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Using nanoscale atomistic simulations it has been possible to address the problem of cross slip of a disso-
ciated screw dislocation in an fcc met@u) by a method not suffering from the limitations imposed by
elasticity theory. The focus has been on different dislocation configurations relevant for cross slip via the
Friedel-EscaigFE) cross-slip mechanism. The stress free cross-slip activation energy and activation length for
this mechanism are determined. We show that the two constrictions necessary for cross slip in the FE cross-slip
mechanism are not equivalent and that a dislocation configuration with just one of these constrictions is
energetically favored over two parallel Shockley partials. The effect of having the dislocation perpendicular to
a free surface is investigated. The results are in qualitative agreement with transmission electron microscopy
experiments and predictions from linear elasticity theory showing recombination or repulsion of the partials
near the free surface. Such recombination at the free surface might be important in the context of cross slip
because it allows the creation of the above-mentioned energetically favorable constriction alone. In addition we
observe a strong preference for the partials to be in a glide plane parallel to the surface step. We have
performed simulations of two screw dislocations of opposite signs, one simulation showing surface nucleated
cross slip leading to subsequent annihilation of the two dislocations. It was possible to monitor the annihilation
process, thereby determining the detailed dislocation reactions during annihil&gi63-182607)06630-1

I. INTRODUCTION Our approach to the problem of cross slip is nanoscale

atomistic simulations involving up to 156 060 atoms, thereby

The prominent role of dislocations and other lattice de-including both purely atomistic effects and to some extent
fects in controlling the mechanical properties of ductile ma-long-range elastic_interactions. Due to the length scale of the
terials is well established. Dislocation thebmyrovides an  Problem, cross slip has, to our knowledge, not been ad-

understanding of the basic properties of single dislocationgressed by atomistic simulations before. Based on results
rom earlier nonatomistic simulatior$, the details of the

and, to some extentz the interaction betvyeen wsmcaﬂon%ross-slip event are expected to be at the nanometer scale,
How'ever, the interactions between many dlslocat!ons can reyhich implies simulations involving-100 000 atoms. The
sult in entangled or more ordered structures, which compliy,ge of atomistic simulations will of course dispose of the
cates the use of dislocation theory. In the other extremesnoricomings of elasticity theory. Other problems such as
elasticity theory, which is the basis for dislocation theory, finjte-size effects and time-scale problems must be expected
breaks down close to the dislocation, meaning that the intefand dealt with. Furthermore, the choice of the interatomic
actions between two dislocations at very close range canngjotential is very important. Simple pair potentials all obey
be accurately described either. the Cauchy relatiorC;,=C,, (Ref. 7 and thus cannot be
One of the most famous examples of this deficiency ofexpected to give a reliable description of elastic properties of
dislocation theory is cross slip of a screw dislocation. Crosspecific materials. The use of a more sophisticated potential
slip is an important mechanism in plastic deformation ofis therefore necessary. Such a potential can be derived from
ductile materials. The onset of stage Ill in the stress-strainhe effective-medium theofy,which provides a computa-
curves of single crystafsthe minimum stable dipole height tionally efficient interatomic potential that also includes
of screw dislocations of opposite sighand the saturation of many-atom effects.
the stress in cyclic constant strain amplitude experinfents In this paper we will be concerned with cross slip of a
are examples where cross slip is believed to play a cruciaissociated screw dislocation from one close-packed plane to
role. Cross slip is a difficult problem to tackle, because itanother in an fcc metdlCu). We investigate bulk properties
contains both long-ranged elastic interactions between dislaas well as the effects of having the dislocation perpendicular
cationsand atomistic effects due to recombination of dislo- to a free surface. More specifically we shall focus on differ-
cations. Until now cross slip has only been theoretically in-ent possible dislocation configurations in connection with
vestigated using methods derived from elasticity theory, thusross slip, and we determine the stress free activation energy
neglecting atomistic effects. and activation length. We show that the two constrictions
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(a) TABLE I. Comparison between reference values of elastic con-
stants and intrinsic stacking-fault energy and values calculated with
EMT. The values for the elastic constants are in GPa. The unit for
the stacking-fault energy is mJ/n?. The shear modulug, calcu-
lated with EMT, is that corresponding to t{i@10{111} slip sys-
tem.

(b)

Element Cll C44 B M Y

Cu (Ref.) 176.28 81.8* 1372 46,P59¢ 709
Cu (org. EMT) 177 82.6 137 50 17
Cu (mod. EMT) 177 88.1 132 56 59

aRef. 38.
bRef. 1, p. 462.
‘Ref. 1, p. 430.
9Ref. 30.

FIG. 1. The Friedel-Escaig mechanism for cross gl@.Cre- ) ) ) )
ation of a Stroh-type constriction in the primary plage. Disso-  allel separation as an exponentially decaying function.
ciation in the cross-slip planéshaded creating two twisted con- Hence, there exist a characteristic length beyond which the
strictions A and B. (c) Two noninteracting constrictions. The two constrictionsA and B (see Fig. 1 can be considered
Burgers vectors are indicated with arrows. Due to the differenindependent and a corresponding activation energy. E’é’caig
characters of the Shockley partials, the two constrictions are ndd@s shown that the redissociation of the screw dislocation
equivalent. We denote the constrictioAsand B “edgelike” and ~ and the motior(bow-ou in the cross-slip plane can be con-
“screwlike,” respectively. sidered independent. It is the external stress components act-

ing on the opposite edge characters of the Shockley partials

necessary to produce cross slip in the Friedel-Escaighat control the cross slip by modifying the relative splitting
modef1° are not equivalent, and that a dislocation configu-widths in the two glide planes. The driving force for this
ration with just one of these constrictions is energeticallycross-slip mechanism is thus the widening of the stacking-
favored over that of two parallel Shockley partials. We alsofault ribbon in the cross-slip plane, and no net stress on the
show that a free surface can act as a nucleation center f@lislocation is necessary. The process is thermally activated
cross slip, thereby facilitating the annihilation of two screwand the redissociation in the cross-slip plane can, in prin-
dislocations of opposite signs. To check this we have perciple, take place spontaneously without any applied stress.
formed simulations of two screw dislocations of opposite Experiments have been designed and carried out on
signs and observed their mutual annihilation. The result§oppet®*°which, at least in a semiquantitative way, seem to
might serve as an atomic scale check of the approximationgonfirm the FE model. However, other experiments on Ge
made in the analytical thedf/and simulations of single dis- and SiZ* Cu?? and CuAl alloy$® suggest that cross slip also,
locations made within the framework of elasticity thedfy, maybe preferentially, nucleates at free surfaces.

but also as input to the more mesoscopic nonatomistic One of the experimental problems is that it is impossible
simulation$'*2 containing manythousands ofdislocations,  to actually monitor the single cross-slip event and gain de-
and to the modeling of experimentally characterized dislocatailed information about the intrinsic characteristics of the

tion microstructures evolving during plastic deformation anddislocation reactions. To obtain a more detailed knowledge
fatigue®14 of the structure and energetics of the cross-slipping screw
The paper is organized as follows. In Sec. Il we brieflydislocation, computer simulations within the framework of
present and discuss earlier work on cross slip. The methoddasticity theory have been performed by Duesbetyl”
used in this work are introduced in Sec. Ill. The results areand Pchl and SchoeckThe method of Duesberst al. is

presented and discussed in Sec. IV and finally we concludgased on numerical integration of the stresses and energies
in Sec. V. along the dislocation lines, using a relaxation method to find

the equilibrium configuration of the dislocation. The method
Il EARLIER WORK ON CROSS SLIP is detailed in Refs. 5 and 24."gehl and Schoeck use the
Peierls modelsee, e.g., Ref.)lto account for the atomistic
Several possible cross-slip mechanisms have beestructure of the dislocation core. They approximate the dis-
proposed?® 1’ but recently the model by Friedeland location shape by piecewise straight dislocation segments,
Escaid® (FE) has attracted most attention. In this model theand by varying the geometry of the polygon-shaped disloca-
dissociated screw dislocation must be recombirfedn- tion they can find a minimum energy configuration.
stricted over a short length, comparable to a few times the Although their methods are different, these authors arrive
dissociation width, in the primary glide plane before the sub-at rather similar results. Both Duesbeatyal. and Pischl and
sequent redissociation in the cross-slip plane; see Fig. 1. Thechoeck find that cross slip is stress aided in the sense pro-
FE model is derived on the basis of the line tension approxiposed by the FE model. However, the stress dependence
mation following the method for calculating the constriction seems to be overestimated in the original Escaig theory com-
energy and shape by Str6hThe configuration of the par- pared to these works. Using the values for the relevant pa-
tials far from the constriction, as determined in the line ten-rameters for Cu obtained in the present wéske Table),
sion approximation, converges towards the equilibrium parthe stress free cross-slip activation energy is found to be 2.5
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eV (Ref. 5 and 2.1 eV(Ref. 6. In both cases as well as in able is changed frondy/b to y/ub. Furthermore, there is
Escaig theory the separation necessary for two constrictiongery good agreement between the results of Escaig and those
to be considered independent is of the or@d&—6Qb, where  of Pischl and Schoeck, whereas the results of Duesbery
b is the length of the perfect Burgers vector. et al. are roughly a factor of 2 higher.

The estimated activation energies are, however, subject to The appeal of an approach like Escaig’s lies in the fact
a considerable uncertainty for several reasons. The elasttbat it provides analytical expressions for interesting proper-
description of a dislocation breaks down close to the disloties such as activation energy and length. Even though ap-
cation line (the corg. This problem is usually avoided by proximate, such analytical expressions can provide physical
introducing cutoff radii in the calculations. These cutoffs areinsight that cannot be easily gained from numerical calcula-
likely to be of crucial importance to the problem of cross sliptions. Based on the analytical theory it is possible to design
which, in some way, involves recombination of the two specific experiments to check the theory. This has been
Shockley partials. Special attention must thus be paid to thdone'®?°and the experimental results are in fair agreement
cutoff radii. In considering the influence of the cutoff radii with the theory.
and by using a refined version of the Stroh treatment of a On the other hand, more accurate numerical calculations
constriction, Saada is led to conclude that the cross-slip like the ones mentioned above may provide detailed infor-
activation energy can only be estimated to an order of magmation about the interesting properties which cannot be ex-
nitude within elasticity theory. Duesbest al. also consider pected to be accurately included in the approximate theory.
this problem in their work. They too find a significant depen-By suitable scaling it is even possible to achieve this infor-
dence on the cutoff radii, both quantitatively and qualita-mation for a wide variety of materials. The numerical simu-
tively. lations can also serve as another check of the approximations

Another uncertainty in the estimation of the activation made in the analytical theory, thereby complementing this.
energy from elasticity theory arises from the use of the rela- The qualitative agreement between the analytical theory
tion for the splitting of a perfect screw dislocation into two and the numerical simulations indicates that the essential
parallel Shockley partials bounding a perfect intrinsic stackphysics of cross slip is well described within linear elasticity

ing fault, theory. Quantitatively the three approaches are also in fair
agreement, but, as we have seen, the cross-slip activation

ub?(2—3v) energy is subject to rather substantial uncertainty. Even

o:m: 1) though the nonlocal part of the interactions is well described

with elasticity theory, it must be emphasized that the overlap
whered, is the equilibrium splitting widthu is the shear ~Of Shockley partials and eventual recombination into a per-
modulus, y is the intrinsic stacking-fault energy, andis  fect screw dislocation at the constrictions is a nonelastic phe-
Poisson’s ratio. This relation is derived on the basis of isoomenon, which cannot be expected to be accurately de-
tropic elasticity theory and can of course be expected t@crl_bed even with _th_e use of the most sophisticated methods
break down when applied in the context of an anisotropicderived from elasticity theory. _ o
metal such as Cu, and it is in fact not fulfilled in our simu- T avoid the uncertainties resulting from the application
lations. Applying relation(1) with the values fory and x  Of elasticity theory there is no alternative to atomistic simu-
obtained in this workTable |) results in an equilibrium split-  1ations. Such simulations may provide information about the
ting width of dy=4.5. This value should be compared to Partitioning of energy between elastic interactions and purely
the actual equilibrium splitting width obtained from the atomistic effects, and possibly reveal new phenomena which
simulations ofd,=6b or to the experimentally determined €annot be dealt with in the elastic description. Atomistic
valué® of dy=7b. Using the reference values farandy ~ Simulations can be seen as the last step in a succession of

also given in Table | results idy=4b. increasingly accurate but less general methods.
The calculated activation energies are usually given as a
function of either the dimensionless varialdg/b or the . METHODS

other dimensionless variab}é ub. However, the breakdown
of the elasticity relation(1) means that for a particular sys- ) ] ) _
tem different estimates of the activation energy can be ob- The effective-medium theofy(EMT) is an approximate
tained depending on the set of variables used. To illustratiotal energy method which has been used in describing a
this point we can consider the results bisBll and Schoeck. Wide variety of phenomena at surfaces and for bulk metals
They calculate the activation energy as a functiordgfb, mchdmg dislocation generation at _h|gh str%ln ratedefor-

and if we use the value from our simulatiods/b=6, the mation of nanophase metdfsand tribology>® In EMT the
above-mentioned 2.1 eV is obtained. If we instead take th&nergy of an atom is calculated as the energy of the atom

value y/ ub=0.0042 obtained in our simulations and use re-€mbedded in a suitably chosen reference system with the
lation (1), we only get 1.4 eV. Similarly, the above- Sa@me electronic density as in the real system and a correction

mentioned activation energy of 2.5 eV by Duesbetyal.  faking account of the difference between the real and refer-

transforms(in this case changing from/ub to do/b) to 3.4  €Nce systems.
eV. It is interesting to note that the analytical expression _: . .
given by Escaig theor§? when transformed into a function Ei=Ec(nj) +Eas(i). 2
of eitherdy/b or y/ub, results in activation energies of 1.9 E(n;) is the cohesive energy of an atom embedded in an
eV or 1.3 eV, respectively. Hence, there is a systematic lowelectronic densityn; from its neighboring atomsE ;g is the
ering of the activation energy when the dimensionless variatomic-sphere correction which describes the change in en-

A. Effective-medium theory
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ergy when the atom is moved from the real to the reference 11110]

system. The atomic-sphere energy is represented as the dit 2 HCP-site
ference between a pair potential contribution in the real and

reference systems. In the present implementation of EMT the FCC-site
reference system is chosen to be an fcc crystal. The param =
eters entering into the EMT potential can be found from 5[112]

either first-principles calculations or from fitting to experi-
mental values of bulk elastic and cohesive propefti€gn-
erally EMT describes the elastic properties of metals quite i

well, but for Cu the energy of an intrinsic stacking faylis e
much underestimated. In the context of dislocation reactions

this low value of the intrinsic stacking-fault energy might be & ERRR
a serious drawback. The energy contributions from different " TR
. . 9, QRS
atomic layers to the total stacking-fault energy have been f;:;;:;;:f;:fg:g§;Ef;;;;;f;:fg:f;:;:.g:
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transition and noble metals. An analySisf these calcula- 9

tions shows that the energetics can be understood in a simple

two-parameter model. The two parameters describe the rela

tive contribution to the stacking-fault energy from thend

d electrons and the results of the model are in excellent R

agreement with first-principles calculatiotfsThe parameter f;fff:f;:f{:2§§§§§§§:§§§:§§:§§:§§§§§§§§§

describing the contribution from the electrons can be ap- §§Efgigf§§§§§:§§:§§§§§§§§§§§§§§§:§§:§§§

proximated by a pair potential. Furthermore, it is shown that §:f;:f§:§§:EE:§§§§§§:§§:ff:fftffgff;ff;:

for the noble metal§Au, Ag, and Cu this parameter is the :E§2§§tfi}fffffftfféfﬁitfféﬁ'ﬁ"“'

main contributor to the stacking-fault energy. With this Y

knowledge, it was decided to modify the original EMT B

atomic-sphere potential by a small additional pair potential

fitted so as to reproduce a reasonable intrinsic stacking-fault

energy. The potential was chosen to be Gaussian shaped andFIG. 2. A medium-size system consisting of 73 960 atoms. The

located around the fifth-nearest neighbor in a perfect hcigystem contains one centered screw dislocation parallel i #@

stacking sequence. This corresponds to a distance firection perpendicular to the top surface. The surface step is par-

J(11/3)dy Wheredyy, is the nearest-neighbor distance in an@/lél to the @11) plane. The width of the tw¢l1l} planes is

fcc crystal. As the modification is small in amplitude it was W=9-5 "M, and the length of the dislocatigthe height of the

decided to keep all the original EMT parameters unchangedYSta) is /=400 (10.2 nm. The inset shows the difference be-

In Table | we show values of relevant elastic constants fofv€en fcc and hep sites in the 11) plane.

Cu calculated with both the original and modified EMT po- _ . _

tentials. For comparison we also quote experimental value§'d Seéquence in theL10] direction is .. ABAB. .., this re-

and the value for the intrinsic stacking-fault energy obtainecbUlts in two intertwined helix-shapgd 10] planes. The two

by the above mentioned first-principles calculation. The calShockley partials are introduced as screw dislocations with

culated » is the shear modulus corresponding to theBurgers vectors equal to half the Burgers vector of the per-

(110{117% slip system. The overall quality of the EMT po- fe_ct Screw dlgquatlon, and_ they can be in e|t_her glide plane

tential is unaffected by the modification, and the calculated"ith variable initial separation. It is also possible to prepare

values with the modified EMT potential are all within 1€ System with partials of varying separation, e.g., like any

—15% of the reference values. of the shapes shown in Fig. 1. In this latter case, the partials
are approximated with straight dislocation segments before
calculating the displacements. The splittings in the two glide
planes are as follows:

B. Geometry of the system

In all simulations the overall geometry of the systems is
basically the same, and is shown in Fig. 2. Only the dimen-
sions of the systems and whether the initial screw dislocation
is perfect or dissociated in one or two of the two possible
glide planes vary. The systems contain a centered screw dis-

— 1 1 1 —
location withb= 2[110], and may thus be seen as a stacking (11Dplane: 5[110]—g[211]+ £[121]. (4)
of (110 planes. The screw dislocation is introduced in the
otherwise perfect fcc crystal by using the result for the dis- |n Fig. 2 we show a system consisting of 73 960 atoms.

— 1 1 1 -
(111)plane: 5[110]—>6[121]+5[211],

placement of the atoms from linear elasticity theory, The system is made up by a stacking of(820 planes, but
bo might as well be regarded as a stacking of 431} planes
Up (3) or43(111) planes. The length of the dislocatitihe height

2m of the systemis denoted”, and the width of the tw@111}
whered is the angle between a fixed direction and the vectoplanesw. The two differen{111} planes are not perpendicu-
from the dislocation to the actual atom. Since the fcc stacklar; rather, the angle between them is 70.53°. THEL} sur-
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FIG. 4. Configuration of the Shockley partials in the two pos-
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sible glide planes(a) (111) plane,b=3[110]. (b) (111) plane,
b=12[110]. (¢) (111) plane, b=3110]. (d) (111) plane,

_ b=3[110].
FIG. 3. Zoom-in on a {11) plane with the two Shockley par-
tials colored black and grey. The system has been sliced through iis possible to inspect the detailed stacking sequence. The
middle, and the radius of the atoms has been reduced to enabjgerfect fcc stacking is to the left and to the right of the
inspection of the stacking sequence. Perfect fcc stacking is seen Fartials and the perfect Burgers vect}rl10] points up-
the left and to the right of the partials. The stacking changes gradupards in the figure. The atoms in fcc sites closest to the
ally from fcc to bridge(at the partialsto hcp between the partials. iewer are located in hollow sites surrounded by three atoms
The inset shows the difference between fcc and hcp sites in thﬁ1 the underlying plane comprising a triangle pointing to the
(111) plane. right in the figure, whereas for the hcp sites between the
partials the corresponding triangle points to the left. For the
faces are always free. The steps on the W) surfaces are  (111) plane the fcc site is different and the underlying tri-
parallel to a (11) plane, and the dislocation is located in theangle points to the left; see Fig. 2. When the perfect screw
middle of the system. In Sec. IV A we always apply periodicdislocation dissociates, this results in two different configu-
boundary conditions along tH{é 10] direction and the posi- rations of the Shockley partials. In theX1) plane the par-
tion of the step is thus irrelevant. However, in Sec. IV B wetial Burgers vectors point away from each other, whereas in
remove the periodic boundary conditions and the orientatiofhe (111) plane the partial Burgers vectors point toward each
of the step becomes important. By bulk simulatid®ec. other. This can easily be understood in the following manner.
IVA) we mean simulations with periodic boundary condi- | the (111) plane the sequence of the partials is dictated by
tions along theg110] direction, even though thel1L sur-  the formation of the stacking fault in between them. The
faces are free. We will refer to simulations without any pe'symmetry operation that transforms theIGJ) plane into the
riodic boundary conditions as free surface simulatit®esc. = . . S
IV B), meaning that one or two of tHé10) surfaces are now (111) plane is JOUSt a _rotat|on around HEL0] direction fol-
free. Iowe_d by a 180 rotation aroun_d the plane_normal._ The latter
rotation reverses the dislocation orientation, which means

The two{111} planes are not exactly equivalent with re- .
spect to a given direction, e.g., the10] direction, and this that the signs of the rotated Burge'rs vectors must be reversed
too. In Fig. 4 we show the splittings of the perfect screw

results in two different configurations of the Shockley par-". .o T . .
tials in the two possible glide planes. This difference is adlslocatlon into Shockley partials in the two different glide

result of the two kinds of hollow sites, i.e., the fcc site andplanes.
the hcp site, in 111} plane. For the (11) plane and the

(111) plane the fcc sites are geometrically different with
respect to, e.g., th€l10] direction. In Fig. 3 we show a In a study like this it is of course essential that we can
close-up of a {11) plane with two Shockley partials, and it identify the dislocations. For this purpose we use a disloca-

C. Identification of dislocations
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tion finding program developed by S¢hid? The basic idea tween them. The stacking changes from fcc sites to the left
is to treat the dislocation as a topological defect as in disloand to the right of the partials to bridge sites at the partials
cation theory. For each atom small “Burgers circuits” are and a few columns of hcp sites between the partials. In prin-
made in the vicinity of the atom, thereby identifying the ciple it could be possible to fit the displacements to a Peierls
atoms close to the dislocation line. These atoms can then braodel of the dislocation core, and obtain a value for the
colored by a visualization tool. Atoms near the surface of thelislocation “width.” The width of a single Shockley partial
system are also given a “Burgers-vector” by the program,can also be roughly estimated from Fig. 3 to b& k=0.9
which causes some of these atoms to be colored togethem. The effect of the in-plane smearing is to prevent the
with the actual dislocation atoms. For details about thefaulted ribbon between the partials from being a perfect in-
method we refer to Ref. 32. The program has been used itiinsic stacking fault, but also to increase the total width of
simulations involving different defects, e.g., migrating grainthe fault compared to the separation of the partials. However,

boundarie€ and high velocity dislocation’s. the in-plane smearing is only-60% of the total splitting
width, indicating that the partials are well separated. If an-
D. Simulation methods isotropy can be neglected, the application of relatidn

The simulations are either molecular-dynamigdD) should be valid. The equivalent relatfdior the splitting of a

simulations at a finite temperature or energy-minimizationperfECt edge dislocation into two Shockley partials predicts
that separation to be 2.5 nm, which should be compared to

simulations at zero temperature. The simulations in Se : . ; .
X . . he experimental resdh of 3.8+0.6 nm. Using anisotropic
IV B 3 were performed using the Langevin algorithm, where o 7 .
. s . elasticity theory’ with a stacking-fault energy of 70 mJfm
a small fluctuating force and a friction term stabilize the : o : . _
results in splitting widths for a screw and an edge dislocation

temperature at 580 K. All other finite-temperature simula- . . )

) : of 1.3 nm and 4.1 nm, respectively, in better agreement with

tions were performed at room temperatRT) using the . ; .
experiment and our result for the screw dislocation. Hence,

Verlet algorithm after the temperature had been stabilized b¥he incapability of relation1) of reproducing the experimen-

an initial appllcathn_ Of Andersen thermalization. Finally we tally found splitting widths must be attributed to the fact that
also use direct minimization of the energy by a molecular-

dynamics(MD) minimization algorithm(Mpmin). The Mp- this relation is derived from isotropic elasticity theory.
min algorithm performs a Verlet MD time step and zeros the
momentum whenever the dot product between the momen- o ]
tum and the force is<0, thereby bringing the system to an _The _models based on elast|q|ty theory estimate the cross-
energy minimum. The length of an MD time step is Slip activation energy to approximately 2 eV. This energy is
5.4x 1075 s. For details about the MD algorithms and the Much too high to produce a rate of cross slip which can be

employed MD simulation tool and visualization tool, we re- Simulated with ordinary MD simulations, where the typical
fer to Ref. 33. time scale of a simulation is 10—100 ps. However, it is pos-

sible to simulate different optimized static configurations of
the dislocation, and thereby obtain information about the
structures and energies. To determine the stress-free cross-
A. Bulk simulations slip activation energy in the FE model we divide the problem
in two. The reason for this lies again in the length scale of
the problem. The separation between the two constrictions in
As a starting point the equilibrium splitting widtth, of  the transition state is expected to beb584.0 nm which
the dissociated screw dislocation was determined. This willmplies the use of a computational cell at least twice this
serve as yet another check of the reliability of the interatomidength. We therefore decided to make simulations of isolated
potential. d, was found by varying the widthv and the constrictions in computational cells of varying sizes. As can
length /* of the computational cell, using both direct mini- be seen in Fig. 1, the two constrictions necessary in the FE
mization of the energy and RT simulations. Periodic boundmodel are not equivalent. At constrictid the partials as-
ary conditions were applied in tj&10] direction(along the  sume screwlike character, whereas at constrickidhe par-
dislocation line and a perfect screw dislocation as well astials are more like edge dislocations. We shall distinguish
two Shockley partials of variable initial splitting width in between these two constrictions and refer to them as “screw-
both {111} planes were used as initial configurations. In alllike” and “edgelike,” respectively.
casesdy=7+ 1k, wherek is the length of a(112) vector. We shall define the energy of a constriction as the differ-
At room temperature this correspondsiip=1.5+0.2 nm, in  ence in minimized energy of the constricted dislocation and
very good agreement with the experimental réSubf  the minimized energy of two parallel Shockley partials of the
dp=1.8=0.6 nm. Using the elastic constants from Table Isame lengths”. The procedure of determining the constric-
and the isotropic elasticity relatigil) to determine the equi- tion energy then consists of two steps: First, we minimize the
librium splitting width results indy=1.1+0.1 nm. energy of two reference systems, each containing a pair of
A prominent feature of the splitting of the perfect screw parallel Shockley partials in the {11) plane and thel(11)
dislocation is the in-plane smearing of the Shockley partialplane, respectively. Second, we extract the four top and four
which strongly influences the stacking between them. Thidottom(110 planes of the relaxed configurations. Taking the
smearing is also observed in computer simulattbi§ of  top planes and bottom planes from different relaxed refer-
edge dislocations in Cu. In Fig. 3 the radius of the atoms haence systems and making a sandwich with a system contain-
been reduced to allow inspection of the stacking sequencéng an initially constrictedand twisted dislocation gives us
and it is easily seen how the partials invade the ribbon beene constriction. Taking the other top and bottom set with

2. Cross-slip activation energy

IV. RESULTS AND DISCUSSION

1. Splitting width
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31 . T T activation energy agrees well with the result of Duesbery
et al® mentioned in Sec. II, and it is somewhat higher than
the estimates of Escaand Pischl and SchoeckAlso, the

3.0 b minimum separation between noninteracting constrictions is
in perfect agreement with all three estimates based on elas-
ticity theory. For clarity we only show the sum of the con-

; striction energies in Fig. 5. Taken separately the constriction
L 29 r ] energies converge similarly to the sum, but they show a very
>y interesting difference: The energy of the edgelike constric-
:s..:’ tion is 3.8 eV, whereas the energy of the screwlike constric-
é 28 F . tion is negative —1.1 eV. None of the mentioned works

based on elasticity theory treat the constrictions separately,
making a detailed comparison impossible.

The most striking result is the negative energy of the
screwlike constriction. This indicates that the configuration
with the dislocation in the constricted and twisted screwlike
state is energetically more favorable than just two parallel

2.6 L . . . Shockley partials in one glide plane. Intuitively it is obvious
30 40 50 that the screwlike constriction must be energetically pre-
Dislocation length (b) ferred over the edgelike constriction. In dislocation .theory. it
is well established that the self-energy of a screw dislocation

FIG. 5. Total energy in eV of the two constrictions as a functioniS lower than that of an edge dislocation. It is also knbwn
of dislocation length”. The width of the systems is kept fixed, that the interaction energy between two perfect screw dislo-
w=11.3 nm. The energy converges f6r50b. cations inclined at an angle of 45° is zero. The angles be-

tween the partials involved here are not exactly 45°, but they
another initially constricted system gives us the second corare not very far from that. Finally the constriction reduces
striction. It is important to keep the four top planes and thethe area of the stacking fault, thereby lowering the energy for
four bottom planes static; i.e., the atoms are not allowed tdoth constrictions.
move during the simulation. By using the top and bottom The atomistic approach enables an even more detailed
from the already relaxed systems as static atoms, we are alilevestigation of the energetics than that described above. It is
to mimic a semi-infinite bulklike dislocation on either side of possible to plot the energy of the systems layer by layer,
the constricted part. The choice of four static planes ensurdbereby gaining insight into the “energy distribution” along
that the dynamic atoms do not feel the vacuum above anthe dislocation line. The decomposition of the total energy
below the static layers. We have performed simulations withinto contributions from individual atoms is of course, in prin-
dislocation lengths in the rang80-6Qb (7.7-15.3 nmand  ciple, not unique. However, within the EMT there is a natu-
with the width perpendicular to the dislocation in the rangeral way of doing thi€ The energy of arAB (110) plane pair
7.7-14.8 nm. The smallest system consisted of 36 750 atonis defined as the difference in energy betweem&pair in
and the largest system consisted of 156 060 atoms. Calculatie relaxed reference systems containing parallel partials and
ing the two constriction energies for each system size thethe actualAB pair in the constriction system. TheB pairs
requires energy minimization of 4 systems, including the redin the reference systems all have the same energy, whereas
laxation of the two reference systems. the energy of theAB pairs in the constricted systems are

It is obvious that the constraint of equilibrium separationexpected to vary along the dislocation line. In Fig. 6 we
distance between the partials imposed by the static layershow the results of such a projection of the energy onto the
makes the energy of the constrictions depend on the lengtindividual AB pairs for the systems consisting of 156 060
of the computational cell’. This dependence is, however, atoms havingv=11.3 nm and”=60b (15.3 nm. We only
expected to vanish ag is increased, thereby making the show the energy of the dynamic atoms. In this type of plot
constriction energies converge. To check this we performethe qualitative difference between the constrictions is very
simulations with a fixed width ofv=11.3 nm and” varying  apparent. Returning to the intuitive considerations about con-
from 3(b to 6(b. The results of these simulations are shownstriction energies given above, we can try to explain the be-
in Fig. 5. The convergence of the energy is clearly seen, antlavior. For the screwlike constriction there is a drop in en-
we can estimate a minimum length, i.e., a minimum distancergy towards the center of the system. This might be
between noninteracting constrictions,-060b. To check the explained by the lowering of the self-energy of the partials as
dependence of the energies on the width of the system, wiaey assume a more screwlike orientation, the reduction in
performed simulations with a fixed lengthi=30b and interaction energy also due to acquired screw orientation,
widths in the range 7.7—14.8 nm. These simulations showednd, finally, the reduction in stacking-fault area. For the
no dependence of the energies on the widths for widthgdgelike constriction only the reduction in stacking-fault area
larger than 10 nm. For systems with widths less than 10 nmyould tend to reduce the energy. The acquirement of a more
we observed a small increase in the energies. Based on thesdgelike orientation would, according to dislocation theory,
observations we can conclude that the minimum separatiocause the energy to increase. Common to the two constric-
between independent constrictions 4s50b, and that the tions is, however, a peak in energy located around the center
cross-slip activation energy is 2.7 eV. This result for theof the system. A probable explanation is that atomistic

27+ -
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FIG. 6. Energy contribution from individual 10 plane pairs to
the total energy of the two kinds of constrictions. Upper curve:
edgelike constriction. Lower curve: screwlike constriction. The
length of the dislocations ig€'=60b (15.3 nn) and the width of the
systems isw=11.3 nm. The systems consist of 156 060 atoms.
Only the contributions from the dynamical atoms are shown. Notice
the negativeenergy of the screwlike constriction.

effects begin to play a role. Such effects could be caused by
the increasing overlap of the cores of the partials and the
eventual recombination into a perfect screw dislocation at
the center of the system. The extension along the dislocation
line of this “atomistic domain” can be estimated from the
figure to be approximatelyt6 This rough estimate fits nicely
with the pictureq(see Fig. 7 of the constrictions, where the
extension of the recombined domain is also aliéuif)b by
visual inspection.

In Fig. 7 we show relaxed configurations of both constric-
tion types. The systems are the same as those in Fig. 6. The
two constriction types cannot be distinguished visually.
From pictures similar to Fig. 7 it is possible to estimate the
length over which the partials constrict simply by counting
the number of planes where the partials are nonparallel. The
counting was done using pictures with reduced atomic radii
and no coloring of the atoms, i.e., not using Fig. 7. For both
constrictions the result i25-30b (6.4—7.7 nnm. Decreas-
ing the length/” of the dislocation to 40 does not change
the visual nonparallel lengths significantly. These nonparallel
lengths are representative for all the systems we have used.
A nonparallel length of-30b indicates that this is the mini-
mum reasonable length of the dislocations in simulations of FIG. 7. Relaxed configurations of both constriction types. The

this kind. systems are the same as those in Fig. 6. The systems have been cut

The. negatiye energy of the screwlike con;triction raise§n halves and rotated to display the dislocation in both glide planes.
some interesting questions about the behavior of a screw

dislocation: For example, will screw segments in a disloca- ) o )
tion network dissociate into Shockley partials in two glide Screwlike constrictions. In Sec. IV B we show how cross slip
planes connected by a screwlike constriction? And how igan be initiated by the creation of a screwlike constriction
the mobility of a screw dislocation affected by the presenceéiear a free surface. A direct consequence of such surface
of a screwlike constriction? Another interesting aspect is thewucleated cross slip is the annihilation of two screw disloca-
apparent lack of experimental evidence of the existence dions of opposite signs.
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FIG. 8. Four different systems with one freEl0) surface after direct energy minimizatiof® (111) plane, static atoms in the bottom
of the crystal.(b) (111) plane, static atoms in the top of the crystel.(111) plane, static atoms in the bottom of the crystd).(111)
plane, static atoms in the top of the crystal. The dislocation has cross slipped in the bottom of the crystal, thereby creating a screwlike
constriction. The differences between the two glide planes are due to the different orientation of the surface step relative to the glide planes.

B. Free surface simulations tion. By removing the periodic boundary conditions from the
already relaxed configuration containing two parallel partials
) 03 ; ~and making, e.g., the four tofd10) layers static, it is pos-
Experiment$'~**have shown that cross slip of screw dis- sjple to mimic a semi-infinite rod with one dissociated screw
locations also, maybe preferentially, takes place at free sulgisiocation ending at a fre@ 10 surface in the bottom of the
faces. The effect of a free surface on the configuration of pysta| Having the dislocation initially in either of the two
dissociated dislocation is very different from usual bulk be- ossible glide planes gives four different systems with one

hawor, To Iesiuat o ol of a e suface HazZldNiic 110 surface. Tre o systems wih two ekl s
b faces were generated simply by removing the periodic

copy (TEM) experiments on low-stacking-fault-energy CuAl " i
alloys and used elasticity theory to address the problem the%)_oundary conditions from the already relaxed reference sys

retically. According to the theory the free surface acts in ems, _thereby creating clusters with a single dislocation
such a way as to modify the interactions between the partial§Merging on both fre¢l10 surfaces. All the systems had
in two ways. In the vicinity of a free surface the partials W=9-2 M and/’=40b (10.2 nm and consisted of 73 960
attractand they tend to rotate towards screw character. For §0ms. We performed direct energy minimization as well as
dissociated screw dislocation running through a slab an&®T simulations followed by a quench bypmin energy
emerging at free surfaces on both sides of the slab, these tw!nimization. .
effects will compete on one side of the slab and reinforce on Figure 8 shows the four systems with one fté&0) sur-
the other. The experimental results showed good agreemeffice after the direct energy minimization. For the two sys-
with the predictions of the theory with a preference of thetems with the partials initially parallel in thet (1) plane and
partials to acquire screw character. In order to investigate thwith static atoms in the bottom of the crysf&ig. 8@] or in
role of a free surface qualitatively, we have made simulationghe top of the crystdlFig. 8(b)], the predicted effects of the
where the dislocation is perpendicular to one or two freefree surface are clearly seen. In thkel(d) plane the partial
(110 surfaces. Burgers vectors point toward each other as seen in k. 4
The simulations with just one free surface were performed-or the system with static atoms in the top, one of the Shock-
in the same fashion as the simulations containing a constridey partials bows out away from the other thereby acquiring

1. One dislocation: One free surface
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more screw character, whereas the other partial stayserformed RT simulations followed by a quench bgmin
straight. The tendency to acquire more screw characteminimization on systems with two fre@10) surfaces; i.e.,
seems to be stronger than the tendency for the partials te systems were clusters with the partials initially in either

attract, in agreement with the experimental findiAjslow- the (Ill) plane or the (il) plane. From the simulations of

ever, it is not easy to judge which of the effects is the stron- . . )
ger because of the interaction with the image dislocation gystems with one fre€l10) surface, we expect the first sys

parallel to the real dislocation, which would also tend tcﬁem to recombine into a perfect screw dislocation in the top

. — . . of the crystal and to split even further than the bulk splitting
attract the partials to the free 11) surfaces. With the static .
atoms in the bottom of the crystal, the effect of the freel” the bottom of the crystal. For the latter system we expect

surface is to make the two partials recombine into a perfe Tlhe system to perform cross siip in the bottom of the crystal,

screw dislocation in the top of the crystal. There is no sign o l;]t Itthls ntﬁt clea: wheth(far the cros}§ S“pt.w'" b(.athcompletel_clj(r
redissociation of the perfect screw dislocation in thé& 1} whether the system preters a configuration with a Screwlike

NV . constriction. The system with the partials initially in the
plane. The recombination in thel{1) plane is a result of — . L
one or both of the effects of a free surface predicted b)ﬂlll) plane behaves as expectgd. The pgrUaIg rgcombme n
elasticity theory, and together these two effects are strongeP€ top of the crystal with no sign of redissociation in the
than the interaction with the parallel image dislocations.(111) plane and they repel in the bottom of the crystal. After
Again one of the partials bows out to acquire more screw~11 ps(and before the quengthe dislocation is located off
character, whereas the other partial stays straight. center in the crystal, due to the attraction to the image dislo-
The asymmetrical configurations of the partials near thecation; see Fig. @. The system with partials initially in the
free surfaces in Figs.(8 and 8b) must be attributed to the (111) plane performs a complete cross slip to tHel¥)
asymmetrical positions of the partials with respect to theplane. The partials recombine and redissociate in the bottom
surface step. Furthermore, the tfidl 1} glide planes are not of the crystal, thereby creating a screwlike constriction. The
equivalent with respect to the step on the (&0 surfaces. screwlike constriction ascends the crystal, making the par-
The surface step is located in 21(1) glide plane; see Fig. 2. tials in the top gradually change their glide plane from the
When the partials are in this plane the step is parallel to th¢111) plane to the {11) plane. The cross slip is completed
partials. However, when the partials are in al() glide in ~11 ps. Figure &) shows an intermediate stage in the
plane the surface step is located between the partials at anoss slip and Fig. @) shows the final relaxed configuration
angle of 70.53°. of the cross-slipped dislocation after the quench. Figufas 9
For the two systems with the Shockley partials initially and 9c) are very similar to TEM pictures of dissociated
parallel in the (1.1) plane, the effect of the free surface is screw dislocations in thin foils in Ref. 23.
therefore somewhat different. In this plane the partial Bur- To check the significance of the orientation of the surface
gers vectors point away from each other; see Fig).&/he  step with respect to the partials we performed simulations
system with static atoms in the top of the crydfaig. 8d)]  similar to the two simulations with two free surfaces, but this
corresponds to Fig.(8). The two partials recombine as ex- time with the step parallel to a (11) plane; i.e., the surface
pected into a perfect screw dislocation in the bottom of thestep has been rotated compared to the step seen in Fig. 2.
crystal, but in this case we observe an additional splitting ofThe results are equivalent to the simulations with the original
the perfect screw dislocation in thé 11) plane. The redis- step orientation. Now the system with the partials initially in
sociation in the {11) plane, not visible in Fig.(8l), gener-  the (111) plane cross slips to the 11) plane, while the
ates a screwlike constriction on the dislocation and allowssystem with the partials initially in the (11) plane, which is
the partials to be in a glide plane parallel to the surface stemow parallel to the step, does not. The two final configura-
Apparently there is no or a very-low-energy barrier for thistions have the partials recombined in the bottom of the crys-
kind of surface nucleated cross slip. For the system withal and split in the top of the crystal.
static atoms in the bottofiFig. 8(c)] no net effect of the free These simulations show that there is a strong preference
surface is observed. The partials stay straight, even verfor the dissociated screw dislocation to be in the glide plane
close to the freg110) surface. The tendency to rotate to- parallel to the surface step, and that the dislocation will adopt
wards screw character seen in Figh)8seems to be compen- a configuration with perfect screw dislocation in one end and
sated by an attraction to the surface step. two nonparallel Shockley partials in the other end. It is the
For all four systems we have also performed RT simuladesire of the partials to be in a plane parallel to the surface
tions followed by a quench byibmin minimization. These step and not the possibility of making a screwlike constric-
simulations show no qualitative differences from the abovetion, which controls the surface-nucleated cross slip, and
mentioned simulations. The only difference is for the systenthere will be an energy barrier for surface nucleated cross
with static atoms in the top of the crystal and the partialsslip away from the glide plane parallel to the surface step.
initially in the (111) plane which shows surface nucleated Finally we performed simulations on systems with differ-
cross slip. The redissociation in th& 1) plane in the bot- €ent step orientations in either end of the crystal. With the
tom of the crystal is much more pronounced, with the par-partials initially in the (11) plane or the (11) plane this
tials in the lower part of the crystal in thd {1) plane adopt- gives four possibilities. For the two systems with the step
ing a configuration almost identical to that of FigaB parallel to the (11) plane in the top and the step parallel to
the (111) plane in the bottom we expect the dislocation to
adopt a configuration with a screwlike constriction. This con-
In order to obtain more information about the influence offiguration will allow the partials to be parallel to the step in
free surfaces on the configuration of the partials, we alsdoth ends of the crystal. However, a similar configuration

2. One dislocation: Two free surfaces
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FIG. 9. Room-temperature simulations with two f(@&0) surfaces(a) Partials initially in the Ell) plane. The partials recombine in the
top of the crystal and are attracted to the freél). surface(b) Partials initially in the (il) plane. The dislocation has cross slipped from
the (ﬁl) plane to theill) plane in the bottom half of the crystal, thereby creating a screwlike constriction. The trace of the stacking fault
between the partials of the non-cross-slipped part of the dislocation is seen in the upper half of the(cyyBtatials initially on the
(111) plane. The cross slip is complete, and the dislocation is entirely inItma) (plane. The configuration has been quenchesidayin
minimization.

with the partials parallel to the step in both ends, when thalifferent. The partials stay in their initial glide plane, adopt-
step orientations have been switched, would result in creing a configuration with a perfect screw dislocation in one
ation of an edgelike constriction. The simulations with theend of the crystal and two nonparallel Shockley partials in
step in the top parallel to the (1) plane and the step in the the other end of the crystal. There are no signs of cross slip

bottom parallel to the11) plane showed the expected be_l(;adingt_tc: Confi%ﬁﬁitio&s With an ed_?helike ((:jonstriction and
havior. Both systems create a configuration with a screwlikd"® Partials parallel to the steps in either end.

L ; L These simulations demonstrate the influence of a free
constriction and the partials parallel to the step in either end(llO) surface on the configuration of a dissociated screw

The system with the partials initially parallel in theX1) gjsocation perpendicular to that surface. We have qualita-
plane performs cross slip in the top of the crystal whereas thgyely confirmed the predictions by elasticity theory of the
system with partials initially parallel in thel(L1) plane per- effect of a free surface. In addition we have observed a
forms cross slip in the bottom of the crystal. For the twostrong preference for the partials to be in the glide plane
systems with the switched step orientation the results arparallel to the surface step.
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FIG. 10. Snapshots from the simulation showing annihilation of two screw dislocations of oppositdaéigfdé.dll) planes(a) The
dislocation withb= %[ﬁO] has performed a cross slip in the top of the crystal, thereby creating a screwlike constriction. The presence of the
dislocation withb=3[110] in a (111) plane and the non-cross-slipped part of h)he%[l_m] dislocation also in a (11) plane is clearly
seen as two vertical lines of stacking fault marked SF separated by &8 plane spacinggb) A new Shockley partiafvertica) has been
created to the right in theI(ll) plane. The Shockley partial to the left is the originally cross-slipﬁﬁ&_dl] and the small inclined part
connecting these two is the remains of %ﬁé_ll] Shockley partial(c) The newly created Shockley partiﬁllﬁ] to the right reacts with
the %[1_21] Shockley partial and they annihilat@l) Annihilation in the top of the crystal, leaving a small stacking-fault loop comprising the
%[2_11] and theé[l_Zl] Shockley partials. The stacking fault loop moves down through the crystal and disappears at the bottom, leaving the
crystal defect free.

3. Annihilation of two screw dislocations different glide planes separated by onh2.2 nm. We per-

An interesting parameter which is believed to be closelyformed a simulation with periodic boundary conditions,
related to cross slip is the minimum stable dipole height oflong the[110] direction and a simulation without periodic
screw dislocations of opposite signs. Experiméritave boundary conditions, i.e., with two frg@10 surfaces.
shown this length to be 50-500 nm in Cu. Screw disloca- The simulation with periodic boundary conditions showed
tions of opposite signs in different glide planes closer tharho sign of cross slip. The two dislocations dissociate in two
this minimum dipole height are believed to cross slip andparallel (111) planes as in Figs.(d and 4c) separated by
annihilate. Due to the length and time scale, this problem iseven{111} plane spacings, with splitting widths fluctuating
not suited for ordinary atomistic MD simulations. However, around an average value of1l nm. The small value of the
it might be possible to obtain insight into the cross-slipsplitting width must be attributed to the presence of the other
mechanism of a single screw dislocation, by performing MDgjs|ocation, because no significant temperature effect was
simulations of systems containing two screw dislocations ogpserved in the simulations of just one dislocation in Sec.
opposite signs at very close range. In order to speed up thg/ o 1. Occasionally the partials in the same glide plane
simulations, it was decided to use a high temperas80 K} \ere so close that the dislocation might be thought of as
and rather small systems with=28.6 nm anch=50b (12.7  1ecombined. However, as mentioned for the partials in Sec.
nm). The systems consisted of 76 050 atoms. The two screyy, o 1, there is an in-plane smearing of the dislocation
dislocations with Burgers vectors 3[ 110] were initially in-  which confines it to a particular glide plane and inhibits cross
troduced in the system as two perfect screw dislocations islip. The simulation used 4600 time steps corresponding to
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~25 ps. In the context of cross slip this is a very shortminimum separation between noninteracting constrictions is
simulation, and it is in no way possible to rule out the pos-in perfect agreement with results obtained from elasticity
sibility of some kind of bulk cross slip on the basis of this theory. Our result for the stress-free activation energy in the
simulation. Friedel-Escaig cross-slip mechanism is in very good agree-
To investigate the role of free surfaces in this kind of ment with an earlier nonatomistic approachut it is some-
system, we removed the periodic boundary conditions alongyhat higher than other estimat®$ derived from elasticity
the [110] direction from the above-mentioned system. Thisiheory.
produced cross slip of one of the dislocations and led t0 oy atomistic simulations also show that the two constric-
annihilation of the two screw dislocations through successivgy,o necessary in the Friedel-Escaig cross-slip mechanism
dislocation reactions. It was possible to monitor the detailed, ., equivalent, and that one of them, the screwlike con-
disloc.ation reactions, ther.eby enabling e_xgct .specification 9 triction, is energetically favored compared to two parallel
the different stages leading to the annihilation. When theShockIey partials. The nonequivalence of the two constric-

periodic boundary conditions were removed, the two SCrWions is a fact not usually appreciated in the literature. The

dislocations were split into Shockley partials in two parallel . . ; . .
— i differences have been investigated, qualitatively and quanti-
(111) planes separated by sevdril plane spacings. The tatively

annihilation of the two screw dislocations is initiated at the A . oo . .

s we have pointed out, the activation energies obtained
top of the crystal, and proceeds downwards through the CYStom elasticity theory are subject to substantial uncertaint
tal in the following manner. The dislocation with y Y Jec X - Inty

— ) _ ) due to the break down of the isotropic elasticity relation
b=3[110] performs cross slip to thel(1) plane in the top  gescribing the splitting of a perfect screw dislocation.
of the crystal, thereby creating a screwlike constriction onwhether the overall quantitative agreement between the ato-
the dislocation; see Fig. 1&. The Shockley partial mistic and the elastic approaches is an indication of a deeper
[211], glissile in the (1 11) plane, is attracted to the Shock- concordance or merely fortuitous can only be resolved by
ley partial 3 121] glissile in the (1L1) plane, and the two detailed elastic work on isolated constrictions.
partials react to produce a sessile stair-rod dislocdtion: The effect of having the dislocation perpendicular to a
free surface has been investigated, and surface-nucleated
cross slip observed. The important feature in surface-
nucleated cross slip is the possibility of creating a screwlike
) ] ] o ) constriction without the accompanying edgelike constriction
The stair-rod dislocation, not shown in Fig. 10, is located aiheeded for bulk cross slip. On the other hand, we have also
the intersection of the (1) plane containing the observed a strong preference for the partials to be in a glide
b=3110] dislocation and the 1(11) plane containing the plane parallel to the surface step, meaning that there is an
newly cross-slipped part of théo= %[1—10] dislocation.  €Neray barrier for cross slip into the glide plane not parallel

H the stair-rod dislocation is in th n | to the surface step. Hence, more quantitative work on the
ence, the stair-rod dislocation is in the samé 1} plane as energetics of different dislocation configurations close to a

the s[211] Shockley partia[see, e.g., Fig.@)] and attracts  free surface needs to be done before we draw conclusions
this: about the role of surface-nucleated cross slip.
1 _ 1 _ 1 _ In a simulation of two screw_di_slqpations of op_pqsit_e
~[120]+2[211] (173~ =[122] 11y - (6)  signs, surface-nucleated cross slip initiated the annihilation
6 6 6 which proceeded via successive energetically favorable reac-
The resultant Shockley partiéﬂlﬁ] is glissile in the same tiqns. T_he ato_mistic approach allowed monitoring c_nf th? de-
_ ] — ] tailed dislocation reactions and thereby exact specification of
(111) plane as the cross-slipped part of the3[110] dis-  {he intermediate stages leading to the annihilation.
location; see Figs. 1D) and 1@c). The newly generated  The role of cross slip in different macroscopic phenomena
Shockley partial reacts with the remainiggl21] Shockley  such as fatigue and plastic deformation is today well estab-
partial in the (L 11) plane, and the two partials annihilate: lished. However, the present understanding of the intrinsic
properties of cross slip is still rather nebulous. The results
obtained in the present work may help to establish a better
understanding. Altogether we may conclude that atomistic
_ simulations are well suited for problems involving disloca-
The reactions create a stacking fault loop in thdX) plane tion interactions at the nanoscale, where the use of methods
which moves down through the crystal while the annihilationbased on elasticity theory is questionable.
takes place; see Fig. (d). Eventually the loop reaches the
bottom of the crystal and disappears, leaving the crystal de-

1 — 1 1 —
5[211](511>+5[121](111>H6[110]' (5

1 — 1 —
g[lZI-](Ill)+6[121](Tll)—>0 . (7)
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