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Critical current measurements by Courta@sal. [Phys. Rev. B52, 1162 (1995] on proximity-induced
superconductivity in a narrow metallic wire are analyzed by a junction model of the author based on the
Ginzburg-Landau theory. Good agreement is found if one assumes that the length of at least one of the many
superconducting cells is larger than anticipated by a factor of approximately 2. At low temperatures the size of
the superconducting region in the normal metal is confined by the length of the normal cell. As a consequence,
the critical current saturates below a temperature at which the length of the normal cell becomes approximately
three characteristic lengths of the coherent state in the normal 1®gd163-182@07)03429-2

Courtois et al! investigated experimentally proximity- wheren is the total electron density of the superconductor,
induced superconductivity in narrow metallic wires of Cu y;(&,l¢) is a function of the intrinsiqBCS) coherence
and Ag. Figure 1 shows the experimental arrangement q%ngth &, and the mean free path, k is Boltzmann’s con-

superconductingAl) and normal conductingCu, Ag) Wires.  gant, andT, is the transition temperature of the supercon-
The measuring current is passed along the Cu or Ag wirey \ctor

The total length of the normal conducting wire is given as L . .
76.8 um and the spacing of the superconducting wires as 0.8 Superconductivity m_the\I region depends e_ntlrely on the
um for the Ag-Al specimen 17, a typical specimen. It is inherent superconductivity of th& region. It is therefore
possible that there could have been up to 96 superconductif§asonable to assume that the coherent state iNl tregion
Al branches connected to the silver wire. One of the sensitivéVill exist only below T, of the S region. Furthermore, it is
parameters which determines the value of the critical currerfien reasonable to normalize all properties inthegion by
of the Ag branches is the distance between the proximitythe same normalization factor as is applied to $heegion.
induced patches located on the Ag wire underneath the AfFor theN region we postulate an equation similar to Et):
branches, that is, the distancd<{wy). If one of the Al

branches does not make electrical contact with the Ag wire,

then the effective distance is equal tad(2wy), and it is this J_(—d—)_J_
latter distance which would then determine the critical cur- _)T(_WS ]
rent of the silver wire. S § S S S

When comparing experimenwith theory? the authors
did not obtain agreement with de Gennes’ superconducting—
normal-metal—superconductin@ NS equation, and conse-
quently concluded that their “study of the low-temperature
zero-resistance state shows a purely new behavior that is
definitely out of the scope of classicaIN Sjunctions mod-
els.”

As pointed out by Yamafujet al,® the boundary condi-
tion at theSN interface as used in Ref. 2 leads to a discon-
tinuous phase current across the boundaries. These shor
comings have been eliminated in Refs. 4 and 5, and the
theory has been generalized to arbitrary mean free paths o
the S and N metal as well as extended ®SS junctions,
whereS,; is a superconductor different fro8 The results of
Ref. 4 have been used previously to describe successfully
critical current measurements on SNS junctions by Clérke.

Although it is possible to start, with the approximate re-
sult, Eq.(31) of Ref. 4, to unravel the results of Ref. 1, we
find it didactic to outline the derivation of an exact solution  FiG. 1. (a) A narrow Ag wire, length 76.8.m, is covered with
in order to show where inaccuracies and uncertainties mighfuperconducting(Al) branches, distancel=0.8 um apart. Ag
arise in the theory. width wy=0.21 um, Ag thicknessey=0.15 wm, Al width

The relation between theodulusof the order parameter wg=0.12um. There is no current injected through the Al branches.
F(x,T) and the pair potentiah g for a superconductor 1§  Current flows through the continuous Ag wire. Superconductivity is
112 induced in the Ag wire at the site where Al makes electrical contact

(|AGS|/7Tch) (1) (from Ref. 1. (b) Side view of(a) with current flow indicated(c)

’ Schematic of functions represented by E4®) and(13).
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7
Fn= §§(3)nnXGn (|AGn|/7Tch)u (2

where n, is the total electron density of th&l metal,

Xxen(l&l.1n) is a function of the characteristic length

|€,(T)| of the coherent state in thd metal, andl, is the
mean free path in th8&l region. T, is that of the supercon-
ductor. Normalizing Eq(1) by the S region bulk values and
Eq. (2) by

Fa(22)=F2(=)(n,/ng)(xen/Xcs): (3)

one obtains
f(XaT):FS/FS(OO)ZlAGSVlAGs(OO)la (4)
Y(XrT):Fn/Fn(oo):|AGn|/|AGs(°°) ) (5)

which satisfy the following differential equatich# one di-
mension:

d?f i2
(§s(T))2W+(1—f2—f—4)f=O in theSregion, (6)
2

dy
“leaMiPge

2

|
1—y2+)7 y=0 intheN region,

()
wherei is the normalized current density in ti&region:

i=(\s/\2H.)J. The current density is in mks units with
H.(T), the thermodynamic critical field, in A/m, and,(T)

is the Ginzburg-Landau penetration depth of the supercon-

ductor. The symbol in Eq. (7) is the normalized current
density in theN region and is defined by

_ &l ma 0 X,
és Mg Ny Xon

(8

In the “one-dimensional” case, with equal cross-sectional

area of the wires, the real current densltgnust be the same
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us=[(a2+b2)/2]1¥x/ £(T). (11)

Similarly, Eq.(7) can be solved exactly with solutions:

2

d 2 2
6 | =202

21
y2(2—y3—y)+ —5|, (12
Ys

y2=y3+a’m,sd(u,/m,), (13

wherey, is the value ofy(x,T) at the minimum in theN
region anda,, m,, andu, are functions ofy,, T, andl,
defined by

S,=1-3y3/2,
Ra=[(1-y3/2)>+212/y3]"2,
a’=—-S,+R,,
b2=+S,+R,,
m,=b?/(a2+b?),
Un=[(a3+b3)/2]"2x— x|/ x(T). (14)

Although Egs.(10) and (13) are similar in form, they are
distinctly different. They cannot be transformed into each
other(in form) by a translation of the coordinate system.

As in a superconducting micronetwotlcontinuity of the
phase current requires that

m; *dF2/dx=m, *dF?/dx

at the SN interface. From this it follows that the following
condition must be satisfied:

dy2 My Ns XGs df?
dx|_— mgn, xgn dx|
X1 X1

(15

in the S andN regions. Furthermore, there may be an apparent or real discontinuity

Equation (6) is the one-dimensional Ginzburg-Landau of 'Fhe extrapolated pair.potentials at tiseN _interface for
equation, while Eq(7) is a distinctly different differential Various reasons, to be discussed below. WithE<1, one

equation. In principle, both equations can be solved exactlyMay Write at the interface

The solutions are

df?)?2
55(&

2 2 2 2 2 2I2
—2(13-12)| (2~ 13- 1)~ 7 |,
0

9

f2=f3—aZmgscP(ugms). (10)

fgy is the value off (x,T) at its maximum as shown in Fig.
1(c). as, mg, andug are functions offy, T andi, and are

S,=1-3f3/2,
Re=[(1—f2/2)%2—2i?/f3]*?,
ai=S;+R,
bi=—S¢+R,

me=b?/(a+b?),

The current density in mks units in the one-dimensional
S andN regions is

%o MsMixen
277:“’0)\§|§n| My Ng Xgs

J is the critical current il has ascertained its largest value. It
is then the object to find at a fixed temperatlifg,=|..
Since both theS andN regions are “dirty” metals (,,~33
nm andl~6 nm)'° the ys's and other relevant parameters
become

(17

Xaes=1.335/&o,
Xcn=0.39X]1 n/|§n|)21

£0=0.18& v /kT,=1.6 um for Al,

(18
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FIG. 2. Solution of Eq(13) as a function ofy3 and| for con-
stant y;=0.8038 for 2x;—x,|=1.48 um, corresponding to
B=0.912 andT=0.4 K. Note that the numerical values g} and
| at the maximum of are almost the sam@ee Fig. 5.

|&0l = (Fiv gl /6K T)Y2=0.136AT um for Ag.

Furthermore,

A2(T)=AZ(0)/[pxes(1—tH)]

with p=1/2, to be consistent with the value &f (0)=16
nm for Al, which is usually used neaf,~1.45 K1° The
coherence length in th8 region is then obtained from the
standard relation:

E(T)=o/[27\2uoH(TIA(T)]
=69.1(1+t%)/(1-t%)]¥2nm

with uoH(T)=10.5(1-t2) mT andt=T/T,.

Although £,(T) and B do not appear explicitly in Eq.
(17), & appears in Eq(9) and both will be used with the
boundary conditio(15). For the “dirty” limit Eq. (17) re-
duces to

0.391p, 12 1-t*
= r
dmuo &7 N(0)

| A/m2. (19
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phase difference across theregion are related but different
concepts of the same physical phenomena.

In order to findy, we use boundary conditiofi5), which
is equivalent to one of the nodal conditions in micronet-
works, and Eqs(9) and(12). At this point we make certain
assumptions. In théS region we assume that?f/dx? is
small andf, is very close to unity so that from Ed6)
i2~1—f2. Then Eq.(9) reduces to

df?
dx

Furthermore, when Eq12) is applied at the critical current
wherel ~y3, it reduces to

d 2
5[

With y,=Bf,, neglecting {,/y;)* in Eq. (21), boundary
condition (15) leads to the solution of; at the critical cur-
rent:

~\2fy(1-19).

X1

(20

S

(21)

~\2y2\2—yIN1-(y.ly))™
X1

N?/B*+1—[1+(2—B?)N%/B*]*?

2~
N2/B*+B? '

1

(22)
where

My Ns Xgs | &0l

NCT) Ms Ny Xen &s
In the “dirty” limit N(T)=8.25(¢/&)[|£.(T)|3/ 12¢4(T)].
Note thatf—1 whenT—0, andf?—0 whenT—T,.

The accuracy of the critical current solutiét9) depends
on |, which in turn depends oy, (=f/B). Thus boundary
condition(15), which leads to Eq(22), determines the accu-
racy of the critical current with the assumptions that
(y»/y;)* can be neglected with regard to unity, and that
fo=1. We shall show below that this is correct over the
experimental temperature range.

Concerning boundary conditiorl6), this author believes
that for aperfectelectrical contact between two similar met-
als only a small discontinuity of the pair potentials at the

We used p=1/2 as mentioned above, and the ratio ginterface should exisB should be close to unity assum-

r=(mg/m,)(n,/ng)=(1.4/1.1)(5.86/18.155 0.412 esti-

ing ideal conditions. However, electrical contacts may not be

free-electron density ratio. Note, the premultiplierlofloes
not contain the scale fact@ of Eq. (16).

In order to solve for the critical current in tiregion we
consider first Eqs(13) and(14). At a fixed temperature and
fixed half-width of theN region |x;—x,|=d,, the relation

deriving Eq.(22), and inaccuracies of some of the numerical
values, may lead to an “apparent” discontinuity. In compar-
ing experiment with theory we |& be an adjustable param-
eter and exped to be close to unity. We finB~ 0.9, which
supports the assumption that for an iddkb interfaceB is

fory=y, at theNSinterface constitutes a surface in function ¢jose to unity*

space ¥»,l,y1). It is then straightforward to find the exact
functional relationl(y,) for a fixed value ofy,. For ex-
ample, fory,;=0.8038 a typical relation betweérandy% is
shown in Fig. 2, which shows that the numerical valué af
the maximum is almost equal §G. This is correct over most
of the temperature randsee Fig. 5. It is worth noticing that
in Fig. 2I~ICsir'[(7-r/2)(y§/Ic)] and is akin to one of Joseph-
son’s equations. It shows that the minimumaf and the

Figure 3, curve(a), shows the numerical results of Eq.
(19 using Eq.(22), with B=0.912, assuming that at least
one of the Al branches did not make electrical contact with
the Ag wire so that the effective distance between the super-
conducting patches wasd2=1.48 um. This result com-
pares very favorably with the experimental results down to
below 0.1 K(Fig. 4 of Ref. 2. Curve(b) shows the results
with 2d,=0.68 wm, normalized withB=0.320 to the same
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FIG. 3. Solution of Eq(19) based orf, obtained from Eq(22)
for the “dirty” S and N limits for (a) 2d,=1.48 um with
B=0.912, and(b) 2d,=0.68 um with B=0.320. TheB values

0.6 0.7 0.8

2735

0.1

02

0.3 0.4 0.5 0.6 0.7 0.8
TEMPERATURE [K]

FIG. 5. The ratio of (/yg) at maximuml as a function of
temperature, justifying the assumptibﬁyg at the critical current

for an approximate solution,

were chosen for approximately equal maximum current values oRdn /| & =3.

theory and experiment of about 2.8A. The cross-sectional area of
the silver wire iswyey=0.21X0.15 (um)2. There is very good

agreement of curvéa) with the experimentFig. 4 of Ref. 1.

as was used in Ref. 4 for

larly, inaccuracies in the premultiplier ofof Eqg. (19) and in
the cross-sectional area of the wire are probably taken care of
by adjustingB. In spite of that, it turns out that the value of

maximum value as curv@). The disagreement with the ex- B is close to unity. The boundary conditions as used here are
perimental results is ungquestionable. consistent with those used for micronetwdrkand also
The accuracy of the numerical results depends on the agound experimentalfif for the proximity effect in large mag-
sumption that ¥,/y;)*<1 and thatl/y3 at the critical cur- netic fields. A value o close to unity supports credence
rent is approximately unity. Figure 4 shows a plot of that the theory as presented here is correct, useful and com-
(y,/y,)? at the critical current as a function of temperature.patible with  Zatsev's transmission coefficietit D
It shows that neglectingyt/y;)* in Eq. (21) introduces an  =4b/(1+b)?. With b=pg,/prs=(1.1/1.4)(1.39/2.03) the
error in the slope of/ at the interface of less than 1% over value ofD~0.91.
the experimental temperature range down to about 0.07 K.  Curve (@) of Fig. 3, when calculated witB=1, is prac-
Similarly, Fig. 5 shows thatl(y3) at I=I is close to tically |qent|cal to that showitwith B=O.912) provided the
unity over most of the temperature range, and Fig. 6 show§urrent is scaled by 0.8. An error of 10% in the meastfred
the normalized critical currentas a function of temperature. linear dimensions of the cross section is compatible with
Furthermore, Z,(0) and 2 ,(0) are only somewhat larger B=1 ) _
than the width of the Al branches. This could make the as- Conceming the current nedr=0 K we conjecture the
sumption thaf, is close to unity in Eq(20) inaccurate. This, fpl!owmg. One expects intuitively that the_ Cr|.t|cal current is
perhaps, could be hidden by adjusting the valuBosimi- finite whenT—0 K and not zero as E¢19) indicates due to
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FIG. 4. Plot of {/,/y;)? at maximuml as a function of tem- FIG. 6. Solution of the normalized critical current denditjn
perature. Neglectingy,/y,)* in Eq. (21) causes an error of less theN region as a function of temperature for the same data as used
than 1% in Eq.(21) for temperatures above 0.07 K. in Figs. 2—5 with 21,=1.48 um.
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the fact thaf &,|—~ whenT—0 K. However, Eq.(19) ap-  of Eq. (25) is about two orders of magnitude larger than Eq.
plies only as long as@,= 3|&,|. Whend,<1.5&,| the char-  (24) and the overall temperature dependences are different.
acteristic length over which superconductivity extends isAs mentioned above, Yamafigi al3 have pointed out some
limited not by|&,| butd,, so that at the low-temperature end of the difficulties with the boundary conditions of R&).
whered,, is small compared t¢¢,|, the value of &,| has to Recent work by Wilhelret al!* leads to

be replacetf by about 0.@, in Eq. (19). Applying this con-
cept to Fig. 3 means that the critical current to the left of the T _2d, 2d,

peaks of curvega) and (b) is practically temperature inde- JSR,%ZZZ—ekTmexr< TTEl [volt]. (26)
pendent. : "

The current of Eq(19) is approximately proportional to \ye yse here the same notation as above. Equé®rhas a
(2d,/|&:])%exp(=2d, /&) at the low-temperature end. This premultiplier which is one order of magnitude larger than
leads to a maximum current whetly,=1.5¢,(Ts)| corre-  Eq. (24). This is not an essential discrepancy if we consider
sponding to the temperatuilg at which size effects have to only the slope of the critical current as a function of tempera-
be taken into account. Equatiofi9) then becomes for tyre above the saturatidsize effect temperature. The latter
T=T, (neglectingt*) is similar to that of Eq(24) nearTs. However, the lack of

” boundary conditions and/or of any fundamental parameters
IS %%0'1752_“5:2_3” 10 5T, [volf], (23  of the superconductor in E6) is somewhat puzzling. Fur-
e thermore, Eq.(26) is identical to Eq.(15) of Zaikin and
¢ZharkoV® except that the premultiplier of E¢R6) is smaller
by a factor of 2.

The present and pdstwork is based on the Ginzburg-
Landau theory which is known to extend empirically to
fnuch lower temperatures than expected. The usual argument
Is that the GL theory holds strictly near the transition tem-
perature. However, since the temperature range of the experi-
ment under consideration is beloW,/2, we expect only
small temperature variations of the characteristic lengths of
the intrinsic superconductor. As we go to lower tempera-

7 _2d, tures, we approach the transition temperature oiNheetal,
JSRFl-lﬁkTm(l—t‘l)' [volt]. (24 and might be inclined to conjecture, as far as khenetal is
: concerned, that the accuracy of the theory should become
The normalized(dimensionless current|] depends on the petter. As|¢,| becomes large, however, size effects must be
boundary valud?, thus on the superconducting properties oftaken into account.
the aluminum branches, the ultimate source of superconduc- In conclusion, it is possible that one of the superconduct-
tivity in the N wire. Reference 1 uses, in the present notationjng cells was longer than anticipat&tThe longest cell is the

where S is the cross-sectional area of the silver wire an
R, is the Drude resistance. Withd2=1.48 um the satura-
tion temperaturd ;=0.076 K andJ;SR,=1.8 uV, in good
agreement with the experiment of 1u/.

At this point we shall compare the results of the presen
work with the equation used in Ref. 1 in connection with the
interpretation of the experimental data and with other recen
theoretical attempt¥"1® Equation(19) can be cast into the
following form:

the following equation taken from Ref. 2: bottleneck in an experiment. Once the critical current is ex-
ceeded, Ohmic heating will drive all of the wire into the
JSR,=1A 2dq /[0l [volt] (25) normal state. The theory can be fitted to the experiment if
2e sinh(2d,/|&,|) ' one of the assumed cell dimensions is increased by a factor

whereA is interpreted as being the energy gap of aIuminumOf approximately 2. At low temperatures where the length of

21(0) such it 1203540 V. S h tompereture 50" Sorparale i, sie efcts ocer wen
dependence of the maximum valueloh Eq. (24) for tem- n n

peratures neaf, is roughly the same asinh(al /|&[)] > domain in theN metal is confined by the dimension of the
S n n| [}

the main difference between Eq4) and(25) is the thermal cell. Below this temperature the critical current saturates.
energy termk T compared to the energy gap of the supercon- Discussions with J. Clarke and S. B. Haley are acknowl-
ductor. Near the saturation temperature the numerical valuedged. | am grateful to H. Courtois for correspondence.
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