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Simulations of the atomic structure, energetics, and cross slip of screw dislocations in copper
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Using nanoscale atomistic simulations it has been possible to address the problem of cross slip of a disso-
ciated screw dislocation in an fcc metal~Cu! by a method not suffering from the limitations imposed by
elasticity theory. The focus has been on different dislocation configurations relevant for cross slip via the
Friedel-Escaig~FE! cross-slip mechanism. The stress free cross-slip activation energy and activation length for
this mechanism are determined. We show that the two constrictions necessary for cross slip in the FE cross-slip
mechanism are not equivalent and that a dislocation configuration with just one of these constrictions is
energetically favored over two parallel Shockley partials. The effect of having the dislocation perpendicular to
a free surface is investigated. The results are in qualitative agreement with transmission electron microscopy
experiments and predictions from linear elasticity theory showing recombination or repulsion of the partials
near the free surface. Such recombination at the free surface might be important in the context of cross slip
because it allows the creation of the above-mentioned energetically favorable constriction alone. In addition we
observe a strong preference for the partials to be in a glide plane parallel to the surface step. We have
performed simulations of two screw dislocations of opposite signs, one simulation showing surface nucleated
cross slip leading to subsequent annihilation of the two dislocations. It was possible to monitor the annihilation
process, thereby determining the detailed dislocation reactions during annihilation.@S0163-1829~97!06630-7#
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I. INTRODUCTION

The prominent role of dislocations and other lattice d
fects in controlling the mechanical properties of ductile m
terials is well established. Dislocation theory1 provides an
understanding of the basic properties of single dislocati
and, to some extent, the interaction between dislocatio
However, the interactions between many dislocations can
sult in entangled or more ordered structures, which com
cates the use of dislocation theory. In the other extre
elasticity theory, which is the basis for dislocation theo
breaks down close to the dislocation, meaning that the in
actions between two dislocations at very close range ca
be accurately described either.

One of the most famous examples of this deficiency
dislocation theory is cross slip of a screw dislocation. Cr
slip is an important mechanism in plastic deformation
ductile materials. The onset of stage III in the stress-str
curves of single crystals,2 the minimum stable dipole heigh
of screw dislocations of opposite signs,3 and the saturation o
the stress in cyclic constant strain amplitude experime4

are examples where cross slip is believed to play a cru
role. Cross slip is a difficult problem to tackle, because
contains both long-ranged elastic interactions between d
cationsand atomistic effects due to recombination of disl
cations. Until now cross slip has only been theoretically
vestigated using methods derived from elasticity theory, t
neglecting atomistic effects.
560163-1829/97/56~6!/2977~14!/$10.00
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Our approach to the problem of cross slip is nanosc
atomistic simulations involving up to 156 060 atoms, there
including both purely atomistic effects and to some ext
long-range elastic interactions. Due to the length scale of
problem, cross slip has, to our knowledge, not been
dressed by atomistic simulations before. Based on res
from earlier nonatomistic simulations,5,6 the details of the
cross-slip event are expected to be at the nanometer s
which implies simulations involving;100 000 atoms. The
use of atomistic simulations will of course dispose of t
shortcomings of elasticity theory. Other problems such
finite-size effects and time-scale problems must be expe
and dealt with. Furthermore, the choice of the interatom
potential is very important. Simple pair potentials all ob
the Cauchy relationC125C44 ~Ref. 7! and thus cannot be
expected to give a reliable description of elastic properties
specific materials. The use of a more sophisticated poten
is therefore necessary. Such a potential can be derived f
the effective-medium theory,8 which provides a computa
tionally efficient interatomic potential that also include
many-atom effects.

In this paper we will be concerned with cross slip of
dissociated screw dislocation from one close-packed plan
another in an fcc metal~Cu!. We investigate bulk propertie
as well as the effects of having the dislocation perpendicu
to a free surface. More specifically we shall focus on diffe
ent possible dislocation configurations in connection w
cross slip, and we determine the stress free activation en
and activation length. We show that the two constrictio
2977 © 1997 The American Physical Society
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necessary to produce cross slip in the Friedel-Esc
model9,10 are not equivalent, and that a dislocation config
ration with just one of these constrictions is energetica
favored over that of two parallel Shockley partials. We a
show that a free surface can act as a nucleation cente
cross slip, thereby facilitating the annihilation of two scre
dislocations of opposite signs. To check this we have p
formed simulations of two screw dislocations of oppos
signs and observed their mutual annihilation. The res
might serve as an atomic scale check of the approximat
made in the analytical theory10 and simulations of single dis
locations made within the framework of elasticity theory,5,6

but also as input to the more mesoscopic nonatomi
simulations11,12containing many~thousands of! dislocations,
and to the modeling of experimentally characterized dislo
tion microstructures evolving during plastic deformation a
fatigue.13,14

The paper is organized as follows. In Sec. II we brie
present and discuss earlier work on cross slip. The meth
used in this work are introduced in Sec. III. The results
presented and discussed in Sec. IV and finally we concl
in Sec. V.

II. EARLIER WORK ON CROSS SLIP

Several possible cross-slip mechanisms have b
proposed,15–17 but recently the model by Friedel9 and
Escaig10 ~FE! has attracted most attention. In this model t
dissociated screw dislocation must be recombined~con-
stricted! over a short length, comparable to a few times
dissociation width, in the primary glide plane before the su
sequent redissociation in the cross-slip plane; see Fig. 1.
FE model is derived on the basis of the line tension appro
mation following the method for calculating the constrictio
energy and shape by Stroh.18 The configuration of the par
tials far from the constriction, as determined in the line te
sion approximation, converges towards the equilibrium p

FIG. 1. The Friedel-Escaig mechanism for cross slip.~a! Cre-
ation of a Stroh-type constriction in the primary plane.~b! Disso-
ciation in the cross-slip plane~shaded! creating two twisted con-
strictions A and B. ~c! Two noninteracting constrictions. Th
Burgers vectors are indicated with arrows. Due to the differ
characters of the Shockley partials, the two constrictions are
equivalent. We denote the constrictionsA and B ‘‘edgelike’’ and
‘‘screwlike,’’ respectively.
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allel separation as an exponentially decaying functi
Hence, there exist a characteristic length beyond which
two constrictionsA and B ~see Fig. 1! can be considered
independent and a corresponding activation energy. Esca10

has shown that the redissociation of the screw disloca
and the motion~bow-out! in the cross-slip plane can be con
sidered independent. It is the external stress components
ing on the opposite edge characters of the Shockley par
that control the cross slip by modifying the relative splittin
widths in the two glide planes. The driving force for th
cross-slip mechanism is thus the widening of the stacki
fault ribbon in the cross-slip plane, and no net stress on
dislocation is necessary. The process is thermally activa
and the redissociation in the cross-slip plane can, in p
ciple, take place spontaneously without any applied stres

Experiments have been designed and carried out
copper19,20which, at least in a semiquantitative way, seem
confirm the FE model. However, other experiments on
and Si,21 Cu,22 and CuAl alloys23 suggest that cross slip also
maybe preferentially, nucleates at free surfaces.

One of the experimental problems is that it is impossi
to actually monitor the single cross-slip event and gain
tailed information about the intrinsic characteristics of t
dislocation reactions. To obtain a more detailed knowled
of the structure and energetics of the cross-slipping sc
dislocation, computer simulations within the framework
elasticity theory have been performed by Duesberyet al.5

and Pu¨schl and Schoeck.6 The method of Duesberyet al. is
based on numerical integration of the stresses and ene
along the dislocation lines, using a relaxation method to fi
the equilibrium configuration of the dislocation. The meth
is detailed in Refs. 5 and 24. Pu¨schl and Schoeck use th
Peierls model~see, e.g., Ref. 1! to account for the atomistic
structure of the dislocation core. They approximate the d
location shape by piecewise straight dislocation segme
and by varying the geometry of the polygon-shaped dislo
tion they can find a minimum energy configuration.

Although their methods are different, these authors arr
at rather similar results. Both Duesberyet al. and Pu¨schl and
Schoeck find that cross slip is stress aided in the sense
posed by the FE model. However, the stress depende
seems to be overestimated in the original Escaig theory c
pared to these works. Using the values for the relevant
rameters for Cu obtained in the present work~see Table I!,
the stress free cross-slip activation energy is found to be

TABLE I. Comparison between reference values of elastic c
stants and intrinsic stacking-fault energy and values calculated
EMT. The values for the elastic constants are in GPa. The unit
the stacking-fault energyg is mJ/m2. The shear modulusm, calcu-
lated with EMT, is that corresponding to the^110&$111% slip sys-
tem.

Element C11 C44 B m g

Cu ~Ref. ! 176.2a 81.8a 137a 46, b 59 c 70 d

Cu ~org. EMT! 177 82.6 137 50 17
Cu ~mod. EMT! 177 88.1 132 56 59

aRef. 38.
bRef. 1, p. 462.
cRef. 1, p. 430.
dRef. 30.
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56 2979SIMULATIONS OF THE ATOMIC STRUCTURE . . .
eV ~Ref. 5! and 2.1 eV~Ref. 6!. In both cases as well as i
Escaig theory the separation necessary for two constrict
to be considered independent is of the order~50–60!b, where
b is the length of the perfect Burgers vector.

The estimated activation energies are, however, subje
a considerable uncertainty for several reasons. The ela
description of a dislocation breaks down close to the dis
cation line ~the core!. This problem is usually avoided b
introducing cutoff radii in the calculations. These cutoffs a
likely to be of crucial importance to the problem of cross s
which, in some way, involves recombination of the tw
Shockley partials. Special attention must thus be paid to
cutoff radii. In considering the influence of the cutoff rad
and by using a refined version of the Stroh treatment o
constriction, Saada25 is led to conclude that the cross-sl
activation energy can only be estimated to an order of m
nitude within elasticity theory. Duesberyet al. also consider
this problem in their work. They too find a significant depe
dence on the cutoff radii, both quantitatively and quali
tively.

Another uncertainty in the estimation of the activati
energy from elasticity theory arises from the use of the re
tion for the splitting of a perfect screw dislocation into tw
parallel Shockley partials bounding a perfect intrinsic sta
ing fault,

d05
mb2~223n!

24pg~12n!
, ~1!

whered0 is the equilibrium splitting width,m is the shear
modulus,g is the intrinsic stacking-fault energy, andn is
Poisson’s ratio. This relation is derived on the basis of i
tropic elasticity theory and can of course be expected
break down when applied in the context of an anisotro
metal such as Cu, and it is in fact not fulfilled in our sim
lations. Applying relation~1! with the values forg and m
obtained in this work~Table I! results in an equilibrium split-
ting width of d0.4.5b. This value should be compared
the actual equilibrium splitting width obtained from th
simulations ofd0.6b or to the experimentally determine
value26 of d0.7b. Using the reference values forg and m
also given in Table I results ind0.4b.

The calculated activation energies are usually given a
function of either the dimensionless variabled0 /b or the
other dimensionless variableg/mb. However, the breakdown
of the elasticity relation~1! means that for a particular sys
tem different estimates of the activation energy can be
tained depending on the set of variables used. To illust
this point we can consider the results by Pu¨schl and Schoeck
They calculate the activation energy as a function ofd0 /b,
and if we use the value from our simulationsd0 /b56, the
above-mentioned 2.1 eV is obtained. If we instead take
valueg/mb50.0042 obtained in our simulations and use
lation ~1!, we only get 1.4 eV. Similarly, the above
mentioned activation energy of 2.5 eV by Duesberyet al.
transforms~in this case changing fromg/mb to d0 /b) to 3.4
eV. It is interesting to note that the analytical express
given by Escaig theory,20 when transformed into a functio
of eitherd0 /b or g/mb, results in activation energies of 1.
eV or 1.3 eV, respectively. Hence, there is a systematic l
ering of the activation energy when the dimensionless v
ns
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able is changed fromd0 /b to g/mb. Furthermore, there is
very good agreement between the results of Escaig and t
of Püschl and Schoeck, whereas the results of Duesb
et al. are roughly a factor of 2 higher.

The appeal of an approach like Escaig’s lies in the f
that it provides analytical expressions for interesting prop
ties such as activation energy and length. Even though
proximate, such analytical expressions can provide phys
insight that cannot be easily gained from numerical calcu
tions. Based on the analytical theory it is possible to des
specific experiments to check the theory. This has b
done,19,20 and the experimental results are in fair agreem
with the theory.

On the other hand, more accurate numerical calculati
like the ones mentioned above may provide detailed inf
mation about the interesting properties which cannot be
pected to be accurately included in the approximate the
By suitable scaling it is even possible to achieve this inf
mation for a wide variety of materials. The numerical sim
lations can also serve as another check of the approximat
made in the analytical theory, thereby complementing th

The qualitative agreement between the analytical the
and the numerical simulations indicates that the essen
physics of cross slip is well described within linear elastic
theory. Quantitatively the three approaches are also in
agreement, but, as we have seen, the cross-slip activa
energy is subject to rather substantial uncertainty. E
though the nonlocal part of the interactions is well describ
with elasticity theory, it must be emphasized that the over
of Shockley partials and eventual recombination into a p
fect screw dislocation at the constrictions is a nonelastic p
nomenon, which cannot be expected to be accurately
scribed even with the use of the most sophisticated meth
derived from elasticity theory.

To avoid the uncertainties resulting from the applicati
of elasticity theory there is no alternative to atomistic sim
lations. Such simulations may provide information about
partitioning of energy between elastic interactions and pur
atomistic effects, and possibly reveal new phenomena wh
cannot be dealt with in the elastic description. Atomis
simulations can be seen as the last step in a successio
increasingly accurate but less general methods.

III. METHODS

A. Effective-medium theory

The effective-medium theory8 ~EMT! is an approximate
total energy method which has been used in describin
wide variety of phenomena at surfaces and for bulk me
including dislocation generation at high strain rates,27 defor-
mation of nanophase metals,28 and tribology.29 In EMT the
energy of an atomi is calculated as the energy of the ato
embedded in a suitably chosen reference system with
same electronic density as in the real system and a correc
taking account of the difference between the real and re
ence systems.

Ei5Ec~ni !1EAS~ i !. ~2!

Ec(ni) is the cohesive energy of an atom embedded in
electronic densityni from its neighboring atoms.EAS is the
atomic-sphere correction which describes the change in
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2980 56RASMUSSEN, JACOBSEN, LEFFERS, AND PEDERSEN
ergy when the atom is moved from the real to the refere
system. The atomic-sphere energy is represented as the
ference between a pair potential contribution in the real
reference systems. In the present implementation of EMT
reference system is chosen to be an fcc crystal. The pa
eters entering into the EMT potential can be found fro
either first-principles calculations or from fitting to expe
mental values of bulk elastic and cohesive properties.8 Gen-
erally EMT describes the elastic properties of metals qu
well, but for Cu the energy of an intrinsic stacking faultg is
much underestimated. In the context of dislocation reacti
this low value of the intrinsic stacking-fault energy might
a serious drawback. The energy contributions from differ
atomic layers to the total stacking-fault energy have b
calculated30 using density functional theory for a range
transition and noble metals. An analysis31 of these calcula-
tions shows that the energetics can be understood in a si
two-parameter model. The two parameters describe the
tive contribution to the stacking-fault energy from thes and
d electrons and the results of the model are in excel
agreement with first-principles calculations.30 The parameter
describing the contribution from thes electrons can be ap
proximated by a pair potential. Furthermore, it is shown t
for the noble metals~Au, Ag, and Cu! this parameter is the
main contributor to the stacking-fault energy. With th
knowledge, it was decided to modify the original EM
atomic-sphere potential by a small additional pair poten
fitted so as to reproduce a reasonable intrinsic stacking-f
energy. The potential was chosen to be Gaussian shaped
located around the fifth-nearest neighbor in a perfect
stacking sequence. This corresponds to a distance
A(11/3)dNN wheredNN is the nearest-neighbor distance in
fcc crystal. As the modification is small in amplitude it wa
decided to keep all the original EMT parameters unchang
In Table I we show values of relevant elastic constants
Cu calculated with both the original and modified EMT p
tentials. For comparison we also quote experimental va
and the value for the intrinsic stacking-fault energy obtain
by the above mentioned first-principles calculation. The c
culated m is the shear modulus corresponding to t
^110&$111% slip system. The overall quality of the EMT po
tential is unaffected by the modification, and the calcula
values with the modified EMT potential are all withi
;15% of the reference values.

B. Geometry of the system

In all simulations the overall geometry of the systems
basically the same, and is shown in Fig. 2. Only the dim
sions of the systems and whether the initial screw disloca
is perfect or dissociated in one or two of the two possi
glide planes vary. The systems contain a centered screw

location withb5 1
2 @110#, and may thus be seen as a stack

of ~110! planes. The screw dislocation is introduced in t
otherwise perfect fcc crystal by using the result for the d
placement of the atoms from linear elasticity theory,

ub5
bu

2p
, ~3!

whereu is the angle between a fixed direction and the vec
from the dislocation to the actual atom. Since the fcc sta
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ing sequence in the@110# direction is . . .ABAB. . . , this re-
sults in two intertwined helix-shaped@110# planes. The two
Shockley partials are introduced as screw dislocations w
Burgers vectors equal to half the Burgers vector of the p
fect screw dislocation, and they can be in either glide pla
with variable initial separation. It is also possible to prepa
the system with partials of varying separation, e.g., like a
of the shapes shown in Fig. 1. In this latter case, the part
are approximated with straight dislocation segments be
calculating the displacements. The splittings in the two gl
planes are as follows:

~111!plane:
1

2
@110#→

1

6
@121#1

1

6
@211#,

~111!plane:
1

2
@110#→

1

6
@211#1

1

6
@121#. ~4!

In Fig. 2 we show a system consisting of 73 960 atom
The system is made up by a stacking of 80~110! planes, but
might as well be regarded as a stacking of 43 (111) planes
or 43 (111) planes. The length of the dislocation~the height
of the system! is denotedl , and the width of the two$111%
planesw. The two different$111% planes are not perpendicu
lar; rather, the angle between them is 70.53°. The$111% sur-

FIG. 2. A medium-size system consisting of 73 960 atoms. T
system contains one centered screw dislocation parallel to the@110#
direction perpendicular to the top surface. The surface step is
allel to the (111) plane. The width of the two$111% planes is
w59.5 nm, and the length of the dislocation~the height of the
crystal! is l 540b ~10.2 nm!. The inset shows the difference be
tween fcc and hcp sites in the (111) plane.
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56 2981SIMULATIONS OF THE ATOMIC STRUCTURE . . .
faces are always free. The steps on the two~110! surfaces are
parallel to a (111) plane, and the dislocation is located in t
middle of the system. In Sec. IV A we always apply period
boundary conditions along the@110# direction and the posi-
tion of the step is thus irrelevant. However, in Sec. IV B w
remove the periodic boundary conditions and the orienta
of the step becomes important. By bulk simulations~Sec.
IV A ! we mean simulations with periodic boundary con
tions along the@110# direction, even though the$111% sur-
faces are free. We will refer to simulations without any p
riodic boundary conditions as free surface simulations~Sec.
IV B !, meaning that one or two of the~110! surfaces are now
free.

The two $111% planes are not exactly equivalent with r
spect to a given direction, e.g., the@110# direction, and this
results in two different configurations of the Shockley p
tials in the two possible glide planes. This difference is
result of the two kinds of hollow sites, i.e., the fcc site a
the hcp site, in a$111% plane. For the (111) plane and the
(111) plane the fcc sites are geometrically different w
respect to, e.g., the@110# direction. In Fig. 3 we show a
close-up of a (111) plane with two Shockley partials, and

FIG. 3. Zoom-in on a (111) plane with the two Shockley par
tials colored black and grey. The system has been sliced throug
middle, and the radius of the atoms has been reduced to en
inspection of the stacking sequence. Perfect fcc stacking is se
the left and to the right of the partials. The stacking changes gra
ally from fcc to bridge~at the partials! to hcp between the partials
The inset shows the difference between fcc and hcp sites in
(111) plane.
n

-

-
a

is possible to inspect the detailed stacking sequence.
perfect fcc stacking is to the left and to the right of th
partials and the perfect Burgers vector1

2@110# points up-
wards in the figure. The atoms in fcc sites closest to
viewer are located in hollow sites surrounded by three ato
in the underlying plane comprising a triangle pointing to t
right in the figure, whereas for the hcp sites between
partials the corresponding triangle points to the left. For
(111) plane the fcc site is different and the underlying t
angle points to the left; see Fig. 2. When the perfect sc
dislocation dissociates, this results in two different config
rations of the Shockley partials. In the (111) plane the par-
tial Burgers vectors point away from each other, whereas
the (111) plane the partial Burgers vectors point toward ea
other. This can easily be understood in the following mann
In the (111) plane the sequence of the partials is dictated
the formation of the stacking fault in between them. T
symmetry operation that transforms the (111) plane into the
(111) plane is just a rotation around the@110# direction fol-
lowed by a 180° rotation around the plane normal. The la
rotation reverses the dislocation orientation, which me
that the signs of the rotated Burgers vectors must be reve
too. In Fig. 4 we show the splittings of the perfect scre
dislocation into Shockley partials in the two different glid
planes.

C. Identification of dislocations

In a study like this it is of course essential that we c
identify the dislocations. For this purpose we use a dislo

its
ble
to

u-

he

FIG. 4. Configuration of the Shockley partials in the two po

sible glide planes:~a! (111) plane,b5
1
2 @110#. ~b! (111) plane,

b5
1
2 @110#. ~c! (111) plane, b5

1
2@110#. ~d! (111) plane,

b5
1
2@110#.



lo
re
e

n
th
m
th

th
d
in

io
e
re

he
la

b
e

ar

th
e
n
is
he
e-

w
i

i-
nd

as
n
al

-

w
ia
h

ha
nc
be

left
ials
rin-
erls
he
l

the
in-
of

ver,

n-

cts
to

ion
ith
ce,
-
at

oss-
is
be
al
os-
of

the
ross-
m
of

s in

his
ted
an
FE

ish
ew-

er-
nd
he
c-
the
r of

our
he
fer-
tain-

ith
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tion finding program developed by Schio”tz.32 The basic idea
is to treat the dislocation as a topological defect as in dis
cation theory. For each atom small ‘‘Burgers circuits’’ a
made in the vicinity of the atom, thereby identifying th
atoms close to the dislocation line. These atoms can the
colored by a visualization tool. Atoms near the surface of
system are also given a ‘‘Burgers-vector’’ by the progra
which causes some of these atoms to be colored toge
with the actual dislocation atoms. For details about
method we refer to Ref. 32. The program has been use
simulations involving different defects, e.g., migrating gra
boundaries28 and high velocity dislocations.27

D. Simulation methods

The simulations are either molecular-dynamics~MD!
simulations at a finite temperature or energy-minimizat
simulations at zero temperature. The simulations in S
IV B 3 were performed using the Langevin algorithm, whe
a small fluctuating force and a friction term stabilize t
temperature at 580 K. All other finite-temperature simu
tions were performed at room temperature~RT! using the
Verlet algorithm after the temperature had been stabilized
an initial application of Andersen thermalization. Finally w
also use direct minimization of the energy by a molecul
dynamics~MD! minimization algorithm~MDmin!. The MD-

min algorithm performs a Verlet MD time step and zeros
momentum whenever the dot product between the mom
tum and the force is,0, thereby bringing the system to a
energy minimum. The length of an MD time step
5.4310215 s. For details about the MD algorithms and t
employed MD simulation tool and visualization tool, we r
fer to Ref. 33.

IV. RESULTS AND DISCUSSION

A. Bulk simulations

1. Splitting width

As a starting point the equilibrium splitting widthd0 of
the dissociated screw dislocation was determined. This
serve as yet another check of the reliability of the interatom
potential. d0 was found by varying the widthw and the
length l of the computational cell, using both direct min
mization of the energy and RT simulations. Periodic bou
ary conditions were applied in the@110# direction~along the
dislocation line! and a perfect screw dislocation as well
two Shockley partials of variable initial splitting width i
both $111% planes were used as initial configurations. In
casesd05761 k, wherek is the length of a1

4^112& vector.
At room temperature this corresponds tod051.560.2 nm, in
very good agreement with the experimental result26 of
d051.860.6 nm. Using the elastic constants from Table
and the isotropic elasticity relation~1! to determine the equi
librium splitting width results ind051.160.1 nm.

A prominent feature of the splitting of the perfect scre
dislocation is the in-plane smearing of the Shockley part
which strongly influences the stacking between them. T
smearing is also observed in computer simulations34–36 of
edge dislocations in Cu. In Fig. 3 the radius of the atoms
been reduced to allow inspection of the stacking seque
and it is easily seen how the partials invade the ribbon
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tween them. The stacking changes from fcc sites to the
and to the right of the partials to bridge sites at the part
and a few columns of hcp sites between the partials. In p
ciple it could be possible to fit the displacements to a Pei
model of the dislocation core, and obtain a value for t
dislocation ‘‘width.’’ The width of a single Shockley partia
can also be roughly estimated from Fig. 3 to be;4 k.0.9
nm. The effect of the in-plane smearing is to prevent
faulted ribbon between the partials from being a perfect
trinsic stacking fault, but also to increase the total width
the fault compared to the separation of the partials. Howe
the in-plane smearing is only;60% of the total splitting
width, indicating that the partials are well separated. If a
isotropy can be neglected, the application of relation~1!
should be valid. The equivalent relation1 for the splitting of a
perfect edge dislocation into two Shockley partials predi
that separation to be;2.5 nm, which should be compared
the experimental result26 of 3.860.6 nm. Using anisotropic
elasticity theory37 with a stacking-fault energy of 70 mJ/m2

results in splitting widths for a screw and an edge dislocat
of 1.3 nm and 4.1 nm, respectively, in better agreement w
experiment and our result for the screw dislocation. Hen
the incapability of relation~1! of reproducing the experimen
tally found splitting widths must be attributed to the fact th
this relation is derived from isotropic elasticity theory.

2. Cross-slip activation energy

The models based on elasticity theory estimate the cr
slip activation energy to approximately 2 eV. This energy
much too high to produce a rate of cross slip which can
simulated with ordinary MD simulations, where the typic
time scale of a simulation is 10–100 ps. However, it is p
sible to simulate different optimized static configurations
the dislocation, and thereby obtain information about
structures and energies. To determine the stress-free c
slip activation energy in the FE model we divide the proble
in two. The reason for this lies again in the length scale
the problem. The separation between the two constriction
the transition state is expected to be 55b ~14.0 nm! which
implies the use of a computational cell at least twice t
length. We therefore decided to make simulations of isola
constrictions in computational cells of varying sizes. As c
be seen in Fig. 1, the two constrictions necessary in the
model are not equivalent. At constrictionB the partials as-
sume screwlike character, whereas at constrictionA the par-
tials are more like edge dislocations. We shall distingu
between these two constrictions and refer to them as ‘‘scr
like’’ and ‘‘edgelike,’’ respectively.

We shall define the energy of a constriction as the diff
ence in minimized energy of the constricted dislocation a
the minimized energy of two parallel Shockley partials of t
same length,l . The procedure of determining the constri
tion energy then consists of two steps: First, we minimize
energy of two reference systems, each containing a pai
parallel Shockley partials in the (111) plane and the (111)
plane, respectively. Second, we extract the four top and f
bottom~110! planes of the relaxed configurations. Taking t
top planes and bottom planes from different relaxed re
ence systems and making a sandwich with a system con
ing an initially constricted~and twisted! dislocation gives us
one constriction. Taking the other top and bottom set w
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56 2983SIMULATIONS OF THE ATOMIC STRUCTURE . . .
another initially constricted system gives us the second c
striction. It is important to keep the four top planes and
four bottom planes static; i.e., the atoms are not allowed
move during the simulation. By using the top and botto
from the already relaxed systems as static atoms, we are
to mimic a semi-infinite bulklike dislocation on either side
the constricted part. The choice of four static planes ens
that the dynamic atoms do not feel the vacuum above
below the static layers. We have performed simulations w
dislocation lengths in the range~30–60!b ~7.7–15.3 nm! and
with the width perpendicular to the dislocation in the ran
7.7–14.8 nm. The smallest system consisted of 36 750 at
and the largest system consisted of 156 060 atoms. Calc
ing the two constriction energies for each system size t
requires energy minimization of 4 systems, including the
laxation of the two reference systems.

It is obvious that the constraint of equilibrium separati
distance between the partials imposed by the static la
makes the energy of the constrictions depend on the le
of the computational cell,l . This dependence is, howeve
expected to vanish asl is increased, thereby making th
constriction energies converge. To check this we perform
simulations with a fixed width ofw511.3 nm andl varying
from 30b to 60b. The results of these simulations are sho
in Fig. 5. The convergence of the energy is clearly seen,
we can estimate a minimum length, i.e., a minimum dista
between noninteracting constrictions, of;50b. To check the
dependence of the energies on the width of the system
performed simulations with a fixed lengthl 530b and
widths in the range 7.7–14.8 nm. These simulations sho
no dependence of the energies on the widths for wid
larger than 10 nm. For systems with widths less than 10
we observed a small increase in the energies. Based on
observations we can conclude that the minimum separa
between independent constrictions is;50b, and that the
cross-slip activation energy is 2.7 eV. This result for t

FIG. 5. Total energy in eV of the two constrictions as a functi
of dislocation lengthl . The width of the systems is kept fixed
w511.3 nm. The energy converges forl ;50b.
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activation energy agrees well with the result of Duesb
et al.5 mentioned in Sec. II, and it is somewhat higher th
the estimates of Escaig20 and Pu¨schl and Schoeck.6 Also, the
minimum separation between noninteracting constriction
in perfect agreement with all three estimates based on e
ticity theory. For clarity we only show the sum of the co
striction energies in Fig. 5. Taken separately the constric
energies converge similarly to the sum, but they show a v
interesting difference: The energy of the edgelike const
tion is 3.8 eV, whereas the energy of the screwlike const
tion is negative, 21.1 eV. None of the mentioned work
based on elasticity theory treat the constrictions separa
making a detailed comparison impossible.

The most striking result is the negative energy of t
screwlike constriction. This indicates that the configurati
with the dislocation in the constricted and twisted screwl
state is energetically more favorable than just two para
Shockley partials in one glide plane. Intuitively it is obviou
that the screwlike constriction must be energetically p
ferred over the edgelike constriction. In dislocation theory
is well established that the self-energy of a screw disloca
is lower than that of an edge dislocation. It is also know1

that the interaction energy between two perfect screw di
cations inclined at an angle of 45° is zero. The angles
tween the partials involved here are not exactly 45°, but th
are not very far from that. Finally the constriction reduc
the area of the stacking fault, thereby lowering the energy
both constrictions.

The atomistic approach enables an even more deta
investigation of the energetics than that described above.
possible to plot the energy of the systems layer by lay
thereby gaining insight into the ‘‘energy distribution’’ alon
the dislocation line. The decomposition of the total ener
into contributions from individual atoms is of course, in pri
ciple, not unique. However, within the EMT there is a nat
ral way of doing this.8 The energy of anAB ~110! plane pair
is defined as the difference in energy between anAB pair in
the relaxed reference systems containing parallel partials
the actualAB pair in the constriction system. TheAB pairs
in the reference systems all have the same energy, whe
the energy of theAB pairs in the constricted systems a
expected to vary along the dislocation line. In Fig. 6 w
show the results of such a projection of the energy onto
individual AB pairs for the systems consisting of 156 06
atoms havingw511.3 nm andl 560b ~15.3 nm!. We only
show the energy of the dynamic atoms. In this type of p
the qualitative difference between the constrictions is v
apparent. Returning to the intuitive considerations about c
striction energies given above, we can try to explain the
havior. For the screwlike constriction there is a drop in e
ergy towards the center of the system. This might
explained by the lowering of the self-energy of the partials
they assume a more screwlike orientation, the reduction
interaction energy also due to acquired screw orientat
and, finally, the reduction in stacking-fault area. For t
edgelike constriction only the reduction in stacking-fault ar
would tend to reduce the energy. The acquirement of a m
edgelike orientation would, according to dislocation theo
cause the energy to increase. Common to the two cons
tions is, however, a peak in energy located around the ce
of the system. A probable explanation is that atomis
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effects begin to play a role. Such effects could be caused
the increasing overlap of the cores of the partials and
eventual recombination into a perfect screw dislocation
the center of the system. The extension along the disloca
line of this ‘‘atomistic domain’’ can be estimated from th
figure to be approximately 6b. This rough estimate fits nicely
with the pictures~see Fig. 7! of the constrictions, where th
extension of the recombined domain is also about~5–6!b by
visual inspection.

In Fig. 7 we show relaxed configurations of both constr
tion types. The systems are the same as those in Fig. 6.
two constriction types cannot be distinguished visua
From pictures similar to Fig. 7 it is possible to estimate t
length over which the partials constrict simply by counti
the number of planes where the partials are nonparallel.
counting was done using pictures with reduced atomic r
and no coloring of the atoms, i.e., not using Fig. 7. For b
constrictions the result is~25–30!b ~6.4–7.7 nm!. Decreas-
ing the lengthl of the dislocation to 40b does not change
the visual nonparallel lengths significantly. These nonpara
lengths are representative for all the systems we have u
A nonparallel length of;30b indicates that this is the mini
mum reasonable length of the dislocations in simulations
this kind.

The negative energy of the screwlike constriction rai
some interesting questions about the behavior of a sc
dislocation: For example, will screw segments in a dislo
tion network dissociate into Shockley partials in two gli
planes connected by a screwlike constriction? And how
the mobility of a screw dislocation affected by the presen
of a screwlike constriction? Another interesting aspect is
apparent lack of experimental evidence of the existence

FIG. 6. Energy contribution from individual~110! plane pairs to
the total energy of the two kinds of constrictions. Upper cur
edgelike constriction. Lower curve: screwlike constriction. T
length of the dislocations isl 560b ~15.3 nm! and the width of the
systems isw511.3 nm. The systems consist of 156 060 atom
Only the contributions from the dynamical atoms are shown. No
the negativeenergy of the screwlike constriction.
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screwlike constrictions. In Sec. IV B we show how cross s
can be initiated by the creation of a screwlike constricti
near a free surface. A direct consequence of such sur
nucleated cross slip is the annihilation of two screw dislo
tions of opposite signs.

:

.
e

FIG. 7. Relaxed configurations of both constriction types. T
systems are the same as those in Fig. 6. The systems have be
in halves and rotated to display the dislocation in both glide plan
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FIG. 8. Four different systems with one free~110! surface after direct energy minimization:~a! (111) plane, static atoms in the bottom
of the crystal.~b! (111) plane, static atoms in the top of the crystal.~c! (111) plane, static atoms in the bottom of the crystal.~d! (111)
plane, static atoms in the top of the crystal. The dislocation has cross slipped in the bottom of the crystal, thereby creating a
constriction. The differences between the two glide planes are due to the different orientation of the surface step relative to the glid
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B. Free surface simulations

1. One dislocation: One free surface

Experiments21–23have shown that cross slip of screw di
locations also, maybe preferentially, takes place at free
faces. The effect of a free surface on the configuration o
dissociated dislocation is very different from usual bulk b
havior. To investigate the role of a free surface, Hazzled
and co-workers23 performed transmission electron micro
copy ~TEM! experiments on low-stacking-fault-energy Cu
alloys and used elasticity theory to address the problem th
retically. According to the theory the free surface acts
such a way as to modify the interactions between the par
in two ways. In the vicinity of a free surface the partia
attract and they tend to rotate towards screw character. F
dissociated screw dislocation running through a slab
emerging at free surfaces on both sides of the slab, these
effects will compete on one side of the slab and reinforce
the other. The experimental results showed good agreem
with the predictions of the theory with a preference of t
partials to acquire screw character. In order to investigate
role of a free surface qualitatively, we have made simulati
where the dislocation is perpendicular to one or two f
~110! surfaces.

The simulations with just one free surface were perform
in the same fashion as the simulations containing a cons
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tion. By removing the periodic boundary conditions from t
already relaxed configuration containing two parallel parti
and making, e.g., the four top~110! layers static, it is pos-
sible to mimic a semi-infinite rod with one dissociated scr
dislocation ending at a free~110! surface in the bottom of the
crystal. Having the dislocation initially in either of the tw
possible glide planes gives four different systems with o
free ~110! surface. The two systems with two free~110! sur-
faces were generated simply by removing the perio
boundary conditions from the already relaxed reference s
tems, thereby creating clusters with a single dislocat
emerging on both free~110! surfaces. All the systems ha
w59.5 nm andl 540b ~10.2 nm! and consisted of 73 960
atoms. We performed direct energy minimization as well
RT simulations followed by a quench byMDmin energy
minimization.

Figure 8 shows the four systems with one free~110! sur-
face after the direct energy minimization. For the two sy
tems with the partials initially parallel in the (111) plane and
with static atoms in the bottom of the crystal@Fig. 8~a!# or in
the top of the crystal@Fig. 8~b!#, the predicted effects of the
free surface are clearly seen. In the (111) plane the partia
Burgers vectors point toward each other as seen in Fig. 4~b!.
For the system with static atoms in the top, one of the Sho
ley partials bows out away from the other thereby acquir
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more screw character, whereas the other partial s
straight. The tendency to acquire more screw chara
seems to be stronger than the tendency for the partial
attract, in agreement with the experimental findings.23 How-
ever, it is not easy to judge which of the effects is the str
ger because of the interaction with the image dislocati
parallel to the real dislocation, which would also tend
attract the partials to the free (111) surfaces. With the stati
atoms in the bottom of the crystal, the effect of the fr
surface is to make the two partials recombine into a per
screw dislocation in the top of the crystal. There is no sign
redissociation of the perfect screw dislocation in the (111)
plane. The recombination in the (111) plane is a result o
one or both of the effects of a free surface predicted
elasticity theory, and together these two effects are stron
than the interaction with the parallel image dislocatio
Again one of the partials bows out to acquire more scr
character, whereas the other partial stays straight.

The asymmetrical configurations of the partials near
free surfaces in Figs. 8~a! and 8~b! must be attributed to the
asymmetrical positions of the partials with respect to
surface step. Furthermore, the two$111% glide planes are no
equivalent with respect to the step on the free~110! surfaces.
The surface step is located in a (111) glide plane; see Fig. 2
When the partials are in this plane the step is parallel to
partials. However, when the partials are in a (111) glide
plane the surface step is located between the partials a
angle of 70.53°.

For the two systems with the Shockley partials initia
parallel in the (111) plane, the effect of the free surface
therefore somewhat different. In this plane the partial B
gers vectors point away from each other; see Fig. 4~a!. The
system with static atoms in the top of the crystal@Fig. 8~d!#
corresponds to Fig. 8~a!. The two partials recombine as ex
pected into a perfect screw dislocation in the bottom of
crystal, but in this case we observe an additional splitting
the perfect screw dislocation in the (111) plane. The redis
sociation in the (111) plane, not visible in Fig. 8~d!, gener-
ates a screwlike constriction on the dislocation and allo
the partials to be in a glide plane parallel to the surface s
Apparently there is no or a very-low-energy barrier for th
kind of surface nucleated cross slip. For the system w
static atoms in the bottom@Fig. 8~c!# no net effect of the free
surface is observed. The partials stay straight, even v
close to the free~110! surface. The tendency to rotate t
wards screw character seen in Fig. 8~b! seems to be compen
sated by an attraction to the surface step.

For all four systems we have also performed RT simu
tions followed by a quench byMDmin minimization. These
simulations show no qualitative differences from the abo
mentioned simulations. The only difference is for the syst
with static atoms in the top of the crystal and the parti
initially in the (111) plane which shows surface nucleat
cross slip. The redissociation in the (111) plane in the bot-
tom of the crystal is much more pronounced, with the p
tials in the lower part of the crystal in the (111) plane adopt-
ing a configuration almost identical to that of Fig. 8~a!.

2. One dislocation: Two free surfaces

In order to obtain more information about the influence
free surfaces on the configuration of the partials, we a
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performed RT simulations followed by a quench byMDmin
minimization on systems with two free~110! surfaces; i.e.,
the systems were clusters with the partials initially in eith
the (111) plane or the (111) plane. From the simulations o
systems with one free~110! surface, we expect the first sys
tem to recombine into a perfect screw dislocation in the
of the crystal and to split even further than the bulk splitti
in the bottom of the crystal. For the latter system we exp
the system to perform cross slip in the bottom of the crys
but it is not clear whether the cross slip will be complete
whether the system prefers a configuration with a screw
constriction. The system with the partials initially in th
(111) plane behaves as expected. The partials recombin
the top of the crystal with no sign of redissociation in t
(111) plane and they repel in the bottom of the crystal. Af
;11 ps~and before the quench! the dislocation is located of
center in the crystal, due to the attraction to the image dis
cation; see Fig. 9~a!. The system with partials initially in the
(111) plane performs a complete cross slip to the (111)
plane. The partials recombine and redissociate in the bot
of the crystal, thereby creating a screwlike constriction. T
screwlike constriction ascends the crystal, making the p
tials in the top gradually change their glide plane from t
(111) plane to the (111) plane. The cross slip is complete
in ;11 ps. Figure 9~b! shows an intermediate stage in th
cross slip and Fig. 9~c! shows the final relaxed configuratio
of the cross-slipped dislocation after the quench. Figures~a!
and 9~c! are very similar to TEM pictures of dissociate
screw dislocations in thin foils in Ref. 23.

To check the significance of the orientation of the surfa
step with respect to the partials we performed simulatio
similar to the two simulations with two free surfaces, but th
time with the step parallel to a (111) plane; i.e., the surface
step has been rotated compared to the step seen in Fi
The results are equivalent to the simulations with the origi
step orientation. Now the system with the partials initially
the (111) plane cross slips to the (111) plane, while the
system with the partials initially in the (111) plane, which is
now parallel to the step, does not. The two final configu
tions have the partials recombined in the bottom of the cr
tal and split in the top of the crystal.

These simulations show that there is a strong prefere
for the dissociated screw dislocation to be in the glide pla
parallel to the surface step, and that the dislocation will ad
a configuration with perfect screw dislocation in one end a
two nonparallel Shockley partials in the other end. It is t
desire of the partials to be in a plane parallel to the surf
step and not the possibility of making a screwlike constr
tion, which controls the surface-nucleated cross slip, a
there will be an energy barrier for surface nucleated cr
slip away from the glide plane parallel to the surface ste

Finally we performed simulations on systems with diffe
ent step orientations in either end of the crystal. With t
partials initially in the (111) plane or the (111) plane this
gives four possibilities. For the two systems with the st
parallel to the (111) plane in the top and the step parallel
the (111) plane in the bottom we expect the dislocation
adopt a configuration with a screwlike constriction. This co
figuration will allow the partials to be parallel to the step
both ends of the crystal. However, a similar configurati
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FIG. 9. Room-temperature simulations with two free~110! surfaces.~a! Partials initially in the (111) plane. The partials recombine in th
top of the crystal and are attracted to the free (111) surface.~b! Partials initially in the (111) plane. The dislocation has cross slipped fro
the (111) plane to the (111) plane in the bottom half of the crystal, thereby creating a screwlike constriction. The trace of the stackin
between the partials of the non-cross-slipped part of the dislocation is seen in the upper half of the crystal.~c! Partials initially on the
(111) plane. The cross slip is complete, and the dislocation is entirely in the (111) plane. The configuration has been quenched byMDmin
minimization.
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with the partials parallel to the step in both ends, when
step orientations have been switched, would result in c
ation of an edgelike constriction. The simulations with t
step in the top parallel to the (111) plane and the step in th
bottom parallel to the (111) plane showed the expected b
havior. Both systems create a configuration with a screw
constriction and the partials parallel to the step in either e
The system with the partials initially parallel in the (111)
plane performs cross slip in the top of the crystal whereas
system with partials initially parallel in the (111) plane per-
forms cross slip in the bottom of the crystal. For the tw
systems with the switched step orientation the results
e
e-

-
e
d.

e

re

different. The partials stay in their initial glide plane, adop
ing a configuration with a perfect screw dislocation in o
end of the crystal and two nonparallel Shockley partials
the other end of the crystal. There are no signs of cross
leading to configurations with an edgelike constriction a
the partials parallel to the steps in either end.

These simulations demonstrate the influence of a f
~110! surface on the configuration of a dissociated scr
dislocation perpendicular to that surface. We have qual
tively confirmed the predictions by elasticity theory of th
effect of a free surface. In addition we have observed
strong preference for the partials to be in the glide pla
parallel to the surface step.
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FIG. 10. Snapshots from the simulation showing annihilation of two screw dislocations of opposite signs.~a!–~d! (111) planes.~a! The

dislocation withb5
1
2@110# has performed a cross slip in the top of the crystal, thereby creating a screwlike constriction. The presenc

dislocation withb5
1
2@110# in a (111) plane and the non-cross-slipped part of theb5

1
2@110# dislocation also in a (111) plane is clearly

seen as two vertical lines of stacking fault marked SF separated by seven$111% plane spacings.~b! A new Shockley partial~vertical! has been
created to the right in the (111) plane. The Shockley partial to the left is the originally cross-slipped1

6@121# and the small inclined part
connecting these two is the remains of the1

6@211# Shockley partial.~c! The newly created Shockley partial1
6@121# to the right reacts with

the 1
6@121# Shockley partial and they annihilate.~d! Annihilation in the top of the crystal, leaving a small stacking-fault loop comprising

1
6@211# and the1

6@121# Shockley partials. The stacking fault loop moves down through the crystal and disappears at the bottom, lea
crystal defect free.
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3. Annihilation of two screw dislocations

An interesting parameter which is believed to be clos
related to cross slip is the minimum stable dipole height
screw dislocations of opposite signs. Experiments3 have
shown this length to be 50–500 nm in Cu. Screw dislo
tions of opposite signs in different glide planes closer th
this minimum dipole height are believed to cross slip a
annihilate. Due to the length and time scale, this problem
not suited for ordinary atomistic MD simulations. Howeve
it might be possible to obtain insight into the cross-s
mechanism of a single screw dislocation, by performing M
simulations of systems containing two screw dislocations
opposite signs at very close range. In order to speed up
simulations, it was decided to use a high temperature~580 K!
and rather small systems withw58.6 nm andh550b ~12.7
nm!. The systems consisted of 76 050 atoms. The two sc

dislocations with Burgers vectors6 1
2@110# were initially in-

troduced in the system as two perfect screw dislocation
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different glide planes separated by only;2.2 nm. We per-
formed a simulation with periodic boundary condition
along the@110# direction and a simulation without periodi
boundary conditions, i.e., with two free~110! surfaces.

The simulation with periodic boundary conditions show
no sign of cross slip. The two dislocations dissociate in t
parallel (111) planes as in Figs. 4~a! and 4~c! separated by
seven$111% plane spacings, with splitting widths fluctuatin
around an average value of;1 nm. The small value of the
splitting width must be attributed to the presence of the ot
dislocation, because no significant temperature effect
observed in the simulations of just one dislocation in S
IV A 1. Occasionally the partials in the same glide pla
were so close that the dislocation might be thought of
recombined. However, as mentioned for the partials in S
IV A 1, there is an in-plane smearing of the dislocatio
which confines it to a particular glide plane and inhibits cro
slip. The simulation used 4600 time steps corresponding
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;25 ps. In the context of cross slip this is a very sh
simulation, and it is in no way possible to rule out the po
sibility of some kind of bulk cross slip on the basis of th
simulation.

To investigate the role of free surfaces in this kind
system, we removed the periodic boundary conditions al
the @110# direction from the above-mentioned system. Th
produced cross slip of one of the dislocations and led
annihilation of the two screw dislocations through success
dislocation reactions. It was possible to monitor the deta
dislocation reactions, thereby enabling exact specificatio
the different stages leading to the annihilation. When
periodic boundary conditions were removed, the two scr
dislocations were split into Shockley partials in two paral
(111) planes separated by seven$111% plane spacings. The
annihilation of the two screw dislocations is initiated at t
top of the crystal, and proceeds downwards through the c
tal in the following manner. The dislocation wit

b5 1
2@110# performs cross slip to the (111) plane in the top

of the crystal, thereby creating a screwlike constriction
the dislocation; see Fig. 10~a!. The Shockley partial
1
6@211#, glissile in the (111) plane, is attracted to the Shoc
ley partial 1

6@121# glissile in the (111) plane, and the two
partials react to produce a sessile stair-rod dislocation:1

1

6
@211#~111!1

1

6
@121#~111!→

1

6
@110#. ~5!

The stair-rod dislocation, not shown in Fig. 10, is located
the intersection of the (111) plane containing the

b5 1
2@110# dislocation and the (111) plane containing the

newly cross-slipped part of theb5 1
2@110# dislocation.

Hence, the stair-rod dislocation is in the same (111) plane as
the 1

6@211# Shockley partial@see, e.g., Fig. 4~a!# and attracts
this:

1

6
@110#1

1

6
@211#~111!→

1

6
@121#~111! . ~6!

The resultant Shockley partial1
6@121# is glissile in the same

(111) plane as the cross-slipped part of theb5 1
2@110# dis-

location; see Figs. 10~b! and 10~c!. The newly generated
Shockley partial reacts with the remaining1

6@121# Shockley
partial in the (111) plane, and the two partials annihilate:

1

6
@121#~111!1

1

6
@121#~111!→0 . ~7!

The reactions create a stacking fault loop in the (111) plane
which moves down through the crystal while the annihilati
takes place; see Fig. 10~d!. Eventually the loop reaches th
bottom of the crystal and disappears, leaving the crystal
fect free. Hence, once one of the dislocations has perfor
cross slip creating a screwlike constriction, there is no o
very low-energy barrier for the annihilation.

V. CONCLUSION

In this paper we have addressed the problem of cross
in Cu with a purely atomistic method. The result for th
t
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ed
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minimum separation between noninteracting constriction
in perfect agreement with results obtained from elastic
theory. Our result for the stress-free activation energy in
Friedel-Escaig cross-slip mechanism is in very good agr
ment with an earlier nonatomistic approach,5 but it is some-
what higher than other estimates10,6 derived from elasticity
theory.

Our atomistic simulations also show that the two constr
tions necessary in the Friedel-Escaig cross-slip mechan
are not equivalent, and that one of them, the screwlike c
striction, is energetically favored compared to two para
Shockley partials. The nonequivalence of the two const
tions is a fact not usually appreciated in the literature. T
differences have been investigated, qualitatively and qua
tatively.

As we have pointed out, the activation energies obtain
from elasticity theory are subject to substantial uncertai
due to the break down of the isotropic elasticity relati
describing the splitting of a perfect screw dislocatio
Whether the overall quantitative agreement between the
mistic and the elastic approaches is an indication of a dee
concordance or merely fortuitous can only be resolved
detailed elastic work on isolated constrictions.

The effect of having the dislocation perpendicular to
free surface has been investigated, and surface-nucle
cross slip observed. The important feature in surfa
nucleated cross slip is the possibility of creating a screwl
constriction without the accompanying edgelike constrict
needed for bulk cross slip. On the other hand, we have
observed a strong preference for the partials to be in a g
plane parallel to the surface step, meaning that there is
energy barrier for cross slip into the glide plane not para
to the surface step. Hence, more quantitative work on
energetics of different dislocation configurations close to
free surface needs to be done before we draw conclus
about the role of surface-nucleated cross slip.

In a simulation of two screw dislocations of opposi
signs, surface-nucleated cross slip initiated the annihila
which proceeded via successive energetically favorable r
tions. The atomistic approach allowed monitoring of the d
tailed dislocation reactions and thereby exact specificatio
the intermediate stages leading to the annihilation.

The role of cross slip in different macroscopic phenome
such as fatigue and plastic deformation is today well est
lished. However, the present understanding of the intrin
properties of cross slip is still rather nebulous. The resu
obtained in the present work may help to establish a be
understanding. Altogether we may conclude that atomi
simulations are well suited for problems involving disloc
tion interactions at the nanoscale, where the use of meth
based on elasticity theory is questionable.
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