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Supercurrents through SNS proximity-induced junctions
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Critical current measurements by Courtoiset al. @Phys. Rev. B52, 1162 ~1995!# on proximity-induced
superconductivity in a narrow metallic wire are analyzed by a junction model of the author based on the
Ginzburg-Landau theory. Good agreement is found if one assumes that the length of at least one of the many
superconducting cells is larger than anticipated by a factor of approximately 2. At low temperatures the size of
the superconducting region in the normal metal is confined by the length of the normal cell. As a consequence,
the critical current saturates below a temperature at which the length of the normal cell becomes approximately
three characteristic lengths of the coherent state in the normal metal.@S0163-1829~97!03429-2#
-
u

t

ir
as
0
is
ct
tiv
re
ity

ir

ur

ng
-
re
t

n
h
th
s

fu
e
e
e
n

ig

r

or,

n-

e

es.
is

act
Courtois et al.1 investigated experimentally proximity
induced superconductivity in narrow metallic wires of C
and Ag. Figure 1 shows the experimental arrangemen
superconducting~Al ! and normal conducting~Cu, Ag! wires.
The measuring current is passed along the Cu or Ag w
The total length of the normal conducting wire is given
76.8mm and the spacing of the superconducting wires as
mm for the Ag-Al specimen 17, a typical specimen. It
possible that there could have been up to 96 supercondu
Al branches connected to the silver wire. One of the sensi
parameters which determines the value of the critical cur
of the Ag branches is the distance between the proxim
induced patches located on the Ag wire underneath the
branches, that is, the distance (d2ws). If one of the Al
branches does not make electrical contact with the Ag w
then the effective distance is equal to (2d2ws), and it is this
latter distance which would then determine the critical c
rent of the silver wire.

When comparing experiment1 with theory,2 the authors
did not obtain agreement with de Gennes’ superconducti
normal-metal–superconducting (SNS) equation, and conse
quently concluded that their ‘‘study of the low-temperatu
zero-resistance state shows a purely new behavior tha
definitely out of the scope of classicalSNSjunctions mod-
els.’’

As pointed out by Yamafujiet al.,3 the boundary condi-
tion at theSN interface as used in Ref. 2 leads to a disco
tinuous phase current across the boundaries. These s
comings have been eliminated in Refs. 4 and 5, and
theory has been generalized to arbitrary mean free path
the S and N metal as well as extended toSS1S junctions,
whereS1 is a superconductor different fromS. The results of
Ref. 4 have been used previously to describe success
critical current measurements on SNS junctions by Clark6

Although it is possible to start, with the approximate r
sult, Eq.~31! of Ref. 4, to unravel the results of Ref. 1, w
find it didactic to outline the derivation of an exact solutio
in order to show where inaccuracies and uncertainties m
arise in the theory.

The relation between themodulusof the order paramete
F(x,T) and the pair potentialDGs for a superconductor is7,8

Fs5F7

8
z~3!nsxGsG1/2

~ uDGsu/pkTc!, ~1!
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wherens is the total electron density of the superconduct
xGs(j0 ,l s) is a function of the intrinsic~BCS! coherence
lengthj0 and the mean free pathl s , k is Boltzmann’s con-
stant, andTc is the transition temperature of the superco
ductor.

Superconductivity in theN region depends entirely on th
inherent superconductivity of theS region. It is therefore
reasonable to assume that the coherent state in theN region
will exist only below Tc of the S region. Furthermore, it is
then reasonable to normalize all properties in theN region by
the same normalization factor as is applied to theS region.
For theN region we postulate an equation similar to Eq.~1!:

FIG. 1. ~a! A narrow Ag wire, length 76.8mm, is covered with
superconducting~Al ! branches, distanced50.8 mm apart. Ag
width wN50.21 mm, Ag thickness eN50.15 mm, Al width
wS50.12mm. There is no current injected through the Al branch
Current flows through the continuous Ag wire. Superconductivity
induced in the Ag wire at the site where Al makes electrical cont
~from Ref. 1!. ~b! Side view of~a! with current flow indicated.~c!
Schematic of functions represented by Eqs.~10! and ~13!.
2732 © 1997 The American Physical Society
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8
z~3!nnxGnG1/2

~ uDGnu/pkTc!, ~2!

where nn is the total electron density of theN metal,
xGn(ujnu,l n) is a function of the characteristic lengt
ujn(T)u of the coherent state in theN metal, andl n is the
mean free path in theN region.Tc is that of the supercon
ductor. Normalizing Eq.~1! by theS region bulk values and
Eq. ~2! by

Fn
2~`!5Fs

2~`!~nn /ns!~xGn /xGs!, ~3!

one obtains

f ~x,T!5Fs /Fs~`!5uDGsu/uDGs~`!u, ~4!

y~x,T!5Fn /Fn~`!5uDGnu/uDGs~`!u, ~5!

which satisfy the following differential equations4 in one di-
mension:

„js~T!…2
d2f

dx2 1S 12 f 22
i 2

f 4D f 50 in theS region, ~6!

2ujn~T!u2
d2y

dx2 1S 12y21
I 2

y4D y50 in theN region,

~7!

where i is the normalized current density in theS region:
i 5(ls /A2Hc)J. The current densityJ is in mks units with
Hc(T), the thermodynamic critical field, in A/m, andls(T)
is the Ginzburg-Landau penetration depth of the superc
ductor. The symbolI in Eq. ~7! is the normalized curren
density in theN region and is defined by

I 5
ujnu
js

mn

ms

ns

nn

xGs

xGn
i . ~8!

In the ‘‘one-dimensional’’ case, with equal cross-section
area of the wires, the real current densityJ must be the same
in the S andN regions.

Equation ~6! is the one-dimensional Ginzburg-Landa
equation, while Eq.~7! is a distinctly different differential
equation. In principle, both equations can be solved exac
The solutions are

js
2S d f2

dx D 2

52~ f 0
22 f 2!F f 2~22 f 0

22 f 2!2
2i 2

f 0
2 G , ~9!

f 25 f 0
22as

2mssd2~usums!. ~10!

f 0 is the value off (x,T) at its maximum as shown in Fig
1~c!. as , ms , andus are functions off 0 , T and i , and are

Ss5123 f 0
2/2,

Rs5@~12 f 0
2/2!222i 2/ f 0

2#1/2,

as
25Ss1Rs ,

bs
252Ss1Rs ,

ms5bs
2/~as

21bs
2!,
n-

l

y.

us5@~as
21bs

2!/2#1/2x/js~T!. ~11!

Similarly, Eq. ~7! can be solved exactly with solutions:

ujnu2S dy2

dx D 2

52~y22y2
2!Fy2~22y2

22y2!1
2I 2

y2
2 G , ~12!

y25y2
21an

2mnsd2~unumn!, ~13!

wherey2 is the value ofy(x,T) at the minimum in theN
region andan , mn , andun are functions ofy2 , T, and I ,
defined by

Sn5123y2
2/2,

Rn5@~12y2
2/2!212I 2/y2

2#1/2,

an
252Sn1Rn ,

bn
251Sn1Rn ,

mn5bn
2/~an

21bn
2!,

un5@~an
21bn

2!/2#1/2ux2x2u/ujn~T!u. ~14!

Although Eqs.~10! and ~13! are similar in form, they are
distinctly different. They cannot be transformed into ea
other ~in form! by a translation of the coordinate system.

As in a superconducting micronetwork,9 continuity of the
phase current requires that

ms
21dFs

2/dx5mn
21dFn

2/dx

at theSN interface. From this it follows that the following
condition must be satisfied:

dy2

dx U
x1

5
mn

ms

ns

nn

xGs

xGn

d f2

dxU
x1

. ~15!

Furthermore, there may be an apparent or real discontin
of the extrapolated pair potentials at theSN interface for
various reasons, to be discussed below. With 0,B<1, one
may write at the interface

y15B f1 . ~16!

The current densityJ in mks units in the one-dimensiona
S andN regions is

J5
f0

2pm0ls
2ujnu

ms

mn

nn

ns

xGn

xGs
I . ~17!

J is the critical current ifI has ascertained its largest value.
is then the object to find at a fixed temperatureI max[I c .
Since both theS andN regions are ‘‘dirty’’ metals (l n'33
nm andl s'6 nm!10 the xG’s and other relevant paramete
become

xGs51.33l s /j0 ,

xGn50.391~ l n /ujnu!2, ~18!

j050.18\vFs /kTc51.6 mm for Al,
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ujnu5~\vFnl n/6pkT!1/250.136/AT mm for Ag.

Furthermore,

ls
2~T!5lL

2~0!/@pxGs~12t4!#

with p51/2, to be consistent with the value oflL(0)516
nm for Al, which is usually used nearTc'1.45 K.10 The
coherence length in theS region is then obtained from th
standard relation:

js~T!5f0 /@2pA2m0Hc~T!ls~T!#

569.1@~11t2!/~12t2!#1/2 nm

with m0Hc(T)510.5(12t2) mT andt5T/Tc .
Although js(T) and B do not appear explicitly in Eq

~17!, js appears in Eq.~9! and both will be used with the
boundary condition~15!. For the ‘‘dirty’’ limit Eq. ~17! re-
duces to

J5
0.391f0

4pm0

l n
2

ujnu3

12t4

lL
2~0!

rI A/m2. ~19!

We used p51/2 as mentioned above, and the ra
r 5(ms /mn)(nn /ns)5(1.4/1.1)(5.86/18.1)50.412 esti-
mated from the specific-heat effective-mass ratio and
free-electron density ratio. Note, the premultiplier ofI does
not contain the scale factorB of Eq. ~16!.

In order to solve for the critical current in theN region we
consider first Eqs.~13! and~14!. At a fixed temperature and
fixed half-width of theN region ux12x2u5dn , the relation
for y5y1 at theNS interface constitutes a surface in functio
space (y2 ,I ,y1). It is then straightforward to find the exac
functional relationI (y2) for a fixed value ofy1. For ex-
ample, fory150.8038 a typical relation betweenI andy2

2 is
shown in Fig. 2, which shows that the numerical value ofI at
the maximum is almost equal toy2

2. This is correct over mos
of the temperature range~see Fig. 5!. It is worth noticing that
in Fig. 2 I'I csin@(p/2)(y2

2/I c)# and is akin to one of Joseph
son’s equations. It shows that the minimum ofy2 and the

FIG. 2. Solution of Eq.~13! as a function ofy2
2 and I for con-

stant y150.8038 for 2ux12x2u51.48 mm, corresponding to
B50.912 andT50.4 K. Note that the numerical values ofy2

2 and
I at the maximum ofI are almost the same~see Fig. 5!.
e

phase difference across theN region are related but differen
concepts of the same physical phenomena.

In order to findy1 we use boundary condition~15!, which
is equivalent to one of the nodal conditions in micron
works, and Eqs.~9! and ~12!. At this point we make certain
assumptions. In theS region we assume thatd2f /dx2 is
small and f 0 is very close to unity so that from Eq.~6!
i 2'12 f 0

2. Then Eq.~9! reduces to

jsS d f2

dx D U
x1

'A2 f 1~12 f 1
2!. ~20!

Furthermore, when Eq.~12! is applied at the critical curren
whereI'y2

2, it reduces to

ujnuS dy2

dx D U
x1

'A2y1
2A22y1

2A12~y2 /y1!4. ~21!

With y15B f1, neglecting (y2 /y1)4 in Eq. ~21!, boundary
condition ~15! leads to the solution off 1 at the critical cur-
rent:

f 1
2'

N2/B4112@11~22B2!N2/B4#1/2

N2/B41B2 , ~22!

where

N~T!5
mn

ms

ns

nn

xGs

xGn

ujnu
js

.

In the ‘‘dirty’’ limit N(T)58.25(l s /j0)@ ujn(T)u3/ l n
2js(T)].

Note thatf 1
2→1 whenT→0, and f 1

2→0 whenT→Tc .
The accuracy of the critical current solution~19! depends

on I , which in turn depends ony1(5 f 1 /B). Thus boundary
condition~15!, which leads to Eq.~22!, determines the accu
racy of the critical current with the assumptions th
(y2 /y1)4 can be neglected with regard to unity, and th
f 0'1. We shall show below that this is correct over t
experimental temperature range.

Concerning boundary condition~16!, this author believes
that for aperfectelectrical contact between two similar me
als only a small discontinuity of the pair potentials at t
NS interface should exist.B should be close to unity assum
ing ideal conditions. However, electrical contacts may not
‘‘ideal’’ in an experiment and the approximations made
deriving Eq.~22!, and inaccuracies of some of the numeric
values, may lead to an ‘‘apparent’’ discontinuity. In compa
ing experiment with theory we letB be an adjustable param
eter and expectB to be close to unity. We findB'0.9, which
supports the assumption that for an idealNS interfaceB is
close to unity.11

Figure 3, curve~a!, shows the numerical results of Eq
~19! using Eq.~22!, with B50.912, assuming that at lea
one of the Al branches did not make electrical contact w
the Ag wire so that the effective distance between the su
conducting patches was 2dn51.48 mm. This result com-
pares very favorably with the experimental results down
below 0.1 K~Fig. 4 of Ref. 1!. Curve ~b! shows the results
with 2dn50.68 mm, normalized withB50.320 to the same
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maximum value as curve~a!. The disagreement with the ex
perimental results is unquestionable.

The accuracy of the numerical results depends on the
sumption that (y2 /y1)4!1 and thatI /y2

2 at the critical cur-
rent is approximately unity. Figure 4 shows a plot
(y2 /y1)2 at the critical current as a function of temperatu
It shows that neglecting (y2 /y1)4 in Eq. ~21! introduces an
error in the slope ofy at the interface of less than 1% ov
the experimental temperature range down to about 0.07

Similarly, Fig. 5 shows that (I /y2
2) at I 5I c is close to

unity over most of the temperature range, and Fig. 6 sh
the normalized critical currentI as a function of temperature
Furthermore, 2js(0) and 2ls(0) are only somewhat large
than the width of the Al branches. This could make the
sumption thatf 0 is close to unity in Eq.~20! inaccurate. This,
perhaps, could be hidden by adjusting the value ofB. Simi-

FIG. 3. Solution of Eq.~19! based onf 1 obtained from Eq.~22!
for the ‘‘dirty’’ S and N limits for ~a! 2dn51.48 mm with
B50.912, and~b! 2dn50.68 mm with B50.320. TheB values
were chosen for approximately equal maximum current value
theory and experiment of about 2.5mA. The cross-sectional area o
the silver wire iswNeN50.2130.15 (mm)2. There is very good
agreement of curve~a! with the experiment~Fig. 4 of Ref. 1!.

FIG. 4. Plot of (y2 /y1)2 at maximumI as a function of tem-
perature. Neglecting (y2 /y1)4 in Eq. ~21! causes an error of les
than 1% in Eq.~21! for temperatures above 0.07 K.
s-

.

.

s

-

larly, inaccuracies in the premultiplier ofI of Eq. ~19! and in
the cross-sectional area of the wire are probably taken car
by adjustingB. In spite of that, it turns out that the value o
B is close to unity. The boundary conditions as used here
consistent with those used for micronetworks9 and also
found experimentally12 for the proximity effect in large mag-
netic fields. A value ofB close to unity supports credenc
that the theory as presented here is correct, useful and c
patible with Zaı˘tsev’s transmission coefficient11 D
54b/(11b)2. With b5pFn /pFs5(1.1/1.4)(1.39/2.03) the
value ofD'0.91.

Curve ~a! of Fig. 3, when calculated withB51, is prac-
tically identical to that shown~with B50.912) provided the
current is scaled by 0.8. An error of 10% in the measure10

linear dimensions of the cross section is compatible w
B51.

Concerning the current nearT50 K we conjecture the
following. One expects intuitively that the critical current
finite whenT→0 K and not zero as Eq.~19! indicates due to

of

FIG. 5. The ratio of (I /y2
2) at maximum I as a function of

temperature, justifying the assumptionI'y2
2 at the critical current

for an approximate solution, as was used in Ref. 4
2dn /ujnu*3.

FIG. 6. Solution of the normalized critical current densityI in
theN region as a function of temperature for the same data as u
in Figs. 2–5 with 2dn51.48 mm.
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the fact thatujnu→` whenT→0 K. However, Eq.~19! ap-
plies only as long as 2dn*3ujnu. Whendn,1.5ujnu the char-
acteristic length over which superconductivity extends
limited not byujnu but dn , so that at the low-temperature en
wheredn is small compared toujnu, the value ofujnu has to
be replaced13 by about 0.7dn in Eq. ~19!. Applying this con-
cept to Fig. 3 means that the critical current to the left of
peaks of curves~a! and ~b! is practically temperature inde
pendent.

The current of Eq.~19! is approximately proportional to
(2dn /ujnu)3exp(22dn /ujnu) at the low-temperature end. Th
leads to a maximum current whendn51.5ujn(Ts)u corre-
sponding to the temperatureTs at which size effects have t
be taken into account. Equation~19! then becomes for
T5Ts ~neglectingt4)

JsSRn'0.175
p

2e
kTs52.3731025Ts @volt#, ~23!

where S is the cross-sectional area of the silver wire a
Rn is the Drude resistance. With 2dn51.48 mm the satura-
tion temperatureTs50.076 K andJsSRn51.8 mV, in good
agreement with the experiment of 1.7mV.

At this point we shall compare the results of the pres
work with the equation used in Ref. 1 in connection with t
interpretation of the experimental data and with other rec
theoretical attempts.14,15 Equation~19! can be cast into the
following form:

JSRn51.17
p

2e
kT

2dn

ujnu ~12t4!I @volt#. ~24!

The normalized~dimensionless! current I depends on the
boundary valuef 1

2, thus on the superconducting properties
the aluminum branches, the ultimate source of supercon
tivity in the N wire. Reference 1 uses, in the present notati
the following equation taken from Ref. 2:

JSRn5
p

2e
D

2dn /ujnu
sinh~2dn /ujnu! @volt#, ~25!

whereD is interpreted as being the energy gap of alumin
2D(0) such that (p/2e)D'540 mV. Since the temperature
dependence of the maximum value ofI in Eq. ~24! for tem-
peratures nearTs is roughly the same as@sinh(2dn /ujnu)#21,
the main difference between Eqs.~24! and~25! is the thermal
energy termkT compared to the energy gap of the superc
ductor. Near the saturation temperature the numerical v
s

e

t

nt

f
c-
,

-
ue

of Eq. ~25! is about two orders of magnitude larger than E
~24! and the overall temperature dependences are differ
As mentioned above, Yamafujiet al.3 have pointed out some
of the difficulties with the boundary conditions of Ref~2!.

Recent work by Wilhelmet al.14 leads to

JSRn'22
p

2e
kT

2dn

ujnu
expS 2

2dn

ujnu D @volt#. ~26!

We use here the same notation as above. Equation~26! has a
premultiplier which is one order of magnitude larger th
Eq. ~24!. This is not an essential discrepancy if we consid
only the slope of the critical current as a function of tempe
ture above the saturation~size effect! temperature. The latte
is similar to that of Eq.~24! nearTs . However, the lack of
boundary conditions and/or of any fundamental parame
of the superconductor in Eq.~26! is somewhat puzzling. Fur
thermore, Eq.~26! is identical to Eq.~15! of Zaikin and
Zharkov15 except that the premultiplier of Eq.~26! is smaller
by a factor of 2.

The present and past4,5 work is based on the Ginzburg
Landau theory which is known to extend empirically
much lower temperatures than expected. The usual argum
is that the GL theory holds strictly near the transition te
perature. However, since the temperature range of the ex
ment under consideration is belowTc/2, we expect only
small temperature variations of the characteristic lengths
the intrinsic superconductor. As we go to lower tempe
tures, we approach the transition temperature of theN metal,
and might be inclined to conjecture, as far as theN metal is
concerned, that the accuracy of the theory should beco
better. Asujnu becomes large, however, size effects must
taken into account.

In conclusion, it is possible that one of the supercondu
ing cells was longer than anticipated.16 The longest cell is the
bottleneck in an experiment. Once the critical current is
ceeded, Ohmic heating will drive all of the wire into th
normal state. The theory can be fitted to the experimen
one of the assumed cell dimensions is increased by a fa
of approximately 2. At low temperatures where the length
a cell becomes comparable toujnu, size effects occur when
2dn'3ujnu and the extent of the induced superconduct
domain in theN metal is confined by the dimension of th
cell. Below this temperature the critical current saturates

Discussions with J. Clarke and S. B. Haley are ackno
edged. I am grateful to H. Courtois for correspondence.
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