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Current-carrying states in superconducting multilayers with Josephson interlayer coupling
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We present a complete, self-consistent, microscopic description of current-carrying states in all sorts of
superconducting multilayers with interlayer Josephson coupling near the bulk critical tempefagire,
superconductor-insulatd8l) superlattices with or without intrabarrier exchange interactions and nonmagnetic
impurities inside superconducting) layers, pure structures with point-contact-type interlayer coupling,
superconductor—normal-metéBN) superlattices with an arbitrary concentration of nonmagnetic impurities,
and SN superlattices in the dirty limit with paramagnetic impurities inside N barriers. We have obtained closed
analytical expressions for the Josephson current as a function of an S layer thiekneéssall these systems
drastic deviations from a single-junction case were found: a reduction of the critical Josephson je¢uioent
pure Sl superlattices wita< &, nontrivial current-phase dependence for multilayers with point-contact-type
coupling anda<¢,, and nontrivial temperature dependencej ofor SN superlattices. Mathematically, our
approach is based solely on the use of a microscopic free-energy functionah>Fgyr, we reduce this
functional to a Ginzburg-Landau-type functional with an extra term accounting for the interface free energy.
For Sl superlattices, in an appropriate limit this latter reduces to a Lawrence-Doniach-type functional with
microscopically defined coefficientsS0163-182€07)01929-2

[. INTRODUCTION come into play. These conjectures are supported by earlier
theoretical results.

Spatially periodic structures with alternating layers of a Thus, the existence af, was established on the basis of
superconducting material and a nonsuperconducting materighe macroscopic Ginzburg-LandaGL) equatiodt with a
have long been subject to extensive experimental and theghenomenological periodié-function potentiaP For small
retical studies in the physics of superconductivigenewed a, nontrivial current-phase dependence was predicted in the
interest in these systems has recently been stimulated, on thamework of the transfer-Hamiltonian methbd@®oth these
one hand, by the fabrication of artificial high-quality stackseffects were also found in numerical studies of a microscopic
of Josephson junctioAsand, on the other hand, by the dis- Kronig-Penney model of an SN superlatticeTat T, .’
covery of the intrinsic Josephson effect in high- The primary objective of this paper is to investigate the
superconductors. influence of finitea on current-carrying states in supercon-

With regard to theory, the main efforts were concentratediucting multilayers with interlayer Josephson coupling in
on the calculation of the superconducting transition temperafull detail. We restrict ourselves to temperatures close to the
ture, quasiparticle excitations, and the effect of magnetibulk transition temperatureT.,, where complete self-
fields. By contrast, surprisingly little attention was paid to consistency can be achieved and closed analytical expres-
the problem of current-carrying states. Nevertheless, for mulsions can be obtained. All kinds of systems are considered on
tilayers with Josephson coupling, there are at least two seran equal footing: Sl superlattices with or without intrabarrier
ous reasons to expect deviations from single-junction behawexchange interactions and nonmagnetic impurities inside S
ior, resulting in strong dependence of the supercurrent on kyers, pure structures with point-contact-type interlayer cou-
superconductingS) layer thicknessa. First, the transition pling, SN superlattices with an arbitrary concentration of
temperature of a multilayér. in the current-carrying state is nonmagnetic impurities, and SN superlattices in the dirty
always lower than the bulk transition temperatufgy, due  limit with paramagnetic impurities inside N barriers. To at-
to the pair-breaking effect of the supercurrent itself. As atain our goals, we develop a rigorous, self-contained, fully
consequence, combined with the influence of other pairmicroscopic approach, based solely on the use of a micro-
breaking factors[proximity effect in superlattices with scopic free-energy functional, which is derived by means of
normal-metakN) barriers, intrabarrier exchange interactionsfield-theoretical methods from a second-quantized BCS-type
in superlattices with insulating) barriers, et¢ the second- Hamiltoniarf in Appendix A.
order phase transition to the normal state can be induced at a In Sec. Il, we describe the general mathematical formal-
certain critical S layer thickness,. Second, for pure sys- ism and derive the principal equations of our theory. We
tems with smalla (a<¢,, where&, is the microscopic co- show that, concerning the S layer thickness, two major re-
herence lengthnonlocal character of the supercurrent mustgimes can be discerned. For smak &, (the mesoscopic
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56 CURRENT-CARRYING STATES IN SUPERCONDUCTIH . . . 2765
regime, accessible only to Sl superlattices and structure@he negative infinitesimal quantityis introduced for math-
with point-contact-type coupling the description can be ematical convenience only and will be set equal to zero after
achieved only on the basis of an exact Green’s functiontransition to the mean-field approximatipn.
which we obtain in Appendix B. Foa> ¢, (the Ginzburg- Under these conditions, the system can be completely de-
Landau regimg considerable simplifications arise due to lo- scribed by a microscopic free-energy functional in the form
cal character of the theory. To treat this regime correctly, we
derive (Appendix Q, from the microscopic free-energy func-
tional, a GL-type functional with an extra term accounting
for the interface free energy. For Sl superlattices, we also
show (Appendix D that in an appropriate limit this GL 7Z(3)N(0)|g(xp)|*|F(x)]* L
functional with the interface term reduces to a + 16m2T2 -S f L dxy
Lawrence-Doniach-type(LD) free-energy functional. ©

In Sec. lll, we obtain closed analytical expressions for the +L .
Josephson current in pure Sl superlattices and multilayers XLL dx0(X1) 9(X2) K (X1, X2) F(X1)F* (Xy).
with point-contact-type coupling valid in the whole region
Py 1<a=w (p, for the Fermi momentuin We show that in )

the mesoscopic regime the effect of nonlocality manifestga field-theoretical derivation is sketched in Appendix) A.
itself in a drastic reduction of the critical Josephson curreniyere s is the area of the cross section of the syst@pg, is

in Sl §uperlatt|ces, Wh!le multllayer_s Wlth point-contact-type the pulk transition temperaturg(m) is the Riemann zeta
coupling are characterized by nontrivial current-phase depennction 1t N(0)=mpy/272 is the one-spin density of states

dence. _ _ at the Fermi levelwith p, being the Fermi momentum, and
In Sec. IV, we discuss the GL regime for SN and Sl =c=1). The integral kernel

superlattices in great detail. In the case of SN superlattices,
we obtain a complete analytical solution for the critical Jo- 1 .
sephson _currenj;, valid in the whole regionm{(T)=a, K(X1,%2) = 53 < f dplf sztf[TE Gu(X1p1,X2p2)

<aso [{(T) for the GL coherence length in the presence of ¢

the immediate vicinity ofT, is characterized by nontrivial X 26 ,(Xap2 X1P1) 02 > 3
(T.—T) behavior, which changes over td {— T)? at lower .

T. In the case of Sl superlattices, we explicitly include thewherep=(y,z), and&zz(? o) is the Pauli matrix in the
effect of intrabarrier exchange interactions and nonmagnetispin space, is expressed via the matrix Matsubara Green’s
impurities. For{(T)<a, and in the LD limit, we perform function in the normal state, obeying the equation
calculations of the supercurrent to second order in tunneling

probabilities. Some peculiar features of the LD limit are also
discussed.

+L
arFF1=s| x| ~gx)Fo) P

impurities. We show that temperature dependencg (i

dZ

o+ E-+ ﬁ d_r%_vimp(rl)_vb(rl) Gw(rl!rZ)

Il. GENERAL FORMALISM =08(r1=rp). (4)

The following models and notations will be used through-" Ed. (4), @=7T(2n+1) (n is an integey, r,=(xy,p1),
out this paper. We consider superlattices composed of alteiimp(f1) iS the impurity potential in the S layers, and
nating superconductings-wave-typ@ and nonsuperconduct- Vp(r1) is the barrier potentidithe accent”) denotes a non-
ing normal-metal and insulating barriers. The barriertrivial matrix structure in the spin spateThe upper index
interfaces are normal to the axis of thexyz coordinate (‘) in Eq.(3) means transposition in the spin space, the trace
system. The barriers themselves are supposed to possess iBitaken over the spins, and the angle brackets stand for av-
lateral symmetry with a mirror plane normal to tkeaxis. ~ eraging over the impurity concentration and small-scale
The origin of the coordinate system is chosen in the plane oFriedel-type oscillations on the ordpf *. [In line with the
the symmetry of one of the barriers. The total length of thegeneral properties of the Green's functioi(X;,X,)
system is 2=Nc>¢(T), where/(T) is the GL coherence =K(X5,X1), K*(X1,X2)=K(X1,X5), and K(X;+nc,X,
length,c=a+d, with a andd being an S layer and barrier +nc)=K(xy,X,). For symmetric barriers and our choice of
thicknesses, respectively. The diameter of the cross sectidhe coordinate system, an additional symmeky—x,,
of the system is taken to be much less than the GL penetra-x,) =K(x;,X;) appeard. The complex-valued functioft
tion depth, so that the effect of the vector potential in the=|F|e'¢ is the amplitude-of-condensation fieldn equilib-
absence of externally applied magnetic fields can beium, F=(,¢/).] Both|F| and ¢ are smooth functions of
neglected? In SN superlattices, all the normal-state proper-x, and|F|#0 everywhere in the intervaL,L]. The latter
ties are supposed to be the saifiexcept for one case in Sec. condition guarantees that the system as a whole is in a phase-
IV, where we consider paramagnetic impurities inside the Ncoherent state. A complete definition &f F,F*] implies
layers) For the electron-electron coupling constant we as+that certain boundary conditions are sexat+ L. Here, we

sume the model adopt the cyclic boundary conditida(+L)=F(—L). This
- means |[F(+L)|=|F(—L)| and ¢(+L)—¢(—L)=2mk,
9(x)= —lgl, inside the S layers, 1)  With k being an integer(in a homogeneous systemk/L

e——0, inside the barriers. can be identified with the momentum of a Cooper p3iit
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is convenient to choose the gauge in whigi{+L)= . SQ[|F|,Ve]
implici vari. | 1(0=26] —=— = =
—¢(—L). Furthermore, as a result of implicit gauge invari- SV @(X) 0
ance, Q[F,F*1=Q[|F|,V¢]. Thus, in our periodic sys-
tems,|F| andV¢ must obey the conditions imposed by trans- X +L
Iati0n|al |invariance: ’ P g _zefdexlfx dX20(X1)g(X2) K(X1,X7)
|F(x+nc)|=|F(x)[, (n=0,+1,+2,...), (5) XIMLF(x1)F* (X2)]o, )
where the subscriptg) denote that the equilibrium value of
Ve(x+nc)=Ve(x). (6) F given by Eq.(8) and its complex conjugate should be
) substituted. In Eq98) and (9), one can take the limig=0.
From the latter, it follows Although in the following we will consider Eq$8) and (9)
only inside the S layers, introducing the standard notation
p(x+nc)=e(x)+ng, (7 A(x)=]|g|F(x) for the pair potential, it is worth noting that

] ] ] ) these equations are equally valid inside the barrier regions as
whered is a constantfor a givenk). For symmetric barriers e, This point is of great theoretical significance because of
under co_n5|d_erat|or1F| and Vo reach their extreme values the jssue of charge conservatibhAs can be easily seen, the
at the midpoint of each S laydat pointsx=c/2+nc, for  jmaginary part of Eq(8) multiplied by F* gives the conser-
our particular choice of the coordinate sysjem vation lawdj(x)/dx=0.

Minimization of Eq. (2) with respect toF* yields the Provided the kerne(3) is known, the evaluation of Egs.
self-consistency equation (8) and(9), in principle, can supply the solution to the prob-
) lem oflcurrent-carrying states for an arbitraryin }he inter-
* val p, “<a=. In the mesoscopicegime, forp, "<a<¢,
F(XHLL PXag(xa)K(xx1)F (1) (¢o=vol27 T,y is the BCS coherence lengthgy=py/m),
3 , only these equations are applical®ee Sec. Il for two par-
7LBINO)[g(X)[FF(X)[“F(x) _ ticular examples.But for a> ¢, (the Ginzburg-Landaure-
+ 8272 =0. (8) ) . . AR )
T T gime), considerable mathematical simplifications arise due to
the use of the local GL equatiofis.
The density of the supercurrent is determined via the func- As shown in Appendix C, in the GL regime E(R) re-
tional derivative of Eq(2) with respect toVe: duces to

+N/2

a—0 ?
Qe[ AR (1, An(1);A7(+0),A7(a=0)]=SN0) >, [ Lo ar

74(3) dAn(r)

AP+ féx(foll)’ =

74(3)

74(3)
167772, |AL(r)[*

+ 4 Eox(&/D{@+ BIAN+0)[?+|Aq(a~0)|?]

+(E—5)[Aﬁ(+0)ﬁn1(a—0)+An(+0)A§1(a—0)]}] , (10

where7=1—T/Ty, A, (r)=A(d/2+nc+r) is the GL or-  all possible types of symmetric barrigifer asymmetric bar-
der parameter in theth S layer whose value at the interfacesriers, an additional microscopic constamt, would appear
is given byA,(+0) andA,(a—0) [with 0 being the dis- and guarantees the conservation of supercurss® below.
tancesx=*&;, small on the GL scal¢(T)], @ andB are  The constan accounts for pair breaking due to intrabarrier
microscopic parameters, and£o/1) is the impurity factor  exchange interactions and the proximity efféotSN super-
(I is the electron mean free patgiven by latticeg. (As can be easily seen, in the absence of supercur-
rent, the constark drops ouf) Notice, that at a phenomeno-
logical level, with three undefined constants, the GL free-
x(&/h)= 7¢3) ZO (2n+1)73(2n+1+ &)~ energy functional with an interface term was introduced by
" (11) Andreev in his discussion of a single planar defédBegin-
ning with De Genne$’?the constant& and 3 were essen-
The first square-bracketed term in H40) is the usual GL tially calculated for all the situations of interest here by many
bulk free energy® The second square-bracketed term ariseguthors'®~?*without any reference to the GL free energy, in
due to the loss of the condensation energy at the barridhe context of establishing microscopic boundary conditions
interfaces, as a result of a local depression of the pair poterio the mean-field GL equations for a single-barrier Josephson
tial. This form of the GL free-energy interface term coversjunction. Actual values ofx and g for different types of

+ oo
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nonsuperconducting symmetric barriers will be given in Secy,(r)=x(d/2+nc+r), dx,/dr=uv, is the “superfluid ve-
Il. At this stage, the following two things are worth noting. locity” in the S layers. In terms of the quantitidsandvs,
First, as can be seen from E(q.Q, the dimensionless inter- Egs.(13)—(15) become

layer coupling parameter ise(— 8)&,. In SN superlattices df (1)

with nonferromagnetic N barriers, the limit of weak coupling 1—4mZ72(T) o 2(r)V1F(r) + 24T r —£3(r)=
corresponds ta>¢,. In this limit, only the combination [ MM us(DIT() +¢4(T) dr? (=0,

(@— )&, is small, being proportional to exp@/é), with & 17
<&p. On the contrary, in Sl superlattices in the weak- 144(3)

c_oupling limit, both_Ego and,B_g_O_, are small, geing_propor— j(r)= 3 emN0) &y (&/NA2FA(r)vyr), (18
tional to the tunneling probabilitie§The latter,3¢,, is pro-

portional to the exchange part of the tunneling probabjlity. q

Second, in Sl superlattices one has — [f2(r)vg(r)]=0, (19)

dr
a=x"Y&Ma, B=x"Y &M, (12)

where « and B stand for the pure limit. An immediate con-
sequence of these identities is a cancellation of the impurity 1 _ —
factor y(&,/1) in the interface term in E¢10). —fl= f’+=§ [a+ B—(a—B)cosp]f ., (21)

By minimizing Eq.(10) with respect taA} (r), we arrive
at the set of GL equations

fo=f,, (20)

74(3) d?A,(r) Us—”’sf%(a—ﬁ)sin. (22)
’TAn(r)‘FngX(fO/')d—:z where
7¢(3) =
8T An(r)|An(r)]?=0. (13) UT)=x"4&){(T)

_ , = x Y&/ EVTL(3)N2A1—T/Teo)
These equations are coupled through the boundary condi- . ] N
tions is the GL coherence length in the presence of impurities. In

the boundary conditions, =df/dr, the subindices() and
dA, 1 . ~ -~ (;) denoter =a—0 andr=+0, respectively. These bound-
gr (tO=5[(atB)An(+0)=(a=B)Ay-1(a=0)], ary conditions look exactly the same as in the case of a
(14)  single-barrier probler®®?° The effect of a finite thickness of
the S layers enters only by virtue of the symmetry conditions

dA, - 1 -
dnr : (a—0)=-— > [(a+B)A,_1(a—0) described above:

~ 2
—(a—B)A(+0)] g(a/z):o, %(a/2)<o. (23

that are also obtained from E(@LO) by means of minimiza- ,
tion with respect taA* (+0) andA*(a—0). Accordingly, ~[A corolla,rly of these and Eq19) are, of coursep(a/2)
the supercurrent density can be derived by analogy with E(fo andvg(a/2)>0.] To finish with the discussion of the
(9): oundary conditions, we observe that E&2) requires that
‘a> B, which is always the case for the systems under con-
_ S 7L4(3) ) sideration heré®
in(r)=1 —g— eN(0)éox(&o/1) At the second-order-phase-transition point, ELj) can
be linearized. Noticing that the effect of the superfluid veloc-
dAy(r) o dAR(r) ity is of second order in the weak-coupling paramefer (
dr °n r dr (15 —B)¢, and can be neglected, making use of the boundary
conditions, we arrive at the relation:

X[ Ap(r)

The application of the boundary conditiori$4) demon-

strates the conservation of the supercurrent density at the ~ a 1 . ~ _ ~
interfaces:j,,_;(a—0)=j,(+0). { (T)tanm =5 La+p—(a=p)cosp]. (24

Following Ref. 8, it is reasonable to isolate the phase shift c

oflthg pair potent_ial at the in;erfaces and, qsing the symmetry given values of the pair-breaking parametﬁrand &,
relations(5)—(7), introduce the representations this relation has a double-edged meaning. First, for a fixed
_ . . a, it determines the transition temperatdrg. Second, for a
An(r)=At(r)exdizmyn(r) +i¢/2], (16) fixed T<T,, it can be regarded as a definition of the critical
A 1(1)=ALf(r)exi2myn_ 1 (1) —i /2], ;r;;l;nessac, below which the system remains in the normal
whereA .= \872T%,/7(3)(1— T/Ty) is the bulk value of For SN superlatticesy and B are of orderg; ! or larger,
the gap parameterf(r) is a real function[0<f(r)<1], giving @Z(T)>1, @aa> 1. Thus, the transition temperature is
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7¢(3)m? . MESOSCOPIC REGIME

Te=Teo~ —5— Teox(é0/NEBa2 (29

A. Sl superlattices: A reduction of the critical

and the critical thickness is Josephson current

_ Our aim here is to obtain a microscopic formula for the
=a{(T). (26)  Josephson current in a superconducting Sl superlattice in the

- pure limit, valid in the whole range of thicknesses of the

For Sl superlatticesp and 8 are proportional toggl superconducting Iayer|s51<a<oo. To simplify the analy-

times the tunneling probabilities which can be made arbisis, we restrict ourselves to the evaluation of the supercurrent
trarily small. [In the following, we shall assume at least to first order in the tunneling probability and do not consider
a§(T)<1] Thus two different limiting cases can be real- the effect of exchange interactions inside the barriers. The
ized. Fora>a L, ag(TC)>1 the transition temperature be- latter allows us to suppress in what follows inessential spin

ing given by formula(25). indices.

As a starting point, for the description of the insulating
Fora<{(T), @{(T;)<1, with the transition temperature barriers we adopt a model pseudopotential of the form

+ o0

§() vb(x)=v_2 S(x—na), V=Ud>0. (30)

Te=Teo— —, La+B—(a—B)cosp]Toéza ™,
(27) AE:c)ordin|gI|y, the eIectronr;eIectrorrl] coup&gﬁ constar:jt is
- . X) = —|g|=const everywhere in the intervg+-L,L], an
and the critical thickness \?ve introd%ce the notatim(x)zlg|F(x). This mod]el was
_ 2 reviously employed by Kuplevakhsky Fal’ko in their con-
=Lt B=(a=p)cosp]L(T). (28) gideratio%l of E?Iogh—typg sut?gap excit)::\tions in an Sl super-
The absence of the impurity factor is to be noticed in thesdattice induced by supercurrefit.To avoid possible misun-
equations. This is an obvious consequence of Anderson @erstandlng we emphasize that, as in the case of a single SIS
theorem?* Nonmagnetic impurities do not affect thermody- junction?’ the use of as function for the description of re-
namic properties of homogeneous superconducttmsthis ~ Pulsive potentials in microscopic equations is physically
Lawrence-Doniachimit,® the complex pair potential is con- fully justified as soon as the quasiclassical approximation
stant in each S layerin terms of the free-energy functional, ¢an be employleglsa;gd we are not concerned with distances on
Q. of Eq. (10) reduces to a LD-type functional in the ab- the order ofp, =.>“" Equation(3) now becomes
sence of external magnetic fields:

1
74(3) Al K(xy,%2) = 7N(0)voT > jo dt (G, (X1,X2) G ,(X2,X1)),

i _ _ 2
QLD[|A|1¢]_NaSNO){ T|A| + 167T2T§0 (31)

5 where the angle brackets denote averaging over Friedel os-
AlffatB—(a=p)cosp]. cillations on the order op, * only. The Fourier transform of
the Green’s function in the coordinatgs z, taken at the
(290 Fermi level, is governed by the equation

L B 7{(3) §o
12 a

Phenomenological LD functionals are in wide use for the 2 +oo
d_escript?on of different aspects of the.effect of magnetic |, + Ept24 — ——V 2 8(x;—na) |G, (X1,Xs)
fields in su?%%rconductmg superlattices and layered 2mdx; e
superconductors’ The details of a rigorous mathematical
; ¥ = 8(X1—X2), (32)

derivation of Eq.(29) from Eq.(10) are shown in Appendix
D. In Sec. IV, we obtain solutions to the principal equationswith t=cosf being the angle of incidence at the interface. In
of the theory in the GL regime and discuss the LD limit in Appendix B we have obtained an exact solution to &2).
more detail. It has the form

m . . .
Gou(X1,X2) =~ exf —iNy|ny—nylal| & n,eXH —iN|ri—ro|]+ (1= 68, n,) exd —i sgnin;—ny)N(ry—ry)]

N (sin\,a—sin\ja)cog N(r,—r,) ]+ (mV/IN)cogA(a—r1—r5)]

sin\;a (33

X1'2: n1Y2a+ rlyz,
0=ry,<a, (34)
n1’2=0,i 1,i 2, ey
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where A = — sgnuErt?+iw, the quantities\;,\, are de- thicknessa in contact with vacuum’ On the other hand,
fined by choose consecutivelyi) n; ,=0, ry,<a/2; (i) ny,=—1,
a—ry,<al?; (i) n;=0, r;<al2, n,=—1,a-r,<al2, or
n,=0, r,<al2, n,=-1, a—r,<a/2. After proceeding to
the limita—c0, one obtains the Green'’s function of a system
with a single repulsive barrier at=0.2"

With Egs.(33)—(35) now in hand, assuming> pgl, it is
straightforward to compute the kern@l) in the quasiclas-
sical approximation. Expanding

mV
cos\;a=cos\a+ ~ Ssin\a,
(39

) ) mV
Sinln,a=sima— ~ cos\a,

and the prescription; ,—\, for V—0. This function is ex-

plicitly translationally invariant with a period. ForV=0, it ol

goes over into the free-electron Green’s functiBg). In the A~ —polt|sgno—i oot t|>VTeo/Er,  (36)
case of impenetrable barrierg € «), Eqgs.(33)—(35) reduce 0

to a set of Green'’s functions describing flat metallic films ofand retaining only the leading terms, we get

[nyg—ny|

T(t)
cosh2|w|alvgt) + Veost(2|w|alvet) — TA(t)

N(O 1dt
Koo = TS [

® ot

X

2|w| 2|w|
On, n,BX _v_ot|rl_r2| + (1= 6, n,)€X _v_ot(rl_rz)SQT(rll_nz)

+[1-T(V)] (37

exd —2|w|alvot]cosh 2| w|/vot(r1—r,) ]+ cosh2|w|/vgt(a—T1—T5)]
sinh(2|w|alvgt) ’

whereT(t)=v§t2(v(2)tz+vz)*l is the tunneling probability. It is important to observe that the quasiclassical expré3gjon
does not depend on a concrete functional formT¢f) and should also hold for any symmetric repulsive barrier with
<¢,. As expected, Eq37) assures correct transition to all major limiting cases. Seffifiyj=1, we arrive at the free-electron
kernel?

7TN(O) Ldt 2| v
K(Xl_xz)—f dt Ki(X1—Xp)= T> F{_ v Ix1— %ol |.

w

(39

In the opposite limitT(t)=0 (V=) andn;=n,=n, one obtains a set of kernels describiNgisolated metallic films in
contact with vacuum:
2|l
—— X1 —X
L e

+exp{ 2|w|a/uot]cosr[2|cu|/vot(x1 X2) ]+ cosH 2| |/vot[ X1+ X, — (2n+1)a]}
sinh(2|w|alvt)

WN(o

>

w

K(O)(Xl X2) :TE KS,)O)(Xl 1Xp) =

(39

Now consider:(i) ny,=0, ry,<al2; (i) ny,=—1, a—ry<a/2; (i) n;=0, ry;<a/2, ny=-1, a—r,<al2, orn,=0, r,
<al2, n;=—1,a—r,<al2. Renderinga>¢&,, we obtain the single-barrier kerri&l

1
K(X1,X2) = fo At {K(x3—X2) +[1—=T(1) JK(X1+X2) H{ O (X1) O (X2) + O(—X1)O(—X7)]

+T(OK (X1 =X)[O(X1)O(—X2) + O(—X1)O(X2) 1], (40)
[
1! X>0, . 0 +L
®(X)=[O << 0 (41 J(O):_Zef_,_dxlfo dxoK(X1,X2) IM[A(X1)A* (X2) 1o,
(42)

Concerning the supercurrent density Tqf1)<<1, itis ad-  As follows from Eq.(37), the integrand of the integral over
vantageous to evaluate E@) at one of the barrierésay, at t in this case contains as a factor powersTgf). In first-
x=0): order calculations, one should include only contributions of
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|[n;—n,/=0,1 and take the pair potential in zero order in This is the desired expression for the dc Josephson current as
weak coupling[ T(t)=0]. This leads us to investigate Eq. a function of the S layer thickness, valid in the whole region
(8) with the kernelK(® for n;=n,=n: Py l<a=oo,

For a>¢,, Eq. (49 goes over into the well-known

a formul&’ for the Josephson current in a single tunnel junc-
An(r):|g|f0drlK(O)(rirl)An(rl) tion P ’ J
2
| TEINOIgAOPAD j= T (ot msing. (50
8772T§0 . 47TTC0 0

By contrast, in the extreme mesoscopic regime, when
Py l<a<¢,, we discover the dramatic result

. ~ 7Z3)emE:AZ a (1 _
AN =lgIT fodrlKES>(r,rl>An(r1>. (44) =T, & fod”“)sm (5D

We see that in addition to the averaged tunneling probability
the Josephson current is proportional to another small param-
a eter,a/&y. The reduction of the Josephson current is a mani-
19| Teo J dr,KO(r,rp=1, (45)  festation of the nonlocality of Eq42): In a pure infinite SIS

o JO junction the contributions to the current are “collected” over
a spatial region- £,, while in our case they are restricted to
two adjacent S layers only. This conclusion becomes even

Dropping the nonlinear term in Eq43), we obtain the
equation for the transition temperature

SettingT=T, in Eq. (39), we easily establish the property

where the definition of the bulk transition temperature

s 1 more evident if we rewrite Eq51) as
7|g|N(0)T —=1 46
|g| (0) cow |w| ( ) . l4§(3)emEFA§ 1 a .
. j=———=—— f dt tT(t) —|sing. (52
was used[In Eqg. (46) a cutoff at the Debye frequenayy is T Teo 0 volTeg

implied.] Hence, the largest eigenvalue of Ed4) is T,
=T. Wwith the eigenvectorA®=const. InsertingA("
=const into Eq(43) and making use of the expansion

The factora/votT s under the integral sign in Eq52) can
be regarded as the quasiclassical probability of finding an
unscattered electron with the component of the velocity
1 T vot within one S layer during the characteristic time of the
7r|g|N(0)T2 —~1+|g|N(O)<1— —) (47) order och_Ol.g"' Our next example below demonstrates an-
@ ol Teo other aspect of the nonlocality of E@2) for small a.
we get| A=A, whereA., is the bulk value of the gap
parameter{see Eq.(16)]. Thus the correct zero-order pair
potential, satisfying the conditions of Sec. I, is

B. Multilayers with point-contact-type interlayer coupling:
Nontrivial current-phase dependence

The structures considered here is an obvious extension to
multilayers of the single-point-contact model thoroughly
studied in Ref. 32. LeR be the radius of the orifice at the
(48  interface between two adjacent S layers, whege' <R

<a,&y. As explained in Ref. 32, the expansion parameter

Now let us return to Eq(42). Substitution of the first-  now is R/¢&,, and the tunneling probability may take arbi-
order approximation to Eq37) (with T=T,) together with  trary values B<T(t)<1.

+ oo

AO()=A, D 2 e@(x—na)@[(n+1)a—x].

n=-—w

Eq. (48) yields As in the case of a single point contact, instead of the
AZT L supercurrent density, it is convenient to compute the total
= emEAZTe D _12 J dt tT(t)tant? 2|wla sing. current at one of the interfacesx£0): 1=S;j(0)
2 w ©° Jo vt =mR?j(0). In leading order, one should s&&= T, in Eq.

(49 (37) and use the approximatidd8), obtaining

|(¢):k21 ki(k)sinke, (53)
8emSEFAZ T, 1 (1 T(t) “
l(k)= —————— T
() T % ? Jo dr t7(t) cosh(2|w|alvgt) + Veost (2] w|alvet) — T?(1)

X sinkf

: (59

lw|a { 1-T(t)
vot Jeost(2|w|alvgt) — T2(t)
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wherek=|n,—n,| [see Eq.(37)]. The expression of the forr63) was derived in Ref. 6 within the transfer-Hamiltonian
method, but the explicit analytical expressions for the partial contribut®fscould only be calculated here on the basis of
our true microscopic approach. The series in &§) can be summed up, yielding

I(¢)=

8emsaEFAiTcoE % fl att Z(t,w)[1—Z2(t,w)]sing sinhz|w|a 1-T(1)
1) 0

[1+Z°(t,w) — 2Z(t,w)COSp]° vot JeosH(2]wlalvgt) — TA(t) | 55

T(H)

Z = .
(te) cosh(2|w|alvgt) + Veosh (2| w|alvot) — TA(t)

In the limit T(1)<1, Eq. (55 reduces to Eq(49) times (a&y) 1=1,732m7sT ool /1 €9— 0,932 75T ol / &g
Sy. Fora>¢,, Eq. (55 formally coincides with Eq(50)

times Sy, but with an arbitraryT(t). Xexp(—dy3/2mrsToéol),
The nontrivial current-phase dependence of &) for _
largeT(t) anda< &, should be noted here. Previously, non- (Béo) 1=1,73y2m 7T ool €9+ 0,932 7T ool / o
trivial current-phase dependence was derived for a single
point contact at temperatur@s< T o, %2 which occurred due xXexp(—dy3/2m7sT oéol),
to the current-carrying subgap stdfein our case, the non- wherers<T is the spin-flip scattering tim&.[See Ref. 36

trivial current-phase dependence arises as a result of aIreaqi()!r the discussion of a basic difference between paramag-
mentioned nonlocality of Eq(42). (The contribution of netic and ferromagnetic N barriefs.

current-carrying subgap states vanishes at temperatures close, iake full advantage of the boundary conditiq@8)—

(59

t0 Teo.) (22), we evaluate Eq(18) atr = +0:
. 773) qW 02 P
IV. GINZBURG-LANDAU REGIME i(+0)= == TP [F912eN(0) £ox (&0 /1) AZsing,
A. SN superlattices (60

In the case of weakly-coupled SN superlattices, according ) . .
to Eq. (26), the GL regime is the only possible one near To fm_d f(f), we d_lscard thez§ term in Eq.(17) and use
T.o- For these structures, we study the dependence of tnge GL firstintegral in the forr?
critical Josephson curreft ona andT. _ df(r)

__To start with, we write down expansions aké,) ! and 204T)| ——
(B&,) ! to leading order in weak couplin§:1®2* dr
where the constargt (0<s<1, with s=0 for a=®) is to be
determined from the conditiod23). Applying Egs.(21) and
(23) in appropriate order, exploiting the smallness of the ra-
tio G(0&/{(T), we arrive at the final expression for the
critical Josephson current as a function afa,=w{(T)

[for T<T,., with T, given by Eq.(25)]:

2
=[1-f3(r)]*- ¢, (61)

(@ée) '=GO-gD, (B&) =GO+3Y, (56)

whereq (® corresponds to the decoupling lindt=, and
qU<q©. In Ref. 19, expansion&6) were obtained for an
arbitrary concentration of nonmagnetic impurities. As an il-
lustration, we give here two limiting examples of major im- _ 6 envg (

portance. In the pure limfl =, y(&,/1)=1], mep—g
0s0

2 . .
“1.0,64-3, /d —dl&), where n=(4/3)N(0)Er (Er=pg/2m being the Fermi en-
(ao) A éold)exp ¢o) ergy) is the number of electrons per unit volume. The con-
stants is implicitly defined by the equation

2
TLCO) (1-s3®, (62

(B&o)~*=0,64+3,5&/d)exp( —d/&). (57)

_y [1-s _ a
In the dirty limit [| <&q,x(&o/1)~m21/17L(3)&], (1+5) lzK( 1+s/ 224T)’

where K(k) is the complete elliptic integral of the first
(58) kind.!! Explicit analytical expressions can be obtained in
limiting cases. Foa—a.<a., 1—s<1, and we get

(Béo) 1=~0,41\11€5+ 0,7\ £gexp( — d/3/&). 96 en

Ie=773y
74(3
The calculations in the dirty limit were extended in Ref. 21 £(3) Poto
to allow for paramagnetic impurities inside the N barrier:  In the opposite limita>a., s<1,

(63)

(@) ~t=0,4111€,—0,7\11Egexp — d\3/&),

1—L)2( 2 —1)~<1> (64)
Teol 7z 7%
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=72 envo( - )2{1 32 exp—2a/Z(M) Vg Y - envo( . Uldt {T(t)—2T(t)]
=00 - —32exp—+2a , = - = -
1eT723) poo | Teo q 7 1403) pogo | 7 Teol Jo s
2
exhibiting smooth transition to a single SNS junction with x|1— 3\27 1/2£(T) fldt
a=o 2 78(3) x" &l éo

To investigate the dependence jefon T for a fixed a,
one should insert into E¢63) the definition of the transition
temperaturea=7{(T.) [see EQ.(25]. For T,—T<T
—T,, in striking contrast to a single SNS junction, we ob-
serve

t] 2Tg(t) +[T(t)—2Tg(t)]sir? g] sing.  (70)

For sufficiently smallT(1), only the first-order term in Eq.
(70) can be retained:

4_8ﬂ (Teo—THT—T)q (€Y (66) 372 enw T 1
74(3) pofoTeo ¢ ° ' j= o 0( __) - |
PoéoTeo 1= 122 poks T fodt [ T(t)—2T(t)]sin.

At lower temperaturesT.— T>To—T., the typical [T (71)
—T)2 dependence of a single SNS junctibis recovered:

je=

) [For T4(t)=0, this is, of course, Eq:50) of Sec. lll] The
6 emg T\~ cancellation of the factoy(&y/1) in first-order formula(71)
TN G /. e |
7L4(3) poéo ' is a result of Anderson’s theorefThis is not the case for
N Eq. (70), where the second-order term allows for spatial
The “crossover” temperaturel(*) of transition from be-  variations of the pair potential near the interfaces due to de-

JC: T(;O

havior (66) to behavior(67) is pairing effect of intrabarrier exchange interactions and the
. supercurrent itself. Naturally, formul&80) and(71) hold for
T5=2Tc=Teo- 68 4 single SIS junction as wel[Compare the calculations in

he pure limit of Ref. 20, where also the emergence of the
actors ZI's and (T—2Tg) was elucidated.

In the opposite LD limitfa<¢(T)<a 1], it is reason-
able to start directly with the LD function&R9). Minimiza-
tion of Eq. (29) with respect to|A| yields its equilibrium

To conclude the discussion of SN superlattices, we poin¥
out an important role of nonmagnetic impuritiesntering
Egs. (62), (63) by means offf ) and ¢(T)], as a result of
strong spatial variations of the pair potential due to the prox;
imity effect.

value,|Aly:
B. Sl superlattices with magnetic tunnel barriers 212 2
| ap e, T T &
For weakly coupled S| superlattices, the most general 0T 7¢(3) To 12 a
form of the microscopic coefficienis and 3 is
Y ey X[a+,8—<a—/s>cos¢]}. (72)
=773 X (&o/1) & fo ttT(t)

(69)  The variational derivative of Eq9) now becomes a partial
2

~ 1 derivative with respect to the phase shiift
B= 773y x*(fon)falf dt tT(t)
0 2e [0Qp[|A],¢]
(see Appendix € HereT(t) is the total tunneling probabil- 1= NS d¢ 0
ity and T4(t) is the exchange part of the tunneling probabil- 763)
ity, with Tg(1)<T(1)<1. .
yIn this isrgst)ancé, %he GL regime, besides straightforward =6 © eN(0)£3|A|3(a— B)sin ¢. (73

inclusion of the effect of nonmagnetic impurities and intra-
barrier exchange interactions, offers an opportunity to prolnserting Eq.(72) and the explicit expressions fer and g
ceed beyond the first-order calculations of Sec. Ill. As shouldEq. (69) with x(&,/1)=1], we finally get
be clear from the results of Sec.[kompare Eqs(25) and
(27) for T.], there is no universdlalid for arbitrarya) ana- i
lytical high-order expansion of the supercurrent in powers of =73 eN(O)gof dt {{T()—2T(t)]
a weak-coupling parameter. So we again focus on two typi-
cal limiting cases.

For large a>{(T), one can safely sef =T, and
f(a/2)=1 [with s=0 in Eq.(61)]. We again apply Eqg18)
and (61) at r=+0. Both a(T) and B(T) being small,
using the boundary conditiof21), Eq.(61) can be expanded
to first order.(In higher orders, the effect afg is to be
included) Thus, the supercurrent density to second order inThis expression is to be compared with E@0). Here the
tunneling probabilities reads second-order term in the supercurrent density appears rather

4T2

Xtf 2Tg(t) +[T(t)—2T4(t)]sir? g)

sing. (74)
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as a consequence of a uniform depressiohAd§ owing to  Omel’yanchuk for stimulating remarks and the discussion of
the pair breakers. As expected, for '>¢2(T)/a, Eq.(74)  the paper. S.V.K. also would like to thank Beracka, R.

goes over into Eq(71). Kleiner, P. Seidel, A. V. Ustinov, |. aa, and A. Yurgens
for the discussion of possible experimental implicatidns
V. DISCUSSION cluding highT. superconductivity of the results of Sec. IlI

. ] _during the LT21(Prague, Czech Republic, August 8-14,
Let us now briefly summarize what has been done. In thig ggg)

paper, we have achieved complete, self-consistent, micro-

scopic description of current-carrying states in all major

types of superconducting multilayers with interlayer Joseph- APPENDIX A: DERIVATION OF THE MICROSCOPIC

son coupling neafl ,o. The effect of a finite S layer thick- FREE-ENERGY FUNCTIONAL

ness has been fully elucidated. We have obtained closed ana- A microscopic system satisfying the physical conditions

lytical expressions for the Josephson current as a function cgf the beginning of Sec. Il in the presence of an external

a for purel S| sup()jerlattices, |I”nultilayershwith pct))im'com"’mt'magnetic fieldwith the vector potentiah) can be described
type coupling, and SN superlattices with an arbitrary impu—b d- tized Hamiltoni f the 8

rity concentratiof Egs.(49), (53)—(55), and Eqs(62), (63)]. y a second-quantized Ramiftonian of the 1orm
For all these systems drastic deviations from a single-
junction case were found: the reduction jof for pure SI
superlattices, nontrivial current-phase dependence for multi-
layers with point-contact-type couplindq. (50) and Egs.
(53)—(55) in the mesoscopic regimieand nontrivial tem- ol
perature dependence for SN superlattifégs. (66)—(68)]. _ a0 3+ +

For Sl superlattices in the GL regime, we explicitly included 2 de Fho (NP oY= o) YalT)

the effect of nonmagnetic impurities and intrabarrier ex-

change interactions and performed second-order calculations 3 4

[Egs.(70) and (74)]. +JRbd Mg (M) Vpag(r) da(r). (A1)

We have accomplished our task using rigorous and pow-

erful mathematical methods, which can also be applied tqere R, andR, are the superconducting and barrier regions,
other problems of inhomogeneous superconductivity. For &Xespectively,R=R,UR,, a summation over spins is im-
ample, we have dgnved mlcroscoplcally the general G'_—-typepned, Other notations are either standard or those of Sec. Il.
free-energy functional with the interface ter(@0). This The free energy of the systefAl) is given by

functional not only yields correct microscopic boundary con-

ditions to the mean-field GL equatiori;m a more general

way than the standard procedtfie but it can also be used

for studies of long-range thermal fluctuations. Here, we have Q[A]=—T(InZ[A]), (A2)
employed this functional for a microscopic derivation of the )

LD-type functional (29). Currently, work is in progress to and the supercurrent density s

extend the consideration of this paper to take account of

1
- ﬁ (V_ ieA)2+Vimp(r)_ EF ‘r/’a(r)

_ 3.+
H—fRd rg, (r)

lower temperatures and unconventional pairing in S layers. ) SQO[A] SZ[A]
j=— =T(Z7HA] ——). (A3)
SA A
ACKNOWLEDGMENTS
The authors are indebted to I. I. Fal'ko, G. A. Gogadze, The statistical sur@[A] can be expressé¥’ as the mul-
U. Gunsenheimer, V. M. Gvozdikov, and A. N. tiple path integral
Z[A]= lim f D[F*,Flexg— Q[F*,F;A]/T}, (A4)
e——0
T1 1
Q[F*,F;A]/Tz—f dff d3*rg(x)|F(rm)|?— ST InG™ 1, (A5)
0 R
-1 r ot J 1 i 2 1 Ot 1 )
G (rrr'r)=1 - = 5m [V—ieAy3]°y3—Vimp(r) ¥+ Egyst > (1= y3)Vp(r)— > (14 y3)Vp(r)

+ 5 QORI Y. 0 5 g(x)F*(rm_azj Sr—r")o(r—1"). (A6)
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Here y; andg; are the Pauli matrices in the Gor'’kov-Nambu APPENDIX B: CALCULATION OF THE GREEN'S
and spin spaces, respectively, =(yi1*ivy,)/2, g(x) is FUNCTION

given by Eqg.(1). The trace in Eq(A5) is taken over all
continuous and discrete coordinates. The Bose figids
=|F|expl¢), F* =|F|exp(—i¢) are periodic in the imagi-
nary time 7 with the periodT 1

Transform Eq.(32) into the equivalent equation

+ oo

Go(X1,X2) =Gu(X1—X2)+V 2 G,(X;—Na)G,(naxy),
n=-—ow

= (B1)
— i27T
F(”)_Tm;_m Frn(r)e =™, where the free-electron Green'’s function
m .
.. Gw(Xl—XZ)Z—KEXF[—I)\|X1—X2|], (B2
F*(rT):Tm;—oc F(r)e '2mmm, (A7) with A= —sgnwVErt?+i w, obeys Eq(32) with V=0. Us-

ing the representations

With regard to spatial coordinates, they are supposed to obey 1 [+= )
the cyclic boundary conditions at==*L, which are now Gu(X1=X2)= > J:w dg G(g)exdiq(x;—X2)],
fixed by the fluxtbsztAde. One should bear in mind that

B3
in consequence of gauge invariancé)[F* F;A] ©3)
=Q[|F|,Ve—2eA]. Thus we can rewrite EqA3) as

2m
G(gq)=-— T (B4)
j=2e( Z7YA] i f D[F*,F S0[F" FiA]
e N R T L (e [
Gu(X1,X2)= W Jim dfhfiw da,G(d1,92)
xexp[—Q[F*,F;A]/T}> (A8) X eXplig X, — i05X,), (B5)
and
and proceed to the limih—0. In equilibrium, only the Fou- +oo
rier componentsF, and F§ in the series(A7) should be 2 exq—i(ql—qz)na]zz—ﬂ 2 5(q1—q2+ 2wn
retained. Furthermore, nedg,, we can employ the expan- n=== a n=-w a )’
sion (B6)
we make a Fourier transform of E(B1):
TrInG~1=Tr In(Gy 2~ A)~Tr InGy *— & Tr(GyA)2 G(d1,02) =27G(G2) (01~ d2)
N Y% g 27N
— 7 Tr(GpA)*, (A9) + G(ay) > G(ql+ T,q2>. (B7)
n=-—ow
where From Eq.(B7), we find
+ o
2mn
> Gla+ Tﬁlz)
n=—o
. i i
A(N)==5 g(F(N)y: 02+ 5 gOOF* (1) y-07,
+ o0
(A10) _ 27G(02) 2,2 0(01— g +27n/a) (89)

1-(VIa)=,”_.G(q,+27n/a)

and take the fourth-order term in a local form. Evaluating the
path integrals in the semiclassical approximation and assunSubstituting Eq.(B8) into Eq. (B7) and making an inverse
ing self-averaging of the fields*, F leads to Eqs(2)—(4). Fourier transform, one obtains
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G,(X1,X2) =G (X3 —X2) +

2m2V f+°°d exdig(X;—X,)] g exd —i(2mn/a)x;]
ma J_.°% g°—\? . (q+2mn/a)®—\?

-1) -1
] : (B9)

The summation on the right-hand side of EB9) is made with the help of the formula

2mv
x1+%2

n=—ow

27\ 2 )
Wt A

= exd —i(2mn/a)r]  a exgiq(a—r)]sinr+expigr)sifA(a—r)] B10
. (q+2mnla)?—A\Z 2 cogja—cos\a ’ (B10
where Osr<a. This formula can be easily proved by means of the representation
o exgd —i(2mn/a)r] a2 dzexd —i(2nrla)z] exp(—imz)
> 2 2" a2 3g 7 Vi : (B11)
n==. (q+2mn/a)c—\ 87 Jc (ag/2m+2z)°—(an/2w) sinmz

where the closed conto@ encircles the whole real axis in the counterclockwise direction in the conzpidane. The poles
21 ,=(—ag*al)/2x of the integrand are supposed to lie outside the conurhus we get

m2V - exdiga(n;—n,)]expiga)sinr,+sinx(a—ry)]

CulX1:X) =Gu(Xy=Xp) = == | dg q?—\? cogja—cosna— (mV/\)sima exp—iqrg),  (B12)
|
wherex; ,=n; a+r;,, 0<r;,<a, n=0,£1,*2,... The 1 X
integral overq in Eq. (B12) is evaluated using the residue Q[AA*]:SL del Tal |A(xq)] —L SdXz
theorem. The integrand is a meromorphic function in the 1< 2¢
complex g plane with only simple poles. These poles are X KO(xq,%) A(X1)A* (X5)

given byq; ;==\ and the roots of the equation

7Z(3)N(0)|A(xy)[*
1672T2,

mV
cogja=cos\a+ ~ sin\a. (B13)

_SJ' Xmf dXZ[K(Xl,Xz)
X1€S XoeS

0 *
Hence, we can complete the contour of integration to a —KO(xq,%) JA(X) A* (Xp). (CY
closed loop with a semicircle of an infinite radius either inHere we have introduced the standard notatidiix)
the upper or the lower half-planes, depending on the analyt=|g|F(x) for x being within an S layer, the spatial integrals
icity of the integrand for different relations betweap and  are taken over S layers only. In the pure limit, the kernel
n,. The resulting integrals along the contours are equal t&(?(x1,X,) is that of Eq.(39), except for the changg,
27i times the sum over the residues. The contributions oft X2—(2n+1)a—X; +X,—(2n+1)c (c=a+d) in the last
the poles defined by EGB13) amount to convergent infinite term. BothK andK(® should be taken in asymptotic form
series that again can be summed up by means offgf). for a>¢&, [see, e.g., Eq(40)]. The first term on the right-
Finally, we arrive at Eqs(33)—(35). hand side of Eq(C1) can now be expanded in powers of
&0 /L(T), yielding the usual GL bulk free energy. The second
term should be identified with the desired interface free en-
APPENDIX C: DERIVATION OF Qg ergy. In contrast t&K and K(O),Owhich contain long-range
WITH THE INTERFACE TERM parts, the truncated kernkl— K has an effective range of
the order of¢, and vanishes in the GL region. We can ex-
It is well known that the GL theory, being an expansion of pand it to leading order in weak-coupling parameters,Tset
rigorous microscopic theory in powers &§/{(T), breaks =T, and extend the limits of spatial integration to infinity.
down at distances- &y from a sharp interface, where the pair One should also substitute fdr,A* solutions to the linear-
potential may undergo strong spatial variatiéh§hese spa- ized version of microscopic Ed8) in the vicinity of each
tial variations result in a loss of the condensation energy abarrier. In view of the symmetry conditions of Sec. Il, it is
the interfaces that are not accounted for in the original Glsufficient to consider only one particular barrier. Thus for
free-energy functiondl.On the other hand, as shown in Sec.n=0, we obtain
!II, any spatia! variations.vanish in the case of impenetrqble 4 e
|_nterfaces. Th|s observ_anon aIIo_ws us to isolate the contrlbu—A(X)z j dxK(%,x1)A(xy) + J dxK(X,X1)A(Xy),
tion of the interfaces in the microscopic free-energy func- dr2
tional (2), rewriting it identically as (C2

— o0
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where we have extended the spatial integration to infinityA(—d/2—0) andA(d/2+0). The solution near theth bar-
Within the same approximation, one should use theier differs from this one by the factor expg). By inserting
asymptotic form oK for a>§&,, expand it to required order these solutions into the second term on the right-hand side of
in weak coupling, and séi=T.,. Presently, there are well- Eg. (C1) we obtain the desired contribution from the inter-
developed mathematical methods of the treatment of sucfaces to the GL free energy.

equations®?! For example, it is convenient to decompdse To illustrate this general mathematical scheme, we
into the symmetric ) and antisymmetric partsA(;). Be-  present calculations of the free-energy interface term for the
cause of the symmetry relations of Sec. Il i6r A and case of Sl superlattices with tunnel magnetic barriers. For
A, separately satisfy Eq(C2). As a result, we obtain two simplicity, we focus on the pure limit and let<&,. As
independent linear uniform integral equations forHence, explained above, we need only the asymptotic formKof
the solution forA near the barriem=0 depends on two which coincides with that of a single-junction problem. In
arbitrary multiplicative constants that should be identifiedboth the ferromagnetté and paramagnetiélimits, the gen-
with the values of the GL order parameter at both interfaceseral form ofK for a single junction is

1 1
K(Xy,X2)= fo dt{[Ki(X1—X2) + Ki(X1+X2) ][O (X1) O (X2) + O(—X1)O(—Xp) ]} — fo dt{[T(t) +2Ts(t) IK{(X1+ X)

X[O(X1)O(X2) +O(—=X1)O(—X) ]+ [T(t) = 2Tg(t) IKi(X1—X2)[O(X1) O (—X3) + O(—X1)O(X2) ]}, (CI

whereT(t) andTg(t) are the total and spin-flip tunneling probabilities, respectivielg(1)<T(1)<<1], other notations are
those of Egs(40) and(41). In this expression for the kern&l, we have explicitly separated the paktg)) [the first term on
the right-hand side of EGC3)] andK —K(® (the second terin As we see, in this case the interface term in @) is of first
order in tunneling probabilities. We therefore need the zero-order solution teCBgwith K=K, It is straightforward to
find

AOX)=A(+0)O(x)+A(—0)O(—X). (C4)
Inserting Eq.(C4) into Eq.(C1), one immediately gets the interface free-energy term with

3772 1 1
7@(3) &o jdt tT(t), B= ( )fo jdt tTg(t). (CH

These same values afand 8 were previously obtainé@??in the framework of establishing the GL boundary conditions by
means of the standard procediref identifying the asymptotics of the solution to H§2) at x— =+ with the asymptotics
of the solution to the GL equation at-+0. A slight modification of the derivatidi*?of K allows us to take account of the
presence of nonmagnetic impurities in S layers, yieldingnd 8 of Eq. (69). Finally, we obtainQg, in the form(10).
Analogous calculations can be carried out for all the systems considered in this[jrapee.case of SN superlattices, these
calculations are more involved, because the solutions td@2).are no longer constantdn fact, there is no need to do this.
As should be clear from the above-developed approach, one can simply capitalize on the results of the computatioh of
B for the GL boundary conditions in a single-junction probléee references in Secs. Il and) ¥ obtain the desired form
of Qg .

APPENDIX D: LAWRENCE-DONIACH LIMIT
Consider Eq(10) in the form

+N/2

. . . a-0 dA
Qe[ A% (1), Ag(r); AN (+0),A7 (a—O)]=SI\I(O)n=ZN/2 { LO dr

é()

- 7'|An(r)|2

7€(3) 7§(3)
+(B—a)[Aﬁ(+0)An_1(a—0)An(+0)A§_1(a—0)]}], (DI)
which is the general expression for the GL free-energy functional in S| superlattices. Let us introduce the representation
An(r)zA(r)exp{i n+§ d)}. (D2)

One can expand into a Fourier series



A(n)=2 AP, p=
p

Substitution of Eqs(D2) and (D3) into Eq. (D1) yields

Qa[AT Ap;d]=0Qp[A] ,A0i¢]+NaSNO)p§0 {_7'|Ap|2

+ plzpz RdA;Apl)RqASZApl—pZ—p)}

whereQ, p[A§ ,Aq; @] is exactly the desired LD-type func-

tional:
* . 2 g( ) 4
QplAf ,Ag; p]=NaSNO0){ — 7[Ag|*+ 16—2_ | Aol
7¢(3) fo 2
t— 12 a |A0|

X[a-i—,B—(a—B)COS(b]}. (D5)

[Note the absence in EqD5) of the impurity factor

x(1/&), in line with the Anderson’s theoref] If the thick-
ness of superconducting layers satisfies the conditions

a<{(T),

a tx(1/&), (D6)

the termp2|Ap|2 gives a dominant contribution to the sum

over p#0, and we can write

Qa[A7 ,Ap;p]=Qp[AG ,Ag; ]+ NaSNO)

§( )goX ”fo)z l32|Ap|2

(D7)

which means that in this limit the contributions of the Fou-

rier componenta, andA .o decouple. Minimization of Eq.
(D1) with respect toA7., gives the obvious condition
Ap.0=0 [no spatial variations ofA(r)], and Qg actually

reduces td), 5. As could have been expected from the re-

sults of Sec. Il, in view of the conditiond®6), a system in
the LD limit can possess nontrivial minima witfh | # 0
only if

UT)<a (&), (D8)

CURRENT-CARRYING STATES IN SUPERCONDUCTIE. . .
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—, N=0,=1,%x2,... . (D3)
e B2 1m0 R34
e )§°2 Re(A5A ) [a+B—(a— >cos¢>]]. (D4)
|
amn<a<{(T)<a x(1/&). (D9)

Here,ay, is defined either by Eq28) a,,,=a., if a;:> &g or
by the general condition of the validity of the GL regime
amin>&o, if ac=&.

It is instructive to rewrite Eq(D5), introducing the defi-
nition of the renormalizeddue to pair breaking by exchange
interactions inside the barrigrigansition temperature in the
absence of supercurrerft, :

7£(3)
Qp[|A],¢]=NaSNO0)| — 7'|A]2+ W' |4
) €
gl(z aIAIZ(a B)(1—cosp) |,
(D10
TI-T
el T T T §°ﬁ (011

(We have simplified the notation for the LD order parameter
Ay, dropping the lower index.This form of the LD func-
tional clearly shows that interlayer coupling is determined by
the typical differencda— ).

A few concluding remarks would be appropriate here:

(1) The functional form of Eq(D10) is the same both in
the pure limit and in the presence of nonmagnetic impurities,
but the effect of impurities enters implicitly via E¢D9).

(2) In phenomenological approaches, it is often de-
manded that the energy of interlayer coupling in
Q. p[]A],#] be much smaller than the intralayer condensa-
tion energy. Mathematically, this requirement is equivalent
to {3(T)a *<a 1. Thisis an unnecessary constraint. As we
have seen, the actual range of validity of the LD regime, set
by Eg. (D9), is much larger.

(3) Owing to the implicit gauge invariance of our evalu-
ation scheme, it is straightforward to include the effect of

with the transition temperature and the critical thicknessexternal magnenc fields, making use of the substitution

given by Egs.(27) and (28), respectively. Combining Egs.

d— Pp— 2ef0dx A, in Eq. (D10), whereA is the vector po-

(D6), (D8), and (28), we obtain the strict condition of the tential. Further generalizations, allowing for spatial varia-

validity of the LD description:

tions of A in the transversgz plane, also pose no problem.
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