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Geometrical locking of the irreversible magnetic moment to the normal
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We solve the Bean critical-state model for the screening current distribution in an infinite superconducting
slab in a tilted magnetic fielt, and calculate from it the magnitude and direction of the induced magnetic
momentm. As the tilt angle increasesn remains directed close to the plate normalntil H is almost
perpendicular tm, thenm rotates very rapidly. We consider several generalizations of the model: finite length,

a more realistic current-voltage characteristic, and critical-current anisotropy, but find that they have only a
minor quantitative effect on the results derived for the simplest case. Also, we prove that the closure currents
always contribute half the moment. Vector magnetic moment measurements gE¥%Ba single crystals and

an epitaxial film, and also on samples of conventional superconductors, confirm the model calculations. These
geometrical effects are important for the analysis of the angular behavior of the critical currents and their
anisotropy in HTS materials; also, they assist the observation of vortex locking to twin boundaries in HTS
crystals, but tend to obscure vortex locking to CuO plaf®6163-18207)04929-1

I. INTRODUCTION consider extensions toward a more realistic description of the
situation(Sec. 1). In Sec. lll we compare the results of the
A characteristic  feature  of  high-temperature- calculations with detailed experimental measurements of the
superconductofHTS) single crystals is their thin platelike vector magnetic moment of both HTS crystals and platelets
shape. Many studies have reported observations of a largg conventional superconductor, obtained using a vibrating
anisotropy in the irreversible magnetizatiggenerated by sample magnetometéySM) equipped with two orthogonal
screening currentof such crystals, and often this has beencoil sets. We then examine the impact of these geometrical
interpreted in terms of the intrinsic anisotropy of the materi-effects in HTS crystalgSec. V), particularly on measure-
als (e.g., Refs. 1-8 ment and analysis of the anisotropy of the critical current and
However, as has been pointed out previodslgeometric  of different kinds of pinning mechanism, and also on the
effects contribute strongly to this anisotropic angular behavputative identification of “vortex-locking” phenomena.
ior. In a platelikeisotropic superconductor, the direction of
the irreversible magnetization is almost independent of the
angle of the applied field, and remains closely parallel to the IIl. THEORY

smallest sample dimension until the field is oriented almost The key factors that make the analysis of the screening
parallel to the plane of the platgve are interested here in ¢y rrent distribution in a realistic superconducting sample dif-
applied fields much larger than the self-fields generated byt are the three-dimensionality of the problem, the loss of
the screening currents, so that classical demagnetizing fa%ymmetry when the applied field is directed away from a
tors are unimportant Consequently, because of the usualyincinal axis, and the form of the-j characteristic. We

sample shape of HTS crystals, it is difficult to extract andiherefore start with the simplest case, the Bean model for an
quantify their intrinsic anisotropy of screening currents andiyfinite slab. and then examine extensions to it.
vortex behavior. Note that theversiblemagnetization aris- '

ing from equilibrium Meissner currents is affected by de-
magnetizing factors, but not by these additional complica-A. The Bean model for an infinite slab in tilted magnetic field
tions, so its anisotropy is much more straightforward to
interpret. The geometrical effects considered here are impor-
tant at all fields where irreversibility exists, whereas the re- The essence of the Bean model is that the screening cur-
versible magnetization and its demagnetizing fields are sigrent densityj has the same magnitugle everywhere, and a
nificant only at low fields, up te~H; . sign given by that of the local electric fieH; this corre-
These qualitative conclusions about geometrical effectsponds to a threshold current-voltage characterigtic
on the irreversible magnetization have not previously been- j.E/E. As in the original modélwe takej, to be inde-
substantiated by quantitative analysis. Here we present thgendent of both the magnitude and direction of the local
solution of the Bean critical state model for an infinite thin inductionB within the sample. Also, we restrict the analysis
slab of a superconductor in a tilted magnetic field, and theno large applied magnetic fieldsl, so that the self-field

1. The model
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FIG. 1. (a) Geometry for calculation of the Bean model in a tilted magnetic figdgddirections of screening current® and ®) and of
the Lorentz forcarrows on the vorticegthick lineg in a cross section of the sample) the screening current distribution fer< ¢, ; (d)
the screening current distribution fer> ¢, .

created by the shielding currents can be neglected; them of the current distribution is given by=(1/2)frxjdV.
within the slab, we may puB=puoH, and the vortices are ForH along a symmetry direction of a long plate, the closure

straight and parallel téi. currents at the ends are known to give a contributiomto

Even within these restrictions, it is difficult to obtain a gqual to that of the currents parallel to the length:Appen-
solution in closed form for a rectangular plate of finite Iengths%n

because the closure currents at the ends destroy the tran Ix A we show that this remains true fef in any direction.
. ; A . ; 1ereforem,=L [X] ndm,=L[yj where the inte-
tional invariance. We therefore consider an infinite thin slab eretorem, /xjdS, andm,=LJyjdS, ere the inte

as the limiting case of a long plafig. 1(a)] of length L grals are evaluated over the cross section.
much larger than its widthv or thicknesst, so effectively By symmetry the regiorGEZFH [Fig. 1(c)] gives zero

reducing the three-dimensional problem to two—dimensionsContribUtion tom, , wherg the _plan.e represented by th_e line
GH corresponds to a field direction of . Hencem, is

The aspect ratioc (=w/t) of the cross section is the key ~° h ibuti ; h idal .
parameter for further analysis. twice the contribution from the trapezoidal region

Let the direction of the magnetic field be rotated in theAGZFD:
transverse plane from the plate normaby an anglep [Fig. Lt3
1(a)]. For an infinite slab, translational invariance requires m :4|_J' Xjodx dy= — j(3x2—tare). (1)
that every cross section be equivalent, and Biaémains in y AGZFD © 12 °¢
the transverse plane. Therefore, with increadihgvortices .
enter from the corner& andC [Fig. 1(b)], move toward the For m, the moment comes from the regi@EZFH:
center of the sample, and meet at the pl&fe* By symme- L3
try, the screening currents flow in thedirection along the mX:4|_J yijcdx dy= — j tane. )
length of the slab. The Lorentz force on the vortices, and so GEZFH 6
also their drift velocity, is in they plane, but has opposite
sign on either side of the plarF. Consequently, the cur- 1N€ @nglea between the momenn and the plate normal
rent distribution is antisymmetric with respect to the planen iS given by
EF, as was first derived by a similar analysis in Ref. 4. This

conclusion, based on symmetry, yields the same result as the 2tanp

direct solution of Maxwell’'s equationg\ppendix B. tanx 3k’—tarfe’ ®
The behavior of the magnetic moment is different {or

being less than or greater than (=arctarx), the direction For ¢=0 we have the usual resutt,=L j tw*/4, and, of

of the diagonalDB of the transverse cross section of the course,a=0. WhenH has rotated to the anglg,, the mo-

slab, so we consider these two cases separately. ment has deviated by an angte.=arc cok, so thata,

= (72— ¢.). For angles small enough that tas«, the de-

viation angle a=~2tanp/3x%, and |m(¢)|=m(0)(1
We use a Cartesian coordinate system in the rotation-tarfe/3«2). Thus, for a plate representing typical HTS

plane withy parallel ton [Fig. 1(c)]. The magnetic moment crystals, withk of ~10 or more, the irreversible magnetic

2. H directed away from the plane of the platg<¢,
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moment is almost locked to the plate normal for this entire  For the infinite slab, a power-la&-j characteristic may
range of applied field directions. At the end of the range, webe incorporated directly into our previous analysis. As shown

have thatmy(¢c)=2my(0)/3 and m,(¢c)=my(ec)/k, SO
that the modulus o changes rather slowly too.

3. H close to the plane of the platey= ¢,

In the angular range.< ¢< /2 [Fig. 1(d)] it is more
appropriate to measure the deviationtbfand m from the
plane, by the angle9=(#/2—¢) and B=(w/2—«a), re-

spectively. This case maps to the previous solution with the

interchanges <y, o< 0, t<w, k& 1/k. Then one can ob-
tain

—4Lf jcdx dy= Lw?, (3 13 4
m,= nozeg JedX Y= 75 Ie 2-tare), (4)
- W3 -
my:4LJ Xjcdx dy= — j tand, (5
EZH 6
B 2k%tand 6
tans= 3— k%tarfg’ ©)

With H (and som alsg in the plane of the platem|
=Lj wt?/4, a factork smaller than when the field is normal
to it. However, note that small misorientations léfinduce
large angular deviations @h: S~2«26/3. A useful param-
eter that describes the rapidity with whiah rotates add is
swung out of the plate plane is

_(dﬁ
™\3e

_2K2 @
6=0 3

At the critical angled (= 7/2— ¢.) the moment direction
is given by taB.= «, which is identical to the result obtained
in Sec. Il A2.

From Eqgs(4) and(5) to lowest order ir9, the modulus of
the moment is

m(8)~m(0) 5 (8)

and so|m| increases rapidly with angle.

2
1+ 3 K492>

B. Beyond the Bean model

in Appendix B, theE field is parallel toz, and has opposite
sign on either side of the plarieF of Fig. 1:

(€)

Lengthy but straightforward calculations vyield, far
> [Fig. Ud)],

E,= ,uoH(x cosp—Y Sing).

i |Y 3 uoHw sing 1’"t ; 2
My=<tlol 5 2E, v on+(n+1)
2+1n _1\2+ln_
x{(a+1)2" 4 (a—1) T
><[(a+ 1)3+l/n_(a_l)3+1/n]] (10)
and
i [ 3/ uoHw sing\ " tang n?
Myx=<tlo| 5 2E, x (2n+1)(n+1)
n
2+1n__ _ 2+1n__ -1
Xi(a+1) (a—1) 3th1[(1+a )

x(a+1)2+1/n_(1_a—1)(a_1)2+1/n]]. (11)

The angleB of m from the plane of the plate is now

_ 2(2n+1)(n+1)a
BB= e+ Da?—(2n+ D)(n+ 1)’

(12

wherea=(« tang) L.

These complicated expressions have two interesting lim-
its: For n—x, i.e., the Bean model, they are identical to
those obtained in Sec. Il A 3. In the Ohmic limih€1),
they simplify greatly to

3

The steplike current-voltage characteristic that is used in

the Bean model is inappropriate for HTS materials in which

flux creep is always present, correspondingjtdeing a
smooth function ofE. Power laws of the formE/E,
=(j/jo)" provide a much better representation, withypi-

my=T j(0t/2)tang, (13
we

mxzw J Z(O,t/Z), (14

tan8= xtand. (15)

These results resemble closely EGH~(6), but with the
replacement of the Bean modgl by the current density

cally in the range 5-30 for HTS crystals, and above 20 forj,(0/2) flowing at the center of the broad face of the plate.
conventional superconductors. The Bean model corresponds this orientation of the applied field,(0t/2) is a good

to the limitn—oo.

measure of the screening currents that dominate

In a magnetization experiment, the changing applied mag- The results for angleg<¢. may be obtained directly

netic field (which for simplicity we take to be swept at a

steady rateH=dH/dt) induces an electric field. As noted
earlier, we are considering the case in whidhis much

using the mapping described in Sec. Il A 3. Naturally, for
n—oo they again reduce to the Bean model. In the Ohmic
limit, they yield expressions resembling Eq4)—(3), but

larger than the penetration field, so that the induction geneiinvolving the current density,(w/2,0) flowing at the center
ated by the screening currents may be neglected. Furtheof the sides of the plate.

more, becaus8 is then uniform through the sample, tBe
dependence of thE-j characteristics may be ignored.

Given that there is very little difference between the re-
sults for the Bean and Ohmic limits, we conclude that the
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behavior of the magnetic moment is insensitive, within Nu-easily measured, the rotation ratevhenH is close to plate
merical factors close to unity, to the precise form of theplane [Egs. (7), (15), and (18)], should be no more than
E-j characteristic, and that the expressions obtained in Seghout 25%.

Il A will generally be adequate.

Thg critical cqrren_t is usually strongly dependent on the IIl. EXPERIMENTAL INVESTIGATIONS
magnitude and direction &. However, because we are con-
sidering the situation in which the effects of self-fields are A. Vector magnetometry

small, so thatB is constant within the sample, the depen- | order to study the key predictions of Sec. I, it is es-
dence ofj, on B may be incorporated directly into all the sentjal to monitor both the magnitude and directionnof
gxpressioqs derived so far_by replacin_g it yvith the value ofiye ysed a vibrating sample magnetome®xford Instru-
i, appropriate to the magnitude and directionigfH. The  ments ') equipped with two independent coil sets that mea-
direction ofm [Egs.(3), (6), (7), and(15)] is unaffected by  syre simultaneously the magnetic moments paréteindard

any dependence gf on B. componentmgy and perpendiculafortho componentmg,)
to H. The sample can be rotatéusitu about the third axis,
C. Finite length and closure currents with an angular resolution of 0.01° and reproducibility better

In the general case of a slab of finite length with thethan 0.03°. As we have pointed out previoubihe sample

applied field at an arbitrary angle, and an arbitrary current@s 10 be centered very precisely for the two coil sets to

voltage characteristic, analytic solutions for the screeningn@intainmagneticorthogonality. . .
current distribution are unknown. However, in Appendix B 1€ data reported here were all obtained as the field was

we obtain approximate solutions for tie field in a finite swept steadily around a hysteresis loop, with the sample at

: : e o 1
slab, and in the Ohmic case, they can be translated immedjixed orientation; typical sweep rates werd0 mT s, and
ately into the current distribution. the maximum field was 5 T. In the present context, it is only

From theE fields described by Eq$B8)—(B10), and us- tr}erirre\;]e_rskijble componenths o, Whi?h reflect the behavior
ing j= o'E, we find for the component dfilx: of the shielding currents, that are of interest.

. Lwst ( t B. Samples
my=ouoHy 757 1~ . . .
TP 4L We examined YBgCu;0, single crystals of several dif-

3 5 ferent kinds of dominant pinning. These included twinned
1+_t+o(£) } (16) and detwinned crystals, and also one containing columnar
4L L defects(Table )); their preparation and detwinning have been
described elsewhefe?’ Different pinning systems affect the
anisotropy ofj. in different ways, and so allow us to check
WiLt ( W ) the influence of the latter factor on the deviation anglé&or

Lw®
iy j(0t/2)

and for the component dfllly

m,=opu H —— [ 1— — a sample of extreme aspect ratio, we used a JOBgO,
yoURY 12 4L epitaxial film*
t3 3w w2 For a direct check of the analysis, isotropic superconduct-
-5 i (W/2,00k% 1+ I+o f) . (17 ors are preferable; we have used polycrystalline samples of
conventional superconductors. The Chevrel phase PgMoS

In the limit of a long slab, these resultexpressed in terms (NO- SV) sample was cut by diamond saw from an ingot;
of the current densities at the centres of the slab faxes after the first series of measurements, it was cut to decrease

duce to those found in the previous section for an Ohmidhe sample width and measured again. Th8i\sample(No.
conductor. VS) was cut, measured, thinned on abrasive paper, and mea-

ForH directed at an anglé from thex axis, the direction Sured again.
of m is given by
C. Experimental results and discussion
1—w/4L

- - 1. HTS crystals
1-t/aL (18)

tan8= x’tand
Figure 2 shows the behavior that is typical of the platelike
The influence of finite slab length g can be seen directly YBa,Cu;0, single crystals. Over a large angular range, up to
by comparison with Eq(15). ~87° from the plate-normal in the No. OZ sample, the di-
We have shown therefore that, in the Ohmic case, theection of the irreversible magnetic momeantis locked to
corrections for finite length are, as might be expected, othe plate normah, so thata~0° (because of the inevitable
orderw/L or t/L. In the more realistic situation of a steep slight precession of the sample when it is rotated over large
power-lawE-j characteristic, the magnitude of the correc-angles’ there is then an uncertainty inof about=1°). In a
tion terms is less obvious. However, we have seen in Semarrow angular interval, when the direction bf passes
Il B that for an infinite slabm changes very little between an through the plane of the platm flips rapidly through almost
Ohmic and a Beare-j characteristic; we propose that the 180°, in accord with theory. The data of Fig. 2 are represen-
same is true of the corrections o for finite length. tative of a wide range of field§rovided thatH is signifi-
HTS crystals are usually almost square plates, with cantly higher than the penetration fieldl,) and tempera-
~w, so that the correction to the parameter that is mostures, over which the magnitude and anisotropyofhange
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TABLE I. The measured samples and their characteristics.

Name Material Form DimensiorisxwXt (mm) Aspect ratio,« Comments

No. OZ YBaCuO, Single crystal 1.9%1.15x0.065 17.7 Twinned, rotation
planel to TB

No. MK YBa,Cu;O, Single crystal 1.0%0.97x0.10 9.7 Detwinned

No. WZ YBa&CuO, Single crystal 0.980.90%x0.04 225 Detwinned, high
purity

No. AH  YBa,CuO, Single crystal 1.280.57x0.025 22.8 Column&,=3T

No. LF  YBaCuO, Epitaxial film 2.2 X0.9x0.0003 10

No. SH PbMog Polycrystal 2.0%x1.72x0.40 4.3

No. S1  PbMog Polycrystal 2.0%X0.67x0.40 1.68 Cut from No. SH

No. VS  V;Si Polycrystal 6.06¢0.90x0.35 2.57

No. VI VSi Polycrystal 6.060.90x0.27 3.33 Polished from
No. VS

markedly (e.g., Refs. 12-14 Furthermore, for all the The measurements ef(¢) again show quite good quan-

YBa,Cu;0O, single crystals studied, covering a rangejpf titative agreement with theory without use of any fitting pa-
anisotropy because of the different pinning mechanismsameter(Fig. 4). The variation of the modulus ah with ¢
present, we observe similai(¢) dependencies that all fit (Fig. 5 illustrates an important feature: there is the sharp dip
well to the theory of Sec. Il evaluated for the measured asin |m| when the field is nearly parallel to the plate. We
pect ratios, and without recourse to fitting parameters. Thigmphasize that this minimum is purely geometric in origin,
confirms the dominant role played by geometrical effects inrand does not reflect any intrinsic superconducting anisot-
the observed angular behavior rof ropy.

The YBaCu;0, epitaxial film data(Fig. J) illustrate the The theory of Sec. Il A 2 suggests that femot close to
extreme case of the geometrical-locking phenomenon, withr/2, |m| should be nearly independent of angle; the ob-
m flipping its direction within 0.02° rotation oH. These served smooth increase ldss rotated away fronp=0 may
data therefore illustrate the angular resolution of the magnebe connected with metallurgical anisotropy of the sample, or
tometer. perhaps reflect the limitations of our approximations.

2. Conventional superconductors 3. The rotation rater

Measurements on conventional superconductors test the A Sensitive quantitative test of the geometric model is the
geometric theory under rather different and somewhat simt@te 7 which describes how fa"'_“ swings round as$i rotates
pler conditions; in particular, unlike HTS materials, they through the plane of the plate; E() predicts thatr should

have no strong anisotropy. This allows us to analyze directlyP® @ Simple quadratic function of the aspect ratid he data
the measured dependencenofon ¢. for both HTS and conventional sampl€sig. 6) fit rather

well to this form (the data for the thin film have not been
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FIG. 2. Anglea of the irreversible magnetic moment from the
¢ axis in a YBaCusO; (sample No. OZX single crystal for fields FIG. 3. Measured rotation of the magnetic mom@stin Fig. 2

applied at anglep close to theab plane E=90°) at different of a YBaCu;O; epitaxial film (No. LF, T=50K, u,H=0.5T)
temperatures and magnetic fields. The full line shows the fit to EqsThe full line shows the fit to Eqs3) and (6) calculated for the
(3) and (5) calculated for the sample aspect rakoof 17.7; the  sample aspect ratia of 3xX10% the arrows mark the critical
arrows mark the critical angleg. . anglese, .
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FIG. 4. Measured rotation of the magnetic mom@gtin Fig. 2
of a PbMog sample(T=10K, uoH=1.0 T) in its initial shape
(No. SH), and after cutting to reduce the aspect réhio. S1). The
full lines show the fits to Eqg3) and(6) calculated for aspect ratios
« of 4.3 and 1.69; the arrows mark the critical angies

FIG. 6. Measured angular rotation rateof the magnetic mo-
ment whenH passes through the plane of the plate, as defined by
Eq. (7), for samples of a different aspect rakoThe full line is the
prediction of the geometrical model, E(Y).

+TI"%sirfe)2B, whereT is the thermodynamic anisotropy:;
included here, its aspect ratio of10° yields a value forrof &, is a fundamental parameter which determines the angular
~10P, well beyond our experimental resolutiorAlso, the  variation of the line energy of a vortex, of the upper critical
coefficient of«? is close to the value of 2/3 predicted by Eq. field, of the melting transition, and of the irreversibility field

(12) for E-j characteristics of larga. Birr.*°
Consequently, if this scaling is valitin(¢)| measured at
IV. GEOMETRICAL EFFECTS AND VORTEX BEHAVIOR fixed values ok ,H should be nearly constant asncreases,
IN HTS CRYSTALS decreasing to not less than 2/3 of its initial value at the angle

¢ (Sec. Il A 2. The measurements on YR2u;0; crystals
(Fig. 7, where we have used a value 1ot of 30, as found

As we have seen, in magnetization measurements on HT®om linear plots ofB;,” against sifp) show that this is
crystals, for a wide range of directions bf around thec  indeed the case for the detwinned sample No. MK. We in-
axis,m remains parallel to the axis, and so is dominated by clude in Fig. 7 the prediction of the geometrical model for
the screening current density within tae plane,J,p . The m(¢)|; it is clearly of the correct angular form, but there is
magnitude of) .y, (treating it for simplicity as a threshold, a factor ~2 discrepancy between the calculated and mea-
or Bean, critical current densitglepends on the nature of the sured ratios of the magnitudes |of| at 0° and 90°.
pinning force. In general, this dependence is nontrivial, but
for weak isotropic disorded,p should be constant for a —_—

A. Angular scaling of magnetization curves

fix val f th | in i B= ] ]
ed value of the scaled inductibh &,B=(cose 10°] }% R 1P — ]
T T 7 T " T - Q + é +
5 é + 4 ++ +++++++++++++ E +
= 10%{ ™+ I O
¢ = MK YE O R
—~ ~~ )% % ]
e 3 N l
) | E
£, Ll /
= - VRS 1 0]
=5 ®(°) .
S .:
150 200
1 ¢ (deg)
FIG. 7. Angular dependence fifh| for the detwinned No. MK
¢ (deg) and twinned No. OZ crystals at a fixed value of the scaled field

€,uoH=0.5 T (calculated fod"2=30). The full lines show the fits
FIG. 5. Angular dependence of the magnetic moment modulusf |m| to Egs.(1), (2), (4), and(5) calculated for aspect ratiosof
of the PbMog sample(T=10K, uoH=1.0 T) in its initial state 9.7 and 17.7. The strong peak aroupe 0 in the No. OZ crystal is
(No. SH), and after cuttingNo. S1). The full lines show the fits associated with vortex pinning to the twin planes, and occurs super-
|m|= \/(mXZJr myz) to Egs.(1), (2), (4), and(5) calculated for aspect imposed on the background geometric response. Inset: data in the
ratios « of 4.3 and 1.69. vicinity of ¢=90°.
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On the other hand, in the twinned crystal No. OZ, casem, is dominated by the in-plane component] ,y, of
Im(¢)| and so alsd,y) , drop by an order of magnitude as the current density. Thus, in “long” samples, tiyecompo-
H is rotated~20° away from thee axis. This behavior dem- nentJ, of the current density is irrelevant.
onstrates the strong anisotropy of the vortex pinning associ- Since HTS crystals are usually nearly square, with
ated with twin boundaries. ~L, “long” and “short” are equivalent tox greater and

Another example of weak isotropic disorder is in the an-less than(), respectively. Measured values@fin fully oxy-
gular scaling of the “fishtail” peak in YBgCuO; crystals genated YBgCu;O; are in the range 5-1@.g., Refs. 12 and
seen by Kleiret al,® who measuredh(¢,B) at a succession 13), smaller thanx for all the HTS samples measured here
of anglesp. They found empirically that the form of the peak (Table ), so that these crystals are effectively “long.”
obeyed the relatiom(¢,B/cosp)=cosp m(0,B) for angles Hence the important screening currents are always those that
up to~60° from thec axis. For the crystals studied in those flow within the ab plane, and there is no need to introduce
experiments, withk~8, this angular range lies entirely the complication of critical current anisotropy into our analy-
within the regime of Sec. Il A 2, in whicm hardly deviates sis. The agreement of the data with the geometric model
from thec axis. With a conventionalsingle-axi$ magneto- whenH is closely parallel to th@b direction, as shown by
meter, as used by Kleiat al, the measured quantity is the Fig. 6, confirms this conclusion.
component ofm parallel toH, in this situation equal to Conversely, to obtain reliable information on theaxis
|m|cosp; also, becaus# is at least 5 in YBgCu;0O;, over  currents in YBaCu;O; by magnetic studies requires crystals
the measured angular ranggB~cosp B. From these two of « less than about 10, which are less common, and field
angular dependencies, the observed scaling follows natwlignment with theab planes within a few degre¢&qgs.(4)
rally. Consequently, this angular behavior Jf,) supports and(5)]. In the more anisotropic HTS compounds, as-grown
association of the “fishtail” peak phenomenon with pinning crystals may well have suitable aspect ratios, but the con-
by pointlike defects or their clustet$”*8which contribute  straint on field alignment becomes rapidly more severe, and
weak isotropic disorder. However, other maxima Jfp, quickly surpasses the typical crystallographic mosaic spread
with respect tdB that do not scale in this manner are some-of ~0.1°. It is for these reasons that magnetic measurements
times also seen; they presumably originate from other kindsf the interplanar critical currents in HTS crystals yield
of pinning centers, particularly twin boundari¥’s. quantitative results only over a rather narrow range of

anisotropy*213

B. The analysis of critical current anisotropy

The HTS materials are strongly anisotropic, with the cou- C. Vortex-locking phenomena in HTS
pling between the superconducting CuO planes ranging from One of the most interesting phenomena predicted for HTS
moderate in YBsCu;O; to extremely weak in the crystals is locking of vortices by plan&CuO planes or twin
BiSrCaCuO phases. The thermodynamic anisotrbpin-  boundaries or linear (irradiation column correlated pin-
creases from~5 in YBa,Cu;0; to more than 20 in the ning centergsee Ref. 15 and references theyelhen the
BiSrCaCuO phases. magnetic field is tilted away from the pinning system, the
Here we are concerned with the question of measuring theortices remain locked to the plane or to the direction of the
anisotropy() of the (nonequilibrium screening currents, de- line defects. This behavior arises from the finite energy re-
fined as the ratio of the in-plane to out-of-plane critical cur-quired for creation of the kinked vortex state, which is
rent densities) ., andJ((, , respectively. This anisotropy is needed to accommodate vortex tilt. For locking by the CuO
certainly influenced strongly by the thermodynamic anisot-planes, the required energy is that for formation of a pancake
ropy, but it includes also a significant contribution from the vortex; for twin boundaries and columns, it is the formation
geometry of the pinning system that maintains the screeningnergy of the connecting vortex segment. Only when the
currents. excess magnetic energy associated with tilting of the applied
Because HTS crystals usually grow as quite thin plateletsiield reaches this energy threshold does the kinked structure
with the crystallographic axis normal to the plate, the geo- form.
metric effects discussed earlier constrain the screening cur- Consequently, the prime physical signature of vortex
rents to flow within theab plane, unlessi is close, within an  locking is the deviation of the vortices from the applied field
angle~1/k, to that plane. However, in order to obtain in- direction, because of their adherence to the direction of the
formation about screening currents that flow parallel to thepinning system. In the vortex-locked state there is therefore
plate normalor to the crystallinee axis), it is necessary but complete shielding of the transverse componert pind so
not sufficientto work within this window. the generation of aeversibletransverse magnetic moment.
For fields applied along the symmetry directions of anPreviously used experimental approaches to the study of
anisotropic plate, the Bean model yields “rooftop” magnetic vortex-locking(e.g., Refs. 21-23could not obtain informa-
induction profilest®?°ConsiderH applied in theab plane of  tion about the vortex direction, and so were unable to iden-
a HTS crystal, corresponding to tledirection in the analy- tify this phenomenon directly.
sis of Sec. Il. There are two possibilities for flux penetration: Recently, we have applied vector magnetometry to the
In “short” samples with L/t<Q, flux penetrates faster vortex-locking problent? The reversible transversgo H)
along thez direction than along, andm, is dominated by magnetic moment of interest is inevitably accompanied by
the closure currents parallel to theaxis; only such samples the irreversible moment induced by shielding currents. For
are useful for the determination @. In “long” samples the usual platelike crystal, the angular behavior of the irre-
with L/t> (), flux penetrates faster in thedirection; in this  versible moment is described by the geometric model dis-
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cussed above. The twin boundaries run parallel tacthgis,  Engineering and Physical Sciences Research Council, and
and this is also the usual direction for columnar irradiationthe Russian Fund for Fundamental Research Grant No. 96-
defects; vortex locking to these two defect species is thered2-18376a.

fore best studied by monitoringy,, as H is rotated away

from the ¢ axis. In this geometry, we have seen that the oppENDIX A: THE MAGNETIC MOMENT ASSOCIATED

irreversible moment remains closely locked to thexis, and WITH CLOSURE CURRENTS
so gives negligible contribution to,,. Consequently, for
twin boundaries or columnar defects parallel to thexis, The definition of the magnetic moment is
geometrical locking assists the observation of vortex-locking
phenomena. m= } f rAjdV

In contrast, for vortex-locking induced by the CuO planes, 2

the associated reversible transverse moment is ic thieec- 1

tion, but it rapidly acquires a large irreversible contribution _ — f SN P G

as H is rotated away from thab plane[Eq. (5)]. Thus, 7 ) ey =i re e relx=jyldV.
geometrical effects tend to obscure the observation of vortex (A1)
locking by the CuO planes. For example, they confuse rota-

tion experiments and cause the ideal transverse shielding towheree, , etc., are Cartesian unit vectors.

be dominated by the irreversible component. These effects It can be seen from EqA1l) that each component of is
have been demonstrated experiment&iif and will be dis-  determined by the sum of two contributions. We showed
cussed in more detail elsewhéfe. explicitly in Sec. Il A how to calculate the contribution of
the j, current component ton, andm, in a long thin slab.
We stated there that equal contributions arise from the clo-
sure currentg, and j, flowing at the ends, and we now
prove this.

We have obtained the solution of the Bean model for an Consider a sample of arbitrary shape with time-
infinite thin plate in a tilted magnetic field, and discussed itsindependent shielding currents of dengitfowing inside it
extension to a more realistic description of a superconductbecause of charge conservationjei®, and thereforg is
ing sample. For most of the angular range of the applied fiel¢olenoidal. Consequently, the current distribution can be
H, the magnetic momenin associated with the induced considered as made up from elemental current tubes carrying
screening currents is almost locked to the plate normal, andurrenti; each such tube is closed, and tubes do not intersect
the modulus ofm changes very little. This locking has a each other; note that we do not require the contour followed
purely geometrical origin, and is independent of any intrinsicby the current tube to be planar.

V. CONCLUSIONS

superconducting anisotropy. However, whidnapproaches Thex component of the magnetic momedrn, generated
and then rotates through the plate plameshanges direction by an elemental current tube can be written, using(Bd,),
and magnitude very rapidly. as

The applicability of the geometric model has been inves-
tigated by vector measurement of the magnetic moment in a . .
variety of HTS and conventional superconductor samples. 5mX:§ fﬁ (sdh(iy—iy2),
We find very good agreement with the model in respect of
the direction ofm, with locking to the plate normal over wheres is the cross-sectional area of the current tube, and
most of the angular range, followed by rapid rotation throughd! an element of its length; the line integral is taken around
the plate plane; the predicted variation of its magnitude is athe contour followed by the current tube. In terms of a unit
least semiquantitatively correct. vector g in the direction of the element of current tulje,

We have shown that these geometric effects must beje&, - €, the current is sj, anddz=dle,- g, so that
taken into consideration when exploring the anisotropy of
critical current and vortex behavior in HTS crystals. In par- 1. 1
ticular, there is an interplay between geometric locking of ™%~ 73 ! fﬁ [di(ecey—e-az)]=5i jg (dzy-dy2).
the irreversible magnetic moment and vortex-locking phe- (A3)
nomena that assists the identification of vortex locking to
twin boundaries, and also to other extended defects that run However, the projected are8,, of the current tube is
parallel to thec axis, but hampers severely the observation offy dz= — ¢z dy, so that these two terms in EGA3) contrib-
vortex locking to the CuO planes. ute equally tosm,, thus yielding the usual result witBm,
=iS,,.

T?le first term in the integrand of E¢A2) is associated
with current flowing in thez direction, which is the direction

We are grateful to E. H. Brandt for several useful conver-of the current flow in the central region of a long slab, as
sations, and to H. Kofer for important discussions and pro- discussed in Sec. Il A 2. The second term clearly represents
viding us with the PbMogsample. We thank T. Wolf, M. the closure currents that flow at the ends of the slab. Since
Klaser, S. I. Krasnosvobodtzev, G. Wirth, and the late B. Rthe two terms contribute equally in EGA3), they do so also
Coles for their provision of samples. This work was sup-in Eq. (A2). As this equality holds for every elemental cur-
ported by NATO Linkage Grant No. HT931241, the UK rent tube, it must hold for the entire current distribution, and

(A2)
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of course applies also to the other componentsnofthus z
proving our statement about the contribution of the closure
currents.

APPENDIX B: THE ELECTRIC FIELDS IN A SLAB
INDUCED BY A TILTED TIME-DEPENDENT W/2
MAGNETIC FIELD

Within the framework of local electrodynamics, the elec-
tric fields and shielding currents in a superconductor can, in
principle, always be calculated on the basis of Maxwell's
equations and knowledge of tiej characteristi¢®=**how- *
ever, the general case is intractable. Esj characteristics L * X
independent of the magnetic fields in the Bean modgl |
and with the applied magnetic field increasing at a steady
rate, the current distribution within the sample is stationary,
so that the change of the magnetic induction is determined
by the applied fieldtH only. In an experimental context, this
approximation is satisfied when there is negligible self-field,

i.e., whenH is large compared with the penetration field.
First we suppose that inside the superconductor there are
no net electric chargep,=0 everywherdlater we will show
that they can be created in certain casa@sen the electric w

fields are determined by the following equations: o _ _
FIG. 8. Definition of the central and closure regions of a thin

divE=0 (B1) slab forH parallel to they axis; bold arrows indicate the screening
current direction.

and
The normal componeng&, is continuous across the
dH boundary between the two regions, so that there is no space
curlE=—puo 57 (B2)  charge. However, on the boundary itself €&udiverges be-

cause the components of tBefield are unphysically discon-
with the boundary condition for the normal electric field tinuous, thus violating EqB2) We have examined numeri-
component,=0 at the sample surface. cal solutions of the problem, witlE changing direction
Any continuous solution to these equations is necessarilgmoothly near the boundary lifand so still satisfying Eq.
unique® It may be obtained as an infinite series of Green’s(B2)], but elsewhere similar to EqéB3) and(B4). Since we
functions, but the details are outside the scope of this papeare interested in a summation over the entire sample current
For an infinite slab witiH|ly (Fig. 1), this solution simplifies distribution, we anticipate that these analytical discontinui-

greatly and we have ties should not have significant impact on calculatiomof
For the other principal direction of the magnetic field,
E,= MoH X, Hllx, the solutions may be obtained by coordinate permuta-
Y tion; in the central region, we have
E,=E,=0. (B3) :
X y E,=— uoHyy,
For a slab of finite length., but still with L>w, we have E—E -0 (B5)
to distinguish the end regions carrying the closure currents Ty

from the central region. The exact solution is too compli- | v osure regiond, /2> 2| >L/2—t/2+ |y, the solu-
cated to analyze, instead we use an approximation that is is

exact solution for the Bean case. The boundaries that sugges

themselves, and that accord with the superficial flux distribu- ) Lt

tion seen in magneto-optic experimefftsare for Hlly the Ey:,uOHX< || - 5t3 sgriz,

lines z=L/2—w/2+x in the first quadrant and the three

other symmetric diagonalgig. 8); similarly, for Hllx, they E—E.=0 (B6)
z X .

arez=L/2—t/2+y, etc.
For Hlly, Eqg. (B2) is still satisfied in the central regions.

ST Because Eq9B1) and(B2) are linear, we may obtai&
At the endsL/2>|z|>L/2—w/2+|x|, a solution is

for any direction ofH within the xy plane by summation of
Egs.(B3) and (B5) for the central region, and of Eq&84)
and (B6) for the closure regions.

For the central region of the finite slafe|<L/2—w/2
+|x| and|z|<L/2—t/2+|y|), and also for the infinite slab,
E,=E,=0. (B4)  we have an exact solution

sgriz|,

. L w
Ex=—noHy|l2d-5+3
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E,= — uoH(Y sing—x cosp), erations. However, if the same description of the current den-
sity is applied to the closure regions of a finite slab in tilted
Ex=E,=0, (B7) magnetic field, charge conservation

where is the angle betweeH and they axis.

In the closure regions of the finite slab the solutions are divj=0 (B1D)

is violated. Since we are dealing with steady-state solutions,
L—w this cannot be acceptable. We suggest that when the sweep
sgriz| for |z|= 5 +(x|, of external field commences, there is a transient charge sepa-

(B8) ration, so that in the steady state, EB11) is maintained,
but Eq.(B1) now has diE=p(r). These equations should

then be solved with the boundary condition that the current
L—t density normal to the sample surface should be zero; that
sgriz| for |z|= —t lyl, problem is beyond the scope of this paper.

(B9) The Ohmic cas¢= oE, with an isotropic conductivityr
provides a much simpler situation; the solutionsjfdollow
trivially from Egs. (B3) to (B10) and Eq.(B1) guarantees

E,=0 for |z|>(L/2—w/2+|x|) and>(L/2—t/2+]y]), divj=0. _
It is apparent that the ends of the slab always introduce
intractable analytical complications; even in an Ohmic con-
EZZMoHyX for (L/2—t/2+|y|)<|z|<(L/2—w/2+]|x]), ductor, the boundary between the central and closure regions
is difficult to describe. Although th&-j characteristic of a
superconductor is very different from Ohmic, the analysis

— _ _ (Sec. 1B of power-law characteristics in infinite slabs

E, woblyy for (LI2=wi2+|x) <[z <(Li2=t2+]y)). shows that, as far as the magnetic moment is concerned, the
(B10)  gifference between the Ohmin€1) and Bean f— x)

The current distribution corresponding to these solutionsases is only a numerical factor close to unity. Hence it is
for the E field can be obtained only in special cases. For theplausible that the angular behavior of the magnetic moment
infinite slab, or the central region of a long slab, the Beann a finite slab depends only very weakly on the real form of
model E-j characteristic of =j.E/E yields j,==*. as in  theE-j characteristic, and may be well approximated by the
Fig. 1, just as obtained in Sec. Il A 2 from symmetry consid-Ohmic result.

w
2
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