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Polaron and bipolaron formation in a cubic perovskite lattice
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The Rice-Sneddon model for BaBiOoffers a starting point for discussing polarons and bipolarons in a
three-dimensional oxide crystal. We use exact diagonalization methods on finite samples to study the stability
and properties of polarons and bipolarons. Because polarons, when they form, turn out to be very well
localized, we are able to converge accurately our calculations for two-electron bipolaron wave functions,
accounting for the Coulomb interaction without approximation. Some of our results are compared with and
interpreted by reference to the variational method of Landau and Pekar. We calculate both electronic and
vibrational excitations of the small polaron solutions, finding a single vibrational state localized with the full
symmetry of the polaron, which has its energy significantly decreased at the onset of polaron formation. Both
on-site(Hubbard and long-range Coulomb repulsion are included in the bipolaron calculation, but due to the
high degree of localization, the long-range part has only a small influence. For a reasonable on-site repulsion
U equal to two times the band widt, bipolaron formation is significantly suppressed; there is a large
window of electron-phonon coupling where the polaron is stable but the bipolaron decays into two polarons.
[S0163-18207)04230-9

[. INTRODUCTION transition temperatures as high as 32 K at optimal doping.
The oxygen atoms are relatively easy to move and polaron
The electron localized on an idor a few iong can cause formation is mainly caused by the displacements of these
displacements of neighboring ions from their positions in théons. We choose this model both because of its relation to
crystal lattice. The quasiparticle formed by an electron anghysically important materialéSrTiO; and WO; could be
corresponding lattice displacements is callepagaron'™  studied by a closely related model wilh, d states instead
The polaron is asmall polaronif the electron is localized of s-electron stat€% and also because it makes a nice test
mostly on one ionmore than 50%or anintermediate po- model for looking at the criteria for polaron formation and
laron if localized on a group of ions. We reserve the termthe properties of polarons on a three-dimensid3&) mi-
large polaronfor a delocalized polaron which is an electron croscopic basis. In this study, for simplicity, we consider the
moving together with polarization of the surrounding me-hypothetical case of an almost empty band, corresponding to
dium. It is possible that the surrounding ions “overscreen” KBIiO 3, or BKBO with x=1.
the negative charge of the localized electron and attract an-
other electron to the same site. Two electrons bound in such
way form abipolaron®® The important issue for bipolaron 4\
formation is a quantitative analysis of the relative strength of | O
the electron-lattice interaction responsible for two electron: / 0
being coupled and the electron-electr@oulomb forces ’ . /
which try to break the bipolaron apart. If the Coulomb repul- O A O - O
sion between electrons exceeds some critical value the bip I %
laron is less stable than two separated polarons. O
Theoretical interest in perovskites continues due to the <_°

©
variety of interesting physical properties exhibited by these © B %ﬁ

, °—>

compounds. The ideal structure AB X5 perovskite is cubic

(Fig. 1) with cationB surrounded by six anions. Localiza-

tion of an electron on catioB causes the anions to move ——O
away from B.” The displacements of anions decrease the / O /
total energy of the system and can result in self-trapping thlo X O ] O
electron on the sit&. A model describing such processes W

must take into account whicB-atom orbitals are occupied,
the electron-lattice coupling, and the electron-electron corre- £ 1. The ideal structure of ahB X, perovskite. A is a larger

lations. . cation,B is a smaller cation, an#l is an anion). The larger cation
In the present paper we study polaron and bipolaron fora has usually smaller positive charge than caariThe substitu-

mation in a model originally proposed by Rice and Sneddontjon of A by another iorA’ with valence different fronA changes
for doped BaBiQ, such as Ba ,K,BiO; (BKBO). These the number of carriers in the system. If the carrier is localized on
materials are nearly cubic perovskites, with a fairly simplecationB, Coulomb forces cause the aniokgo be displaced away
set of valence electron states, exhibiting superconductinggom B.
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Our principal results ar¢l) there is a sudden jump at a
critical coupling strength from a largelelocalized polaron Q@WQ
to a very small, well-localized polaron with radius smaller
than interionic distance. There is no self-localized solution = .
with larger polaron radius. This agrees with the results of Q Iuﬂ/ Q
Toyozawa® and with the general classification of Emin and Uy T
Holstein!! (2) The bipolaron breaks apart even at moderate H & y |
strength of on-site Coulomb repulsion a8 small polaron > ’
formation is accompanied by a characteristic formation of

localized vibrations of shifted energy which may serve as a
good experimental signature.

0 "0

Il. MODEL HAMILTONIAN Ly I

The generic Hamiltonian is %WWWQW@MQWW%
1)

H=Ho+tHc=H{+HepntHpptHe, (
FIG. 2. The displacements of oxygen along Bi-O bonds in the

V\{herel-:t, He-Ph'thh' an(:]Hc are , c(j:orreslponglngly, ho\[/)\;l XY plane when an electron is localized on the Bi ion. The changes
ping, electron-phonon, phonon, and Coulomb terms. 'tnn total energy are proportional to displacements if the displace-

the BKBO SyStem_ in mind we u_se for the hopping term, Onlyments are small. Only the nearest ions displacements are shown for
one bismuths orbital per cell with hopping only to nearest simplicity.

bismuth neighbors:

the a=Xx,y,z Cartesian direction. Only displacements in the

Hi=—t 2 CiJrUng- i) direction a of the bond are considered, because these are
(i) expected to dominate the physics of polaron formatsee

This has the usual cosine dispersion relation with bandwidtlfrig. 2). The notatioru; . , means exactly the same as, ,
W equal to 12. We take the value of to be 200 meV  whereaw;_ , refers to the displacement of the oxygen atom
following band-structure calculatiot$.The effective mass which neighbors théth Bi atom in thea= —x,—y,—z Car-
m* is 1.04 of bare electron mass at tke= 0 band mini- tesian direction. The atoms labeled hy-(«) can also be
mum, using the lattice parameter=4.28 A of BaBiQ,. We  labeled in the formi(,a) by reference to the appropriate
assume that the same model for electrons in BKBO can baearby Bi atori’. The coupling constarg will be treated as
applied to all the region of K concentration, because thea fitting parameter. Its determination requires more detailed
antibonding B{6s)-O(2p) conduction band in cubic BKBO information about the electron-lattice interaction for the par-
is minimally affected by substitutional K doping at the Ba ticular cubic perovskite structurgsee Sec. ). Equation(3)
sites’? First-principles linear muffin-tin orbital calculations contains the effect that an “inhaling” of the negative oxygen
for different phases of BKBO: KBigQ KqsBaysBiO3;, and ions around a central Bi ion will raise the on-site energy of
BaBiO; reveal a single band near Fermi energy to be largelthe bismuths orbital, by an amount equal @ per fractional
independent on potassium dopihg. displacementu/a of each of the six surrounding atoms.

Hypothetical KBiO; in this model has no electrons. Each However, this costs elastic energy as given in Ej. We
Bi atom is in the 5 ionization state with no remaining takeM as the oxygen atomic mass, aiagd to have the value
valence electrons, whereas BaBi@ this model has a half- 42 meV of a typical oxygen bond-stretching vibrattdn(it
filled band of Bi** ions. Real BaBiQ is insulating, and is corresponds to spring energyl w3a®/2 being ~62 eV)
most simply understood as having alternating®Biand  Various values ofy will be used, in the physically expected
Bi®* ions. The BP* ions have two valence electrons bound range of 4—12 eV. Finally, there is a Coulomb interaction
to them, and repel the surrounding six oxygen atoms, whiclhetween electrons,
are attracted to the more positiveBi ions.” The important

lattice degree of freedom is therefore the motion 6f Gons A ez . .

along the direction of the Bi-O bonds. Such displacements Hc=U2 nj;n; + > mnia“ja'- 6)
couple strongly to the Bi § electron states. The Rice- ' i#jo0" ZHL T

Sneddon mode(RSM) incorporates this coupling through

Various values ofJ comparable withV=12t will be used
for the on-site(Hubbard term in the Coulomb interaction,

g 3 and the value =5 will characterize the long-range Coulomb

== U che repulsion.
Pepn aiEo c;l L ) The vacuum of this model corresponds to KBj@vith no
5 electrons, and only zero-point vibrational energy#3wy/2.
We will see that shifts of the zero point energy are not very
Hpn= Z 21 (4) important, so we can ignore this term and define the vacuum
¢ as having energy zero. For the half-filled case, the ground

The notationu; , refers to the displacement of the oxygen state (for not too strong Coulomb repulsion compared to
atom (labeled by{i,a}) which neighbors théth Bi atom in  electron-phonon couplinghas a period-doubling distortion

the terms

P?

,

2M

2,2
+§M(D0ui’a
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of the oxygens. Alternate bismuth sites have the oxygengon with virtual phonons, there would be an alteration of the
“breathing” either in or out, and electron charge either di- mass and energy of this electron. Specifically, the energy
minished or increased from the average of one electron peghift would be
site. This corresponds to the experimental insulating state of |Mk-|2
BaBiO3, and gives a new vacuum into which carriers can be Aeg=>, _ ot
introduced by doping. Neglecting Coulomb repulsion, this Tk €0~ €~y
regime was studied numerically by a al.**who found, in i terms of the one electron energiesand the phonon en-

agreement with experiment, that the insulating gap persistegrgiesfka of the unperturbed band. This sum can be evalu-
for a wide range of K doping. Id=2, this model with  zted as follows:

application to Cu@ planes of high¥, superconductors was

C)

studied by Prelovek et alX® They use an adiabatic treatment A€y _or hwg 1-s hwg 10
of the phonon degrees of freedom and the Hartree approxi- 4 4t || (10
mation for the Hubbard term. Most of the physics in the
model turns out to be determined by two dimensionless pa- S(x)= EE X (11)
rameters,U/W=U/12t governing the Coulomb repulsion, NG x+f(Q)’
and a parametdr, of size~1, defined as
a a a
I = gIMwla’t, ® f(Q)=sin2(QTx +sir? QTV +sin2(QZZ ) (12

which governs electron-phonon effects. It is convenient to':Or our choices olog andt, the ratiof wo/4t is 0.053 and the

use as the unit of energy, the hopping parametand to use sumS in Eq. (11) is 0.12. Thus the self-energy shift of the

— i ) large polaron is~0.09" which turns out to be small com-
a scaled Hamiltoniahi =H/t. The convenient unit of length pared to the energies that we will find for the small polaron

is Up=Vt/Mwg, and we define scaled lattice displacementsregime. This is shown later in Fig. 6. Thus we can safely

U; = U; o/Uy and moment®; ,=ugP; /7. Then the scaled ignore the nonadiabatic effects. By a similar argument

Hamiltonian is (which we will explain in more detail laterthe zero-point
contribution to the elastic energy can be ignored, and the
elastic contribution to the small polaron energy is just the

Ho=—2 ¢l ciot T2 [T =Ty olcl Cio second term of Eq4).
e loa To evaluate the one-electron enerey({u}) for the dis-
1 hon) 2 torted lattice requires a finite size system, which we choose
+_Z Uiza+ _0) i2a ) (7) to be an orthorhombic cell(our “supercell”) with
293 ' t ’ N=N;XN,X N3 Bi atoms on a cubic lattice, and\3oxy-

] ] ] _ gens on the Bi-Bi bonds, and periodic boundary conditions.
We see from Eq(7) that a third dimensionless parameter is The Lanczos techniqtiewas used for finding the ground-
fiwo/t. This governs the size of nonadiabatic effects. We willstate energy and a few lowest excited states of the Hamil-

show that such corrections are small in our model. tonian (1), and conjugate gradient minimization was used to
find the optimum values of the oxygen displacemetk.
IIl. POLARON Results are shown in Fig. 3. Beyond a critical vallip

=1.96 itbecomes favorable for oxygens to distort and form
Our only approximation(apart from finite size errors g |ocalized small polaron state. We define the locatipand
which are well controlleflis the Born-Oppenheimeiadia- radiusrp of the polaron by
batic treatment of the vibrations. Inserting one electron into
the empty-band vacuum, and letting the oxygen atoms have P :2 |a-|2F- (13)
some fixed distortion patterfu}, we look for the lowest 04 IS T
energy one-electron state with wave function

r%=2 lay|4(ri—ro)% (149
vi({uh) =2 ai{ube;|vag, ®

The typical oxygen displacements ne7@rare ug~ 0.034a,

_ _ and they decay exponentially far frorg.
wherea;({u}) are the site amplitudes of the electron wave  The radius of the polaron at the transition is 0.49 in units

function. Later the dependenceaf, etc., on the parameters of Bi-Bi distance, that is, it is very well-localized with 90%
{u} will be implicit and not explicitly designated. This elec- of the electron density concentrated on one site. TA®-

tron state has energg({u}), measured relative to the bot- creases beyond the critical value, the radius further shrinks,
tom of the bandey({0}). The total energy is this plus the and the binding energy rapidly increases to values of drder
elastic energyHyn({u})). Then we vary the displacements and bigger. Our results are plotted in Fig. 3. Fotess than

{u} looking for the absolute minimum total energy. If the the critical value, the radius is shown as a finite numibda
coupling constantl’ is small, the minimum occurs at reflecting the finite size of the cell; the actual radius is infi-
{u}={0} and has total energy 0. This corresponds to a largaite. For values of" slightly less than critical, our minimi-
polaron solution, which in adiabatic approximation is just anzation procedure locates a metastable small polaron solution
electron in the bottom of the band of the undeformed crystalwith a small positive energy, which is shown in Fig. 3 as a
If we were to include the nonadiabatic coupling of this elec-small hysteretic region.
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FIG. 4. Tests of finite-size errors for different values of electron-
phonon coupling constants. The cluster radius is in the units of the
Bi-Bi distance. The clusters used ar®&lgXNyxXNy and
(No—1)XNgX(Ng+1), out to a maximum oN, of 20. The clus-
ter radius isRy =Ny in the former case oRy =Ng(N5—1)"%in
the last case.

atoms is=200. Near the transition, for cluster size not too

big, the transition onset varies with cluster size. The total

energy always diminishes with increase of cluster size until it

becomes independent of cluster size.IAfar enough from

the critical value the results are almost the same for all the
FIG. 3. Calculated properties of a polardm) radiusrp/a, (b))  clusters sizes. The results of Fig. 3 have no noticeable size

total energy per electroB,/t, and(c) the gapAp=(€;— €,)/t in dependence.

the electron spectrum as a function of electron-phonon coupling The nonadiabatic corrections to the large polaron energy

I'. The circles give results for the single-electron polaron and theyre 0.17 at the transition point, which gives an unimportant

diamonds give the radius, half the total energy, and the electronigqrection to the critical value of (see Fig. 6. The small

gap for the bipolaron. The Coulomb repulsion is omitted for thepolaron solution is Rl-fold degenerate: it can form at any of

bipolaron (U=U"=0). the N Bi sites, with either spin. In this paper we ignore

another nonadiabatic effect, the weak vibration-assisted tun-

Because the small polaron is so well localized, the error imelling which lifts the translational degeneracy to make a

our calculation due to the finite size supercell is easy to connarrow band with only spin degeneracy remaining.

trol. To test this, we have varied the size of the supercell We now compare our numerical results with analytic re-

from a minimum of 2x2X2 to maximum of 2X21x22.  sults obtained by a variational method introduced by Landau

The results are shown in Fig. 4. The polaron radius and totadnd PekalLP).*31° The electronic wave function is chosen

energy are insensitive to cluster size if the number of Bito have Gaussian form
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and Rayleigh-Schutinger(RS) perturbation theory for the Fntich

FIG. 5. Total energyversus polaron radius calculated in Hamiltonian (FH) and for the Rice-Sneddon modé&RSM). The
Landau-Pekar approximation for electron-phonon coupling conparameter and electron-phonon coupling constgmdo not have a
stantsI’=0, 1.80, 2.66, 3.83, and 5.99 from top to bottom. The unique relation. An electrostatic model suggests the upper and
energy minima fol’=2.66, 3.83, and 5.99 correspond to energieslower limits on this relation which are shown for LP variational
of stable localized states. The extremunTat1.80 corresponds to method as LPL) and LR2) and for RS perturbation theory as R%
a metastable localized state. Results from finite cluster diagonalizeand R$2). Traditional results for FH are shown as (B and
tion are shown as crosses. For numerical comparison see TableRS(F). Note that the LRbound statesolution for FH always exists
The inset expands the large part of the same curves. in contrast to RSM.

a;=Co(B)exf — BA(ri—ry)?/2], (15) re(B)°=60065(a)/65(q), 17)

whereq=exp(— 8?) and 6;(q)= 6,(0,q) are Jacobi’s theta
functions?® 65(q) is the derivative of63(q). These equa-
tions define an implicit functiorE(rp) which is plotted in
Fig. 5 for the valued™ equal to 0, 1.80, 2.66, 3.83, and 5.99.
The crosses indicate the exact results from our finite cluster
calculations. The agreement is remarkable, especially for the
values of minimal total energisee Table)l. The LP solution
gives a smaller value of the polaron radius. The variational
solution for an infinite system agrees with the exact solution

where C, is the normalization constant arglis the varia-
tional parameter which we call the LP parameter. There ar
now two sequential minimizations to perforhirst for fixed

B the optimum displacemen{si(B)} are found. Then these
are used to evaluate the trial total eneEf\3), and a second
minimization is performed to find the optimug@. We find
analytic formulas fofE(8) and the polaron radiuss(3):

2\2
E(B)/t=6 1—q1’4w _ 05(a°) on finite clusters in finding a first-order large to small po-
63(q) 65(q)® laron transition, with no regime of intermediate polarons.
’ 12 ) Figure 5 explains the hysteresis found in the numerical re-
X[05(a%) —q762(q7) ], (16)  sults obtained by exact diagonalization. For a small range of

_ _ I' just below the critical value the small polaron state is
TABLE 1. Comparison of results obtained by the Landau-Pekarjocqly stable but separated by an energy barrier from the
(LP) variational method and by exact diagonalization of finite Clus'global (delocalized minimum. The numerical solution fol-

ters(cluste). The electron-phonon coupling constants are in unitsI . P

. _ . ows this metastable branch until it disappears.
of bandwidth W=12t). The first row in the table corresponds to PP
the critical coupling constant at which a metastable localized state

occurs. The total energieSih, and ESYS® are in units oft. The

polaron radius is given in units of the Bi-Bi distance. Cluster cal- It is interesting to compare our results with the original
culations give a slightly smaller total energy and larger radius. Th P treatment of the Fidich Hamiltonian (FH). This is
phonon spectrum is perturbed by the transition from the delocalize hown in Fig. 6. The FH describes the coupling of an elec-

state to localizedsee text In the LP approximation only one mode tron to a polar optical phonon of frequenay, (Ref. 3:
w-b changes from its initial value aby. In the cluster calculations, P P P quenay, n

one modew s is well-separated from the others.

IV. COMPARISON WITH FRO HLICH POLARON

M
=S ¢f e @R _°rp 4 pf
g/W EtLoFt)aI Ecluster I,LP rcluster LP clustep H F 2 Clgcme q [bq b_q]’ (18)

. - lo,
total p p Ominl @0 ©nin 1o o.q

2.785 0.398 0.377 0.448 0.490 0.824 0.837 WhereM§=4mah(fiwg)>%(2m*)"2 the coupling constant
3.382 —1.848 —1.853 0.290 0.299 0.925 0935 a is (€%/h)(M* I2hwo)¥H e, — e, ') and m* is the effec-
4.060 —5.040 —5.041 0.198 0.200 0.965 0.972 tive mass of the electron. The FH includes long-range polar
5.075 —11.03 —11.03 0.126 0.126 0.986 0.989 forces in a continuum approximation, in contrast to the short-
range atomistic RSM of Eq3). The Frdilich constantx is
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~ 5.5 for BaBiOs. In this intermediate range of coupling, The energy of this transition, denoted the “gap” energy, is
neither the Rayleigh-Schdinger (RS result Ep=—ahiwg plotted in Fig. 3c). At the onset of polaron formation, the
nor the Landau-PekatP) resultE,= — a’hwyl3m is accu-  gap has a value 5.0@vhich increases rapidly for larger cou-
rate. The RS and LP energies are equat&t3w, as shown pling constants. There is a small but noticeable finite size
in Fig. 6. error in the gap calculation since the lowest electronic ex-
A gualitative difference between RSM and Rlich po- cited state is extended to infinity, but cut off at the supercell
larons is that the LP bound state requires a threshold enerdyoundary in our work.
with RSM short-range interactions, but occurs for arbitrarily ~When a small polaron is formed, the interaction between
weak « in the FH, following the usual quantum rules for the localized electron and the lattice vibrations can cause
occurrence of bound states in 3D problems for short-rangéoth a renormalization of the electron energy and of the pho-
and long-range potentiald.The actual answer for the FH is non energy. Referring to Eq9), it is clear that the gap, or
believed! to be a continuous function ok, whereas our minimum value of e;— €; in the denominator, makes a
treatment of the RSM gives a discontinuity. At small valueschange in the electron self-energy shift relative to the one
of ', where RS perturbation theory applies, EtQ) gives a  already calculated for the delocalized large polaron, probably
relatively small change in the electronic energy, but at theeducing the shift because of the larger denomindads
critical value of’, a sudden localization and large energythough matrix element changes need to be considerefl also
shift occur. The other qualitative difference between theHowever, since the shift is certainly small compared to the
RSM and Fralich cases is that the RSM polaron is alwaysgap itself(of ordert), this effect can be neglected.
“small,” whereas the Frblich polaron for largex is “inter- A more interesting effect is the change in the local vibra-
mediate.” The radius of the LP bound state for thélffich  tions near the localized electron. This probléior interme-
case is 53 A4 using parametersn* and w, of BKBO, diate polaronswas discussed by EmfA. If we know the
which is much larger than the RSM polaron. To compareone-electron energies; and the corresponding statg$ at
guantitatively a polaron in the RSM with a Friech polaron, the optimal set of displacements,}, then standard pertur-
it is necessary to have a translation betweeandI'. Un-  bation theory for small deviations around these displace-
fortunately, this is not unique. The FH uses electrostatic couments gives
plings in a continuum approximation. Applying electrostatic

ideas to the perovskite structure, one can estimate that the P =, -y (OIV, ol )iV, 6l0)
nearest-neighbor electron-phonon coupliggshould have W 4 €0—€; )
the approximate valueZ, Z_e?*/ea, whereZ,e andZ_e /a¥n B .

are the charges on the Bi and O sites, and the dielectric Moo

constant. Then the same arguments which give5.5 yield V.= )
'=0.65 if wetakeZ, andZ_ to be each 1, of =65 if we I/ o

take them to be 5 and @.g., BP* and G"). In the former  Thjs equation omits terms containing second derivatives of
case, a translates into 817, and in the latter case, into H pecause they are consistently omitted in our model.
0.087". Both translations are shown on Fig. 6. Without mi-  The P approximation gives a particularly simple solution
croscopic calculations it is ImpOSSIble to say which eStlmath this pr0b|em. Since we do not have a Comp|ete set of
IS more appropriate. states in this approach, instead, we find the energy as a gen-

A realistic model for BKBO would need both short-range era| function of the displacemenfs,} and the LP parameter
atomistic interactions and long-range polar interactions. Theg-

short-range interaction differs from the electrostatic estimate

47 .7 _e’lea because of various quantum effectdectron - 1., . - . R

wave functions are not point charges, and have exchange as E(u,B)= EUT'A' u+L"(B)-u+f(p), (20)
well as electrostatic energiesvhich may well increasd’

compared to electrostatic models. Experiment suggests th@thereu is the 3N-vector displacemen@\ is the bare force

in an appropriate realistic model, the extreme small polarozonstant matrixwhich is a constant times the unit matrix in
behavior captured by the RSM dominates, at least for somg,,, mode), L is the force on the atoms caused by the local-

materials such as BKBO in the nonmetallic range of doping;;eq electron, and is the localized electron hopping energy.

and WO, in the same range. Expressions fotL andf are easy to derive. Straightforward

linear algebra leads to expressions for the optimum values
V. ELECTRONIC AND VIBRATIONAL EXCITATIONS OF {ug} and By. We then Taylor expand Eq20) to second
THE POLARON order for small deviation§su} and 58 around the optimum
alues. Finally, for fixed deviationgsu} the optimum value

An advantage of the exact diagonalization method is thay f 68 is found. Inserting this into the Taylor expansion, the

it enables an equally good and easy calculation of electronic’ - P
excitations of the Franck-Condon type where the lattice disModified force constant matrik+ 5A is found:

tortion is frozen in place. We simply examine the next -

higher-lying eigenstates without further alteration of the pa- SA L'L 21)
rameters{u}. In the range of parameter space we have ex- fr Lt AL
plored, we have not encountered a second bound state in the

polaronic well. The electronic spectrum has a gap, and thwith JA<O as the result of stability condition. The primes
minimum energy electronic excitation is a delocalized stateon the right-hand side of Eq21) denote derivatives by.
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FIG. 7. Phonon frequency Shlftspk/wo’ at coupling constants FIG. 9. Bipolaron radius as a function bffor different values

I'=1.80, 2.66, 3.83, and 5.99 for cluster size 6x7. The phonon ot coylomb repulsion. Vertical lines indicate stability limits where
modes(circles are distributed fromwp, t0 wj, the first being well  yo1arons(with U<W) decay into isolated small polarons or into
;eparated from othgrs. Results from the Landau-Pekar approximasgated large polarons whed=W. At T less than the stability
tion are shown by diamonds. point, radii of metastable bipolaron states are shown. The domain of

. L metastability is artificially enhanced by finite size effects.
Note that the alteration of the force constant matrix in the LP

approximation is factorizable, and sindeis proportional to ~ @pproximation, but in addition to the one strongly altered
the unit matrix, only one eigenvalue is altered, the correfrequency, a few other frequencies are pulled weakly below
sponding eigenvector being proportional i5. The static the unperturbed frequency,. Our results are consistent

i e 22
displacement in the LP approximation are given by With Emin's. -
I,&pfl[(ﬁ ) jﬁgi iln the LP apgfoxi);atioln one v?tl)\:ationZI Thus we expect that a characteristic signature of the small
— o). ’

. . polaron state should be a localized vibrational mode whose
eigenvector splits off from the degenerate frequenty  gymmetry copies that of the polaronic distortion, that is, the
shifting to lower energy, and having an eigenvector proporsymmetry is the same as the point symmetry in the crystal of
tional to the derivative of the static displacements by the LBy o ion on which the polaron is centerédll cubic symme-
parameter3. The symmgtry of this mode is identical to the try A, in our casg Such modes might be measurable by
symmetry of the static displacement. . Raman scattering using a laser which is resonant with an

_We have also made an exact calculation of the modifiedecronic transition of the polaron. Also they might appear
vibrational spectrum using finite clusters, and the answersyg gige pands on the electronic polaron absorption spectrum.
shown in Fig. 7, and also in Table I, agree nicely with the LP

VI. BIPOLARON

0 : We now ask what happens in our model when a second
electron is added. If we neglect the Coulomb interaction, the
—— Polaron ' //
-4 4 24 ——- U=U'=0 / 7
- A—AU=W, U=0 /)
hag O—0U=2W, U'=0 /
5 —e U=2W, U’'=0.2U
uf
—— Polaron
8 F —— u=u=0 \
A—AU=W, U'=0 AN hay
O—{Ou=2w, U'=0 \ m 12 L 9
—— U=2W, U'=0.2U \ <
\\
\
-12 .
0 2 4 6
r
FIG. 8. Total energyper electrohof the bipolaron for different
values of Coulomb repulsion. The supercell size is@&x7. At 0 . .
U=2W for I' between 1.97 and 3.40, the total energy correspond: 0 2 r 4 6

to two small polarons separated as far as possible in the cell; be
cause the cell is not infinitely large, there is Coulomb repulsion FIG. 10. The gap in the electron spectrum as a functioil' .of
which raises the energy above the isolated polaron energy shown &ue to the finite size of the cluster the gap is finite even in the
the thin curve(identical to Fig. 3. delocalized state.
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answer is that two spatially separated polarons are unstabfhown in Figs. 8—10. Our result agrees with Emin and Hil-
relative to the formation of a singlet bipolaron state in whichlery’s variational analysfS that for short-range electron-
both electrons are on the same site. If we allow no furthephonon interaction the only possible three-dimensional bipo-
lattice relaxation beyond the single electron polaron, then théaron states are small bipolarons.

energy of the bipolaron is already lower than two separated An interesting feature shown in Fig. 10 is that the gap is

polarons because thénegative electronic eigenvalue is

larger at the onset of bipolaron formation in the presence of

doubled but the positive lattice strain energy is unchangedhe long-range Coulomb repulsion, presumably due to stron-
additional lattice relaxation will occur only if it lowers the ger localization of electrons. At fixeB the Coulomb forces
energy, and since there are now two electrons exerting eagleduce the gap with increasirng®*

force g on the neighboring oxygens, there will be additional

relaxation. Results are shown in Fig. 3, where we plot the

total energy per electron. The critical coupling for bipolaron
formation isI'g=0.99, significantly less than for polaron

formation which starts al'p=1.96. At onset of bipolaron
formation, the radius and the electronic g@p44a and 5.00

VIl. SUMMARY

Bipolaron formation is strongly affected by Coulomb
forces in a cubic perovskite lattice. Due to Coulomb repul-
sion between two electrons localized on the same site the

t, respectively are approximately the same as for polarononset of bipolaron formation can be postponed and polaron

formation at its onset, but at equal valueslothe bipolaron
is smaller and has a larger gap.

states are energetically favorable. The polarons and bipo-
larons formed in this lattice are small and exist only above

Of course it is unrealistic to ignore the Coulomb repulsionsome critical value of electron-phonon coupling. The transi-
which will act in the direction of destabilizing the bipolaron. tion from delocalized to localized polaron state is discontinu-

Our model permits us to make exdfihite size calculations

ous, with no intermediate-size solution. This jump is not

for the bipolaron by solving the appropriate two-particle caused by finite-size errors and is present also in variational
equation, that is, finding the exact two-particle wave functioncalculations using Landau-Pekar approximation. The total

\P({u}>=i21_ a; ;{u})cl cf | lvag. (22)

energy has hysteretic behavior with metastable states occur-
ring near the critical coupling constant. These metastable
states could in principal be observed, for example, by tuning
the coupling constant with applied pressure. A gap opens in
the electron spectrum at the transition from delocalized to

This calculation is of course far more demanding than thdocalized polaron states, and new localized vibrational states
corresponding polaron case, H§), because it requires on occur with energies decreased below those of the undoped
each step of the minimization procedure finding the smallesfost.

eigenvalues of &2x N? matrix rather than & N matrix.
A Lanzcos algorithm has allowed us to calculate fbras

large as 5X6X7. Because the bipolaron turns out to be
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