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Spreading of damage in the quantumS5 1
2 Heisenberg ferromagnet

I. V. Rojdestvenski, M. L. Lyra, and U. M. S. Costa
Departamento de Fı´sica, Universidade Federal de Alagoas, Maceio´ AL 57072-970, Brazil

~Received 24 January 1997!

We suggest a tool to investigate the processes of the ferromagnetic ordering in the quantum Heisenberg
model. We introduce the spreading of a damage technique based on the Handscomb Monte Carlo method and
apply it to the three-dimensional simple cubic Heisenberg ferromagnet. Particularly, we study the thermal
dependence of thegraph Hamming distanceand employ a finite-size scaling analysis of its size dependence. It
is obtained that a properly defined Hamming distance displays a maximum at a characteristic temperature
Ts , below which it becomes roughly size independent. We discuss the properties of these dependences in
relevance to other thermodynamic functions of the model.@S0163-1829~97!02829-4#
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I. INTRODUCTION

The Handscomb Monte Carlo method was introduced
1962–1964~Refs. 1 and 2! in a form applicable for the cal
culation of the thermodynamic properties of theS51/2 iso-
tropic quantum Heisenberg ferromagnet. Since then,
technique has been generalized by many authors and pr
itself to be a powerful tool for the investigation of the critic
properties of quantum spin models.3–10 The main feature of
this technique in comparison with the standard Metropo
technique is the fact that the sample space is not relate
any kind of physical phase space. The Markov chain is c
structed over the space of ordered Mayer diagrams and
the diagrammatic series of the partition function that is c
culated by means of the Monte Carlo method. Conseque
the set of probabilities utilized in the Handscomb techniq
has no relevant observable analogy, as the canonic G
exponentials in the standard Monte Carlo.

In the past few years, the spreading of the damage te
nique has been widely used to study the critical propertie
classical Ising-like systems.11–13 The concept of the spread
ing of the damage technique in general can be formulate
follows. At first we apply the Monte Carlo method to rea
the thermal equilibrium at a given temperature. Then,
take the obtained equilibrium configuration and make an
act replica of it. After that, we introduce adamageinto the
replica, i.e., we modify it compared to the original config
ration. For example, in the case of a standard Monte C
applied to theS51/2 Ising model, this alteration might b
the flipping of one spin in the obtained equilibrium config
ration. After the damage has been introduced, we initiate
synchronous Monte Carlo procedures, taking as the in
states the two configurations~modified replica and original!.
Both procedures are identical in the sense of using the s
set of random numbers and transition probabilities.

The quantity that is calculated during the described p
cess is theHamming distance,15 which is the measure of how
different both spin configurations become as time goes
For the case of the Ising model the Hamming distance is
average relative number of lattice sites which have differ
values of the spin variables in both configurations, avera
along the Markov chain.

The Hamming distance displays a critical behavior at
560163-1829/97/56~5!/2698~5!/$10.00
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so-called critical spreading temperatureTs .11,12 Within the
heat-bath dynamics and with a fixed damaged spin trick
can be shown thatTs is the same as the Curie temperatu
TC for Ising spin systems.14 However, results reported from
simulations using Glauber and Metropolis algorithms in
cate thatTs differs from TC by several percent in 3d bulk
systems,11,16 and thatTs is slightly smaller thanTC in two
dimensions.17 It is worth mentioning that the thermal prop
erties of the Hamming distance are strongly dependent on
type of dynamic rules used in the Monte Carlo proce
When the Metropolis dynamics is used, a typical therm
dependence of the Hamming distance is a step funct
which is equal to 0.5 aboveTs and is zero below it. In the
cases of Glauber and heat-bath dynamics, the behavior o
Hamming distance is different and is proved to be depend
on the way the damage is introduced.13 This is quite different
from the usual statistical Monte Carlo modeling where all t
dynamics give the same values for the magnetization, s
ceptibility, and specific heat, differing only in the conve
gence rate.18

It is a problem, however, to introduce a similar techniq
for a quantum Monte Carlo method. The main reason is
above-mentioned lack of the correspondence between
sample space of the Handscomb procedure and the phy
phase space of the investigated system.

In this paper we introduce a spreading of the dama
technique for the Handscomb Monte Carlo dynamics. In t
technique the damage is introduced as a perturbation in
bond structure of the Mayer diagrams, which form t
sample space for the Markov chain. In Sec. II, we discuss
Handscomb algorithm in the view of the possible ways
introduce the damage and to define the Hamming dista
In Sec. III we present the results of our simulations for t
three-dimensional simple cubic Heisenberg ferromagnet
discuss the thermal and size dependences of the Hamm
distance in comparison with other thermal properties. In
conclusions, we make a brief summary of our results a
sketch the prospectives of our approach.

II. THE HANDSCOMB MONTE CARLO DYNAMICS

Before introducing the spreading of damage technique
the Handscomb Monte Carlo method it is worth sketch
2698 © 1997 The American Physical Society
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the Handscomb method itself and discuss its internal dyn
ics.

Let the Hamiltonian of the system to be represented in
following form:

H5(
i

N0

Hi , @Hi ,H j #Þ0, ~1!

where@A,B#5AB2BA, with N0 being the total number o
bonds in the system. For example, we write the Heisenb
Hamiltonian in the absence of applied magnetic field as

H522(
~ i , j !

Ji , jSiSj , ~2!

Then, for the canonic average of any physical observa
A, we can write

^A&5
Tr~Ae2bH!

Tr~e2bH!
5

( r(Cr
@~2b!r /r ! #Tr@AHi 1

. . . Hi r
#

( r(Cr
@~2b!r /r ! #Tr@Hi 1

. . . Hi r
#

5(
r

(
Cr

A~Cr !p~Cr !, ~3!

where b51/kBT, (Cr
denotes the summation over all o

deredr element sets of indicesCr5$ i 1 , . . . ,i r% ~Mayer dia-
grams! and

A~Cr !5
Tr@AHi 1

. . . Hi r
#

Tr@Hi 1
. . . Hi r

#
, ~4!

p~Cr !5
@~2b!r /r ! #Tr@Hi 1

. . . Hi r
#

( r(Cr
@~2b!r /r ! #Tr@Hi 1

. . . Hi r
#
. ~5!

Formally, if p(Cr)>0, we can consider it as a probabilit
distribution and write for the canonical average:

^A&canonic5^A~Cr !&p~Cr ! . ~6!

The essence of the Handscomb Monte Carlo method i
organizing a random walk in the space of the diagramsCr
with the limit distribution of the Markov chain being
p(Cr).

When we apply the above general scheme to theS51/2
Heisenberg model, we reformulate the Hamiltonian in
well-known representation of the transposition operators
follows:

H52( Ji , jEi , j1const, ~7!

whereEi , j is a transposition operator which exchanges
spin variables between sites i and j . Then
Hi52Jt1 ,t

18
Et1 ,t

18
and

P~Cr !5Hi 1
•••Hi r

~8!

is a permutation operator. Now we are able to calculate
necessary traces in Eq.~6! exactly. For every given diagram
Cr the contribution is given by
-

e
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TrCr
5Tr~Hi 1

•••Hi r
!5F)

j 51

r

Jt j ,t
j8G2k~Cr !, ~9!

where k(Cr) is the number of cycles in the permutatio
P(Cr).

The random-walk dynamics suggested by Handsco
consists of three types of steps:

~1! Step forward, which increases the number of bond
r in the diagramCr , adding a randomly chosen bond fro
the left:

Cr→Cri . ~10!

~2! Step backwards, which decreases the number
bonds, taking out one bond from the right:

Cr5 jCr 21→Cr 21 . ~11!

~3! Thecyclic transposition, or the movement of one bon
from right to the left:

Cr5 jCr 21→Cr 21 j 5Cr8 . ~12!

We should stress that, because of noncommutativity
the Hi elements, the last process is nontrivial, though
trace remains unaltered. As well, we introduce the proba
ity of the choice of theforward step f r (0, f r,1) and the
probability p( i ) of a random choice of the included bon
@( i p( i )51#.

Once an initial configurationCr is given, the realization
of the above steps in the stochastic procedure is constru
as follows: At first, we choose stepforward with probability
f r @step backwards is then chosen with probability
(12 f r)#. If the stepforward is chosen, then we choose th
bond i with probability p( i ), and with the transition prob-
ability T1(Cr ,Cri ) we acceptCri as a new state. Otherwis
the state remains unchanged. If abackwardsstep is chosen,
we perform the transition ~11! with probability
T2( iCr 21 ,Cr 21), otherwise we accomplish thecyclic trans-
position. The functionsT1 andT2 are defined as follows:

T1~Cr ,Cri !5minF1,
b~12 f r 11!TriCr

~r 11! f rp~ i !TrCr

G , ~13!

T2~ iCr 21 ,Cr 21!5minF1,
r f r 21p~ i !TrCr 21

b~12 f r !TrCr

G . ~14!

In practice, it is enough to chose the distributionsp( i )
and f r as follows:20

p~ i !5
1

N0
, f r5~11d r ,0!/2, ~15!

whered r ,0 is the usual delta function.
The random variables for the thermodynamic parame

can be devised using Eq.~5! for A(Cr), taking for A the
operators of different physical variables. For example, for
internal energy we have2

E5^H&52 K r

b L 1const. ~16!
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We should note here that there is a general analogy of
sample space for the canonic distribution in the Handsco
approach with a grand canonic distribution in some artific
chain polymer model, with the number of bondsr in Cr
playing the role of the number of particles. In this sense,
~16! for the internal energy appears to describe the aver
number of particles in this artificial polymer system.

The characteristic feature of the dynamics describ
above is that it provides for a very intensive mixing of t
states of the sample space. This is due to two facts. Bes
the transition probabilities being sufficiently high for an
kind of steps, the stepforward is accomplished on the righ
edge ofCr while the stepbackwardsis attempted from the
left side. This makes the procedure microscopically irreve
ible, thus increasing the mixing. However, this microsco
irreversibility satisfies the generalized detailed balan
principle.1,20

The results of the calculation of the internal energy fo
simple cubic Heisenberg ferromagnet by means of the Ha
scomb method are presented in Fig. 1. We have studied
tems of 43434 up to 32332332 spins. The length of the
Markov chains were about 1000 MC steps/spin, with ab
300 MC steps/spin left for the thermal relaxation.

To discuss the spreading of damage phenomenon
worth evaluating the Curie temperature by means of
same technique. We accomplished this by numerical dif
entiation of the internal energy with respect to temperatur
obtain the specific heat and to find the position of its ma
mum ~see Fig. 2!. The estimated Curie temperature appea
to bekBT/J51.6060.05, which agrees reasonably with th
data of Ref. 19, namelykBT/J51.6860.01.

III. SPREADING OF DAMAGE
IN HANDSCOMB DYNAMICS

To introduce the spreading of damage technique for
described dynamics, we have to analyze the elements o
sample space, i.e., the diagramsCr . We can describe thre
characteristics ofCr which describe it completely:

~i! The total number of bondsr ;
~ii ! The abundance of different bonds inCr ;
~iii ! The cyclic structure of the resulting permutatio

P(Cr).

FIG. 1. The thermal dependence of the internal energy per b
~in units of J) for the simple cubic Heisenberg magnetS51/2, as
obtained in our simulations using the Handscomb Monte Ca
method.
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We should note here that the first two characteristics
the same as they would be for a classical model treated
means of the Handscomb method, while in the third one
operator features ofP(Cr) are accounted for. If, for ex-
ample, we make a permutation of different elements ofCr ,
the bond abundance and the total number of bonds will
change, while the changes in the cyclic structure might
significant due to the noncommutativity of different parts
the Hamiltonian.

In this paper we discuss the spreading of damage te
nique based on the bond abundance inCr . The algorithm
applied is as follows:

~1! We set a Handscomb Monte Carlo procedure at a c
tain temperature and allow some time for the thermal rel
ation to equilibrium.

~2! We duplicate the equilibriumCr and alter one bond in
the replica.

~3! We apply the Handscomb procedure simultaneously
both configurations, using the same set of random numb
and attempting to introduce exactly the same bonds (t1t18)
when making the stepforward.

The principal moment of the technique is to introdu
adequately the Hamming distance. Firstly, we attempted
construct it as follows:

Da5K 1

N0
(
i 51

N0

~ni
~1!2ni

~2!!2L , ~17!

where the quantityni
(1) is the number of bondsi in the Cr

and ni
(2) is the same for the replica. We call Eq.~17! the

definition of theabsolute Hamming distance.
The thermal dependence ofDa is presented in Fig. 3 for

the system sizes 83838 and 16316316. The main fea-
tures of the presented curves are the following. Contrary
the spreading of damage in classical Ising-like systems,
peculiar behavior is observed in the vicinity of the critic
point. The curves are monotonically decreasing with the
crease of temperature. Another characteristic feature is
the absolute Hamming distance displays a strong size de
dence, which is stronger at low temperatures. Its displa
finite ~although small! values are probably due to the abov
mentioned intensive mixing of states. The numerical d
indicates that, after a sufficiently long time,Da shall vanish

d

o

FIG. 2. The thermal dependence of the specific heat per bond~in
units of kB). The points were obtained from numerical differenti
tion of the internal energy thermal dependence for lattices
16316316 sites.
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in the thermodynamical limit for all temperatures. Therefo
both Cr and its replica exhibit in equilibrium the same ave
age bond abundance.

However, the difference in the bond abundance itsel
not sufficient to completely characterize the degree of lik
hood of two diagram configurations, once they can also
fer in the total number of bonds as well as on their pro
cycle structure. In order to take the first of these possibilit
into account when computing the damage spreading, we
troduce another definition of the Hamming distance, wh
we call therelative Hamming distance:

Dr5K (
i 51

N0 Uni
~1!

r ~1! 2
ni

~2!

r ~2! U L , ~18!

the numbersr (1) andr (2) being, respectively, the total num
ber of bonds inCr and its replica. In practice, we are takin
into account the fact that the replica and the original confi
rations start to have different lengths as the Markov proc
evolves. By using the above definition, we are normaliz
the bond abundanceni to the total number of bondsr of each
diagram, and comparing just relative quantities. In this w
we can distinguish diagram configurations which exhibit
same bond abundance but distinct lengths.

The thermal dependence of the relative Hamming d
tance is displayed in Fig. 4 for systems of different sizes. T
characteristic feature of this dependence is that it displa

FIG. 3. The absolute Hamming distance vs temperature. No
a tendency to vanishing in the thermodynamic limit for all tempe
tures.

FIG. 4. The relative Hamming distance vs temperature. No
that it becomes roughly size independent below a character
temperatureTs,Tc .
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pronounced maximum at a temperature aroundkBT/J51.3,
the height of which depends on the size of the system v
weakly. We can associate this peak with some sort of a c
acteristic spreading temperatureTs,Tc .

Another interesting feature of the data in Fig. 4 is that
temperatures higher thanTs the smaller the system, th
greater the relative Hamming distance. As a possible ex
nation for this phenomenon, we can argue that, when
temperature is high enough, the cyclic structure in the p
mutations~or, in other words, the cluster structure on t
lattice! affects weakly the transition probabilities. Then, in
first approximation one can neglect its influence and the
fore the choice of bonds becomes random with a unifo
probability distribution. Only the total number of bondsr is
determined by the temperature andN0. In this case
^r &.N0, which causes the discussed behavior of the rela
Hamming distance.

The above arguments can be illustrated by a finite-s
scaling analysis~see Fig. 5!. The data on this figure sugge
that the closer the temperature is toTs , the weaker the size
dependence of the relative Hamming distance becomes.
happens, probably, due to the greater influence of the cy
structure on the dynamics in the vicinity and belowTs . In-
deed, at low temperatures the dominant distinction am
equilibrium diagram configurations shall be on their cyc
structure, which explain the fact thatDr(T→0)→0. The
shapes of the size dependences of the relative Hamming
tance display a tendency to saturation. However, the hig
the temperature is, the slower this saturation appears to
The crossover to size-independent behavior takes plac
Ts , while the arguments above rule out the saturation in
limit of very high temperatures. Therefore, we can dist
guish two dynamical regimes. ForT@Ts the dynamics is
dominated by the bond abundance on the diagram confi
rations, whereas the cycle structure of the permutations
comes the relevant feature forT!Ts . The fact that the ob-
served characteristic spreading temperature is smaller
the Curie temperature reflects the inability of the so defin
relative Hamming distance in distinguishing the cycle stru
ture of the diagrams.

IV. CONCLUSIONS

In the present paper we introduced a possible way of
plication of the spreading of damage technique to the Ha
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FIG. 5. The size dependence of the relative Hamming distan
It is roughly size independent forT,Ts , with kBT/J.1.3. Ex-
trapolation of the numerical results for the limitL→` indicates that
Dr vanishes forT→`, but remains finite for finite temperatures.
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2702 56I. V. ROJDESTVENSKI, M. L. LYRA, AND U. M. S. COSTA
scomb Monte Carlo dynamics. We chose as an example
S51/2 quantum Heisenberg ferromagnet on a simple cu
lattice. We showed that, for an appropriately defined ana
for the Hamming distance, named therelative Hamming dis-
tance, there is a characteristic temperature at which the d
age spreading is maximal, being roughly size independen
lower temperatures.

We should point out here that there might be anoth
perhaps, more physical way to introduce damage for
quantum Monte Carlo dynamics. If we define the Hamm
distance as a measure of the difference in the cycle struc
of the diagrams, we might be able to achieve a relation
tween the spreading properties and the magnetic orderin
the lattice. As well, when we investigate the spreading
damage in the bond abundance only, in some sense we
v.
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studying classical characteristics of the diagrams, as it
discussed before. The cyclic structure may provide us w
an insight to the quantization effects on the damage spre
ing. Work in this direction would certainly be valuable. Fu
thermore, it would be interesting to seek an explanation
the displayed size dependence of the relative Hamming
tance.
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