
PHYSICAL REVIEW B 1 AUGUST 1997-IVOLUME 56, NUMBER 5
Current-carrying states in superconducting multilayers with Josephson interlayer coupling
for temperatures close toTc0 : A microscopic theory

Sergey V. Kuplevakhsky
Department of Physics, Kharkov State University, 310077 Kharkov, Ukraine

Sergey V. Naydenov
Institute for Single Crystals, 310164 Kharkov, Ukraine

~Received 2 December 1996!

We present a complete, self-consistent, microscopic description of current-carrying states in all sorts of
superconducting multilayers with interlayer Josephson coupling near the bulk critical temperature,Tc0 :
superconductor-insulator~SI! superlattices with or without intrabarrier exchange interactions and nonmagnetic
impurities inside superconducting~S! layers, pure structures with point-contact-type interlayer coupling,
superconductor–normal-metal~SN! superlattices with an arbitrary concentration of nonmagnetic impurities,
and SN superlattices in the dirty limit with paramagnetic impurities inside N barriers. We have obtained closed
analytical expressions for the Josephson current as a function of an S layer thickness,a. For all these systems
drastic deviations from a single-junction case were found: a reduction of the critical Josephson currentj c for
pure SI superlattices witha<j0 , nontrivial current-phase dependence for multilayers with point-contact-type
coupling anda<j0 , and nontrivial temperature dependence ofj c for SN superlattices. Mathematically, our
approach is based solely on the use of a microscopic free-energy functional. Fora@j0 , we reduce this
functional to a Ginzburg-Landau-type functional with an extra term accounting for the interface free energy.
For SI superlattices, in an appropriate limit this latter reduces to a Lawrence-Doniach-type functional with
microscopically defined coefficients.@S0163-1829~97!01929-2#
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I. INTRODUCTION

Spatially periodic structures with alternating layers of
superconducting material and a nonsuperconducting mat
have long been subject to extensive experimental and t
retical studies in the physics of superconductivity.1 Renewed
interest in these systems has recently been stimulated, o
one hand, by the fabrication of artificial high-quality stac
of Josephson junctions2 and, on the other hand, by the di
covery of the intrinsic Josephson effect in high-Tc

superconductors.3

With regard to theory, the main efforts were concentra
on the calculation of the superconducting transition tempe
ture, quasiparticle excitations, and the effect of magn
fields. By contrast, surprisingly little attention was paid
the problem of current-carrying states. Nevertheless, for m
tilayers with Josephson coupling, there are at least two s
ous reasons to expect deviations from single-junction beh
ior, resulting in strong dependence of the supercurrent o
superconducting~S! layer thicknessa. First, the transition
temperature of a multilayerTc in the current-carrying state i
always lower than the bulk transition temperature,Tc0 , due
to the pair-breaking effect of the supercurrent itself. As
consequence, combined with the influence of other p
breaking factors@proximity effect in superlattices with
normal-metal~N! barriers, intrabarrier exchange interactio
in superlattices with insulating~I! barriers, etc# the second-
order phase transition to the normal state can be induced
certain critical S layer thicknessac . Second, for pure sys
tems with smalla ~a<j0 , wherej0 is the microscopic co-
herence length! nonlocal character of the supercurrent mu
560163-1829/97/56~5!/2764~15!/$10.00
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come into play. These conjectures are supported by ea
theoretical results.

Thus, the existence ofac was established on the basis
the macroscopic Ginzburg-Landau~GL! equation4 with a
phenomenological periodicd-function potential.5 For small
a, nontrivial current-phase dependence was predicted in
framework of the transfer-Hamiltonian method.6 Both these
effects were also found in numerical studies of a microsco
Kronig-Penney model of an SN superlattice atT!Tc0 .7

The primary objective of this paper is to investigate t
influence of finitea on current-carrying states in superco
ducting multilayers with interlayer Josephson coupling
full detail. We restrict ourselves to temperatures close to
bulk transition temperature,Tc0 , where complete self-
consistency can be achieved and closed analytical exp
sions can be obtained. All kinds of systems are considere
an equal footing: SI superlattices with or without intrabarr
exchange interactions and nonmagnetic impurities insid
layers, pure structures with point-contact-type interlayer c
pling, SN superlattices with an arbitrary concentration
nonmagnetic impurities, and SN superlattices in the d
limit with paramagnetic impurities inside N barriers. To a
tain our goals, we develop a rigorous, self-contained, fu
microscopic approach, based solely on the use of a mi
scopic free-energy functional, which is derived by means
field-theoretical methods from a second-quantized BCS-t
Hamiltonian8 in Appendix A.

In Sec. II, we describe the general mathematical form
ism and derive the principal equations of our theory. W
show that, concerning the S layer thickness, two major
gimes can be discerned. For smalla<j0 ~the mesoscopic
2764 © 1997 The American Physical Society
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56 2765CURRENT-CARRYING STATES IN SUPERCONDUCTING . . .
regime, accessible only to SI superlattices and structu
with point-contact-type coupling!, the description can be
achieved only on the basis of an exact Green’s functi
which we obtain in Appendix B. Fora@j0 ~the Ginzburg-
Landau regime!, considerable simplifications arise due to l
cal character of the theory. To treat this regime correctly,
derive~Appendix C!, from the microscopic free-energy func
tional, a GL-type functional with an extra term accounti
for the interface free energy. For SI superlattices, we a
show ~Appendix D! that in an appropriate limit this GL
functional with the interface term reduces to
Lawrence-Doniach-type9 ~LD! free-energy functional.

In Sec. III, we obtain closed analytical expressions for
Josephson current in pure SI superlattices and multila
with point-contact-type coupling valid in the whole regio
p0

21!a<` ~p0 for the Fermi momentum!. We show that in
the mesoscopic regime the effect of nonlocality manife
itself in a drastic reduction of the critical Josephson curr
in SI superlattices, while multilayers with point-contact-ty
coupling are characterized by nontrivial current-phase dep
dence.

In Sec. IV, we discuss the GL regime for SN and
superlattices in great detail. In the case of SN superlatti
we obtain a complete analytical solution for the critical J
sephson currentj c , valid in the whole regionpz̃(T)[ac

<a<` @z̃(T) for the GL coherence length in the presence
impurities#. We show that temperature dependence ofj c in
the immediate vicinity ofTc is characterized by nontrivia
(Tc2T) behavior, which changes over to (Tc2T)2 at lower
T. In the case of SI superlattices, we explicitly include t
effect of intrabarrier exchange interactions and nonmagn
impurities. Forz̃(T)!a, and in the LD limit, we perform
calculations of the supercurrent to second order in tunne
probabilities. Some peculiar features of the LD limit are a
discussed.

II. GENERAL FORMALISM

The following models and notations will be used throug
out this paper. We consider superlattices composed of a
nating superconducting~s-wave-type! and nonsuperconduct
ing normal-metal and insulating barriers. The barr
interfaces are normal to thex axis of thexyz coordinate
system. The barriers themselves are supposed to posse
lateral symmetry with a mirror plane normal to thex axis.
The origin of the coordinate system is chosen in the plan
the symmetry of one of the barriers. The total length of
system is 2L5Nc@z(T), wherez(T) is the GL coherence
length,c5a1d, with a andd being an S layer and barrie
thicknesses, respectively. The diameter of the cross sec
of the system is taken to be much less than the GL pene
tion depth, so that the effect of the vector potential in t
absence of externally applied magnetic fields can
neglected.10 In SN superlattices, all the normal-state prop
ties are supposed to be the same.~Except for one case in Sec
IV, where we consider paramagnetic impurities inside the
layers.! For the electron-electron coupling constant we
sume the model

g~x!5H 2ugu, inside the S layers,

e→20, inside the barriers.
~1!
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~The negative infinitesimal quantitye is introduced for math-
ematical convenience only and will be set equal to zero a
transition to the mean-field approximation.!

Under these conditions, the system can be completely
scribed by a microscopic free-energy functional in the fo

V@F,F* #5SE
2L

1L

dx1F2g~x1!uF~x1!u2

1
7z~3!N~0!ug~x1!u4uF~x1!u4

16p2Tc0
2 G2SE

2L

1L

dx1

3E
2L

1L

dx2g~x1!g~x2!K~x1 ,x2!F~x1!F* ~x2!.

~2!

~A field-theoretical derivation is sketched in Appendix A!
HereS is the area of the cross section of the system,Tc0 is
the bulk transition temperature,z(m) is the Riemann zeta
function,11 N(0)5mp0/2p2 is the one-spin density of state
at the Fermi level~with p0 being the Fermi momentum, an
\5c51!. The integral kernel

K~x1 ,x2!5
1

2S K E dr1E dr2trFT(
v

Ĝv~x1r1 ,x2r2!

3ŝ2Ĝ2v
t ~x2r2 ,x1r1!ŝ2G L , ~3!

wherer5(y,z), andŝ25( i
0

0
2 i) is the Pauli matrix in the

spin space, is expressed via the matrix Matsubara Gre
function in the normal state, obeying the equation

F iv1EF1
1

2m

d2

dr1
22Vimp~r1!2V̂b~r1!GĜv~r1 ,r2!

5d~r12r2!. ~4!

In Eq. ~4!, v5pT(2n11) ~n is an integer!, r15(x1 ,r1),
Vimp(r1) is the impurity potential in the S layers, an
V̂b(r1) is the barrier potential@the accent~ˆ! denotes a non-
trivial matrix structure in the spin space#. The upper index
( t) in Eq. ~3! means transposition in the spin space, the tr
is taken over the spins, and the angle brackets stand for
eraging over the impurity concentration and small-sc
Friedel-type oscillations on the orderp0

21. @In line with the
general properties of the Green’s function,K(x1 ,x2)
5K(x2 ,x1), K* (x1 ,x2)5K(x1 ,x2), and K(x11nc,x2
1nc)5K(x1 ,x2). For symmetric barriers and our choice
the coordinate system, an additional symmetryK(2x1 ,
2x2)5K(x1 ,x2) appears.# The complex-valued functionF
5uFueiw is the amplitude-of-condensation field.@In equilib-
rium, F5^c↑c↓&.# Both uFu andw are smooth functions o
x, anduFuÞ0 everywhere in the interval@2L,L#. The latter
condition guarantees that the system as a whole is in a ph
coherent state. A complete definition ofV@F,F* # implies
that certain boundary conditions are set atx56L. Here, we
adopt the cyclic boundary conditionF(1L)5F(2L). This
means uF(1L)u5uF(2L)u and w(1L)2w(2L)52pk,
with k being an integer.~In a homogeneous system,pk/L
can be identified with the momentum of a Cooper pair.12! It
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2766 56SERGEY V. KUPLEVAKHSKY AND SERGEY V. NAYDENOV
is convenient to choose the gauge in whichw(1L)5
2w(2L). Furthermore, as a result of implicit gauge inva
ance, V@F,F* #5V@ uFu,¹w#. Thus, in our periodic sys
tems,uFu and¹w must obey the conditions imposed by tran
lational invariance:

uF~x1nc!u5uF~x!u, ~n50,61,62,...,!, ~5!

¹w~x1nc!5¹w~x!. ~6!

From the latter, it follows

w~x1nc!5w~x!1nf, ~7!

wheref is a constant~for a givenk!. For symmetric barriers
under consideration,uFu and¹w reach their extreme value
at the midpoint of each S layer~at pointsx5c/21nc, for
our particular choice of the coordinate system!.

Minimization of Eq. ~2! with respect toF* yields the
self-consistency equation

F~x!1E
2L

1L

dx1g~x1!K~x,x1!F~x1!

1
7z~3!N~0!ug~x!u3uF~x!u2F~x!

8p2Tc0
2 50. ~8!

The density of the supercurrent is determined via the fu
tional derivative of Eq.~2! with respect to¹w:
es

se
rri
te
rs
-

-

j ~x!52eH dV@ uFu,¹w#

d¹w~x! J
0

5

22eE
2L

x

dx1E
x

1L

dx2g~x1!g~x2!K~x1 ,x2!

3Im@F~x1!F* ~x2!#0 , ~9!

where the subscripts (0) denote that the equilibrium value o
F given by Eq. ~8! and its complex conjugate should b
substituted. In Eqs.~8! and ~9!, one can take the limite50.
Although in the following we will consider Eqs.~8! and ~9!
only inside the S layers, introducing the standard notat
D(x)[uguF(x) for the pair potential, it is worth noting tha
these equations are equally valid inside the barrier region
well. This point is of great theoretical significance because
the issue of charge conservation:13 As can be easily seen, th
imaginary part of Eq.~8! multiplied byF* gives the conser-
vation lawd j(x)/dx50.

Provided the kernel~3! is known, the evaluation of Eqs
~8! and~9!, in principle, can supply the solution to the pro
lem of current-carrying states for an arbitrarya in the inter-
val p0

21!a<`. In the mesoscopicregime, forp0
21!a<j0

~j05v0/2pTc0 is the BCS coherence length,v05p0 /m!,
only these equations are applicable.~See Sec. II for two par-
ticular examples.! But for a@j0 ~the Ginzburg-Landaure-
gime!, considerable mathematical simplifications arise due
the use of the local GL equations.4

As shown in Appendix C, in the GL regime Eq.~2! re-
duces to
VGL@Dn* ~r !,Dn~r !;Dn* ~10!,Dn* ~a20!#5SN~0! (
n52N/2

1N/2 H E
10

a20

drF2tuDn~r !u21
7z~3!

12
j0

2x~j0 / l !UdDn~r !

dr U2

1
7z~3!

16p2Tc0
2 uDn~r !u4G1

7z~3!

24
j0

2x~j0 / l !$~ ã1b̃ !@ uDn~10!u21uDn~a20!u2#

1~ b̃2ã !@Dn* ~10!Dn21~a20!1Dn~10!Dn21* ~a20!#%J , ~10!
er

cur-
-
e-
by

ny
in
ns
son
wheret512T/Tc0 , Dn(r )[D(d/21nc1r ) is the GL or-
der parameter in thenth S layer whose value at the interfac
is given byDn(10) andDn(a20) @with 60 being the dis-
tancesx.6j0 , small on the GL scalez(T)#, ã and b̃ are
microscopic parameters, andx(j0 / l ) is the impurity factor
~l is the electron mean free path! given by14

x~j0 / l !5
8

7z~3! (
n50

1`

~2n11!22~2n111j0 / l !21.

~11!

The first square-bracketed term in Eq.~10! is the usual GL
bulk free energy.15 The second square-bracketed term ari
due to the loss of the condensation energy at the ba
interfaces, as a result of a local depression of the pair po
tial. This form of the GL free-energy interface term cove
s
er
n-

all possible types of symmetric barriers~for asymmetric bar-
riers, an additional microscopic constant,g̃, would appear!
and guarantees the conservation of supercurrent~see below!.
The constantb̃ accounts for pair breaking due to intrabarri
exchange interactions and the proximity effect~in SN super-
lattices!. ~As can be easily seen, in the absence of super
rent, the constantã drops out.! Notice, that at a phenomeno
logical level, with three undefined constants, the GL fre
energy functional with an interface term was introduced
Andreev in his discussion of a single planar defect.16 Begin-
ning with De Gennes,17,12 the constantsã andb̃ were essen-
tially calculated for all the situations of interest here by ma
authors,18–22without any reference to the GL free energy,
the context of establishing microscopic boundary conditio
to the mean-field GL equations for a single-barrier Joseph
junction. Actual values ofã and b̃ for different types of
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56 2767CURRENT-CARRYING STATES IN SUPERCONDUCTING . . .
nonsuperconducting symmetric barriers will be given in S
II. At this stage, the following two things are worth notin
First, as can be seen from Eq.~10!, the dimensionless inter
layer coupling parameter is (ã2b̃)j0 . In SN superlattices
with nonferromagnetic N barriers, the limit of weak couplin
corresponds tod@j0 . In this limit, only the combination
(ã2b̃)j0 is small, being proportional to exp(2d/j), with j
<j0 . On the contrary, in SI superlattices in the wea
coupling limit, bothãj0 and b̃j0 , are small, being propor
tional to the tunneling probabilities.~The latter,b̃j0 , is pro-
portional to the exchange part of the tunneling probabilit!
Second, in SI superlattices one has

ã[x21~j0 / l !a, b̃[x21~j0 / l !b, ~12!

wherea andb stand for the pure limit. An immediate con
sequence of these identities is a cancellation of the impu
factor x(j0 / l ) in the interface term in Eq.~10!.

By minimizing Eq.~10! with respect toDn* (r ), we arrive
at the set of GL equations

tDn~r !1
7z~3!

12
j0

2x~j0 / l !
d2Dn~r !

dr2

2
7z~3!

8p2Tc0
2 Dn~r !uDn~r !u250. ~13!

These equations are coupled through the boundary co
tions

dDn

dr
~10!5

1

2
@~ ã1b̃ !Dn~10!2~ ã2b̃ !Dn21~a20!#,

~14!

dDn21

dr
~a20!52

1

2
@~ ã1b̃ !Dn21~a20!

2~ ã2b̃ !Dn~10!#

that are also obtained from Eq.~10! by means of minimiza-
tion with respect toDn* (10) andDn* (a20). Accordingly,
the supercurrent density can be derived by analogy with
~9!:

j n~r !5 i
7z~3!

6
eN~0!j0

2x~j0 / l !

3FDn~r !
dDn* ~r !

dr
2Dn* ~r !

dDn~r !

dr G . ~15!

The application of the boundary conditions~14! demon-
strates the conservation of the supercurrent density at
interfaces:j n21(a20)5 j n(10).

Following Ref. 8, it is reasonable to isolate the phase s
of the pair potential at the interfaces and, using the symm
relations~5!–~7!, introduce the representations

Dn~r !5D` f ~r !exp@ i2mxn~r !1 if/2#,
~16!

Dn21~r !5D` f ~r !exp@ i2mxn21~r !2 if/2#,

whereD`5A8p2Tc0
2 /7z(3)(12T/Tc0) is the bulk value of

the gap parameter,f (r ) is a real function@0< f (r )<1#,
.

-

ty

di-

q.

he

ft
ry

xn(r )[x(d/21nc1r ), dxn /dr[vs is the ‘‘superfluid ve-
locity’’ in the S layers. In terms of the quantitiesf andvs ,
Eqs.~13!–~15! become

@124m2z̃2~T!vs
2~r !# f ~r !1 z̃2~T!

d2f ~r !

dr2 2 f 3~r !50,

~17!

j ~r !5
14z~3!

3
emN~0!j0

2x~j0 / l !D`
2 f 2~r !vs~r !, ~18!

d

dr
@ f 2~r !vs~r !#50, ~19!

f 25 f 1 , ~20!

2 f 28 5 f 18 5
1

2
@ã1b̃2~ ã2b̃ !cosf# f 1 , ~21!

vs25vs15
1

4m
~ ã2b̃ !sin, ~22!

where

z̃~T![x1/2~j0 / l !z~T!

5x1/2~j0 / l !j0A7z~3!/12~12T/Tc0!21

is the GL coherence length in the presence of impurities
the boundary conditions,f 8[d f /dr, the subindices (2) and
(1) denoter 5a20 andr 510, respectively. These bound
ary conditions look exactly the same as in the case o
single-barrier problem.19,20The effect of a finite thickness o
the S layers enters only by virtue of the symmetry conditio
described above:

d f

dr
~a/2!50,

d2f

dr2 ~a/2!,0. ~23!

@A corollary of these and Eq.~19! are, of course,vs8(a/2)
50 and vs9(a/2).0.# To finish with the discussion of the
boundary conditions, we observe that Eq.~22! requires that
ã.b̃, which is always the case for the systems under c
sideration here.23

At the second-order-phase-transition point, Eq.~17! can
be linearized. Noticing that the effect of the superfluid velo
ity is of second order in the weak-coupling parameterã
2b̃)j0 and can be neglected, making use of the bound
conditions, we arrive at the relation:

F z̃21~T!tan
a

2z̃~T!
G

c

5
1

2
@ã1b̃2~ ã2b̃ !cosf#. ~24!

For given values of the pair-breaking parametersb̃ and f,
this relation has a double-edged meaning. First, for a fi
a, it determines the transition temperatureTc . Second, for a
fixed T,Tc , it can be regarded as a definition of the critic
thickness,ac , below which the system remains in the norm
state.

For SN superlattices,ã and b̃ are of orderj0
21 or larger,

giving ã z̃(T)@1, ãa@1. Thus, the transition temperature
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Tc5Tc02
7z~3!p2

12
Tc0x~j0 / l !j0

2a22, ~25!

and the critical thickness is

ac5pz̃~T!. ~26!

For SI superlattices,ã and b̃ are proportional toj0
21

times the tunneling probabilities which can be made a
trarily small. @In the following, we shall assume at lea
ã z̃(T)!1.# Thus, two different limiting cases can be rea
ized. Fora@ã21, ã z̃(Tc)@1, the transition temperature be
ing given by formula~25!.

For a! z̃(T), ã z̃(Tc)!1, with the transition temperatur

Tc5Tc02
7z~3!

12
@a1b2~a2b!cosf#Tc0j0

2a21,

~27!

and the critical thickness

ac5@a1b2~a2b!cosf#z2~T!. ~28!

The absence of the impurity factor is to be noticed in th
equations. This is an obvious consequence of Anders
theorem:24 Nonmagnetic impurities do not affect thermod
namic properties of homogeneous superconductors.~In this
Lawrence-Doniachlimit,9 the complex pair potential is con
stant in each S layer.! In terms of the free-energy functiona
VGL of Eq. ~10! reduces to a LD-type functional in the ab
sence of external magnetic fields:

VLD@ uDu;f#5NaSN~0!H 2tuDu21
7z~3!

16p2Tc0
2 uDu4

1
7z~3!

12

j0
2

a UDU2@a1b2~a2b!cosf#J .

~29!

Phenomenological LD functionals are in wide use for t
description of different aspects of the effect of magne
fields in superconducting superlattices and laye
superconductors.25 The details of a rigorous mathematic
derivation of Eq.~29! from Eq. ~10! are shown in Appendix
D. In Sec. IV, we obtain solutions to the principal equatio
of the theory in the GL regime and discuss the LD limit
more detail.
i-

e
’s

c
d

s

III. MESOSCOPIC REGIME

A. SI superlattices: A reduction of the critical
Josephson current

Our aim here is to obtain a microscopic formula for t
Josephson current in a superconducting SI superlattice in
pure limit, valid in the whole range of thicknesses of t
superconducting layersp0

21!a<`. To simplify the analy-
sis, we restrict ourselves to the evaluation of the supercur
to first order in the tunneling probability and do not consid
the effect of exchange interactions inside the barriers. T
latter allows us to suppress in what follows inessential s
indices.

As a starting point, for the description of the insulatin
barriers we adopt a model pseudopotential of the form

Vb~x!5V (
n52`

1`

d~x2na!, V[Ud.0. ~30!

Accordingly, the electron-electron coupling constant
g(x)52ugu[const everywhere in the interval@2L,L#, and
we introduce the notationD(x)[uguF(x). This model was
previously employed by Kuplevakhsky Fal’ko in their co
sideration of Bloch-type subgap excitations in an SI sup
lattice induced by supercurrent.26 To avoid possible misun-
derstanding, we emphasize that, as in the case of a single
junction,27 the use of ad function for the description of re-
pulsive potentials in microscopic equations is physica
fully justified as soon as the quasiclassical approximat
can be employed and we are not concerned with distance
the order ofp0

21.28,29 Equation~3! now becomes

K~x1 ,x2!5pN~0!v0T(
v

E
0

1

dt t^Gv~x1 ,x2!G2v~x2 ,x1!&,

~31!

where the angle brackets denote averaging over Friede
cillations on the order ofp0

21 only. The Fourier transform of
the Green’s function in the coordinatesy, z, taken at the
Fermi level, is governed by the equation

F iv1EFt21
1

2m

d2

dx1
22V (

n52`

1`

d~x12na!GGv~x1 ,x2!

5d~x12x2!, ~32!

with t[cosu being the angle of incidence at the interface.
Appendix B we have obtained an exact solution to Eq.~32!.
It has the form
Gv~x1 ,x2!52
m

il
exp@2 il1un12n2ua#H dn1 ,n2

exp@2 ilur 12r 2u#1~12dn1 ,n2
! exp@2 i sgn~n12n2!l~r 12r 2!#

1
~sinl2a2sinl1a!cos@l~r 12r 2!#1~mV/l!cos@l~a2r 12r 2!#

sinl1a J , ~33!

H x1,25n1,2a1r 1,2,
0<r 1,2,a,

n1,250,61,62, . . . ,
~34!
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where l52sgnvAEFt21 iv, the quantitiesl1 ,l2 are de-
fined by

cosl1a5cosla1
mV

l
sinla,

~35!

sinl2a5sinla2
mV

l
cosla,

and the prescriptionl1,2→l, for V→0. This function is ex-
plicitly translationally invariant with a perioda. For V50, it
goes over into the free-electron Green’s function~B2!. In the
case of impenetrable barriers (V5`), Eqs.~33!–~35! reduce
to a set of Green’s functions describing flat metallic films
 f

thicknessa in contact with vacuum.30 On the other hand,
choose consecutively:~i! n1,250, r 1,2,a/2; ~ii ! n1,2521,
a2r 1,2,a/2; ~iii ! n150, r 1,a/2, n2521, a2r 2,a/2, or
n250, r 2,a/2, n1521, a2r 1,a/2. After proceeding to
the limit a→`, one obtains the Green’s function of a syste
with a single repulsive barrier atx50.27

With Eqs.~33!–~35! now in hand, assuminga@p0
21, it is

straightforward to compute the kernel~31! in the quasiclas-
sical approximation. Expanding

l'2p0utusgnv2 i
uvu

v0utu
, utu@ATc0 /EF, ~36!

and retaining only the leading terms, we get
n

K~x1 ,x2!5
pN~0!

v0
T(

v
E

0

1 dt

t F T~ t !

cosh~2uvua/v0t !1Acosh2~2uvua/v0t !2T2~ t !
G un12n2u

3H dn1 ,n2
expF2

2uvu
v0t

ur 12r 2uG1~12dn1 ,n2
!expF2

2uvu
v0t

~r 12r 2!sgn~n12n2!G
1@12T~ t !#

exp@22uvua/v0t#cosh@2uvu/v0t~r 12r 2!#1cosh@2uvu/v0t~a2r 12r 2!#

sinh~2uvua/v0t ! J , ~37!

whereT(t)5v0
2t2(v0

2t21V2)21 is the tunneling probability. It is important to observe that the quasiclassical expression~37!
does not depend on a concrete functional form ofT(t) and should also hold for any symmetric repulsive barrier withd
!j0 . As expected, Eq.~37! assures correct transition to all major limiting cases. SettingT(t)[1, we arrive at the free-electro
kernel12

K~x12x2!5E
0

1

dt Kt~x12x2![
pN~0!

v0
T(

v
E

0

1 dt

t
expF2

2uvu
v0t

ux12x2uG . ~38!

In the opposite limitT(t)[0 (V5`) and n15n25n, one obtains a set of kernels describingN isolated metallic films in
contact with vacuum:

K ~0!~x1 ,x2!5T(
v

Kv
~0!~x1 ,x2![

pN~0!

v0
T(

v
E

0

1 dt

t FexpF2
2uvu
v0t

ux12x2uG
1

exp@22uvua/v0t#cosh@2uvu/v0t~x12x2!#1cosh$2uvu/v0t@x11x22~2n11!a#%

sinh~2uvua/v0t ! G . ~39!

Now consider:~i! n1,250, r 1,2,a/2; ~ii ! n1,2521, a2r 1,2,a/2; ~iii ! n150, r 1,a/2, n2521, a2r 2,a/2, or n250, r 2
,a/2, n1521, a2r 1,a/2. Renderinga@j0 , we obtain the single-barrier kernel31

K~x1 ,x2!5E
0

1

dt@$Kt~x12x2!1@12T~ t !#Kt~x11x2!%@Q~x1!Q~x2!1Q~2x1!Q~2x2!#

1T~ t !Kt~x12x2!@Q~x1!Q~2x2!1Q~2x1!Q~x2!##, ~40!
r

of
Q~x!5H 1, x.0;

0, x,0.
~41!

Concerning the supercurrent density forT(1)!1, it is ad-
vantageous to evaluate Eq.~9! at one of the barriers~say, at
x50!:
j ~0!522eE
2L

0

dx1E
0

1L

dx2K~x1 ,x2!Im@D~x1!D* ~x2!#0 ,

~42!

As follows from Eq.~37!, the integrand of the integral ove
t in this case contains as a factor powers ofT(t). In first-
order calculations, one should include only contributions
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un12n2u50,1 and take the pair potential in zero order
weak coupling@T(t)[0#. This leads us to investigate Eq
~8! with the kernelK (0) for n15n25n:

Dn~r !5ugu E
0

a

dr1K ~0!~r ,r 1!Dn~r 1!

2
7z~3!N~0!uguuDn~r !u2Dn~r !

8p2Tc0
2 . ~43!

Dropping the nonlinear term in Eq.~43!, we obtain the
equation for the transition temperature

Dn~r !5uguT(
v

E
0

a

dr1Kv
~0!~r ,r 1!Dn~r 1!. ~44!

SettingT5Tc0 in Eq. ~39!, we easily establish the propert

uguTc0(
v

E
0

a

dr1Kv
~0!~r ,r 1!51, ~45!

where the definition of the bulk transition temperature

puguN~0!Tc0(
v

1

uvu
51 ~46!

was used.@In Eq. ~46! a cutoff at the Debye frequencyvD is
implied.# Hence, the largest eigenvalue of Eq.~44! is Tc

5Tc0 with the eigenvectorDn
(0)5const. InsertingDn

(0)

5const into Eq.~43! and making use of the expansion

puguN~0!T(
v

1

uvu
'11uguN~0!S 12

T

Tc0
D , ~47!

we get uDn
(0)u5D` , whereD` is the bulk value of the gap

parameter@see Eq.~16!#. Thus the correct zero-order pa
potential, satisfying the conditions of Sec. II, is

D~0!~x!5D` (
n52`

1`

ei ~1/21n!fQ~x2na!Q@~n11!a2x#.

~48!

Now let us return to Eq.~42!. Substitution of the first-
order approximation to Eq.~37! ~with T5Tc0! together with
Eq. ~48! yields

j 5
emEFD`

2 Tc0

2p (
v

1

v2 E
0

1

dt tT~ t !tanh2
2uvua

v0t
sinf.

~49!
This is the desired expression for the dc Josephson curre
a function of the S layer thickness, valid in the whole regi
p0

21!a<`.
For a@j0 , Eq. ~49! goes over into the well-known

formula27 for the Josephson current in a single tunnel jun
tion

j 5
emEFD`

2

4pTc0
E

0

1

dt tT~ t !sinf. ~50!

By contrast, in the extreme mesoscopic regime, wh
p0

21!a!j0 , we discover the dramatic result

j 5
7z~3!emEFD`

2

p5Tc0

a

j0
E

0

1

dt T~ t !sinf. ~51!

We see that in addition to the averaged tunneling probab
the Josephson current is proportional to another small par
eter,a/j0 . The reduction of the Josephson current is a ma
festation of the nonlocality of Eq.~42!: In a pure infinite SIS
junction the contributions to the current are ‘‘collected’’ ov
a spatial region;j0 , while in our case they are restricted
two adjacent S layers only. This conclusion becomes e
more evident if we rewrite Eq.~51! as

j 5
14z~3!emEFD`

2

p4Tc0
E

0

1

dt tT~ t !F a

v0tTc0
21Gsinf. ~52!

The factora/v0tTc0
21 under the integral sign in Eq.~52! can

be regarded as the quasiclassical probability of finding
unscattered electron with thex component of the velocity
v0t within one S layer during the characteristic time of t
order of Tc0

21.34 Our next example below demonstrates a
other aspect of the nonlocality of Eq.~42! for small a.

B. Multilayers with point-contact-type interlayer coupling:
Nontrivial current-phase dependence

The structures considered here is an obvious extensio
multilayers of the single-point-contact model thorough
studied in Ref. 32. LetR be the radius of the orifice at th
interface between two adjacent S layers, wherep0

21!R
!a,j0 . As explained in Ref. 32, the expansion parame
now is R/j0 , and the tunneling probability may take arb
trary values 0,T(t)<1.

As in the case of a single point contact, instead of
supercurrent density, it is convenient to compute the to
current at one of the interfaces (x50): I 5S0 j (0)
[pR2 j (0). In leading order, one should setT5Tc0 in Eq.
~37! and use the approximation~48!, obtaining
I ~f!5 (
k51

1`

kI~k!sinkf, ~53!

I ~k!5
8emS0EFD`

2 Tc0

p (
v

1

v2 E
0

1

dt tT~ t !F T~ t !

cosh~2uvua/v0t !1Acosh2~2uvua/v0t !2T2~ t !
G k

3sinh2
uvua
v0t F11

12T~ t !

Acosh2~2uvua/v0t !2T2~ t !
G , ~54!
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wherek[un12n2u @see Eq.~37!#. The expression of the form~53! was derived in Ref. 6 within the transfer-Hamiltonia
method, but the explicit analytical expressions for the partial contributions~54! could only be calculated here on the basis
our true microscopic approach. The series in Eq.~53! can be summed up, yielding

I ~f!5
8emS0EFD`

2 Tc0

p (
v

1

v2 E
0

1

dt t
Z~ t,v!@12Z2~ t,v!#sinf

@11Z2~ t,v!22Z~ t,v!cosf#2 sinh2
uvua
v0t F11

12T~ t !

Acosh2~2uvua/v0t !2T2~ t !
G ,

~55!

Z~ t,v!5
T~ t !

cosh~2uvua/v0t !1Acosh2~2uvua/v0t !2T2~ t !
.

n-
g

-
ea

cl

in
a
t

il
-

21

ag-

ra-
e

n-

t
in
In the limit T(1)!1, Eq. ~55! reduces to Eq.~49! times
S0 . For a@j0 , Eq. ~55! formally coincides with Eq.~50!
timesS0 , but with an arbitraryT(t).

The nontrivial current-phase dependence of Eq.~55! for
largeT(t) anda<j0 should be noted here. Previously, no
trivial current-phase dependence was derived for a sin
point contact at temperaturesT!Tc0 ,32 which occurred due
to the current-carrying subgap state.33 In our case, the non
trivial current-phase dependence arises as a result of alr
mentioned nonlocality of Eq.~42!. ~The contribution of
current-carrying subgap states vanishes at temperatures
to Tc0 .!

IV. GINZBURG-LANDAU REGIME

A. SN superlattices

In the case of weakly-coupled SN superlattices, accord
to Eq. ~26!, the GL regime is the only possible one ne
Tc0 . For these structures, we study the dependence of
critical Josephson currentj c on a andT.

To start with, we write down expansions of (ãj0)21 and
(b̃j0)21 to leading order in weak coupling:18,19,21

~ ãj0!21'q̃ ~0!2q̃ ~1!, ~ b̃j0!21'q̃ ~0!1q̃ ~1!, ~56!

where q̃ (0) corresponds to the decoupling limitd5`, and
q̃ (1)!q̃ (0). In Ref. 19, expansions~56! were obtained for an
arbitrary concentration of nonmagnetic impurities. As an
lustration, we give here two limiting examples of major im
portance. In the pure limit@l 5`, x(j0 / l )51#,

~aj0!21'0,6423,5~j0 /d!exp~2d/j0!,

~bj0!21'0,6413,5~j0 /d!exp~2d/j0!. ~57!

In the dirty limit @ l !j0 ,x(j0 / l )'p2l /7z(3)j0#,

~ ãj0!21'0,47Al /j020,7Al /j0exp~2dA3/j0l !,
~58!

~ b̃j0!21'0,47Al /j010,7Al /j0exp~2dA3/j0l !.

The calculations in the dirty limit were extended in Ref.
to allow for paramagnetic impurities inside the N barrier:
le

dy

ose

g
r
he

-

~ ãj0!21'1,73A2ptSTc0l /j020,93A2ptSTc0l /j0

3exp~2dA3/2ptSTc0j0l !,
~59!

~ b̃j0!21'1,73A2ptSTc0l /j010,93A2ptSTc0l /j0

3exp~2dA3/2ptSTc0j0l !,

wheretS!Tc0
21 is the spin-flip scattering time.35 @See Ref. 36

for the discussion of a basic difference between param
netic and ferromagnetic N barriers.#

To take full advantage of the boundary conditions~20!–
~22!, we evaluate Eq.~18! at r 510:

j ~10!5
7z~3!

6

q̃ ~1!

@ q̃ ~0!#2 @ f 1
~0!#2eN~0!j0x~j0 / l !D`

2 sinf,

~60!

To find f 1
(0) , we discard thevs

2 term in Eq.~17! and use
the GL first integral in the form15

2z̃2~T!Fd f~r !

dr G2

5@12 f 2~r !#22s2, ~61!

where the constants ~0<s<1, with s50 for a5`! is to be
determined from the conditions~23!. Applying Eqs.~21! and
~23! in appropriate order, exploiting the smallness of the
tio q̃ (0)j0 / z̃(T), we arrive at the final expression for th
critical Josephson current as a function ofa>ac[pz̃(T)
@for T,Tc , with Tc given by Eq.~25!#:

j c5
6

7z~3!

env0

p0j0
S 12

T

Tc0
D 2

~12s2!q̃ ~1!, ~62!

where n5(4/3)N(0)EF ~EF5p0
2/2m being the Fermi en-

ergy! is the number of electrons per unit volume. The co
stants is implicitly defined by the equation

~11s!21/2KSA12s

11sD 5
a

2A2z̃~T!
, ~63!

where K(k) is the complete elliptic integral of the firs
kind.11 Explicit analytical expressions can be obtained
limiting cases. Fora2ac!ac , 12s!1, and we get

j c5
96

7z~3!

env0

p0j0
S 12

T

Tc0
D 2S a

pz̃~T!
21D q̃ ~1!. ~64!

In the opposite limita@ac , s!1,
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j c5
6

7z~3!

env0

p0j0
S 12

T

Tc0
D 2

$1232 exp@2A2a/ z̃~T!#%q̃ ~1!,

~65!

exhibiting smooth transition to a single SNS junction w
a5`.21

To investigate the dependence ofj c on T for a fixed a,
one should insert into Eq.~63! the definition of the transition
temperaturea5pz̃(Tc) @see Eq. ~25!#. For Tc2T!Tc0
2Tc , in striking contrast to a single SNS junction, we o
serve

j c5
48

7z~3!

env0

p0j0Tc0
2 ~Tc02Tc!~Tc2T!q̃ ~1!. ~66!

At lower temperaturesTc2T@Tc02Tc , the typical (Tc0
2T)2 dependence of a single SNS junction12 is recovered:

j c5
6

7z~3!

env0

p0j0
S 12

T

Tc0
D 2

q̃ ~1!. ~67!

The ‘‘crossover’’ temperature (T* ) of transition from be-
havior ~66! to behavior~67! is

T* .2Tc2Tc0 . ~68!

To conclude the discussion of SN superlattices, we po
out an important role of nonmagnetic impurities@entering
Eqs. ~62!, ~63! by means ofq̃ (1) and z̃(T)#, as a result of
strong spatial variations of the pair potential due to the pr
imity effect.

B. SI superlattices with magnetic tunnel barriers

For weakly coupled SI superlattices, the most gene
form of the microscopic coefficientsã and b̃ is

ã5
3p2

7z~3!
x21~j0 / l !j0

21E
0

1

dt tT~ t !,

~69!

b̃5
6p2

7z~3!
x21~j0 / l !j0

21E
0

1

dt tTS~ t !

~see Appendix C!. HereT(t) is the total tunneling probabil
ity and TS(t) is the exchange part of the tunneling probab
ity, with TS(1)!T(1)!1.

In this instance, the GL regime, besides straightforw
inclusion of the effect of nonmagnetic impurities and intr
barrier exchange interactions, offers an opportunity to p
ceed beyond the first-order calculations of Sec. III. As sho
be clear from the results of Sec. II@compare Eqs.~25! and
~27! for Tc#, there is no universal~valid for arbitrarya! ana-
lytical high-order expansion of the supercurrent in powers
a weak-coupling parameter. So we again focus on two ty
cal limiting cases.

For large a@ z̃(T), one can safely setTc.Tc0 and
f (a/2).1 @with s.0 in Eq.~61!#. We again apply Eqs.~18!
and ~61! at r 510. Both ã z̃(T) and b̃ z̃(T) being small,
using the boundary condition~21!, Eq. ~61! can be expanded
to first order. ~In higher orders, the effect ofvs is to be
included.! Thus, the supercurrent density to second orde
tunneling probabilities reads
t

-

al

d
-
-

ld

f
i-

n

j 5
3p2

14z~3!

env0

p0j0
S 12

T

Tc0
D E

0

1

dt t@T~ t !22TS~ t !#

3F12
3A2p2

7z~3!

z~T!

x1/2~j0 / l !j0
E

0

1

dt

3tH 2TS~ t !1@T~ t !22TS~ t !#sin2
f

2 J Gsinf. ~70!

For sufficiently smallT(1), only the first-order term in Eq.
~70! can be retained:

j 5
3p2

14z~3!

env0

p0j0
S 12

T

Tc0
D E

0

1

dt t@T~ t !22TS~ t !#sinf.

~71!

@For TS(t)[0, this is, of course, Eq.~50! of Sec. III.# The
cancellation of the factorx(j0 / l ) in first-order formula~71!
is a result of Anderson’s theorem.24 This is not the case for
Eq. ~70!, where the second-order term allows for spat
variations of the pair potential near the interfaces due to
pairing effect of intrabarrier exchange interactions and
supercurrent itself. Naturally, formulas~70! and~71! hold for
a single SIS junction as well.@Compare the calculations in
the pure limit of Ref. 20, where also the emergence of
factors 2TS and (T22TS) was elucidated.#

In the opposite LD limit@a! z̃(T)!ã21#, it is reason-
able to start directly with the LD functional~29!. Minimiza-
tion of Eq. ~29! with respect touDu yields its equilibrium
value,uDu0 :

uDu0
25

8p2Tc0
2

7z~3! H 12
T

Tc0
2

7z~3!

12

j0
2

a

3@a1b2~a2b!cosf#J . ~72!

The variational derivative of Eq.~9! now becomes a partia
derivative with respect to the phase shiftf:

j 5
2e

NS H ]VLD@ uDu,f#

]f J
0

5
7z~3!

6
eN~0!j0

2uDu0
2~a2b!sin f. ~73!

Inserting Eq.~72! and the explicit expressions fora and b
@Eq. ~69! with x(j0 / l )[1#, we finally get

j 5
4p4Tc0

2

7z~3!
eN~0!j0E

0

1

dt t@T~ t !22TS~ t !#

3F12
T

Tc0
2

p2

2

j0

a E
0

1

dt

3tH 2TS~ t !1@T~ t !22TS~ t !#sin2
f

2 J Gsinf. ~74!

This expression is to be compared with Eq.~70!. Here the
second-order term in the supercurrent density appears ra
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as a consequence of a uniform depression ofuDu0 owing to
the pair breakers. As expected, fora21@z2(T)/a, Eq. ~74!
goes over into Eq.~71!.

V. DISCUSSION

Let us now briefly summarize what has been done. In
paper, we have achieved complete, self-consistent, mi
scopic description of current-carrying states in all ma
types of superconducting multilayers with interlayer Jose
son coupling nearTc0 . The effect of a finite S layer thick
ness has been fully elucidated. We have obtained closed
lytical expressions for the Josephson current as a functio
a for pure SI superlattices, multilayers with point-conta
type coupling, and SN superlattices with an arbitrary imp
rity concentration@Eqs.~49!, ~53!–~55!, and Eqs.~62!, ~63!#.
For all these systems drastic deviations from a sing
junction case were found: the reduction ofj c for pure SI
superlattices, nontrivial current-phase dependence for m
layers with point-contact-type coupling@Eq. ~50! and Eqs.
~53!–~55! in the mesoscopic regime#, and nontrivial tem-
perature dependence for SN superlattices@Eqs. ~66!–~68!#.
For SI superlattices in the GL regime, we explicitly includ
the effect of nonmagnetic impurities and intrabarrier e
change interactions and performed second-order calcula
@Eqs.~70! and ~74!#.

We have accomplished our task using rigorous and p
erful mathematical methods, which can also be applied
other problems of inhomogeneous superconductivity. For
ample, we have derived microscopically the general GL-ty
free-energy functional with the interface term~10!. This
functional not only yields correct microscopic boundary co
ditions to the mean-field GL equations~in a more genera
way than the standard procedure12!, but it can also be used
for studies of long-range thermal fluctuations. Here, we h
employed this functional for a microscopic derivation of t
LD-type functional~29!. Currently, work is in progress to
extend the consideration of this paper to take accoun
lower temperatures and unconventional pairing in S laye
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APPENDIX A: DERIVATION OF THE MICROSCOPIC
FREE-ENERGY FUNCTIONAL

A microscopic system satisfying the physical conditio
of the beginning of Sec. II in the presence of an exter
magnetic field~with the vector potentialA! can be described
by a second-quantized Hamiltonian of the form8

H5E
R
d3rca

1~r !F2
1

2m
~¹2 ieA!21Vimp~r !2EFGca~r !

2
ugu
2 E

Rs

d3rca
1~r !c2a

1 ~r !c2a~r !ca~r !

1E
Rb

d3rca
1~r !V̂bab~r !cb~r !. ~A1!

HereRs andRb are the superconducting and barrier regio
respectively,R5RsøRb , a summation over spins is im
plied. Other notations are either standard or those of Sec

The free energy of the system~A1! is given by

V@A#52T^ lnZ@A#&, ~A2!

and the supercurrent density is15

j 52
dV@A#

dA
5TK Z21@A#

dZ@A#

dA L . ~A3!

The statistical sumZ@A# can be expressed36,37as the mul-
tiple path integral
Z@A#5 lim
e→20

E D@F* ,F#exp$2V@F* ,F;A#/T%, ~A4!

V@F* ,F;A#/T52E
0

T21

dtE
R
d3rg~x!uF~rt!u22

1

2
Tr lnG21, ~A5!

G21~rt,r 8t8!5H 2
]

]t
1

1

2m
@¹2 ieAg3#2g32Vimp~r !g31EFg31

1

2
~12g3!V̂b

t ~r !2
1

2
~11g3!V̂b~r !

1
i

2
g~x!F~rt!g1s22

i

2
g~x!F* ~rt!g2s2J d~r2r 8!d~t2t8!. ~A6!
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Hereg i ands i are the Pauli matrices in the Gor’kov-Namb
and spin spaces, respectively,g65(g16 ig2)/2, g(x) is
given by Eq.~1!. The trace in Eq.~A5! is taken over all
continuous and discrete coordinates. The Bose fieldsF
5uFuexp(iw), F* 5uFuexp(2iw) are periodic in the imagi-
nary timet with the periodT21:

F~rt!5T (
m52`

1`

Fm~r !ei2pTm,

F* ~rt!5T (
m52`

1`

Fm~r !e2 i2pTm. ~A7!

With regard to spatial coordinates, they are supposed to o
the cyclic boundary conditions atx56L, which are now
fixed by the fluxF5*2L

1LAxdx. One should bear in mind tha
in consequence of gauge invarianceV@F* ,F;A#
5V@ uFu,¹w22eA#. Thus we can rewrite Eq.~A3! as

j 52eK Z21@A# lim
e→20

E D@F* ,F#
dV@F* ,F;A#

d¹w

3exp$2V@F* ,F;A#/T%L ~A8!

and proceed to the limitA→0. In equilibrium, only the Fou-
rier componentsF0 and F0* in the series~A7! should be
retained. Furthermore, nearTc0 , we can employ the expan
sion

Tr lnG215Tr ln~G0
212Ď!'Tr lnG0

212 1
2 Tr~G0Ď!2

2 1
4 Tr~G0Ď!4, ~A9!

where

Ď~r ![2
i

2
g~x!F~r !g1s21

i

2
g~x!F* ~r !g2s2 ,

~A10!

and take the fourth-order term in a local form. Evaluating
path integrals in the semiclassical approximation and ass
ing self-averaging of the fieldsF* , F leads to Eqs.~2!–~4!.
ey

e
-

APPENDIX B: CALCULATION OF THE GREEN’S
FUNCTION

Transform Eq.~32! into the equivalent equation

Gv~x1 ,x2!5Gv~x12x2!1V (
n52`

1`

Gv~x12na!Gv~na,x2!,

~B1!

where the free-electron Green’s function

Gv~x12x2!52
m

il
exp@2 ilux12x2u#, ~B2!

with l52sgnvAEFt21 iv, obeys Eq.~32! with V50. Us-
ing the representations

Gv~x12x2!5
1

2p E
2`

1`

dq G~q!exp@ iq~x12x2!#,

~B3!

G~q!52
2m

q22l2 , ~B4!

Gv~x1 ,x2!5
1

~2p!2 E
2`

1`

dq1E
2`

1`

dq2G~q1 ,q2!

3exp~ iq1x12 iq2x2!, ~B5!

and

(
n52`

1`

exp@2 i ~q12q2!na#5
2p

a (
n52`

1`

dS q12q21
2pn

a D ,

~B6!

we make a Fourier transform of Eq.~B1!:

G~q1 ,q2!52pG~q2!d~q12q2!

1
V

a
G~q1! (

n52`

1`

GS q11
2pn

a
,q2D . ~B7!

From Eq.~B7!, we find

(
n52`

1`

GS q11
2pn

a
,q2D

5
2pG~q2!(n52`

1` d~q12q212pn/a!

12~V/a!(n52`
1` G~q112pn/a!

. ~B8!

Substituting Eq.~B8! into Eq. ~B7! and making an inverse
Fourier transform, one obtains
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Gv~x1 ,x2!5Gv~x12x2!1
2m2V

pa E
2`

1`

dq
exp@ iq~x12x2!#

q22l2 (
n52`

1`
exp@2 i ~2pn/a!x2#

~q12pn/a!22l2

3H 11
2mV

a (
n52`

1` F S q11
2pn

a D 2

2l2G21J 21

. ~B9!

The summation on the right-hand side of Eq.~B9! is made with the help of the formula

(
n52`

1`
exp@2 i ~2pn/a!r #

~q12pn/a!22l2 52
a

2l

exp@ iq~a2r !#sinlr 1exp~ iqr !sin@l~a2r !#

cosqa2cosla
, ~B10!

where 0<r ,a. This formula can be easily proved by means of the representation

(
n52`

1`
exp@2 i ~2pn/a!r #

~q12pn/a!22l2 5
a2

8p2i R
C

dz exp@2 i ~2pr /a!z#

~aq/2p1z!22~al/2p!2

exp~2 ipz!

sinpz
, ~B11!

where the closed contourC encircles the whole real axis in the counterclockwise direction in the complexz plane. The poles
z1,25(2aq6al)/2p of the integrand are supposed to lie outside the contourC. Thus we get

Gv~x1 ,x2!5Gv~x12x2!2
m2V

pa E
2`

1`

dq
exp@ iqa~n12n2!#

q22l2

exp~ iqa!sinlr 11sin@l~a2r 1!#

cosqa2cosla2~mV/l!sinla
exp~2 iqr 2!, ~B12!
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is
or
wherex1,25n1,2a1r 1,2, 0<r 1,2,a, n50,61,62, . . . The
integral overq in Eq. ~B12! is evaluated using the residu
theorem. The integrand is a meromorphic function in
complex q plane with only simple poles. These poles a
given byq1,256l and the roots of the equation

cosqa5cosla1
mV

l
sinla. ~B13!

Hence, we can complete the contour of integration to
closed loop with a semicircle of an infinite radius either
the upper or the lower half-planes, depending on the ana
icity of the integrand for different relations betweenn1 and
n2 . The resulting integrals along the contours are equa
2p i times the sum over the residues. The contributions
the poles defined by Eq.~B13! amount to convergent infinite
series that again can be summed up by means of Eq.~B10!.
Finally, we arrive at Eqs.~33!–~35!.

APPENDIX C: DERIVATION OF VGL

WITH THE INTERFACE TERM

It is well known that the GL theory, being an expansion
rigorous microscopic theory in powers ofj0 /z(T), breaks
down at distances;j0 from a sharp interface, where the pa
potential may undergo strong spatial variations.12 These spa-
tial variations result in a loss of the condensation energy
the interfaces that are not accounted for in the original
free-energy functional.4 On the other hand, as shown in Se
III, any spatial variations vanish in the case of impenetra
interfaces. This observation allows us to isolate the contri
tion of the interfaces in the microscopic free-energy fun
tional ~2!, rewriting it identically as
e

a

t-

to
f

f

at
L
.
e
-

-

V@D,D* #5SE
x1PS

dx1F 1

ugu
uD~x1!u22E

x2PS
dx2

3K ~0!~x1 ,x2!D~x1!D* ~x2!

1
7z~3!N~0!uD~x1!u4

16p2Tc0
2 G

2SE
x1PS

dx1E
x2PS

dx2@K~x1 ,x2!

2K ~0!~x1 ,x2!#D~x1!D* ~x2!. ~C1!

Here we have introduced the standard notationD(x)
[uguF(x) for x being within an S layer, the spatial integra
are taken over S layers only. In the pure limit, the kern
K (0)(x1 ,x2) is that of Eq. ~39!, except for the changex1
1x22(2n11)a→x11x22(2n11)c (c5a1d) in the last
term. BothK and K (0) should be taken in asymptotic form
for a@j0 @see, e.g., Eq.~40!#. The first term on the right-
hand side of Eq.~C1! can now be expanded in powers
j0 /z(T), yielding the usual GL bulk free energy. The seco
term should be identified with the desired interface free
ergy. In contrast toK and K (0), which contain long-range
parts, the truncated kernelK2K (0) has an effective range o
the order ofj0 and vanishes in the GL region. We can e
pand it to leading order in weak-coupling parameters, seT
5Tc0 and extend the limits of spatial integration to infinit
One should also substitute forD,D* solutions to the linear-
ized version of microscopic Eq.~8! in the vicinity of each
barrier. In view of the symmetry conditions of Sec. II, it
sufficient to consider only one particular barrier. Thus f
n50, we obtain

D~x!5E
2`

2d/2

dx1K~x,x1!D~x1!1E
d/2

1`

dx1K~x,x1!D~x1!,

~C2!
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where we have extended the spatial integration to infin
Within the same approximation, one should use
asymptotic form ofK for a@j0 , expand it to required orde
in weak coupling, and setT5Tc0 . Presently, there are well
developed mathematical methods of the treatment of s
equations.19,21 For example, it is convenient to decomposeD
into the symmetric (Ds) and antisymmetric parts (Da). Be-
cause of the symmetry relations of Sec. II forK, Ds and
Da separately satisfy Eq.~C2!. As a result, we obtain two
independent linear uniform integral equations forD. Hence,
the solution forD near the barriern50 depends on two
arbitrary multiplicative constants that should be identifi
with the values of the GL order parameter at both interfac
.
e

ch

s,

D(2d/220) andD(d/210). The solution near thenth bar-
rier differs from this one by the factor exp(inf). By inserting
these solutions into the second term on the right-hand sid
Eq. ~C1! we obtain the desired contribution from the inte
faces to the GL free energy.

To illustrate this general mathematical scheme,
present calculations of the free-energy interface term for
case of SI superlattices with tunnel magnetic barriers.
simplicity, we focus on the pure limit and letd!j0 . As
explained above, we need only the asymptotic form ofK,
which coincides with that of a single-junction problem.
both the ferromagnetic20 and paramagnetic22 limits, the gen-
eral form ofK for a single junction is
by

e

se
.
of

ation
K~x1 ,x2!5E
0

1

dt$@Kt~x12x2!1Kt~x11x2!#@Q~x1!Q~x2!1Q~2x1!Q~2x2!#%2E
0

1

dt$@T~ t !12TS~ t !#Kt~x11x2!

3@Q~x1!Q~x2!1Q~2x1!Q~2x2!#1@T~ t !22TS~ t !#Kt~x12x2!@Q~x1!Q~2x2!1Q~2x1!Q~x2!#%, ~C3!

whereT(t) andTS(t) are the total and spin-flip tunneling probabilities, respectively,@TS(1)!T(1)!1#, other notations are
those of Eqs.~40! and~41!. In this expression for the kernelK, we have explicitly separated the partsK (0) @the first term on
the right-hand side of Eq.~C3!# andK2K (0) ~the second term!. As we see, in this case the interface term in Eq.~C1! is of first
order in tunneling probabilities. We therefore need the zero-order solution to Eq.~C2! with K5K (0). It is straightforward to
find

D~0!~x!5D~10!Q~x!1D~20!Q~2x!. ~C4!

Inserting Eq.~C4! into Eq. ~C1!, one immediately gets the interface free-energy term with

a5
3p2

7z~3!
j0

21E
0

1

dt tT~ t !, b5
6p2

7z~3!
j0

21E
0

1

dt tTS~ t !. ~C5!

These same values ofa andb were previously obtained20,22 in the framework of establishing the GL boundary conditions
means of the standard procedure12 of identifying the asymptotics of the solution to Eq.~C2! at x→6` with the asymptotics
of the solution to the GL equation atx→60. A slight modification of the derivation20,22of K allows us to take account of th
presence of nonmagnetic impurities in S layers, yieldingã and b̃ of Eq. ~69!. Finally, we obtainVGL in the form ~10!.

Analogous calculations can be carried out for all the systems considered in this paper.@In the case of SN superlattices, the
calculations are more involved, because the solutions to Eq.~C2! are no longer constants.# In fact, there is no need to do this
As should be clear from the above-developed approach, one can simply capitalize on the results of the computationã and
b̃ for the GL boundary conditions in a single-junction problem~see references in Secs. II and IV! to obtain the desired form
of VGL .

APPENDIX D: LAWRENCE-DONIACH LIMIT

Consider Eq.~10! in the form

VGL@Dn* ~r !,Dn~r !;Dn* ~10!,Dn* ~a20!#5SN~0! (
n52N/2

1N/2 H E
10

a20

drF2tuDn~r !u21
7z~3!

12
j0

2x~ l /j0!UdDn~r !

dr U2

1
7z~3!

16p2Tc0
2 uDn~r !u4G1

7z~3!

24
j0

2$~a1b!@ uDn~10!u21uDn~a20!u2#

1~b2a!@Dn* ~10!Dn21~a20!Dn~10!Dn21* ~a20!#%J , ~D1!

which is the general expression for the GL free-energy functional in SI superlattices. Let us introduce the represent

Dn~r !5D~r !expF i S n1
1

2Df G . ~D2!

One can expandD into a Fourier series
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D~r !5(
p

Dpeipr , p5
2pn

a
, n50,61,62,... . ~D3!

Substitution of Eqs.~D2! and ~D3! into Eq. ~D1! yields

VGL@Dp* ,Dp ;f#5VLD@D0* ,D0 ;f#1NaSN~0! (
pÞ0

H 2tuDpu21
7z~3!

12
j0

2x~ l /j0!p2uDpu21
7z~3!

16p2Tc0
2 F uD0u2Re~Dp* D2p!

1 (
p1,p2

Re~Dp* Dp1!Re~Dp2* Dp12p22p!G1
7z~3!

24

j0
2

a (
p1

Re~Dp* Dp1!@a1b2~a2b!cosf#J . ~D4!
-

m

u-

e

s
.

e

e

ter

by

es,

e-
in

sa-
nt
e

set

-
of

ion

ia-
.

whereVLD@D0* ,D0 ;f# is exactly the desired LD-type func
tional:

VLD@D0* ,D0 ;f#5NaSN~0!H 2tuD0u21
7z~3!

16p2Tc0
2 uD0u4

1
7z~3!

12

j0
2

a
uD0u2

3@a1b2~a2b!cosf#J . ~D5!

@Note the absence in Eq.~D5! of the impurity factor
x( l /j0), in line with the Anderson’s theorem.24# If the thick-
ness of superconducting layers satisfies the conditions

a! z̃~T!, a21x~ l /j0!, ~D6!

the termp2uDpu2 gives a dominant contribution to the su
over pÞ0, and we can write

VGL@Dp* ,Dp ;f#'VLD@D0* ,D0 ;f#1NaSN~0!

3
7z~3!

12
j0

2x~ l /j0! (
pÞ0

p2uDpu2,

~D7!

which means that in this limit the contributions of the Fo
rier componentsD0 andDpÞ0 decouple. Minimization of Eq.
~D1! with respect toDpÞ0* gives the obvious condition
DpÞ050 @no spatial variations ofD(r )#, and VGL actually
reduces toVLD . As could have been expected from the r
sults of Sec. II, in view of the conditions~D6!, a system in
the LD limit can possess nontrivial minima withuD0uÞ0
only if

z̃~T!!a21x~ l /j0!, ~D8!

with the transition temperature and the critical thickne
given by Eqs.~27! and ~28!, respectively. Combining Eqs
~D6!, ~D8!, and ~28!, we obtain the strict condition of the
validity of the LD description:
-

s

amin<a! z̃~T!!a21x~ l /j0!. ~D9!

Here,amin is defined either by Eq.~28! amin5ac , if ac@j0 or
by the general condition of the validity of the GL regim
amin@j0, if ac<j0 .

It is instructive to rewrite Eq.~D5!, introducing the defi-
nition of the renormalized~due to pair breaking by exchang
interactions inside the barriers! transition temperature in the
absence of supercurrent,Tc8 :

VLD@ uDu,f#5NaSN~0!F2t8uDu21
7z~3!

16p2Tc0
2 uDu4

1
7z~3!

12

j0
2

a
uDu2~a2b!~12cosf!G ,

~D10!

t85
Tc82T

Tc0
, Tc85Tc02Tc0

7z~3!

6

j0
2

a
b. ~D11!

~We have simplified the notation for the LD order parame
D0 , dropping the lower index.! This form of the LD func-
tional clearly shows that interlayer coupling is determined
the typical difference~a2b!.

A few concluding remarks would be appropriate here:
~1! The functional form of Eq.~D10! is the same both in

the pure limit and in the presence of nonmagnetic impuriti
but the effect of impurities enters implicitly via Eq.~D9!.

~2! In phenomenological approaches, it is often d
manded that the energy of interlayer coupling
VLD@ uDu,f# be much smaller than the intralayer conden
tion energy. Mathematically, this requirement is equivale
to z2(T)a21!a21. This is an unnecessary constraint. As w
have seen, the actual range of validity of the LD regime,
by Eq. ~D9!, is much larger.

~3! Owing to the implicit gauge invariance of our evalu
ation scheme, it is straightforward to include the effect
external magnetic fields, making use of the substitut
f→f22e*0

ddx Ax in Eq. ~D10!, whereA is the vector po-
tential. Further generalizations, allowing for spatial var
tions of D in the transverseyz plane, also pose no problem
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