume that the same model for electrons in BKBO can
applied to all the region of K concentration, because
antibonding Bi~6s)-O~2p) conduction band in cubic BKBO
is minimally affected by substitutional K doping at the B
sites.12 First-principles linear muffin-tin orbital calculation
for different phases of BKBO: KBiO3, K0.5Ba0.5BiO3, and
BaBiO3 reveal a single band near Fermi energy to be larg
independent on potassium doping.13

Hypothetical KBiO3 in this model has no electrons. Eac
Bi atom is in the 51 ionization state with no remaining
valence electrons, whereas BaBiO3 in this model has a half-
filled band of Bi41 ions. Real BaBiO3 is insulating, and is
most simply understood as having alternating Bi31 and
Bi 51 ions. The Bi31 ions have two valence electrons bou
to them, and repel the surrounding six oxygen atoms, wh
are attracted to the more positive Bi51 ions.7 The important
lattice degree of freedom is therefore the motion of O22 ions
along the direction of the Bi-O bonds. Such displaceme
couple strongly to the Bi 6s electron states. The Rice
Sneddon model~RSM! incorporates this coupling throug
the terms

He-ph5
g

a(is (
a51

3

@ui 2,a2ui 1,a# ĉis
† ĉis, ~3!

Hph5(
i

(
a51

3 FPi ,a
2

2M
1

1

2
Mv0

2ui ,a
2 G . ~4!

The notationui ,a refers to the displacement of the oxyge
atom ~labeled by$ i ,a%! which neighbors thei th Bi atom in
n
f

e

f
a
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the a5x,y,z Cartesian direction. Only displacements in t
direction â of the bond are considered, because these
expected to dominate the physics of polaron formation~see
Fig. 2!. The notationui 1,a means exactly the same asui ,a ,
whereasui 2,a refers to the displacement of the oxygen ato
which neighbors thei th Bi atom in thea52x,2y,2z Car-
tesian direction. The atoms labeled by (i 2,a) can also be
labeled in the form (i 8,a) by reference to the appropriat
nearby Bi atomi 8. The coupling constantg will be treated as
a fitting parameter. Its determination requires more deta
information about the electron-lattice interaction for the p
ticular cubic perovskite structure~see Sec. III!. Equation~3!
contains the effect that an ‘‘inhaling’’ of the negative oxyge
ions around a central Bi ion will raise the on-site energy
the bismuths orbital, by an amount equal tog per fractional
displacementu/a of each of the six surrounding atom
However, this costs elastic energy as given in Eq.~4!. We
takeM as the oxygen atomic mass, andv0 to have the value
42 meV of a typical oxygen bond-stretching vibration.14 ~It
corresponds to spring energyMv0

2a2/2 being '62 eV.!
Various values ofg will be used, in the physically expecte
range of 4–12 eV. Finally, there is a Coulomb interacti
between electrons,

HC5U(
i

n̂i↑n̂i↓1 (
iÞ j ,ss8

e2

«ur i2r j u
n̂isn̂ j s8. ~5!

Various values ofU comparable withW512t will be used
for the on-site~Hubbard! term in the Coulomb interaction
and the value«55 will characterize the long-range Coulom
repulsion.

The vacuum of this model corresponds to KBiO3, with no
electrons, and only zero-point vibrational energy 3N\v0/2.
We will see that shifts of the zero point energy are not ve
important, so we can ignore this term and define the vacu
as having energy zero. For the half-filled case, the gro
state ~for not too strong Coulomb repulsion compared
electron-phonon coupling! has a period-doubling distortion

FIG. 2. The displacements of oxygen along Bi-O bonds in
XY plane when an electron is localized on the Bi ion. The chan
in total energy are proportional to displacements if the displa
ments are small. Only the nearest ions displacements are show
simplicity.
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56 3107POLARON AND BIPOLARON FORMATION IN A CUBIC . . .
of the oxygens. Alternate bismuth sites have the oxyg
‘‘breathing’’ either in or out, and electron charge either d
minished or increased from the average of one electron
site. This corresponds to the experimental insulating stat
BaBiO3, and gives a new vacuum into which carriers can
introduced by doping. Neglecting Coulomb repulsion, t
regime was studied numerically by Yuet al.,15 who found, in
agreement with experiment, that the insulating gap persi
for a wide range of K doping. Ind52, this model with
application to CuO2 planes of high-Tc superconductors wa
studied by Prelovsˇek et al.16 They use an adiabatic treatme
of the phonon degrees of freedom and the Hartree appr
mation for the Hubbard term. Most of the physics in t
model turns out to be determined by two dimensionless
rameters,U/W5U/12t governing the Coulomb repulsion
and a parameterG, of size'1, defined as

G5g2/Mv0
2a2t, ~6!

which governs electron-phonon effects. It is convenient
use as the unit of energy, the hopping parametert, and to use
a scaled HamiltonianH̃5H/t. The convenient unit of length
is u05At/Mv0

2, and we define scaled lattice displaceme
ũi ,a5ui ,a/u0 and momentaP̃i ,a5u0Pi ,a/\. Then the scaled
Hamiltonian is

H̃052(
is

cis
† cis1AG(

isa
@ ũi 2,a2ũi 1,a#cis

† cis

1
1

2(ia F ũi ,a
2 1S \v0

t D 2

P̃i ,a
2 G . ~7!

We see from Eq.~7! that a third dimensionless parameter
\v0/t. This governs the size of nonadiabatic effects. We w
show that such corrections are small in our model.

III. POLARON

Our only approximation~apart from finite size errors
which are well controlled! is the Born-Oppenheimer~adia-
batic! treatment of the vibrations. Inserting one electron in
the empty-band vacuum, and letting the oxygen atoms h
some fixed distortion pattern$u%, we look for the lowest
energy one-electron state with wave function

c↑~$u%!5(
i

ai~$u%!ci ,↑
† uvac&, ~8!

whereai($u%) are the site amplitudes of the electron wa
function. Later the dependence ofai , etc., on the parameter
$u% will be implicit and not explicitly designated. This elec
tron state has energye0($u%), measured relative to the bo
tom of the bande0($0%). The total energy is this plus th
elastic energŷ Hph($u%)&. Then we vary the displacemen
$u% looking for the absolute minimum total energy. If th
coupling constantG is small, the minimum occurs a
$u%5$0% and has total energy 0. This corresponds to a la
polaron solution, which in adiabatic approximation is just
electron in the bottom of the band of the undeformed crys
If we were to include the nonadiabatic coupling of this ele
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tron with virtual phonons, there would be an alteration of t
mass and energy of this electron. Specifically, the ene
shift would be

De05(
j ,k

uM0 j
k u2

e02e j2\vk
~9!

in terms of the one electron energiese j and the phonon en
ergies\vk of the unperturbed band. This sum can be eva
ated as follows:

De0

t
52GS \v0

4t D F12SS \v0

4t D G , ~10!

S~x!5
1

N(
Q

x

x1 f ~Q!
, ~11!

f ~Q!5sin2S Qxa

2 D1sin2S Qya

2 D1sin2S Qza

2 D . ~12!

For our choices ofv0 andt, the ratio\v0/4t is 0.053 and the
sumS in Eq. ~11! is 0.12. Thus the self-energy shift of th
large polaron is'0.09G which turns out to be small com
pared to the energies that we will find for the small polar
regime. This is shown later in Fig. 6. Thus we can saf
ignore the nonadiabatic effects. By a similar argume
~which we will explain in more detail later! the zero-point
contribution to the elastic energy can be ignored, and
elastic contribution to the small polaron energy is just t
second term of Eq.~4!.

To evaluate the one-electron energye0($u%) for the dis-
torted lattice requires a finite size system, which we cho
to be an orthorhombic cell~our ‘‘supercell’’! with
N5N13N23N3 Bi atoms on a cubic lattice, and 3N oxy-
gens on the Bi-Bi bonds, and periodic boundary conditio
The Lanczos technique17 was used for finding the ground
state energy and a few lowest excited states of the Ha
tonian~1!, and conjugate gradient minimization was used
find the optimum values of the oxygen displacements$u%.
Results are shown in Fig. 3. Beyond a critical valueGP
51.96 it becomes favorable for oxygens to distort and fo
a localized small polaron state. We define the locationrW0 and
radiusr P of the polaron by

rW05(
i

uai u2rW i , ~13!

r P
2 5(

i
uai u2~rW i2rW0!2. ~14!

The typical oxygen displacements nearrW0 are u0' 0.03 a,
and they decay exponentially far fromrW0.

The radius of the polaron at the transition is 0.49 in un
of Bi-Bi distance, that is, it is very well-localized with 90%
of the electron density concentrated on one site. AsG in-
creases beyond the critical value, the radius further shrin
and the binding energy rapidly increases to values of ordt
and bigger. Our results are plotted in Fig. 3. ForG less than
the critical value, the radius is shown as a finite number'4a
reflecting the finite size of the cell; the actual radius is in
nite. For values ofG slightly less than critical, our minimi-
zation procedure locates a metastable small polaron solu
with a small positive energy, which is shown in Fig. 3 as
small hysteretic region.
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3108 56VLADIMIR N. KOSTUR AND PHILIP B. ALLEN
Because the small polaron is so well localized, the erro
our calculation due to the finite size supercell is easy to c
trol. To test this, we have varied the size of the super
from a minimum of 23232 to maximum of 20321322.
The results are shown in Fig. 4. The polaron radius and t
energy are insensitive to cluster size if the number of

FIG. 3. Calculated properties of a polaron:~a! radiusr P /a, ~b!
total energy per electronEtot /t, and~c! the gapDP5(e12e2)/t in
the electron spectrum as a function of electron-phonon coup
G. The circles give results for the single-electron polaron and
diamonds give the radius, half the total energy, and the electr
gap for the bipolaron. The Coulomb repulsion is omitted for t
bipolaron (U5U850).
n
-
ll

al
i

atoms is*200. Near the transition, for cluster size not to
big, the transition onset varies with cluster size. The to
energy always diminishes with increase of cluster size unt
becomes independent of cluster size. AtG far enough from
the critical value the results are almost the same for all
clusters sizes. The results of Fig. 3 have no noticeable
dependence.

The nonadiabatic corrections to the large polaron ene
are 0.17t at the transition point, which gives an unimporta
correction to the critical value ofG ~see Fig. 6!. The small
polaron solution is 2N-fold degenerate: it can form at any o
the N Bi sites, with either spin. In this paper we igno
another nonadiabatic effect, the weak vibration-assisted
nelling which lifts the translational degeneracy to make
narrow band with only spin degeneracy remaining.

We now compare our numerical results with analytic
sults obtained by a variational method introduced by Land
and Pekar~LP!.18,19 The electronic wave function is chose
to have Gaussian form

g
e
ic

FIG. 4. Tests of finite-size errors for different values of electro
phonon coupling constants. The cluster radius is in the units of
Bi-Bi distance. The clusters used areN03N03N0 and
(N021)3N03(N011), out to a maximum ofN0 of 20. The clus-
ter radius isRN0

5N0 in the former case orRN0
5N0

1/3(N0
221)1/3 in

the last case.
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56 3109POLARON AND BIPOLARON FORMATION IN A CUBIC . . .
ai5C0~b!exp@2b2~rW i2rW0!2/2#, ~15!

whereC0 is the normalization constant andb is the varia-
tional parameter which we call the LP parameter. There
now two sequential minimizations to perform.3 First for fixed
b the optimum displacements$u(b)% are found. Then these
are used to evaluate the trial total energyE(b), and a second
minimization is performed to find the optimumb. We find
analytic formulas forE(b) and the polaron radiusr P(b):

E~b!/t56F12q1/4
u2~q!

u3~q!G23G
u3~q2!2

u3~q!6

3@u3~q2!2q1/2u2~q2!#, ~16!

FIG. 5. Total energyversus polaron radius calculated in
Landau-Pekar approximation for electron-phonon coupling c
stantsG50, 1.80, 2.66, 3.83, and 5.99 from top to bottom. T
energy minima forG52.66, 3.83, and 5.99 correspond to energ
of stable localized states. The extremum atG51.80 corresponds to
a metastable localized state. Results from finite cluster diagona
tion are shown as crosses. For numerical comparison see Ta
The inset expands the larger P part of the same curves.

TABLE I. Comparison of results obtained by the Landau-Pe
~LP! variational method and by exact diagonalization of finite clu
ters ~cluster!. The electron-phonon coupling constants are in un
of bandwidth (W512t). The first row in the table corresponds
the critical coupling constant at which a metastable localized s
occurs. The total energiesEtotal

LP and Etotal
cluster are in units oft. The

polaron radius is given in units of the Bi-Bi distance. Cluster c
culations give a slightly smaller total energy and larger radius. T
phonon spectrum is perturbed by the transition from the delocal
state to localized~see text!. In the LP approximation only one mod
vmin

LP changes from its initial value ofv0. In the cluster calculations
one modevmin

cluster is well-separated from the others.

g/W Etotal
LP Etotal

cluster r p
LP r p

cluster vmin
LP /v0 vmin

cluster/v0

2.785 0.398 0.377 0.448 0.490 0.824 0.837
3.382 21.848 21.853 0.290 0.299 0.925 0.935
4.060 25.040 25.041 0.198 0.200 0.965 0.972
5.075 211.03 211.03 0.126 0.126 0.986 0.989
re

r P~b!256qu38~q!/u3~q!, ~17!

whereq5exp(2b2) and u i(q)5u i(0,q) are Jacobi’s theta
functions.20 u38(q) is the derivative ofu3(q). These equa-
tions define an implicit functionE(r P) which is plotted in
Fig. 5 for the valuesG equal to 0, 1.80, 2.66, 3.83, and 5.9
The crosses indicate the exact results from our finite clu
calculations. The agreement is remarkable, especially for
values of minimal total energy~see Table I!. The LP solution
gives a smaller value of the polaron radius. The variatio
solution for an infinite system agrees with the exact solut
on finite clusters in finding a first-order large to small p
laron transition, with no regime of intermediate polaron
Figure 5 explains the hysteresis found in the numerical
sults obtained by exact diagonalization. For a small range
G just below the critical value the small polaron state
locally stable but separated by an energy barrier from
global ~delocalized! minimum. The numerical solution fol-
lows this metastable branch until it disappears.

IV. COMPARISON WITH FRO¨ HLICH POLARON

It is interesting to compare our results with the origin
LP treatment of the Fro¨hlich Hamiltonian ~FH!. This is
shown in Fig. 6. The FH describes the coupling of an el
tron to a polar optical phonon of frequencyv0 ~Ref. 3!:

HF5(
is,q

ĉis
† ĉiseiq–Ri

M0

q
@bq1b2q

† #, ~18!

whereM0
254pa\(\v0)3/2/(2m* )1/2; the coupling constan

a is (e2/\)(m* /2\v0)1/2(e`
212e0

21) and m* is the effec-
tive mass of the electron. The FH includes long-range po
forces in a continuum approximation, in contrast to the sho
range atomistic RSM of Eq.~3!. The Fröhlich constanta is

-

s

a-
I.

FIG. 6. Results of the Landau-Pekar~LP! variational treatment
and Rayleigh-Schro¨dinger~RS! perturbation theory for the Fro¨hlich
Hamiltonian ~FH! and for the Rice-Sneddon model~RSM!. The
parametera and electron-phonon coupling constantg do not have a
unique relation. An electrostatic model suggests the upper
lower limits on this relation which are shown for LP variation
method as LP~1! and LP~2! and for RS perturbation theory as RS~1!
and RS~2!. Traditional results for FH are shown as LP~F! and
RS~F!. Note that the LP~bound state! solution for FH always exists
in contrast to RSM.

r
-
s

te

-
e
d



,

er
ily
r

ng
s

e

th
gy
th
ys

r

ou
tic
t t

o
i-

at

e
h

a

e

th
ro
m

ng

ha
n
is
x
a

ex
n
th
te

is
e
-
ize
ex-
ell

en
use
ho-
r
a
ne
bly

lso
the

ra-

-
ce-

of

on
of

gen-
r

n
al-
y.
d
ues

he

s

3110 56VLADIMIR N. KOSTUR AND PHILIP B. ALLEN
' 5.5 for BaBiO3. In this intermediate range of coupling
neither the Rayleigh-Schro¨dinger ~RS! result Ep52a\v0
nor the Landau-Pekar~LP! resultEp52a2\v0/3p is accu-
rate. The RS and LP energies are equal ata53p, as shown
in Fig. 6.

A qualitative difference between RSM and Fro¨hlich po-
larons is that the LP bound state requires a threshold en
with RSM short-range interactions, but occurs for arbitrar
weak a in the FH, following the usual quantum rules fo
occurrence of bound states in 3D problems for short-ra
and long-range potentials.11 The actual answer for the FH i
believed21 to be a continuous function ofa, whereas our
treatment of the RSM gives a discontinuity. At small valu
of G, where RS perturbation theory applies, Eq.~10! gives a
relatively small change in the electronic energy, but at
critical value of G, a sudden localization and large ener
shift occur. The other qualitative difference between
RSM and Fro¨hlich cases is that the RSM polaron is alwa
‘‘small,’’ whereas the Fro¨hlich polaron for largea is ‘‘inter-
mediate.’’ The radius of the LP bound state for the Fro¨hlich
case is 53 Å/a using parametersm* and v0 of BKBO,
which is much larger than the RSM polaron. To compa
quantitatively a polaron in the RSM with a Fro¨hlich polaron,
it is necessary to have a translation betweena and G. Un-
fortunately, this is not unique. The FH uses electrostatic c
plings in a continuum approximation. Applying electrosta
ideas to the perovskite structure, one can estimate tha
nearest-neighbor electron-phonon couplingg should have
the approximate value 4Z1Z2e2/«a, whereZ1e and Z2e
are the charges on the Bi and O sites, and« is the dielectric
constant. Then the same arguments which givea55.5 yield
G50.65 if wetakeZ1 andZ2 to be each 1, orG565 if we
take them to be 5 and 2~e.g., Bi51 and O22). In the former
case,a translates into 8.7G, and in the latter case, int
0.087G. Both translations are shown on Fig. 6. Without m
croscopic calculations it is impossible to say which estim
is more appropriate.

A realistic model for BKBO would need both short-rang
atomistic interactions and long-range polar interactions. T
short-range interaction differs from the electrostatic estim
4Z1Z2e2/ea because of various quantum effects~electron
wave functions are not point charges, and have exchang
well as electrostatic energies! which may well increaseG
compared to electrostatic models. Experiment suggests
in an appropriate realistic model, the extreme small pola
behavior captured by the RSM dominates, at least for so
materials such as BKBO in the nonmetallic range of dopi
and WO3 in the same range.

V. ELECTRONIC AND VIBRATIONAL EXCITATIONS OF
THE POLARON

An advantage of the exact diagonalization method is t
it enables an equally good and easy calculation of electro
excitations of the Franck-Condon type where the lattice d
tortion is frozen in place. We simply examine the ne
higher-lying eigenstates without further alteration of the p
rameters$u%. In the range of parameter space we have
plored, we have not encountered a second bound state i
polaronic well. The electronic spectrum has a gap, and
minimum energy electronic excitation is a delocalized sta
gy
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The energy of this transition, denoted the ‘‘gap’’ energy,
plotted in Fig. 3~c!. At the onset of polaron formation, th
gap has a value 5.00t which increases rapidly for larger cou
pling constants. There is a small but noticeable finite s
error in the gap calculation since the lowest electronic
cited state is extended to infinity, but cut off at the superc
boundary in our work.

When a small polaron is formed, the interaction betwe
the localized electron and the lattice vibrations can ca
both a renormalization of the electron energy and of the p
non energy. Referring to Eq.~9!, it is clear that the gap, o
minimum value of e02e j in the denominator, makes
change in the electron self-energy shift relative to the o
already calculated for the delocalized large polaron, proba
reducing the shift because of the larger denominator~al-
though matrix element changes need to be considered a!.
However, since the shift is certainly small compared to
gap itself~of order t), this effect can be neglected.

A more interesting effect is the change in the local vib
tions near the localized electron. This problem~for interme-
diate polarons! was discussed by Emin.22 If we know the
one-electron energiese j and the corresponding statesu j & at
the optimal set of displacements$u0%, then standard pertur
bation theory for small deviations around these displa
ments gives

DF ]2Etot

]ul ,a]ul 8,b
G5(

j

^0uVl ,au j &^ j uVl 8,bu0&
e02e j

, ~19!

Vl ,a5
]He-ph

]ul ,a
.

This equation omits terms containing second derivatives
H because they are consistently omitted in our model.

The LP approximation gives a particularly simple soluti
to this problem. Since we do not have a complete set
states in this approach, instead, we find the energy as a
eral function of the displacements$u0% and the LP paramete
b:

E~uW ,b!5
1

2
uW †
•Â•uW 1LW †~b!•uW 1 f ~b!, ~20!

whereuW is the 3N-vector displacement,Â is the bare force
constant matrix~which is a constant times the unit matrix i
our model!, LW is the force on the atoms caused by the loc
ized electron, andf is the localized electron hopping energ
Expressions forLW and f are easy to derive. Straightforwar
linear algebra leads to expressions for the optimum val
$u0% and b0. We then Taylor expand Eq.~20! to second
order for small deviations$du% anddb around the optimum
values. Finally, for fixed deviations$du% the optimum value
of db is found. Inserting this into the Taylor expansion, t
modified force constant matrixÂ1dÂ is found:

dÂ52
LW 8LW 8†

f 92LW †
•Â21

•L9W
, ~21!

with dÂ,0 as the result of stability condition. The prime
on the right-hand side of Eq.~21! denote derivatives byb.
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Note that the alteration of the force constant matrix in the L
approximation is factorizable, and sinceÂ is proportional to
the unit matrix, only one eigenvalue is altered, the corr
sponding eigenvector being proportional toLW 8. The static
displacements$u0% in the LP approximation are given by
2Â21LW (b0). Thus in the LP approximation, one vibrationa
eigenvector splits off from the degenerate frequencyv0,
shifting to lower energy, and having an eigenvector propo
tional to the derivative of the static displacements by the
parameterb. The symmetry of this mode is identical to th
symmetry of the static displacement.

We have also made an exact calculation of the modifi
vibrational spectrum using finite clusters, and the answe
shown in Fig. 7, and also in Table I, agree nicely with the L

FIG. 7. Phonon frequency shiftsvph
i /v0, at coupling constants

G51.80, 2.66, 3.83, and 5.99 for cluster size 53637. The phonon
modes~circles! are distributed fromvmin to v0, the first being well
separated from others. Results from the Landau-Pekar approxi
tion are shown by diamonds.

FIG. 8. Total energy~per electron! of the bipolaron for different
values of Coulomb repulsion. The supercell size is 53637. At
U52W for G between 1.97 and 3.40, the total energy correspon
to two small polarons separated as far as possible in the cell;
cause the cell is not infinitely large, there is Coulomb repulsi
which raises the energy above the isolated polaron energy show
the thin curve~identical to Fig. 3!.
-

r-
P

d
s,

approximation, but in addition to the one strongly altere
frequency, a few other frequencies are pulled weakly belo
the unperturbed frequencyv0. Our results are consistent
with Emin’s.22

Thus we expect that a characteristic signature of the sm
polaron state should be a localized vibrational mode who
symmetry copies that of the polaronic distortion, that is, th
symmetry is the same as the point symmetry in the crystal
the ion on which the polaron is centered~full cubic symme-
try A1 in our case!. Such modes might be measurable b
Raman scattering using a laser which is resonant with
electronic transition of the polaron. Also they might appea
as side bands on the electronic polaron absorption spectru

VI. BIPOLARON

We now ask what happens in our model when a seco
electron is added. If we neglect the Coulomb interaction, th

a-

s
e-
n
as

FIG. 9. Bipolaron radius as a function ofG for different values
of Coulomb repulsion. Vertical lines indicate stability limits where
bipolarons~with U&W) decay into isolated small polarons or into
isolated large polarons whenU*W. At G less than the stability
point, radii of metastable bipolaron states are shown. The domain
metastability is artificially enhanced by finite size effects.

FIG. 10. The gap in the electron spectrum as a function ofG.
Due to the finite size of the cluster the gap is finite even in th
delocalized state.
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answer is that two spatially separated polarons are unst
relative to the formation of a singlet bipolaron state in whi
both electrons are on the same site. If we allow no furt
lattice relaxation beyond the single electron polaron, then
energy of the bipolaron is already lower than two separa
polarons because the~negative! electronic eigenvalue is
doubled but the positive lattice strain energy is unchang
additional lattice relaxation will occur only if it lowers th
energy, and since there are now two electrons exerting e
force g on the neighboring oxygens, there will be addition
relaxation. Results are shown in Fig. 3, where we plot
total energy per electron. The critical coupling for bipolar
formation is GB50.99, significantly less than for polaron
formation which starts atGP51.96. At onset of bipolaron
formation, the radius and the electronic gap~0.44a and 5.00
t, respectively! are approximately the same as for polar
formation at its onset, but at equal values ofG the bipolaron
is smaller and has a larger gap.

Of course it is unrealistic to ignore the Coulomb repulsi
which will act in the direction of destabilizing the bipolaro
Our model permits us to make exact~finite size! calculations
for the bipolaron by solving the appropriate two-partic
equation, that is, finding the exact two-particle wave funct

C~$u%!5(
i , j

ai , j~$u%!ci ,↑
† cj ,↓

† uvac&. ~22!

This calculation is of course far more demanding than
corresponding polaron case, Eq.~6!, because it requires o
each step of the minimization procedure finding the smal
eigenvalues of aN23N2 matrix rather than aN3N matrix.
A Lanzcos algorithm has allowed us to calculate forN as
large as 53637. Because the bipolaron turns out to
again well localized, the finite system size does not caus
noticeable error. Also for the same reason, the long-ra
Coulomb repulsion is not very important. The results a
rs
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shown in Figs. 8–10. Our result agrees with Emin and H
lery’s variational analysis23 that for short-range electron
phonon interaction the only possible three-dimensional bi
laron states are small bipolarons.

An interesting feature shown in Fig. 10 is that the gap
larger at the onset of bipolaron formation in the presence
the long-range Coulomb repulsion, presumably due to str
ger localization of electrons. At fixedG the Coulomb forces
reduce the gap with increasingU.24

VII. SUMMARY

Bipolaron formation is strongly affected by Coulom
forces in a cubic perovskite lattice. Due to Coulomb rep
sion between two electrons localized on the same site
onset of bipolaron formation can be postponed and pola
states are energetically favorable. The polarons and b
larons formed in this lattice are small and exist only abo
some critical value of electron-phonon coupling. The tran
tion from delocalized to localized polaron state is discontin
ous, with no intermediate-size solution. This jump is n
caused by finite-size errors and is present also in variatio
calculations using Landau-Pekar approximation. The to
energy has hysteretic behavior with metastable states oc
ring near the critical coupling constant. These metasta
states could in principal be observed, for example, by tun
the coupling constant with applied pressure. A gap open
the electron spectrum at the transition from delocalized
localized polaron states, and new localized vibrational sta
occur with energies decreased below those of the undo
host.
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