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Geometrical locking of the irreversible magnetic moment to the normal
of a thin-plate superconductor
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We solve the Bean critical-state model for the screening current distribution in an infinite superconducting
slab in a tilted magnetic fieldH, and calculate from it the magnitude and direction of the induced magnetic
momentm. As the tilt angle increases,m remains directed close to the plate normaln until H is almost
perpendicular ton, thenm rotates very rapidly. We consider several generalizations of the model: finite length,
a more realistic current-voltage characteristic, and critical-current anisotropy, but find that they have only a
minor quantitative effect on the results derived for the simplest case. Also, we prove that the closure currents
always contribute half the moment. Vector magnetic moment measurements of YBa2Cu3Oy single crystals and
an epitaxial film, and also on samples of conventional superconductors, confirm the model calculations. These
geometrical effects are important for the analysis of the angular behavior of the critical currents and their
anisotropy in HTS materials; also, they assist the observation of vortex locking to twin boundaries in HTS
crystals, but tend to obscure vortex locking to CuO planes.@S0163-1829~97!04929-1#
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I. INTRODUCTION

A characteristic feature of high-temperatur
superconductor~HTS! single crystals is their thin platelike
shape. Many studies have reported observations of a l
anisotropy in the irreversible magnetization~generated by
screening currents! of such crystals, and often this has be
interpreted in terms of the intrinsic anisotropy of the mate
als ~e.g., Refs. 1–3!.

However, as has been pointed out previously,4,5 geometric
effects contribute strongly to this anisotropic angular beh
ior. In a platelikeisotropic superconductor, the direction o
the irreversible magnetization is almost independent of
angle of the applied field, and remains closely parallel to
smallest sample dimension until the field is oriented alm
parallel to the plane of the plate~we are interested here i
applied fields much larger than the self-fields generated
the screening currents, so that classical demagnetizing
tors are unimportant!. Consequently, because of the usu
sample shape of HTS crystals, it is difficult to extract a
quantify their intrinsic anisotropy of screening currents a
vortex behavior. Note that thereversiblemagnetization aris-
ing from equilibrium Meissner currents is affected by d
magnetizing factors, but not by these additional compli
tions, so its anisotropy is much more straightforward
interpret. The geometrical effects considered here are im
tant at all fields where irreversibility exists, whereas the
versible magnetization and its demagnetizing fields are
nificant only at low fields, up to;Hc1 .

These qualitative conclusions about geometrical effe
on the irreversible magnetization have not previously b
substantiated by quantitative analysis. Here we present
solution of the Bean critical state model for an infinite th
slab of a superconductor in a tilted magnetic field, and th
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consider extensions toward a more realistic description of
situation~Sec. II!. In Sec. III we compare the results of th
calculations with detailed experimental measurements of
vector magnetic moment of both HTS crystals and plate
of conventional superconductor, obtained using a vibrat
sample magnetometer~VSM! equipped with two orthogona
coil sets. We then examine the impact of these geometr
effects in HTS crystals~Sec. IV!, particularly on measure
ment and analysis of the anisotropy of the critical current a
of different kinds of pinning mechanism, and also on t
putative identification of ‘‘vortex-locking’’ phenomena.

II. THEORY

The key factors that make the analysis of the screen
current distribution in a realistic superconducting sample d
ficult are the three-dimensionality of the problem, the loss
symmetry when the applied field is directed away from
principal axis, and the form of theE- j characteristic. We
therefore start with the simplest case, the Bean model fo
infinite slab, and then examine extensions to it.

A. The Bean model for an infinite slab in tilted magnetic field

1. The model

The essence of the Bean model is that the screening
rent densityj has the same magnitudej c everywhere, and a
sign given by that of the local electric fieldE; this corre-
sponds to a threshold current-voltage characteristicj
5 j cE/E. As in the original model6 we take j c to be inde-
pendent of both the magnitude and direction of the lo
inductionB within the sample. Also, we restrict the analys
to large applied magnetic fieldsH, so that the self-field
2809 © 1997 The American Physical Society
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FIG. 1. ~a! Geometry for calculation of the Bean model in a tilted magnetic field;~b! directions of screening currents~: and ^! and of
the Lorentz force~arrows! on the vortices~thick lines! in a cross section of the sample;~c! the screening current distribution forw,wc ; ~d!
the screening current distribution forw.wc .
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created by the shielding currents can be neglected;
within the slab, we may putB5m0H, and the vortices are
straight and parallel toH.

Even within these restrictions, it is difficult to obtain
solution in closed form for a rectangular plate of finite leng
because the closure currents at the ends destroy the tra
tional invariance. We therefore consider an infinite thin sl
as the limiting case of a long plate@Fig. 1~a!# of length L
much larger than its widthw or thicknesst, so effectively
reducing the three-dimensional problem to two-dimensio
The aspect ratiok (5w/t) of the cross section is the ke
parameter for further analysis.

Let the direction of the magnetic field be rotated in t
transverse plane from the plate normaln by an anglew @Fig.
1~a!#. For an infinite slab, translational invariance requir
that every cross section be equivalent, and thatB remains in
the transverse plane. Therefore, with increasingH, vortices
enter from the cornersA andC @Fig. 1~b!#, move toward the
center of the sample, and meet at the planeEF.4 By symme-
try, the screening currents flow in thez direction along the
length of the slab. The Lorentz force on the vortices, and
also their drift velocity, is in thexy plane, but has opposit
sign on either side of the planeEF. Consequently, the cur
rent distribution is antisymmetric with respect to the pla
EF, as was first derived by a similar analysis in Ref. 4. T
conclusion, based on symmetry, yields the same result a
direct solution of Maxwell’s equations~Appendix B!.

The behavior of the magnetic moment is different forw
being less than or greater thanwc (5arctank), the direction
of the diagonalDB of the transverse cross section of t
slab, so we consider these two cases separately.

2. H directed away from the plane of the plate,w<wc

We use a Cartesian coordinate system in the rota
plane withy parallel ton @Fig. 1~c!#. The magnetic momen
en

sla-
,

s.

s

o

s
he

n

m of the current distribution is given bym5(1/2)*r3 jdV.
For H along a symmetry direction of a long plate, the closu
currents at the ends are known to give a contribution tom
equal to that of the currents parallel to the length;7 in Appen-
dix A we show that this remains true forH in any direction.
Thereforemy5L*x jdS, andmx5L*y jdS, where the inte-
grals are evaluated over the cross section.

By symmetry the regionGEZFH @Fig. 1~c!# gives zero
contribution tomy , where the plane represented by the li
GH corresponds to a field direction of2w. Hencemy is
twice the contribution from the trapezoidal regio
AGZFD:

my54LE
AGZFD

x jcdx dy5
Lt3

12
j c~3k22tan2w!. ~1!

For mx the moment comes from the regionGEZFH:

mx54LE
GEZFH

y jcdx dy5
Lt3

6
j c tanw. ~2!

The anglea between the momentm and the plate norma
n is given by

tana5
2 tanw

3k22tan2w
. ~3!

For w50 we have the usual resultmy5L j ctw
2/4, and, of

course,a50. WhenH has rotated to the anglewc , the mo-
ment has deviated by an angleac5arc cotk, so that ac
5(p/22wc). For angles small enough that tanw!k, the de-
viation angle a'2 tanw/3k2, and um(w)u'm(0)(1
2tan2w/3k2). Thus, for a plate representing typical HT
crystals, withk of ;10 or more, the irreversible magnet
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56 2811GEOMETRICAL LOCKING OF THE IRREVERSIBLE . . .
moment is almost locked to the plate normal for this en
range of applied field directions. At the end of the range,
have thatmy(wc)52my(0)/3 and mx(wc)5my(wc)/k, so
that the modulus ofm changes rather slowly too.

3. H close to the plane of the plate,w>wc

In the angular rangewc<w<p/2 @Fig. 1~d!# it is more
appropriate to measure the deviation ofH and m from the
plane, by the anglesu5(p/22w) and b5(p/22a), re-
spectively. This case maps to the previous solution with
interchangesx⇔y, w⇔u, t⇔w, k⇔1/k. Then one can ob-
tain

mx54LE
AGZEB

y jcdx dy5
Lw3

12
j cS 3

k22tan2u D , ~4!

my54LE
EZH

x jcdx dy5
Lw3

6
j ctanu, ~5!

tanb5
2k2tanu

32k2tan2u
. ~6!

With H ~and som also! in the plane of the plate,umu
5L j cwt2/4, a factork smaller than when the field is norma
to it. However, note that small misorientations ofH induce
large angular deviations ofm: b'2k2u/3. A useful param-
eter that describes the rapidity with whichm rotates asH is
swung out of the plate plane is

t5S db

du D
u50

5
2k2

3
. ~7!

At the critical angleuc(5p/22wc) the moment direction
is given by tanbc5k, which is identical to the result obtaine
in Sec. II A 2.

From Eqs.~4! and~5! to lowest order inu, the modulus of
the moment is

m~u!'m~0!S 11
2

9
k4u2D ~8!

and soumu increases rapidly with angle.

B. Beyond the Bean model

The steplike current-voltage characteristic that is used
the Bean model is inappropriate for HTS materials in wh
flux creep is always present, corresponding toj being a
smooth function of E. Power laws of the formE/E0
5( j / j 0)n provide a much better representation, withn typi-
cally in the range 5–30 for HTS crystals, and above 20
conventional superconductors. The Bean model correspo
to the limit n→`.

In a magnetization experiment, the changing applied m
netic field ~which for simplicity we take to be swept at
steady rateḢ5dH/dt! induces an electric field. As note
earlier, we are considering the case in whichH is much
larger than the penetration field, so that the induction gen
ated by the screening currents may be neglected. Furt
more, becauseB is then uniform through the sample, theB
dependence of theE- j characteristics may be ignored.
e
e

e

in

r
ds

g-

r-
er-

For the infinite slab, a power-lawE- j characteristic may
be incorporated directly into our previous analysis. As sho
in Appendix B, theE field is parallel toz, and has opposite
sign on either side of the planeEF of Fig. 1:

Ez5m0Ḣ~x cosw2y sinw!. ~9!

Lengthy but straightforward calculations yield, forw
.wc @Fig. 1~d!#,

my52L j 0S w

2 D 3S m0Ḣw sinu

2E0
D 1/n

tanu
n2

~2n11!~n11!

3H ~a11!211/n1~a21!211/n2
n

3n11

3@~a11!311/n2~a21!311/n#J ~10!

and

mx52L j 0S w

2 D 3S m0Ḣw sinu

2E0
D 1/n tanu

k

n2

~2n11!~n11!

3H ~a11!211/n2~a21!211/n2
n

3n11
@~11a21!

3~a11!211/n2~12a21!~a21!211/n#J . ~11!

The angleb of m from the plane of the plate is now

tanb5
2~2n11!~n11!a

6n~n11!a22~2n11!~n11!
, ~12!

wherea5(k tanu)21.
These complicated expressions have two interesting

its: For n→`, i.e., the Bean model, they are identical
those obtained in Sec. II A 3. In the Ohmic limit (n51),
they simplify greatly to

my5
Lw3

6
j z~0,t/2!tanu, ~13!

mx5
Lw3

6k2 j z~0,t/2!, ~14!

tanb5k2tanu. ~15!

These results resemble closely Eqs.~4!–~6!, but with the
replacement of the Bean modelj c by the current density
j z(0,t/2) flowing at the center of the broad face of the pla
In this orientation of the applied field,j z(0,t/2) is a good
measure of the screening currents that dominatem.

The results for anglesw,wc may be obtained directly
using the mapping described in Sec. II A 3. Naturally, f
n→` they again reduce to the Bean model. In the Ohm
limit, they yield expressions resembling Eqs.~1!–~3!, but
involving the current densityj z(w/2,0) flowing at the center
of the sides of the plate.

Given that there is very little difference between the
sults for the Bean and Ohmic limits, we conclude that t
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behavior of the magnetic moment is insensitive, within n
merical factors close to unity, to the precise form of t
E- j characteristic, and that the expressions obtained in
II A will generally be adequate.

The critical current is usually strongly dependent on
magnitude and direction ofB. However, because we are co
sidering the situation in which the effects of self-fields a
small, so thatB is constant within the sample, the depe
dence of j z on B may be incorporated directly into all th
expressions derived so far by replacing it with the value
j z appropriate to the magnitude and direction ofm0H. The
direction ofm @Eqs.~3!, ~6!, ~7!, and~15!# is unaffected by
any dependence ofj z on B.

C. Finite length and closure currents

In the general case of a slab of finite length with t
applied field at an arbitrary angle, and an arbitrary curre
voltage characteristic, analytic solutions for the screen
current distribution are unknown. However, in Appendix
we obtain approximate solutions for theE field in a finite
slab, and in the Ohmic case, they can be translated imm
ately into the current distribution.

From theE fields described by Eqs.~B8!–~B10!, and us-
ing j5sE, we find for the component ofHix:

mx5sm0Ḣx

Lw3t

12k2 S 12
t

4L D
5

Lw3

6k2 j z~0,t/2!F11
3t

4L
1OS t

L D 2G ~16!

and for the component ofHiy

my5sm0Ḣy

w3Lt

12 S 12
w

4L D
5

Lt3

6
j z~w/2,0!k2F11

3w

4L
1OS w

L D 2G . ~17!

In the limit of a long slab, these results~expressed in terms
of the current densities at the centres of the slab faces! re-
duce to those found in the previous section for an Ohm
conductor.

For H directed at an angleu from thex axis, the direction
of m is given by

tanb5k2tanu
12w/4L

12t/4L
. ~18!

The influence of finite slab length onb can be seen directly
by comparison with Eq.~15!.

We have shown therefore that, in the Ohmic case,
corrections for finite length are, as might be expected,
order w/L or t/L. In the more realistic situation of a stee
power-lawE- j characteristic, the magnitude of the corre
tion terms is less obvious. However, we have seen in S
II B that for an infinite slab,m changes very little between a
Ohmic and a BeanE- j characteristic; we propose that th
same is true of the corrections tom for finite length.

HTS crystals are usually almost square plates, withL
;w, so that the correction to the parameter that is m
-

c.

e

-

f

t-
g

di-

c

e
f

-
c.

st

easily measured, the rotation ratet whenH is close to plate
plane @Eqs. ~7!, ~15!, and ~18!#, should be no more than
about 25%.

III. EXPERIMENTAL INVESTIGATIONS

A. Vector magnetometry

In order to study the key predictions of Sec. II, it is e
sential to monitor both the magnitude and direction ofm.
We used a vibrating sample magnetometer~Oxford Instru-
ments 5H! equipped with two independent coil sets that me
sure simultaneously the magnetic moments parallel~standard
componentmstd! and perpendicular~ortho componentmort!
to H. The sample can be rotatedin situ about the third axis,
with an angular resolution of 0.01° and reproducibility bet
than 0.03°. As we have pointed out previously,8 the sample
has to be centered very precisely for the two coil sets
maintainmagneticorthogonality.

The data reported here were all obtained as the field
swept steadily around a hysteresis loop, with the sampl
fixed orientation; typical sweep rates were;10 mT s21, and
the maximum field was 5 T. In the present context, it is on
the irreversible components ofm, which reflect the behavio
of the shielding currents, that are of interest.

B. Samples

We examined YBa2Cu3Oy single crystals of several dif
ferent kinds of dominant pinning. These included twinn
and detwinned crystals, and also one containing colum
defects~Table I!; their preparation and detwinning have be
described elsewhere.9,10 Different pinning systems affect th
anisotropy ofj c in different ways, and so allow us to chec
the influence of the latter factor on the deviation anglea. For
a sample of extreme aspect ratio, we used a YBa2Cu3Oy
epitaxial film.11

For a direct check of the analysis, isotropic supercondu
ors are preferable; we have used polycrystalline sample
conventional superconductors. The Chevrel phase PbM6
~No. SV! sample was cut by diamond saw from an ing
after the first series of measurements, it was cut to decre
the sample width and measured again. The V3Si sample~No.
VS! was cut, measured, thinned on abrasive paper, and m
sured again.

C. Experimental results and discussion

1. HTS crystals

Figure 2 shows the behavior that is typical of the platel
YBa2Cu3Oy single crystals. Over a large angular range, up
;87° from the plate-normal in the No. OZ sample, the
rection of the irreversible magnetic momentm is locked to
the plate normaln, so thata'0° ~because of the inevitable
slight precession of the sample when it is rotated over la
angles,8 there is then an uncertainty ina of about61°!. In a
narrow angular interval, when the direction ofH passes
through the plane of the plate,m flips rapidly through almost
180°, in accord with theory. The data of Fig. 2 are repres
tative of a wide range of fields~provided thatH is signifi-
cantly higher than the penetration fieldHp! and tempera-
tures, over which the magnitude and anisotropy ofj c change
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TABLE I. The measured samples and their characteristics.

Name Material Form DimensionsL3w3t ~mm! Aspect ratio,k Comments

No. OZ YBa2Cu3Oy Single crystal 1.9531.1530.065 17.7 Twinned, rotation
plane' to TB

No. MK YBa2Cu3Oy Single crystal 1.0430.9730.10 9.7 Detwinned
No. WZ YBa2Cu3Oy Single crystal 0.9630.9030.04 22.5 Detwinned, high

purity
No. AH YBa2Cu3Oy Single crystal 1.2630.5730.025 22.8 ColumnsBc53 T
No. LF YBa2Cu3Oy Epitaxial film 2.2 30.930.0003 33103

No. SH PbMoS6 Polycrystal 2.0131.7230.40 4.3
No. S1 PbMoS6 Polycrystal 2.0130.6730.40 1.68 Cut from No. SH
No. VS V3Si Polycrystal 6.0030.9030.35 2.57
No. VI V3Si Polycrystal 6.0030.9030.27 3.33 Polished from

No. VS
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markedly ~e.g., Refs. 12–14!. Furthermore, for all the
YBa2Cu3Oy single crystals studied, covering a range ofj c
anisotropy because of the different pinning mechanis
present, we observe similara~w! dependencies that all fi
well to the theory of Sec. II evaluated for the measured
pect ratios, and without recourse to fitting parameters. T
confirms the dominant role played by geometrical effects
the observed angular behavior ofm.

The YBa2Cu3Oy epitaxial film data~Fig. 3! illustrate the
extreme case of the geometrical-locking phenomenon, w
m flipping its direction within 0.02° rotation ofH. These
data therefore illustrate the angular resolution of the mag
tometer.

2. Conventional superconductors

Measurements on conventional superconductors test
geometric theory under rather different and somewhat s
pler conditions; in particular, unlike HTS materials, th
have no strong anisotropy. This allows us to analyze dire
the measured dependence ofm on w.

FIG. 2. Anglea of the irreversible magnetic moment from th
c axis in a YBa2Cu3O7 ~sample No. OZ! single crystal for fields
applied at anglew close to theab plane (w590°) at different
temperatures and magnetic fields. The full line shows the fit to E
~3! and ~5! calculated for the sample aspect ratiok of 17.7; the
arrows mark the critical angleswc .
s

s-
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n

th

e-
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The measurements ofa~w! again show quite good quan
titative agreement with theory without use of any fitting p
rameter~Fig. 4!. The variation of the modulus ofm with w
~Fig. 5! illustrates an important feature: there is the sharp
in umu when the field is nearly parallel to the plate. W
emphasize that this minimum is purely geometric in orig
and does not reflect any intrinsic superconducting anis
ropy.

The theory of Sec. II A 2 suggests that forw not close to
p/2, umu should be nearly independent of angle; the o
served smooth increase asH is rotated away fromw50 may
be connected with metallurgical anisotropy of the sample
perhaps reflect the limitations of our approximations.

3. The rotation ratet

A sensitive quantitative test of the geometric model is
ratet which describes how fastm swings round asH rotates
through the plane of the plate; Eq.~7! predicts thatt should
be a simple quadratic function of the aspect ratiok. The data
for both HTS and conventional samples~Fig. 6! fit rather
well to this form ~the data for the thin film have not bee

s.

FIG. 3. Measured rotation of the magnetic moment~as in Fig. 2!
of a YBa2Cu3O7 epitaxial film ~No. LF, T550 K, m0H50.5 T!
The full line shows the fit to Eqs.~3! and ~6! calculated for the
sample aspect ratiok of 33103; the arrows mark the critica
angleswc .
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included here, its aspect ratio of;103 yields a value fort of
;106, well beyond our experimental resolution!. Also, the
coefficient ofk2 is close to the value of 2/3 predicted by E
~12! for E- j characteristics of largen.

IV. GEOMETRICAL EFFECTS AND VORTEX BEHAVIOR
IN HTS CRYSTALS

A. Angular scaling of magnetization curves

As we have seen, in magnetization measurements on
crystals, for a wide range of directions ofH around thec
axis,m remains parallel to thec axis, and so is dominated b
the screening current density within theab plane,J(ab) . The
magnitude ofJ(ab) ~treating it for simplicity as a threshold
or Bean, critical current density! depends on the nature of th
pinning force. In general, this dependence is nontrivial,
for weak isotropic disorderJ(ab) should be constant for a
fixed value of the scaled induction15 «wB5(cos2w

FIG. 4. Measured rotation of the magnetic moment~as in Fig. 2!
of a PbMoS6 sample~T510 K, m0H51.0 T! in its initial shape
~No. SH!, and after cutting to reduce the aspect ratio~No. S1!. The
full lines show the fits to Eqs.~3! and~6! calculated for aspect ratio
k of 4.3 and 1.69; the arrows mark the critical angleswc .

FIG. 5. Angular dependence of the magnetic moment modu
of the PbMoS6 sample~T510 K, m0H51.0 T! in its initial state
~No. SH!, and after cutting~No. S1!. The full lines show the fits
umu5A(mx

21my
2) to Eqs.~1!, ~2!, ~4!, and~5! calculated for aspec

ratiosk of 4.3 and 1.69.
S

t

1G2sin2w)1/2B, where G is the thermodynamic anisotropy
«w is a fundamental parameter which determines the ang
variation of the line energy of a vortex, of the upper critic
field, of the melting transition, and of the irreversibility fiel
Birr .15

Consequently, if this scaling is valid,um(w)u measured at
fixed values of«wH should be nearly constant asw increases,
decreasing to not less than 2/3 of its initial value at the an
wc ~Sec. II A 2!. The measurements on YBa2Cu3O7 crystals
~Fig. 7, where we have used a value forG2 of 30, as found
from linear plots ofBirr

22 against sin2w! show that this is
indeed the case for the detwinned sample No. MK. We
clude in Fig. 7 the prediction of the geometrical model f
um(w)u; it is clearly of the correct angular form, but there
a factor ;2 discrepancy between the calculated and m
sured ratios of the magnitudes ofumu at 0° and 90°.

s

FIG. 6. Measured angular rotation ratet of the magnetic mo-
ment whenH passes through the plane of the plate, as defined
Eq. ~7!, for samples of a different aspect ratiok. The full line is the
prediction of the geometrical model, Eq.~7!.

FIG. 7. Angular dependence ofumu for the detwinned No. MK
and twinned No. OZ crystals at a fixed value of the scaled fi
ewm0H50.5 T ~calculated forG2530!. The full lines show the fits
of umu to Eqs.~1!, ~2!, ~4!, and~5! calculated for aspect ratiosk of
9.7 and 17.7. The strong peak aroundw50 in the No. OZ crystal is
associated with vortex pinning to the twin planes, and occurs su
imposed on the background geometric response. Inset: data in
vicinity of w590°.
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On the other hand, in the twinned crystal No. O
um(w)u and so alsoJ(ab) , drop by an order of magnitude a
H is rotated;20° away from thec axis. This behavior dem
onstrates the strong anisotropy of the vortex pinning ass
ated with twin boundaries.

Another example of weak isotropic disorder is in the a
gular scaling of the ‘‘fishtail’’ peak in YBa2Cu3O7 crystals
seen by Kleinet al.,16 who measuredm(w,B) at a succession
of anglesw. They found empirically that the form of the pea
obeyed the relationm(w,B/cosw)5cosw m(0,B) for angles
up to;60° from thec axis. For the crystals studied in thos
experiments, withk;8, this angular range lies entirel
within the regime of Sec. II A 2, in whichm hardly deviates
from thec axis. With a conventional~single-axis! magneto-
meter, as used by Kleinet al., the measured quantity is th
component ofm parallel to H, in this situation equal to
umucosw; also, becauseG is at least 5 in YBa2Cu3O7, over
the measured angular range«wB'cosw B. From these two
angular dependencies, the observed scaling follows n
rally. Consequently, this angular behavior ofJ(ab) supports
association of the ‘‘fishtail’’ peak phenomenon with pinnin
by pointlike defects or their clusters,10,17,18which contribute
weak isotropic disorder. However, other maxima ofJ(ab)
with respect toB that do not scale in this manner are som
times also seen; they presumably originate from other ki
of pinning centers, particularly twin boundaries.17

B. The analysis of critical current anisotropy

The HTS materials are strongly anisotropic, with the co
pling between the superconducting CuO planes ranging f
moderate in YBa2Cu3O7 to extremely weak in the
BiSrCaCuO phases. The thermodynamic anisotropyG in-
creases from;5 in YBa2Cu3O7 to more than 20 in the
BiSrCaCuO phases.

Here we are concerned with the question of measuring
anisotropyV of the ~nonequilibrium! screening currents, de
fined as the ratio of the in-plane to out-of-plane critical c
rent densities,J(ab) andJ(c) , respectively. This anisotropy i
certainly influenced strongly by the thermodynamic anis
ropy, but it includes also a significant contribution from t
geometry of the pinning system that maintains the screen
currents.

Because HTS crystals usually grow as quite thin platel
with the crystallographicc axis normal to the plate, the geo
metric effects discussed earlier constrain the screening
rents to flow within theab plane, unlessH is close, within an
angle;1/k, to that plane. However, in order to obtain in
formation about screening currents that flow parallel to
plate normal~or to the crystallinec axis!, it is necessary bu
not sufficientto work within this window.

For fields applied along the symmetry directions of
anisotropic plate, the Bean model yields ‘‘rooftop’’ magne
induction profiles.19,20ConsiderH applied in theab plane of
a HTS crystal, corresponding to thex direction in the analy-
sis of Sec. II. There are two possibilities for flux penetratio
In ‘‘short’’ samples with L/t,V, flux penetrates faste
along thez direction than alongy, andmx is dominated by
the closure currents parallel to thec axis; only such sample
are useful for the determination ofV. In ‘‘long’’ samples
with L/t.V, flux penetrates faster in they direction; in this
,
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-
m
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-

-

g

s,

r-

e

:

casemx is dominated by the in-planez componentJ(ab) of
the current density. Thus, in ‘‘long’’ samples, they compo-
nentJ(c) of the current density is irrelevant.

Since HTS crystals are usually nearly square, withw
;L, ‘‘long’’ and ‘‘short’’ are equivalent tok greater and
less thanV, respectively. Measured values ofV in fully oxy-
genated YBa2Cu3O7 are in the range 5–10~e.g., Refs. 12 and
13!, smaller thank for all the HTS samples measured he
~Table I!, so that these crystals are effectively ‘‘long.
Hence the important screening currents are always those
flow within the ab plane, and there is no need to introdu
the complication of critical current anisotropy into our ana
sis. The agreement of the data with the geometric mo
whenH is closely parallel to theab direction, as shown by
Fig. 6, confirms this conclusion.

Conversely, to obtain reliable information on thec-axis
currents in YBa2Cu3O7 by magnetic studies requires crysta
of k less than about 10, which are less common, and fi
alignment with theab planes within a few degrees@Eqs.~4!
and~5!#. In the more anisotropic HTS compounds, as-gro
crystals may well have suitable aspect ratios, but the c
straint on field alignment becomes rapidly more severe,
quickly surpasses the typical crystallographic mosaic spr
of ;0.1°. It is for these reasons that magnetic measurem
of the interplanar critical currents in HTS crystals yie
quantitative results only over a rather narrow range
anisotropy.12,13

C. Vortex-locking phenomena in HTS

One of the most interesting phenomena predicted for H
crystals is locking of vortices by planar~CuO planes or twin
boundaries! or linear ~irradiation columns! correlated pin-
ning centers~see Ref. 15 and references therein!. When the
magnetic field is tilted away from the pinning system, t
vortices remain locked to the plane or to the direction of
line defects. This behavior arises from the finite energy
quired for creation of the kinked vortex state, which
needed to accommodate vortex tilt. For locking by the C
planes, the required energy is that for formation of a panc
vortex; for twin boundaries and columns, it is the formati
energy of the connecting vortex segment. Only when
excess magnetic energy associated with tilting of the app
field reaches this energy threshold does the kinked struc
form.

Consequently, the prime physical signature of vort
locking is the deviation of the vortices from the applied fie
direction, because of their adherence to the direction of
pinning system. In the vortex-locked state there is theref
complete shielding of the transverse component ofH, and so
the generation of areversibletransverse magnetic momen
Previously used experimental approaches to the study
vortex-locking~e.g., Refs. 21–23! could not obtain informa-
tion about the vortex direction, and so were unable to id
tify this phenomenon directly.

Recently, we have applied vector magnetometry to
vortex-locking problem.24 The reversible transverse~to H!
magnetic moment of interest is inevitably accompanied
the irreversible moment induced by shielding currents. F
the usual platelike crystal, the angular behavior of the ir
versible moment is described by the geometric model d



ion
er

he

in

es

on

rte
ta
t

ec

a
it

uc
e
d
an
a
si

es
in
le
o

r
g

b
o
r
o

he
t
r
o

er
-

R
p
K

and
96-

ed
f

clo-

e-

be
ying
sect
ed

nd
nd
nit

as
ents
nce

r-
nd

2816 56ZHUKOV, PERKINS, BUGOSLAVSKY, AND CAPLIN
cussed above. The twin boundaries run parallel to thec axis,
and this is also the usual direction for columnar irradiat
defects; vortex locking to these two defect species is th
fore best studied by monitoringmab as H is rotated away
from the c axis. In this geometry, we have seen that t
irreversible moment remains closely locked to thec axis, and
so gives negligible contribution tomab . Consequently, for
twin boundaries or columnar defects parallel to thec axis,
geometrical locking assists the observation of vortex-lock
phenomena.

In contrast, for vortex-locking induced by the CuO plan
the associated reversible transverse moment is in thec direc-
tion, but it rapidly acquires a large irreversible contributi
as H is rotated away from theab plane @Eq. ~5!#. Thus,
geometrical effects tend to obscure the observation of vo
locking by the CuO planes. For example, they confuse ro
tion experiments23 and cause the ideal transverse shielding
be dominated by the irreversible component. These eff
have been demonstrated experimentally,25,26 and will be dis-
cussed in more detail elsewhere.27

V. CONCLUSIONS

We have obtained the solution of the Bean model for
infinite thin plate in a tilted magnetic field, and discussed
extension to a more realistic description of a supercond
ing sample. For most of the angular range of the applied fi
H, the magnetic momentm associated with the induce
screening currents is almost locked to the plate normal,
the modulus ofm changes very little. This locking has
purely geometrical origin, and is independent of any intrin
superconducting anisotropy. However, whenH approaches
and then rotates through the plate plane,m changes direction
and magnitude very rapidly.

The applicability of the geometric model has been inv
tigated by vector measurement of the magnetic moment
variety of HTS and conventional superconductor samp
We find very good agreement with the model in respect
the direction ofm, with locking to the plate normal ove
most of the angular range, followed by rapid rotation throu
the plate plane; the predicted variation of its magnitude is
least semiquantitatively correct.

We have shown that these geometric effects must
taken into consideration when exploring the anisotropy
critical current and vortex behavior in HTS crystals. In pa
ticular, there is an interplay between geometric locking
the irreversible magnetic moment and vortex-locking p
nomena that assists the identification of vortex locking
twin boundaries, and also to other extended defects that
parallel to thec axis, but hampers severely the observation
vortex locking to the CuO planes.
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APPENDIX A: THE MAGNETIC MOMENT ASSOCIATED
WITH CLOSURE CURRENTS

The definition of the magnetic moment is

m5
1

2 E r` jdV

5
1

2 E @ex~ j zy2 j yz!1ey~ j xz2 j zx!1ez~ j yx2 j xy!#dV,

~A1!

whereex , etc., are Cartesian unit vectors.
It can be seen from Eq.~A1! that each component ofm is

determined by the sum of two contributions. We show
explicitly in Sec. II A how to calculate the contribution o
the j z current component tomx andmy in a long thin slab.
We stated there that equal contributions arise from the
sure currentsj x and j y flowing at the ends, and we now
prove this.

Consider a sample of arbitrary shape with tim
independent shielding currents of densityj flowing inside it;
because of charge conservation divj50, and thereforej is
solenoidal. Consequently, the current distribution can
considered as made up from elemental current tubes carr
currenti ; each such tube is closed, and tubes do not inter
each other; note that we do not require the contour follow
by the current tube to be planar.

Thex component of the magnetic momentdmx generated
by an elemental current tube can be written, using Eq.~A1!,
as

dmx5
1

2 R ~sdl!~ j zy2 j yz!, ~A2!

wheres is the cross-sectional area of the current tube, a
dl an element of its length; the line integral is taken arou
the contour followed by the current tube. In terms of a u
vector et in the direction of the element of current tube,j z
5 j ez•et , the currenti is s j, anddz5dlez•et , so that

dmx5
1

2
i R @dl~ex•ety2ey•etz!#5

1

2
i R ~dz y2dy z!.

~A3!

However, the projected areaSyz of the current tube is
ry dz[2rz dy, so that these two terms in Eq.~A3! contrib-
ute equally todmx , thus yielding the usual result withdmx
5 iSyz .

The first term in the integrand of Eq.~A2! is associated
with current flowing in thez direction, which is the direction
of the current flow in the central region of a long slab,
discussed in Sec. II A 2. The second term clearly repres
the closure currents that flow at the ends of the slab. Si
the two terms contribute equally in Eq.~A3!, they do so also
in Eq. ~A2!. As this equality holds for every elemental cu
rent tube, it must hold for the entire current distribution, a
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of course applies also to the other components ofm, thus
proving our statement about the contribution of the clos
currents.

APPENDIX B: THE ELECTRIC FIELDS IN A SLAB
INDUCED BY A TILTED TIME-DEPENDENT

MAGNETIC FIELD

Within the framework of local electrodynamics, the ele
tric fields and shielding currents in a superconductor can
principle, always be calculated on the basis of Maxwe
equations and knowledge of theE- j characteristic;28–30how-
ever, the general case is intractable. ForE- j characteristics
independent of the magnetic field~as in the Bean model!,
and with the applied magnetic field increasing at a ste
rate, the current distribution within the sample is stationa
so that the change of the magnetic induction is determi
by the applied fieldH only. In an experimental context, thi
approximation is satisfied when there is negligible self-fie
i.e., whenH is large compared with the penetration field.

First we suppose that inside the superconductor there
no net electric charges,r50 everywhere~later we will show
that they can be created in certain cases!. Then the electric
fields are determined by the following equations:

divE50 ~B1!

and

curlE52m0

dH

dt
~B2!

with the boundary condition for the normal electric fie
componentEn50 at the sample surface.

Any continuous solution to these equations is necessa
unique.31 It may be obtained as an infinite series of Gree
functions, but the details are outside the scope of this pa
For an infinite slab withHiy ~Fig. 1!, this solution simplifies
greatly and we have

Ez5m0Ḣyx,

Ex5Ey50. ~B3!

For a slab of finite lengthL, but still with L.w, we have
to distinguish the end regions carrying the closure curre
from the central region. The exact solution is too comp
cated to analyze, instead we use an approximation that i
exact solution for the Bean case. The boundaries that sug
themselves, and that accord with the superficial flux distri
tion seen in magneto-optic experiments,28 are for Hiy the
lines z5L/22w/21x in the first quadrant and the thre
other symmetric diagonals~Fig. 8!; similarly, for Hix, they
arez5L/22t/21y, etc.

For Hiy, Eq. ~B2! is still satisfied in the central regions
At the ends,L/2.uzu.L/22w/21uxu, a solution is

Ex52m0ḢyS uzu2
L

2
1

w

2 D sgnuzu,

Ez5Ey50. ~B4!
e
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The normal componentEn is continuous across th
boundary between the two regions, so that there is no sp
charge. However, on the boundary itself curlE diverges be-
cause the components of theE field are unphysically discon
tinuous, thus violating Eq.~B2! We have examined numeri
cal solutions of the problem, withE changing direction
smoothly near the boundary line@and so still satisfying Eq.
~B2!#, but elsewhere similar to Eqs.~B3! and~B4!. Since we
are interested in a summation over the entire sample cur
distribution, we anticipate that these analytical discontin
ties should not have significant impact on calculation ofm.

For the other principal direction of the magnetic fiel
Hix, the solutions may be obtained by coordinate permu
tion; in the central region, we have

Ez52m0Ḣxy,

Ex5Ey50. ~B5!

In the closure regions,L/2.uzu.L/22t/21uyu, the solu-
tion is

Ey5m0ḢxS uzu2
L

2
1

t

2D sgnuzu,

Ez5Ex50. ~B6!

Because Eqs.~B1! and ~B2! are linear, we may obtainE
for any direction ofH within the xy plane by summation of
Eqs. ~B3! and ~B5! for the central region, and of Eqs.~B4!
and ~B6! for the closure regions.

For the central region of the finite slab~uzu,L/22w/2
1uxu and uzu,L/22t/21uyu!, and also for the infinite slab
we have an exact solution

FIG. 8. Definition of the central and closure regions of a th
slab forH parallel to they axis; bold arrows indicate the screenin
current direction.
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Ez52m0Ḣ~y sinw2x cosw!,

Ex5Ey50, ~B7!

wherew is the angle betweenH and they axis.
In the closure regions of the finite slab the solutions a

Ex52m0ḢyS uzu2
L

2
1

w

2 D sgnuzu for uzu>
L2w

2
1uxu,

~B8!

Ey5m0ḢxS uzu2
L

2
1

t

2D sgnuzu for uzu>
L2t

2
1uyu,

~B9!

Ez50 for uzu.~L/22w/21uxu! and.~L/22t/21uyu!,

Ez5m0Ḣyx for ~L/22t/21uyu!,uzu,~L/22w/21uxu!,

Ez52m0Ḣxy for ~L/22w/21uxu!,uzu,~L/22t/21uyu!.
~B10!

The current distribution corresponding to these solutio
for theE field can be obtained only in special cases. For
infinite slab, or the central region of a long slab, the Be
model E- j characteristic ofj5 j cE/E yields j z56 j c as in
Fig. 1, just as obtained in Sec. II A 2 from symmetry cons
9

l

l.

c

,

D

s
e
n

-

erations. However, if the same description of the current d
sity is applied to the closure regions of a finite slab in tilt
magnetic field, charge conservation

divj50 ~B11!

is violated. Since we are dealing with steady-state solutio
this cannot be acceptable. We suggest that when the sw
of external field commences, there is a transient charge s
ration, so that in the steady state, Eq.~B11! is maintained,
but Eq. ~B1! now has divE5r(r ). These equations shoul
then be solved with the boundary condition that the curr
density normal to the sample surface should be zero;
problem is beyond the scope of this paper.

The Ohmic casej5sE, with an isotropic conductivitys
provides a much simpler situation; the solutions forj follow
trivially from Eqs. ~B3! to ~B10! and Eq.~B1! guarantees
divj50.

It is apparent that the ends of the slab always introd
intractable analytical complications; even in an Ohmic c
ductor, the boundary between the central and closure reg
is difficult to describe. Although theE- j characteristic of a
superconductor is very different from Ohmic, the analy
~Sec. II B! of power-law characteristics in infinite slab
shows that, as far as the magnetic moment is concerned
difference between the Ohmic (n51) and Bean (n→})
cases is only a numerical factor close to unity. Hence i
plausible that the angular behavior of the magnetic mom
in a finite slab depends only very weakly on the real form
theE- j characteristic, and may be well approximated by
Ohmic result.
*Permanent address: General Physics Institute, Moscow 117
Russia.
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Zhukov, H. Küpfer, V. A. Rybachuk, L. A. Ponomarenko, V. A
Murashov, and A. Yu. Martynkin, Physica C219, 99 ~1994!; A.
A. Zhukov, A. V. Volkozub, and P. A. J. de Groot, Phys. Rev.
52, 13 013~1995!.

31G. A. Korn and T. M. Korn,Mathematical Handbook for Scien
tists and Engineers~McGraw-Hill, New York, 1961!.


