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Effect of suppression of the inelastic scattering rate on the penetration depth and conductivity
in a dy2_2 superconductor
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We use a separabtbwave model to describe the momentum dependence of the pairing interaction in the
gap channel. We include the inelastic scattering through a spectral density which describes the fluctuation
spectrum responsible for superconductivity. The collapse of the scattering rate observed in microwave experi-
ments is modeled through a low-frequency cutoff on the fluctuation spectrum. The effect of this cutoff on the
temperature dependence of the magnetic-field penetration depth and on the infrared conductivity and associated
scattering rates is calculatd0163-18207)06129-9

l. INTRODUCTION also lead to al-wave state, are electroftc?’in origin (not
phonon$. As is now well known and widely accepted, an
The magnetic penetration depth in Y@®a,0,_, electronic mechanism offers a natural and straightforward

(YBCO) is observed to be linear at low temperatubéghis ~ explanation for the large low-temperature peak

,28—-30; H i
behavior is consistent with many other experimental dat&bservea“_ in the microwave conductivity of YBCO. An
which indicate that the gap ha>_,> symmetry with nodes interpretation of this striking fact, referred to as the collapse
crossing the Fermi surfads!® WF]ine many of the experi- of the low-temperature inelastic scattering rates in the super-

ments are sensitive only to the magnitude of the &mth- conducting state, 1s that a gap develops in the fll%(;ituatmn
) " its pAaah spectrum which is responsible for the superconductitfii?.

ers have been devised specifically to probe its p ne hus, the quasiparticles become very long IRfed-**at low

mod|f|cat|oqs in the Ic_)w—temperature linear dependenpe Oemperature. This effect is generic to all electronic mecha-

the magnetic pﬁnetratmn depth brought about through IMPUigmg in which the fluctuation spectrum which causes the

rity scattering™* are also naturally understood in a model superconductivity belongs to the superconducting electron

with an order parameter havingwave symmetry>~*’ Such system itself and becomes gapped as superconductivity sets
models, however, tend to predict slofes®for the penetra-
tion depth near the critical temperatufg which are not as We begin by recalling that in conventional anisotropic
steep as is observéd.This is true even when inelastic scat- s-wave superconductors the introduction of ordinary elastic
tering is incorporated into the calculations through animpurity scattering is known to reduce the anisotropy and,
Eliashberg-type formalistfiwhich represents a first approxi- consequently, the value df.. Also, functional derivative
mate attempt at including self-energy effettsThis defi- methods show that very-low-frequency phonons have the
ciency, common to all simple-wave models, can be cir- same effect as static impurities and therefore redlice®
cumvented phenomenologically by noting that the value oi.e., they are pair breaking. Similar considerations apply to a
the slope of the penetration depth at low temperatures id-wave superconductor stabilized by antiferromagnetic spin
inversely dependent on the ratio of the maximum gapfluctuations>® in which case it has been shown that the func-
(A/kgT,) in the Brillouin zone to the value of ;. In BCS  tional derivative ofT. with a boson(spin fluctuation spec-
theory, this ratio is equal to 2.2 but the data over the entireral density is negative at low frequencies. This means that at
range of temperature, including the region n€ay can be fit  low frequencies boson exchange reduces rather than en-
quite well simply by choosing a larger value of hancesT.. If, at low temperatures, such low-energy excita-
A/kgT,,?%* taken to be a fitting parameter. Physically, suchtions are removed because of the gapping of the fluctuation
a large value ofA/kgT, in the range of 3—4 can be thought spectrum in the superconducting state, we would expect that
of as due to some additional mechanism which limiigdout ~ the superconducting gap itself will be larger than it would
not A and which is not included in a BCS theory or its otherwise be for the associated valuergf Alternatively, as
simple extensions. One possibility is that thermal fluctuathe temperature is increased, the amount of pair breaking
tions which reducd ; below its mean-field value might pro- increases because the low-frequency part of the boson spec-
vide such a mechanism. The penetration depth data have, iral density is restored as the superconducting gap closes up.
fact, been interpreted in this way. This should affect the temperature dependence of the pen-
In this paper, we propose a very different explanation.etration depth and act to move it away from a BCS variation
Although, at present, no consensus exists as to the exaahd more towards the experimentally observed variation with
nature of the mechanism responsible for the superconductiva smaller than expectédn a BCS modelslope at lowT and
ity in the oxides, most mechanisms proposed so far, whicla steeper one nedr; .
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Besides studying the effect of the gapping of the fluctuawhere the brackets - -}’ indicate an average over the angle
tion spectrum on the penetration depth, we also study it®’ of the final electronic states. In Eq4) and(2) the boson
effect on both the real and imaginary parts of the infraredspectral density?F(()) enters through
conductivity and on the associated frequency-dependent
scattering rate which can be obtained directly from the con-
ductivity if a generalized Drude form is used. Comparison
with experimental data is made and the effects of more gen-
eral readjustments to the fluctuation spectrum with reducetVe emphasize again that unless one had microscopic infor-
temperature are also considered. mation on the precise mechanism causing the superconduc-

In Sec. Il we give the necessary formalism for the pen-tivity, a knowledge we do not yet have, introducing a differ-
etration depth including the gap equations. Results are prént form for1?F(Q) vs Q in the two equationgl) and (2)

QI’F(Q)
QZ‘{'(wm_wn)ZI

A(m—n)=Zf:dQ (3)

sented and discussed in Sec. IIl. In Sec. IV the formula fowould simply increase the number of arbitrary parameters
the conductivity is given and results can be found in Sec. vintroduced. _
A short conclusion is given in Sec. VI. The London penetration depif (T) at any temperature

T<T, follows from the solutions of Eqg.l) and (2). It is
given, within a numerical constant, y*°

Il. FORMALISM
The simplest description of d-wave superconductor is 1 ool T A(iwp:6)? @
obtained within a BCS formalism assuming a separable NE(T)  [@(iom)2+A(wn,; 023

model for the pairing interaction. In such a model, the pair-
ing potential depends on the product cad(®s(%®’') where  Which depends only on quantities evaluated at the Matsubara
¢ and ¢’ are the directions of the initial and final momenta poles on the imaginary frequency axisof,).

on a two-dimensional2D) circular Fermi surface. To in- To calculate other quantities such as the quasiparticle den-
clude the dynamics of the fluctuations that are exchanged igity of statesN(v) and the conductivityr(v) as a function

the pairing, it is necessary to go beyond BCS and conside®f the real frequency it is necessary to have the gap equa-
self-energy corrections in an Eliashberg formalism with ations written on the real frequency axis. These equations are
boson-exchange spectral dendif§ (). This spectral den- more complicated and afe®

sity enters both the gap channel for the pairing energy

A(iw,) and the renormalization channel for the renormal-z(

ized Matsubara frequenay(i w,,). This last quantity exists

in the normal state and carries the information on the direct
renormalization due to the interactions in that case. From .
symmetry considerations, the gap channel involves the +7\(V+""m)]<
d-wave part of the interaction while the renormalization

channel involves its-wave part. In principle, these two pro- w
jections of the complete boson-exchange interaction need not +i wf dz cog26) 1°F(2)
involve the same weighting of the boson energies. For sim- -

plicity here, however, we will assume that a singf€ (Q)

can nevertheless be employed as a first approximation but

with a different numerical weighg in the A(i w,,) channel as < coq26 YA(v—2z+is6") > '
X

oo

v+i8,0)=inwT g2, cog20)[\(v—iwm)
m=0

co920)A(iwn;0') \ '
Valiog)?+ Ao 0')?

X[n(z2)+f(z—w)]

compared with thes(i w,,) channel. The two nonlinear self- \/_, Y S
energy equations written fo (i w,) and w(iw,), respec- w(r=2+i9)"—A(v—2z+i5,0") .
tively, with iw,=i(2n+1)T, n=0,£1,+2 ..., andtem- gnd (5)
peratureT have the fornf1937
— w(v+id)=v+iaT ANv—iom—Nrv+iw
A(iwy;0)==T g, cog26)\(m—n) (v*19) mE:O[ ( m A ]
m

X ’ Z)(iwm) ,
cog260" )A(iwy;0") @ ><< \/ >
X ~ i 20 AN AY:
Valion)2+A (w02 ollon) ™+ Allon:0")
and +i77j, dz PF(z)[n(z)+f(z—w)]
w(ioy)=w,+ 7T, N(m—n) y w(v—2+i6) '
K No(v—z2+i8)2—A(v—2+i8.0')?

y o(ioy) | ? ®
Volion2+A(iog:0')?2 with
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- J ao 7 '
Mw== ) A0 T ™
where now we use the convention that 14 |

I1°F(—Q)=—1%F(Q). The density of quasiparticle states
N(») follows from

13
w(v+i0h) g
N(V): R , (8) to
\/5(V+i0+)2—Z(v+i0+;0)2 o2t

which is normalized to its normal-state value. The conduc-
tivity formula®*~*® will be given in Sec. IV after we have 11}k
presented our numerical results for the penetration depth. We
will also make use of Eqg5) and (6) in our discussion of

the quasiparticle density of states in Sec. lII. 10—t L
0 1 2 3 4 5 6

/T

lll. RESULTS

c

. . . FIG. 1. The value of the normalized critical temperature
As described in the work of Wiliams and Carbdfte T./T.o With T, the critical temperature for the case when no low-

which [g based on the earlier paper of M'”'fs’ SaChd_eVaanqrequency cutoff is applied to the electron-boson spectral density
Varma,” the low-frequency part of the functional derivative |2r () as a function of the low-frequency cutaff, /T

of the critical temperature with respectltdF (Q) is negative

at low frequencies for physically meaningful values gf — NOW cutting out some bosons IAF () that contribute posi-
Following the work of Mitrovic and Carbott€ a simplified  tively to the functional derivative. For the computer runs
expression for the functional derivative can be obtainedshown in this figure a linearized version of E¢s) and(2)
within a two-square-well model for the pairing interaction. was solved. To be definite we used for the electron-boson

We obtain spectrum a model which is motivated by the nearly antifer-
romagnetic Fermi liquid mod&~2" with*®
e G(w), - o (9) Q/
SIZF(Q) 2\ @T T 2eion 2 Mos
Q) c 12F(Q)=I T (g (11)
and

In Eq. (11) the strengthl? is adjusted to ensure a critical
temperatureT ;=100 K; the characteristic boson energy

oo

Go)= > 1 _ 20 |9 s (= 30 meV) and an upper frequency cutdffa, (= 400
mm’ = —c |2m—1| w2+4w2(m—m’)2[|2m'—1| meV) were chosen to get a strong-coupling parameter of
Teo/ wiog=0.31 Wherew)oq is defined in the usual wayand
_ sg@m@m:) (10) represents an average boson energy in the system. The only
[2m—1| | other parameter ig which gives the relativel-to-s admix-

_ ture in the electron-electron potential. In Fig.dl= 0.8 was

Form=m’ in Eq. (10) a term varying like 1b enters with a  chosen as it will be for all the other results to be presented
nonzero negative coefficient fg<2. This leads directly to |ater on. The results of Fig. 1 do not depend qualitatively on
the fact that the exchange of low-frequency bosons describeglr choice of parameters and a different form féF(Q)
by 12F(Q) reduces the value of the critical temperature. Thisgould have been used. In this context Et) should not be
means that if a low-frequency, temperature-dependent cutoffterpreted as a commitment to a spin fluctuation mecha-
w, is applied to the spectral density(€2), which is maxi-  nism. It is used mainly to be definite and other forms could
mum atT=0 but which gradually goes to zero as the superave been employed if more definite information about the
conducting gap closes up &t, the amount of pair breaking microscopic mechanism would have been available.
present in the system due to inelastic scattering will increase |n Figs. 2a) and 2b) we show solutions for the reéolid
with increasing temperature. This will lead to a valueTgf  ine) and imaginary(dotted ling part of (a) the gap ampli-
which is smaller than the value it would have had if thetude A(») and (b) the renormalization functioZ(») with
cutoff w, had been kept fixed at its zero-temperature valuglower framé and without (upper frame a low-frequency
(its maximum valug _ cutoff w.. It is clear from Eq.(5) that the pairing energy

A consequence of applying a low-frequency cutoff ©0X(,,1 s g) is anisotropic. However, it is proportional to

2 . . g . -
[“F(Q) is that TC' mmally increases over |t§ value when cos(%) and can be written as an amplitudé ») times an
w:=0 as shown in Fig. 1. We show in this figure the Valueangular factor, namely

of the ratio of T, (with cutoff) to its value T, (without

cutoff) and note that the effect can be quite large. For the A(v+i8,0)=A(v) \/5005{29)_ (12
parameters used in the figure the rafig/ T, has a maxi- -

mum of about 1.44 neav./T.=5, after whichT, starts to ~ On the other handw(v+1i6) is isotropic and does not de-
decrease again. This decrease is due to the fact that we gsgend on angles. Thus it can be written agv+iJ)
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FIG. 3. The quasiparticle density of statd$») based on Eq.
(8) vs the normalized frequency/T.. Both frames are for
= g=0.8; the top frame shows results fer./T.=0, and the bottom
E frame is for a low-frequency cutoth./T.=2.1.
£
§ =vZ(v) whereZ(v) is the renormalization function. Fur-
% thermore, the gap amplitud&(v) is related to the pairing
o . energy A(v) by A(v)=A(»)Z(v). It is the angular-
00" : 1'0 : 2'0 — 3’0 : 4‘0 —_— independent quantitie&(v) andZ(v) that are presented in
Fig. 2. A feature to be noted in the lower panels is that the
vIT, imaginary part of bothA(») and Z(v) remains essentially
zero up to the lower cutoff frequencw./T.=2.1 in
4r o/T, =21 I2F(Q). At higher frequencies the imaginary part of both
= | A(v) and Z(v) becomes nonzero, initially negative for
N A(v) but always positive foZ(v). This is to be contrasted
£ with the results shown in the upper frames in which the
-3 imaginary part immediately becomes nonzero#er0. This
% is because no low-frequency cutoff has been applied in this
D case and the fluctuation spectrurfF(Q)) has a nonzero
o T weight at any finite value of). For reference we note that in
ol — b —L— L1 Fig. 2 we have used ;=100 K, T;/wjq=0.31, g=0.8,
0 10 20 - 5 0 %0 and a reduced temperature T/T.=0.1.
(b) \Y

o The density of quasiparticle statégiven by Eq.(8) fol-
lows directly from our numerical solutions of Eg&) and
FIG. 2. () The top frame shows the reabolid curve and  (6). Results are given in Fig. 3 for a reduced temperature
imaginary (dotted curve part of the average gap amplitudg ») t=T/T.=0.1. In the top frame no low-frequency cutoff is
with A (v)=A(v)\2cos(@) as a function of the frequency applied tol2F((). An important feature to note about this
vIT,. The parameters ag=0.8, reduced temperatutéT.=0.1,  c,ryve js that the peak in the quasiparticle density of states
and Tc=100 K with no low-frequency cutoff¢c) applied to the ¢ 4t /T _~4.5 which corresponds to a large value of
spectral density. The bottom frame is the same as for the top fram ¢

except that now a low-frequency cutoff is applied to the eIectron-ﬁlkBTC as compared with BCS theo(y-2.2), and therefore

boson spectral density with the valug /T.=2.1. (b) Same as for to quite strong couplingnote thatT/wieg=0.31). Its mag-

(a) but now the real and imaginary parts of the renormalizationﬂItude alsc? :(eflects t?e Iol\;v—frequency C“t‘?“@ Wh'fh (\jNe h
function Z(v) are plotted against the normalized frequengy.. . ave used. Yet no clear boson structure is resolved in the

By definiton the renormalized Matsubara frequency frequency dependence of the density of states. This is due to
w(v)=vZ(»). the fact that the energy scale IAF(Q) is large (with the
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T FIG. 5. The imaginary part of renormalization function
c vZ(v—0) as a function of the reduced temperattiel/T.. The

solid curve is without the low-frequency cutoffwf) on the

~ FIG. 4. The inverse Square of the normalized London penetragieciron-hoson spectral density while the dotted curve is for
tion depth[ A (0)/\(T)]° as a function of the reduced temperature w,/T,=2.1. The other parameters age-0.8 andT.=100 K.
t=T/T.. The solid curve is without a low-frequency cutotb() in

the electron-boson spectral density while the dotted curve is foapplied, we obtain the dotted curve which is much closer to
wc/Tc=2.1. The other parameters age-0.8 andT.=100 K. The  experimental results shown as open squares. The large dif-
open squares represent microwave dé&afs. 29 and 30and the  ference between these two curves represents the effect of the
solid squares are extrapolated from infrared d&eaf. 54. low-frequency cutoff onl?F(Q) of Eq. (11) which is the
largest atT=0 K and which is gradually switched off as a
high-frequency cutoff at 400 meé\and that it does not have function of increasing temperature. In the calculations, the
sharp peaks as it would in the case of phomdr@learly, for ~ temperature dependence of(T) was taken to reflect
anl2F(Q) given by Eq.(11) tunneling spectroscopy will not foughly the temperature variation of the underlying super-
be as useful in determining the detailed nature of the mechg:onducting order parameter. The details are not important.
nism involved as it has proved to be in conventionalWhat pushes the curve up at intermediate temperatures and
superconductor® The same will hold for any electronic correspondingly increases the slope n&aT, is the pair-

mechanism with a |arge energy scale even if the Coupling igreaking effect aSSfOCiatf-:‘d with the intro.duction of more low-
strong. frequency fluctuations in?F() as T increases towards

A distinct structure in the quasiparticle density of states,Tc. Thus, the difference between the solid and the dotted
however, is clearly present in the bottom frame of Fig. 3,curve in Fig. 4 is related to the collapse of the quasiparticle
giving N(v) vs v/T.. This structure is directly related to the Scattering time observed in microwave experiments, as a
low-frequency cutoff which is applied t¢F(Q) and it falls ~ large peak at low temperatures. This was described in the
at a frequency ob/T.= w./T.=2.1 above the gap peak in Intro_ductlon and vylll be con3|d¢red again in detail at the end
N(v). This occurs whatever the value gf The structure Of this section. It is clear that introducing the cuteff has
reflects directly the low-frequency cutoff introduced in our 9reatly improved the agreement with experiment shown by
model phenomenologically and which is assumed to be dute open squares: _ _ _
to the onset of superconductivity. While the calculations are The collapse of the scattering rates included in our calcu-
not done self-consistently here, they serve to show clearljations through a low-frequency cutaff; is also seen clearly
how a cutoff in the fluctuation spectrum affetdtév). Coffey 1N Fig. 5 where we show the imaginary part of the renormal-
and Coffe§2v53discussed a sim”ar case W|th|n BCS theory. 1zation fUnCt|0nVZ(V*> O) as a function of the reduced tem-
Tunneling spectroscopy should, in principle, allow us to sego€ratureT/T. at v—0. The imaginary part of the renormal-
the gapping of the fluctuation spectrum. ized frequencyw(0)=Ilim,_ovZ(v) is directly related to the

Our results for the temperature dependence of the penetranaginary part of the self-energy which is a measure of the
tion depth given on evaluation of E@4), which requires quasiparticle lifetimes due to the fluctuation spectr(irt).
only the imaginary frequency version of the gap equationsThe solid curve applies to the case without a low-frequency
(1) and (2), are displayed in Fig. 4. The solid curve is the cutoff in I2F(Q). It is to be compared with the dotted curve
result obtained on the basis of the spectrum of @d) with  for which the low-frequency cutoff is set ai,/T.=2.1. The
Tc=100 K, T¢/wpg=0.31, andg=0.8 without a low- other parameters are as befofg=100 K, T./wyy=0.31,
frequency cutoff. As in previous wotk 2 the slope of the and g=0.8. We note that for the solid curvé?F(Q) has
penetration depth nedr, is not sufficiently steep as com- weight all the way down td2=0 and the exchange boson
pared to experimeritlf, on the other hand, a low-frequency will be excited at any temperature, while for the dotted curve
cutoff equal tow./T,=2.1 in value at zero temperature is the low-lying fluctuations are suppressed at low temperatures
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FIG. 7. The microwave conductivity at a frequency of
v=0.144 meV, in arbitrary units, as a function of the reduced tem-
eraturet=T/T.. In frame(a) the solid curve is for the case when
here is no low-frequency cutoff./T,=0) on the electron-boson
spectral density while the dashed curve is for a cutoff of

w./T,=2.1. The other parameters agg=0.8 and T,=100 K.
fFrame(b) includes enough impurity scattering in Born’s approxi-
mation to reduce the critical temperature from 100 to 95 K. Also
shown for comparison are experimental resuslid squares
(Refs. 29 and 30 The arrow indicates the data point which has
been used to fit theory to experiment.

FIG. 6. The zero-frequency value of the inverse of the real par
o,(v=0) of the superconducting-state conductivity in arbitrary
units as a function of the reduced temperati#€l/T.. The solid
curve is without the low-frequency cutoffe/T,=0) on the
electron-boson spectral density while the dotted curve is for a cuto
of w./T.=2.1. The other parameters age- 0.8 andT.=100 K.

and consequently the imaginary part:af(v— 0) drops pre-
cipitously with decreasing temperature. This precipitous drop

is related to the sharp peak observed in the microwave const the corresponding penetration depth and, in particular, on

dutctlwltly at cljow tem%gratltJlrefs. Tht'ﬁ‘ peakl_ er?ers (f)urlworkits slope neafl .. This leads to better agreement with experi-
haturally and comes directly from the application ot & IoWer ,oy than can be achieved within strong-coupling models

. 2 . .
f#;ogi:;r:olwg\(/g)c'oﬁgffc;ievi?Nl?g) r:zlgt?uaogtighneorfefelrﬁa;;f that ignore the reaction of the superconducting transition on
I 1tyra (v - b the fluctuation spectrum itself. This feedback mechanism is
ture, we show in Fig. 6 its inverse, d{(»), for v=0, i.e., clearly effective in changing the shape of the temperature
the zero-frequency limit. The results were obtained on thed yd f1h tg t'g deoth P it is in th P
basis of Eq.(16), to be presented in the next sectih?® epgn ence ot the penetration depth as 11 In the microwave
The solid curve is without the low-frequency cutoff in the con uc.t|V|ty. ) ,
spectrum(11) while the dashed curve is fas./T,=2.1. We In F'g_' 7(b) we compare our result; with experimental
see that 1+,(0) behaves very much like the imaginary part data (solid squares?). The solid curve is based on a low-

of w(»=0) shown in Fig. 5 and discussed above althoughfrequency cutoff ofwc/Tc=2.1 and, in addition, enough

: . . . static elastic impurity scattering is included so as to reduce
the drop with decreasing temperature just belgws not as T
'p .g~ P ] T. by 5° to 95 K. The Born approximation is used to de-
sharp in 161(v=0) as inw(v=0). Nevertheless, the col-

SO : . ; scribe the impurity scattering. This has reduced the peak in
lapse of the quasiparticle scattering rate is reflected in a very ; o . .
rapid reduction of 1#,(0) as the temperature is reduced 1(v) below its value in Fig. & where no elastic impurity

below T, for the cutoff casédotted ling as compared to the scaﬁtenng was mgluded an=100 K. Howev.er., on com-
case without cutoffsolid line). paring the solid lines in these two frames it is clear that

Finally, we show in Fig. @) our results for the tempera- without impurity scattering the theoretical curve is too nar--
ture dependence of the microwave conductivityOW and drops towards zero too sharply as the j[emperature is
o,(»=0.144 meV) in arbitrary units. The microwave fre- reduced_ t(_)wards zero. This is not unexpected since the Drude
guency was chosen to be the higher one of the two Va|uegonduct|V|ty becomes extreme.Iy narrow at low temperatures
considered in the experiments by Boahall* The dashed in & pure case as the inelastic scattering freezes out while
curve is without a cutoff while the solid one is for a low- impurities will put a lower, temperature-independent limit on
frequency cutoffw./T,=2.1. It is clear that, as the value of its width. It is clear that inclusion of some residual scattering
the lower cutoff is increased, the size of the microwave pealbroadens the microwave peak and gives better agreement
is increased as is the temperature at which it occurs. Theith experiment(solid squares On the other hand, the peak
results show clearly that the peak in the microwave conducheight in Fig. 7b) is a little too low compared with the
tivity which is directly related to the collapse of the quasi- experimental data. While this is not our aim here, we could
particle scattering rate can be modeled with a low-frequencget a better fit by increasing the cutoff in the boson spectral
cutoff in the fluctuation spectrunfill). The application of density and by changing the amount of elastic scattering em-
this cutoff has a large effect on the temperature dependeng#oyed.
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IV. CONDUCTIVITY where v; is the ith component of the Fermi velocity,
G(p,iw,) is the electron Green’'s function in thex2
Nambu matrix notation, and J+- -} is the trace. In terms of

the Matsubara pairing ener@p(iwm) and the renormalized
frequencies};p(iwm) the Green’s function has the form

The conductivity tensou;,(v) can be written a8~

O'jk(V):I;ij(iVn—?V+io+), (13)

where the analytic continuation from the imaginary boson

Matsubara frequencies,, (v,=2n#T,n=0,£1,+2,...) Boion) o+ €orat A (i) 7
p m/ 70 p’3 p m/) 71

is taken to the real frequency ais,— v+i0". A standard G(piwy) = (15)

. . . . . . ’ m —~ . 2 2_~ . 2 ’
approximation toll;,(iv,) in which vertex corrections for wplion) = e,—Ay(ion)
the electromagnetic interaction are neglected gives

) 2T ) ) wherer,, 71, andrz are Pauli matrices ang, is the elec-
M (ivg)= W% Tr{ev;(p)G(p,ivatiomy) tron dispersion. To gekl;(iv,) on the real frequency axis
’ we need to use the spectral representation for the Green's
XG(p,iom)evy(p)}, (14  function. We obtain

Hj(w+id)= 2e2N(O)vj(p)vk(p)Tr|fdef dQ f(Q)_?1|mG(p,Q+i5)[G(D,Q+a)+i5)+G(D,Q—w—i5)]
(16)
with

Z)p(w+i5) Tot ep73+zp(w+i5) Ty

G(pw+i8)= 2 _
(P.o+10) o @+18)7— 2~ (w+i0)?

17

After much algebra we arrive at an expression for the conductivity of the form

i e’N(0)v2 | (= Q 1 _ . _ _
o(v)=———— fo dQ tanl—(ﬁ) E(Q;0)+E(Q+V;H)[l—N(Q,H)N(Q+v,6)—P(Q,0)P(Q+v,0)]

o Q+v 1
+jo dQ tan)‘( >T )E(Q;b’)*-l-E(Q-f—V;G)*[l_N(Q'G) N(Q+v;0)"—P(Q;0)*"P(Q+v;6)"]
fde Q+v
+ o tan ?

° ,_(9+V) 1 .- . -
+f_VdQ @ | g T e T gLt N0 N+ v10) = P(;6) P(Q +v;6)°]

Q 1
_tam‘(EHE(QvLV;G)—E(Q;G)*[1+N(Q;0) N(Q+7v;0)+P(Q;0)"P(Q+v;0)]

+ E(Q+V;a)_E(Q;g)*[1+N(Q;0)*N(Q+ v;0)+P(Q;0)"P(Q+ V;H)]]>, (18

with

E(v;0)=Vop(v+i8)2-2(v+i8)2=\o(v+i8)2—A(v+i65;0)>2 (19)

and

wp(v+id)  w(v+id)
E(v;6)  E(v;6) '

N(v;0)= (20

Ap(v+id)  K(v+is;0)
E(v;6)  E(v0)

P(v;0)= (21)

The zero-frequency limit of the conductivity, (v=0), is calculated by applying L’Hgital’s rule to Eq.(18) to calculate the
limit »—0. We find
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71(0)= 2 2T o cosi(Q/2T)

1 F dQ
4T J cos(Q/2T) EX(Q,6) +E2(Q, 0)

eZN(O)v§< 1 Jx dQ 1+N2(Q,0)+N3(Q,0)+ Pi(Q,0)+ P3(Q,0)

2E,(Q, )

{2E1(€2, 0)[N1(Q, 6)N5(Q, 0) + P1(€2,0)P,(£2,6)]

+E,(Q,0)[1—N3(Q,0)+N5(Q,0)— P3(Q,0)+ Pg(n,e)]}> , (22)

with

E(Q,0)=E(Q,0)+iE»(Q,0),

N(Q,0)=N1(Q,0)+iN,(Q,80),

P(Q,0)=P1(Q,0)+iP,(Q,6),

according to Eqs(19—(21).

0.04

c,(v) (arb. units)

0 20 40 60 80 100 120

c,(v) (arb. units)

0.00

v (meV)

FIG. 8. The real part of the conductivity;(v) (in arbitrary
units) as a function of the frequency in meV for five different
temperature§/T.=0.995 (nearT,, solid curve, T/T.=0.9 (dot-
ted curve, T/T,=0.7 (short dashed curye T/T.=0.5 (dashed
curve, andT/T.=0.1 (dash-dotted curye The bottom frame ap-
plies to the case when a low-frequency cutofiQf/ T.=2.1 at zero

V. NUMERICAL RESULTS FOR THE CONDUCTIVITY

We present in Fig. 8 our results for the frequency depen-
dence of the real part of the infrared conductivity(v) in
arbitrary units. The bottom frame includes a low-frequency
cutoff of (w./T.=2.1) in the spectral density’F({) de-
fined in Eq.(11). The top frame is shown for comparison and
presents the case without such a cutoff. Five temperature
values are considered, namely, one nedp, at
T/T,=0.995(solid curve, and the others a/T.=0.9 (dot-
ted curve, T/T.=0.7 (short dashed curye T/T.=0.5
(dashed curve andT/T.=0.1 (dash-dotted curyeFirst we
note the narrow Drude peak at low frequencies which sharp-
ens considerably as the temperature is lowered and which is
so sharp that it is not seen in the bottom frame on the scale of
the graph for the lowest reduced temperature shown, i.e.,
T/T,=0.1. It is also to be noted that when a low-frequency
cutoff is included (bottom frame the curve atT/T.=0.9
(dotted curve cuts the solid curve forf/T.=0.995 at a
higher frequency than is the case in the upper frame. This is
consistent with the fact that with a low-frequency cutoff the
inelastic scattering is reduced faster towards zero and the
inelastic Drude lifetime goes to infinity more rapidly than
without the cutoff. This same trend is seen even more clearly
in the short dashed curve faW T.=0.7. The exact way the
Drude-like scattering rate goes to zero depends on the tem-
perature dependence taken for the low-frequency cutoff
w(T) which is assumed to open up very rapidly with de-
creasing temperature beloW, reflecting the temperature
dependence of the superconducting order parameter. Besides
the Drude region described so far, there is a boson-assisted
region at higher frequencies which is of less interest here and
which, in comparison, is not affected very much by the ap-
plication of the low-frequency cutoff ih’F ().

The differences introduced by the application of a cutoff
are more striking for the imaginary part of the conductivity.
This is shown in Fig. 9. What is plotted here is the product
vo,(v) as a function ofv for the same set of five tempera-
tures used in the previous figure, namédlyT .= 0.995(solid
curve, 0.9 (dotted curve, 0.7 (short dashed curye 0.5
(dashed curve and 0.1(dash-dotted curye As before, the
bottom frame applies to a case when a low-frequency cutoff
is applied tol 2F(Q) while the top frame is without such a

temperature is applied to the electron-boson spectral densitfUtoff. It is clear that the application of a low-frequency
I2F(Q). The top frame is for comparison and does not have gcutoff has a significant effect on both the shapes of the
cutoff (w./T,=0). The application of the low-frequency cutoff Curves and on their absolute magnitudes.TAtboth curves
leads to a very rapid suppression of the inelastic scattering rate &€ the same of course, but the solid curve$/al,=0.9 are

the temperature is lowered through the critical temperature. Th@lready different in the upper and the lower frame. The

other parameters ag=0.8 andT.=100 K.

curves in the bottom frame show a much sharper minimum
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0.6 as compared with the microwave data and our theoretical
©,=0 prediction (dotted curvé Sinceva,(v) depends on the in-
S H - verse square of the penetration depth rather thah(T)
% 0al” __::_:‘__“_:__*__-;:_:_ SeEE R T itself, the disagreement between theory and infrared data will
S v . ) be even larger in this case. It is for this reason that the infra-
g o3 T — T/1.=099 red data are not shown in our Fig. 9. Until better agreement
% 02| ___Ig °f8'3 can be obtained between infrared and microwave data for the
Z L penetration depth it is not possible to conclude whether or
g otp e T 201 not our theoretical approach is correct, or is in need of modi-
0.0 ! ! ! Lo fications, or is in serious disagreement with experiment. The

potential for such a critical comparison certainly exists and
should be pursued.
It has been found useful in the analysis of the frequency

» dependence of conductivity data to introduce an extended
e g Drude form
[23 [
2 04
5 Ll T/T, = 0.995 ne[ 1 23)
i o9 )= | T i)
—o02F /e TT, =07 _ _
Z ot ——-TT =05 with a frequency-dependent effective masgv) and a
L o1 i - Trr:=o1 frequency-dependent scattering rafg’), both assumed to
0.0 N T S S T be real. Equation(23) can be inverted for any frequency-
0 20 40 60 80 100 120 dependent complex functiom(v) to get
v (meV)
1 voy(v)
FIG. 9. The imaginary part of the conductivity multiplied by T (v)= oo(2) (24
v, voy(v) (in arbitrary unit$, as a function of the frequenayin 2
meV for five different temperature$/T,=0.995 (very close to  gnd
T., solid curve, T/T.=0.9(dotted curve T/T.=0.7 (short dashed
curve, T/T.=0.5 (dashed curve and T/T.,=0.1 (dash-dotted m(v) ne? ao(v)lv
curve. The bottom frame applies to the case when a low-frequency =— > 5. (25
cutoff of w./T,=2.1 at zero temperature is applied to the electron- m m ()" + op(v)

boson spectral densith’F(Q). The top frame is for comparison
and does not have a low-frequency cutoff. The other parameters a
g=0.8 andT.=100 K.

Heere we will be particularly interested in the inelastic scat-
{ering rate defined by Eg24) both as a function of fre-
quencyv and as a function of temperature. In this second
as a function of frequency aroung=0, reflecting the re- instance we are particularly interested in understanding how
duced amount of inelastic scattering in the top frame as conthe collapse of the quasiparticle scattering rate brought about
pared to the bottom frame. Measurements of the width oby the application of a low-frequency cutoff IfF(Q) is
these minima invo,(v) at photon energies aroune=0 reflected in this quantity. The rate (v) defined in Eq(24)
would allow an inelastic scattering rate to be determined anthas the great advantage that it can be extracted directly from
would show the collapse of the scattering rates which ar@xperimental data on the conductivity without further analy-
built into our curves in the bottom frame. sis.

It is clear from these results that, except for the zero- The scattering rates *(») which follow from our con-
temperature curve which shows no narrow Drude dip at lowductivity curves presented in Figs. 8 and 9 are presented in
v, it is necessary to knowo,(v) well in the frequency Fig. 10. Five temperatures, namel{/T.=0.995 (solid
region belowvy=5 meV if we want to extrapolate the data curve, T/T.=0.9 (dotted curvg, T/T.=0.7 (short dashed
to low v so as to get the temperature-dependent penetratioturve, T/T.=0.5 (dashed curve and T/T.=0.1 (dash-
depth \(T) from formula (4) which involves the limit as dotted curvg are given. The first feature to be noticed about
v—0. Basov and co-worket§*®5* have obtained data on these curves is the large size of the vertical scale which is
va,(v) in YBCO at several temperatures which show quali-given in units of meV. Its value keeps growing with increas-
tative agreement with our theoretical mod®dn particular  ing v in a quasilinear fashion and is roughly of the same
the low-frequency data show no sign of a cusplike structurenagnitude as. This very large value of*(») is in quali-
near twice the superconducting gap value as is expected amative agreement with experimental data in the oxidesd
seen in ars-wave superconductSr. This lack of structure is  shows that inelastic scattering is very large in these systems
taken as further evidence for gap nodes crossing the Fermais compared with conventional metals. The large amount of
surface in YBCO. On the other hand, the overall agreemenhelastic scattering included in our calculations can be traced
of the finite-temperature data with our results far,(v) vs  to the fact that the strong-coupling index associated with the
v is not good in a quantitative sense. If the data are extrapcspectrum(11) is large and equal td./w,g=0.31 which
lated to get values of the penetration depifT) vs T, we  corresponds to the very-strong-coupling regime. This value
obtain the solid squares shown in Fig. 4. It is clear that forof T./w.q is consistent with the fact that the inelastic scat-
T/T.=0.7 the extrapolated infrared results are much too lowtering rate atT=T,. in the oxides is observed to be of the
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100 5
Ao ° : 300 ---- TT,=1(unmodified)
80 | T/T:=0i995’ . o 0 <. | ——T/T_ = 0.1 (normal, unmodified) o
cee s TT =09 © A — — T/T_=0.1 (super, unmodified) P
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> 80F_ _qr-0s ‘
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= a0} .;’,”-7
2z | et ,,;”/ FIG. 11. The conductivity scattering rate *(v) defined in Eq.
* ok Lo ,;’('/' (24) in meV as a function of. Two different models for the spec-
. o, 7 . . . .
__________ T oM =21 tral densityl ?’F({2) are used. The first one is the spectrum defined
© g 0 oo =7 d e : . g .
0 el fecnoc-gro e s, - by Eqg. (11) and is referred to as unmodified. The second one is
0 20 40 80 80 100 120 obtained from this first one but with a low-frequency cutoff applied
v (meV) up to w.,=30 meV with spectral weight added between 30 and

40 meV, augmentind?F(Q) in this region by approximately a

FIG. 10. The frequency dependence of the scattering ratéactor of 5(modified spectrum The solid curve is the normal state
7-’1(1;) given by Eq.(24) (in meV) for five different temperatures, atT/T.=0.1 and the dotted is the same but T8 .= 1.0. The long
namely, T/T,=0.995 (solid curve, T/T,=0.9 (dotted curvg dashed curve is in the superconducting state. These three cases use
T/T,=0.7 (short dashed curye T/T.=0.5 (dashed curye and the unmodified spectrurfll). The other two curves use the modi-
T/T.=0.1 (dash-dotted curye The bottom frame applies to the fied spectrum and are & T.=0.1. The short dashed curve is in the
case when a low-frequency cutoff af,/T.=2.1 at zero tempera- normal state, and the short-dash-dotted one applies to the supercon-
ture is applied to the electron-boson spectral dengig(Q). The  ducting state.
top frame is for comparison and does not have a cutoff. The other

parameters arg=0.8 andT,=100 K. the help of Fig. 11. In this figure we present results for

7~ Y(v) vs v in two model cases. Three curves are for the

same order of magnitude as the valueTgfitsel”® and not  normal state and two for the superconducting state. Three of
fractions thereof, as is the case in conventional supercorthe curves apply to the case bAF(Q) given in Eq.(11)
ductors. without modification. Two involve a modified spectrum with

The bottom frame of Fig. 10 applies to the case with aa low-frequency cutoff applied ab.=30 meV and an ad-
low-frequency cutoff inl?F(Q) and is to be compared with ditional ~ spectral weight added in the region
the top frame for which there is no cutoff. It is seen that at30=(Q <40 meV of an amount equal to roughly 5 times its
low v andT/T.=0.9 the curve forr™*(v) is much reduced value in Eq.(11) for Q=30 meV. The solid and dotted
in the bottom frame as compared with the top frame, as weurves are for the normal state based on specttflih at
expect. This trend continues as the temperature is reducéd T.=0.1 (low temperatureandT/T.=1.0. On comparison
further and the lower cutoff is further increased. Shown forof these two curves we note first of all that the solid curve
comparison on the same graphs are the “datat goes to zero a—0 while the dotted curve has a finite
T/T.=0.856 (open diamonds and T/T.=0.106 (open intercept with the horizontal axis. At any finite temperature
squares The high-temperature data agree reasonably wekcattering of the charge carriers off real, thermally excited
with the dotted curve of the top frame although it is clear thatbosons leads to a Drude-like conductivity with temperature-
above approximately 60 meV the experimental scatteringlependent scattering times replacing the constant residual
rate is considerably larger than we calculate. This is also truscattering present in the case of elastic impurity scattering.
for the low-temperature data and may indicate that for theThis gives a finite intercept in Fig. 11 at low This intercept
higher frequencies shown, there may be an interband transis very temperature dependent and vanishég=ab. Except
tion contribution in the data which has not been included infor a nearly constant shift upward of the dotted curve it is
the theory. Interband transitions have recently been disalmost, but not precisely, parallel to the solifi<0) curve.
cussed in the work of Atkinson and CarbatfeAt low v The bosons have a second effect on the conductivity curves.
there also appear to be some scattering processes in the d&een at zero temperature they lead to boson-assisted absorp-
that are not included in our theory. tion in which part of the photon energy goes into the excita-

The effect of ad-wave superconducting transition on the tion of a boson with overall energy and momentum conser-
transport scattering rate 1(v) vs v and of the details of the vation. These processes are nearly temperature independent
fluctuation spectrum®F(Q) can be understood better with and have an onset in the normal state at the lowest boson
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energy available in the fluctuation spectrlifif (Q)). For the  there is no easily identifiable sharp qualitative change. Simi-
unmodified spectruntll) this is zero frequency. Thus ab- lar remarks hold when one compares the normal and super-
sorption and consequently the scattering raté(v) at zero  conducting states for thé~wave case. The experimental data
temperature(solid curvé will begin to rise from zero at given in Ref. 47 forr~%(v) vs v are shown as the solid
v=0. The sharpness of this rise will depend on the bosorsquares in Fig. 11 and are for the superconducting state at
density available. We note in particular that for the casdow temperature. On comparing with the dash-dotted curve it
when the spectral densityF (Q) rises likeQ) at low values is clear that the agreement is not good although it could be
of Q the charge-carrier—quasiparticle scattering rate will in-improved by lowering the value of the low-frequency cutoff
crease ag’’. These considerations apply only at law At so that the scattering rate starts its main rise at lower ener-
higher v our calculated scattering rates are found to be quagies. Also we would need to take the spectral weight out at
silinear in agreement with experimefitand large — of the  higher energies so as to moderate the overshoot &fv) at
order of the frequencies themselves. Comparison of solid anbigh v. The value of carrying out such a procedure to pro-
dotted curves shows that the boson-assisted processes datce a better fit is not clear as we now discuss.
T=10 and 100 K are very similar. As previously mentioned Our choice of the model spectrum with a low-frequency
the two curves are nearly parallel. cutoff at 30 meV and added weight between 30 and 40 meV
The dashed curve in Fig. 11 is also in the normal state an@as partially motivated by the observation of the so-called
for low temperatures. It is now based on the modified spec©41 meV peak” in neutron scattering measurements of the
trum. It is clear now that—1(v) is identically zero up to spin susceptibility in YBCO at optimum dopin§>° It
w. and then rises somewhat more sharply wittbeyond should be pointed out that this peak and the redistribution of
o, than does the solid curve centered about zero. This i#he spectral weight observed on entrance to superconductiv-
expected because the modifietF () used in the dashed ity and the comparison with the normal case abdyeare
curve has a discontinuous rise @¢. Also beyond roughly limited to the (r,7) point in the two-dimensional Cup
=60 meV the dashed curve falls above the solid one beBrillouin zone, i.e., at the antiferromagnetic wave vector. By
cause of the additional weight in the modified model forcontrast it is the spin susceptibility everywhere in the first
30<( <40 meV. This added weight is also the reason whyBrillouin zone that determines the spectral functiém (Q)
the dashed and solid curves do not meet even a®f EQ.(11) although the {, ) transitions are expected to be
v=250 meV where the dashed line is nearly as large as théhe most important ones in the nearly antiferromagnetic
dotted curve(which is forT=100 K). Fermi liquid model. Because of these complications, it is not
For the superconducting state two sets of results are prgossible to make a straightforward quantitative comparison
sented. Both are fof/T,=0.1, i.e., low temperatures. The between neutron data and optical data at this point. The de-
long dashed curve uses the unmodified spectfihand is  tails of this relationship are yet to be worked out. Neverthe-
to be compared with the solid curve in the normal state witHess, it is quite clear from the results presented in Fig. 11 that
the same spectrum. On comparison of the two curves it igptical data in the form of ~*(») defined by Eq(24) can be
seen that superconductivity simply depresses in a smoot#sed to obtain information about the mechanism and about
way 7 1(v) at smallv in the gap region and enhances it at the readjustments in the charge-carrier—boson spectral den-
larger values ofr. These are the characteristics of the supersSity involved that might be brought about by superconduc-
conducting transition to a@l-wave symmetry as the same tivity and reductions in temperature. These conclusions are
fluctuation spectrum has been used in both cases. It becomg¥del independent although based on the assumption that
clear, however, that there is no characteristic sharp structufieermi liquid theory can be applied and that some kind of

in 7~Y(v) vs v corresponding to twice the superconducting0oson-exchange mechanism is responsible for superconduc-
gap value as would be the case for smwave supercon- tivity. It should be remembered, however, that there could be

ductor. In such a case,(») would be entirely zero in this @ significant interband contribution in the data which would

energy range as would be the scattering rate according to E eed to be understoddbefore definite conclusions can be
(24). It is this region that contains the information on the gapdrawn.
symmetry. The high+ region is more directly related to
mechanism. It is not surprising that there is no sharp struc-

ture in 7~ 1(») corresponding to a gap in ttewave case

and that it looks very much like the normal state but with an  The observed large peak in the temperature dependence of
additional reduction in the scattering rate at lewThis is  the microwave conductivityr;(») observed in YBCQORef.
because a condensate forms and removes electrons from thehas been interpreted in terms of the collapse of the quasi-
normal fluid but the quasiparticle density of states remaingarticle scattering rates due to the gapping of the fluctuation
finite (linear inv) at any finitev. The final dash-dotted curve spectrum responsible for the pairing interaction. We have
in Fig. 11 is again in the superconducting state at a lonmodeled this gapping in terms of a low-frequency cutoff on
temperature T/T.=0.1) but now the modified spectrum is the electron-boson spectral density appearing in generalized
used. In comparing with the dashed curve for the normaEliashberg equations with a separablevave model in the
state with the same spectrum we see the characteristic redugap channel. This allows the discussion of inelastic effects
tion at low v (between 30 and approximately 120 meNith and is the simplest first step beyond BCS theory. The appli-
an overshoot beyond that energy range. Comparing with theation of a low-frequency cutoff in the fluctuation spectrum
long dashed curve, also for the superconducting state buif the order needed to model the observed peak in the mi-
with the unmodified spectrurfll), shows that the details of crowave conductivity leads to large effects in the tempera-
1°F(Q) do affect the quantitative behavior of the curves butture variation of the resulting magnetic penetration depth.

VI. CONCLUSION
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This brings the curve closer to experiment than is the casenly abovew.. At higher frequencies the scattering rate re-
when such a cutoff is not applied. While our calculations areflects directly the amount of inelastic scattering present and,
admittedly based on a phenomenological model they din that sense, this region reflects the mechanism. In our
show clearly how the collapse of the scattering times is seefodel it has a quasilinear rise, reflecting a general property
in the microwave data and the magnetic penetration deptmf a spin fluctuation mechanism y\_/hich is reasonably flat over
We find also that these effects can be large and lead to @ large energy range. The quasilinear frequency dependence
novel interpretation of the penetration depth data. seen in our model is in general agreement with the experi-
We have also investigated how the application of a low-mental data although our calculations underestimate the
frequency cutoff in the spectral densityF(Q) affects the —amount of inelastic scattering present. In interpreting the data
frequency dependence of the infrared conductivity. Thd! May be necessary to include interband transitibmnich
Drude peak in the real part of the conductivity at low fre- Make an additional contribution to the scattering rate and

quencies sharpens up more rapidly with decreasing temper&ihi‘:h have not been included in this work. Nevertheless, it
ture than would be the case if no cutoff was present. Also!S clear from our present work that the frequency dependence
the product ofv times the imaginary part of, vo(v) of the scattering rate carries information about some of the

shows sharper structures in the form of a Iow-frequenqﬂetails of the fluctuation spectrum involved and its readjust-
minimum aroundv=0 and is also changed considerably jn MeNt with the superconducting transition. For example,
magnitude. Because of the sharp variatiorvim,(v) at low ~ Should the spectral density be strongly dominated by the
v, accurate infrared data in the region belevs meV are maginary part of the spin susceptibility atr(m), the so-
needed to derive from such information the penetratiorf@/led 41 meV peak seen to appear in the superconducting
depth. The collapse of the inelastic scattering rate can also B3at€ in neutron scattering experiments should have a strong
seen, in principle, in the dependence of the scattering rate €f€Ct on the frequency dependence of the scattering rate. At
7 1(»), Eq. (24). The low-frequency part of such curves present comparison with experiment is inconclusive on this

reflects not only the symmetry of the order parameter in thart but the opportunity to study with optical techniques the

superconducting state but also the onset of inelastic scattef?gnetic spin susceptibility or the spectral density of the
ing. Because the superconducting order parametémiave operative mechanism, should it not be the magnetic fluctua-
o1(v) is depressed over its normal-state value but is stijfions, remains. While there remain problems with frequency

finite at any frequency below twice the maximum gap and deepgndence, the t(.ampera.tur(_a dependence of the scattering
7~ (v) is not zero in this region as would be the case for afateis modeled satisfactorily in our work.
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