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Spreading of damage in the quantumS=3; Heisenberg ferromagnet
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We suggest a tool to investigate the processes of the ferromagnetic ordering in the quantum Heisenberg
model. We introduce the spreading of a damage technique based on the Handscomb Monte Carlo method and
apply it to the three-dimensional simple cubic Heisenberg ferromagnet. Particularly, we study the thermal
dependence of thgraph Hamming distancend employ a finite-size scaling analysis of its size dependence. It
is obtained that a properly defined Hamming distance displays a maximum at a characteristic temperature
T, below which it becomes roughly size independent. We discuss the properties of these dependences in
relevance to other thermodynamic functions of the mod&0163-182607)02829-4

. INTRODUCTION so-called critical spreading temperatufg.'*2 Within the
heat-bath dynamics and with a fixed damaged spin trick, it
The Handscomb Monte Carlo method was introduced ircan be shown that is the same as the Curie temperature
1962-1964(Refs. 1 and 2in a form applicable for the cal- T for Ising spin system&* However, results reported from
culation of the thermodynamic properties of tBe 1/2 iso-  simulations using Glauber and Metropolis algorithms indi-
tropic quantum Heisenberg ferromagnet. Since then, theate thatT, differs from T by several percent indBbulk
technique has been generalized by many authors and provesistems;*® and thatT is slightly smaller tharTc in two
itself to be a powerful tool for the investigation of the critical dimensions’ It is worth mentioning that the thermal prop-
properties of quantum spin modélsl® The main feature of erties of the Hamming distance are strongly dependent on the
this technique in comparison with the standard Metropoligype of dynamic rules used in the Monte Carlo process.
technique is the fact that the sample space is not related #/hen the Metropolis dynamics is used, a typical thermal
any kind of physical phase space. The Markov chain is condependence of the Hamming distance is a step function,
structed over the space of ordered Mayer diagrams and it ighich is equal to 0.5 abov& and is zero below it. In the
the diagrammatic series of the partition function that is cal-cases of Glauber and heat-bath dynamics, the behavior of the
culated by means of the Monte Carlo method. ConsequenthHamming distance is different and is proved to be dependent
the set of probabilities utilized in the Handscomb techniqueon the way the damage is introduc€drhis is quite different
has no relevant observable analogy, as the canonic Gibligom the usual statistical Monte Carlo modeling where all the
exponentials in the standard Monte Carlo. dynamics give the same values for the magnetization, sus-
In the past few years, the spreading of the damage tecleseptibility, and specific heat, differing only in the conver-
nique has been widely used to study the critical properties ofience rate?
classical Ising-like systemi$7*3The concept of the spread- It is a problem, however, to introduce a similar technique
ing of the damage technique in general can be formulated dsr a quantum Monte Carlo method. The main reason is the
follows. At first we apply the Monte Carlo method to reach above-mentioned lack of the correspondence between the
the thermal equilibrium at a given temperature. Then, wesample space of the Handscomb procedure and the physical
take the obtained equilibrium configuration and make an exphase space of the investigated system.
act replica of it. After that, we introduce @gamageinto the In this paper we introduce a spreading of the damage
replica, i.e., we modify it compared to the original configu- technique for the Handscomb Monte Carlo dynamics. In this
ration. For example, in the case of a standard Monte Carltechnique the damage is introduced as a perturbation in the
applied to theS=1/2 Ising model, this alteration might be bond structure of the Mayer diagrams, which form the
the flipping of one spin in the obtained equilibrium configu- sample space for the Markov chain. In Sec. II, we discuss the
ration. After the damage has been introduced, we initiate twddandscomb algorithm in the view of the possible ways to
synchronous Monte Carlo procedures, taking as the initiaintroduce the damage and to define the Hamming distance.
states the two configuratiorimodified replica and original ~ In Sec. Il we present the results of our simulations for the
Both procedures are identical in the sense of using the sanibree-dimensional simple cubic Heisenberg ferromagnet and
set of random numbers and transition probabilities. discuss the thermal and size dependences of the Hamming
The quantity that is calculated during the described prodistance in comparison with other thermal properties. In the
cess is thedamming distancé® which is the measure of how conclusions, we make a brief summary of our results and
different both spin configurations become as time goes orsketch the prospectives of our approach.
For the case of the Ising model the Hamming distance is the
average reIative_numper of Igttice sites \.Nhich.have different Il. THE HANDSCOMB MONTE CARLO DYNAMICS
values of the spin variables in both configurations, averaged
along the Markov chain. Before introducing the spreading of damage technique for
The Hamming distance displays a critical behavior at thehe Handscomb Monte Carlo method it is worth sketching
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the Handscomb method itself and discuss its internal dynam- r

ics. Tre, =Tr(Hi,---Hi)=|11 J; «
Let the Hamiltonian of the system to be represented in the =1

following form: where k(C,) is the number of cycles in the permutation
- P % random-walk d d by Handscomb

_ _ g The random-walk dynamics suggested by Handscom

H Zl Hi,  [Hi.Hj]#0, @ consists of three types of steps:
(1) Stepforward, which increases the number of bonds

where[A,B]=AB—BA, with Ny being the total number of | iy the diagramC, , adding a randomly chosen bond from
bonds in the system. For example, we write the Heisenbergq |efi:

Hamiltonian in the absence of applied magnetic field as

2K(Cn), (€)

C,—C,i. (10

H=—2“Zj) 3i 1SS, 2) (2) Step backwards which decreases the number of
bonds, taking out one bond from the right:
Then, for the canonic average of any physical observable

A, we can write C=jCr1—Cry. 11
—BHY S S (=B THAH: ...H (3) Thecyclic transpositionor the movement of one bond
( _THAe ™) = cl(~ AV IMITIAH, ) from right to the left:
Tr(e ) 2, Ec[(—=B)r!]THH; ... H;]
Cr=er,1—>Cr,1j=Cr’. (12
:Z ;r A(C)P(Cy), ®) We should stress that, because of noncommutativity of

_ the H; elements, the last process is nontrivial, though the
where B=1kgT, Z¢_denotes the summation over all or- trace remains unaltered. As well, we introduce the probabil-

deredr element sets of indice8,={i,, . ...} (Mayer dia- ity of the choice of theorward stepf, (0<f,<1) and the
grams and probability p(i) of a random choice of the included bond
[Zip(i)=1].
Tr[AHi1 .. 'Hir] Once an initial configuratiol€, is given, the realization
A(Cy)= TH AT (4)  of the above steps in the stochastic procedure is constructed
E as follows: At first, we choose stdprward with probability
, f, [step backwards is then chosen with probability
[/, L H ] (1—1,)]. If the stepforward is chosen, then we choose the
P(Cr)= zrzcr[(—lg)r/r!]Tr[Hil .. _Hir]' 5) bondi with probability p(i), and with the transition prob-

ability T*(C,,C,i) we accepC,i as a new state. Otherwise

distribution and write for the canonical average: we perform the transition (11) with ~probability
T7(iC,_1,C,_1), otherwise we accomplish thoyclic trans-
(A) canonic= (A(C))p(c,) - (6)  position The functionsT* andT~ are defined as follows:
The essence of the Handscomb Monte Carlo method is in T+(C, .C,i)=min| 1 B(A=Tr1)Tric, (13)
organizing a random walk in the space of the diagr&ps T (r+1)f,p(i)Tre |
with the limit distribution of the Markov chain being '
P(Cy). rf,1p(i)Trc
When we apply the above general scheme toShel/2 T (iC,_1,C,_;)=min 1— 2 (14)
Heisenberg model, we reformulate the Hamiltonian in the B(1—f)Tre,

well-known representation of the transposition operators as
follows: In practice, it is enough to chose the distributign@)

andf, as follows?°
H:_E \]i‘jEi’j‘FConSt, (7) ) 1
pi)=5r fi=(1+6.0/2, (15
whereE; ; is a transposition operator which exchanges the 0
spin variables between sitesi and j. Then Wwhereé, g is the usual delta function.

H,= _‘]tl,t’Etl,t’ and The random variables for the thermodynamic parameters
vt can be devised using E@5) for A(C,), taking for A the
P(C)=H; - H; (8)  operators of different physical variables. For example, for the

' internal energy we hate
is a permutation operator. Now we are able to calculate the
necessary traces in E() exactly. For every given diagram E=(H)=— <

r
p— + .
C, the contribution is given by > const (16)

B
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FIG. 1. The thermal dependence of the internal energy per bond FIG. 2. The thermal dependence of the specific heat per tond
(in units of J) for the simple cubic Heisenberg magrt 1/2, as  units of kg). The points were obtained from numerical differentia-
obtained in our simulations using the Handscomb Monte Carlaion of the internal energy thermal dependence for lattices of
method. 16X 16X 16 sites.

We should note here that there is a general analogy of the We should note here that the first two characteristics are
sample space for the canonic distribution in the Handscomthe same as they would be for a classical model treated by
approach with a grand canonic distribution in some artificialmeans of the Handscomb method, while in the third one the
chain polymer model, with the number of bondsn C,  operator features oP(C,) are accounted for. If, for ex-
playing the role of the number of particles. In this sense, Eqample, we make a permutation of different element£pf
(16) for the internal energy appears to describe the averagée bond abundance and the total number of bonds will not
number of particles in this artificial polymer system. change, while the changes in the cyclic structure might be

The characteristic feature of the dynamics describegignificant due to the noncommutativity of different parts of
above is that it provides for a very intensive mixing of the the Hamiltonian.
states of the sample space. This is due to two facts. Besides In this paper we discuss the spreading of damage tech-
the transition probabilities being sufficiently high for any nique based on the bond abundanceCin The algorithm
kind of steps, the steforward is accomplished on the right applied is as follows:
edge ofC, while the stepbackwardsis attempted from the (1) We set a Handscomb Monte Carlo procedure at a cer-
left side. This makes the procedure microscopically irreverstain temperature and allow some time for the thermal relax-
ible, thus increasing the mixing. However, this microscopication to equilibrium.
irreversibility satisfies the generalized detailed balance (2) We duplicate the equilibriur€, and alter one bond in
principle:2° the replica.

The results of the calculation of the internal energy for a  (3) We apply the Handscomb procedure simultaneously to
simple cubic Heisenberg ferromagnet by means of the Handdoth configurations, using the same set of random numbers
scomb method are presented in Fig. 1. We have studied syand attempting to introduce exactly the same bortds; X
tems of 4<4Xx 4 up to 32< 32X 32 spins. The length of the when making the steforward.

Markov chains were about 1000 MC steps/spin, with about The principal moment of the technique is to introduce
300 MC steps/spin left for the thermal relaxation. adequately the Hamming distance. Firstly, we attempted to

To discuss the spreading of damage phenomenon it isonstruct it as follows:
worth evaluating the Curie temperature by means of the \
same technique. We accomplished this by numerical differ- 138
entiation of the internal energy wi D :<_2 (”'(1)_”'(2))2> * (17)

gy with respect to temperature to A=\ Ngr=, M i
obtain the specific heat and to find the position of its maxi-
mum (see Fig. 2 The estimated Curie temperature appearedvhere the quantityli(l) is the number of bonds in the C,
to bekgT/J=1.60+0.05, which agrees reasonably with the and n{?) is the same for the replica. We call E€L7) the
data of Ref. 19, nameligT/J=1.68+0.01. definition of theabsolute Hamming distance

The thermal dependence D, is presented in Fig. 3 for
the system sizes 88X 8 and 16<16X16. The main fea-
tures of the presented curves are the following. Contrary to
the spreading of damage in classical Ising-like systems, no

To introduce the spreading of damage technique for thgeculiar behavior is observed in the vicinity of the critical
described dynamics, we have to analyze the elements of thmint. The curves are monotonically decreasing with the in-
sample space, i.e., the diagra@s. We can describe three crease of temperature. Another characteristic feature is that
characteristics o€, which describe it completely: the absolute Hamming distance displays a strong size depen-

(i) The total number of bonds dence, which is stronger at low temperatures. Its displayed

(ii) The abundance of different bonds@ ; finite (although smallvalues are probably due to the above-

(i) The cyclic structure of the resulting permutation mentioned intensive mixing of states. The numerical data
P(C,). indicates that, after a sufficiently long timB, shall vanish

Ill. SPREADING OF DAMAGE
IN HANDSCOMB DYNAMICS
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FIG. 3. The absolute Hamming distance vs temperature. Notice FIG. 5. The size dependence of the relative Hamming distance.
a tendency to vanishing in the thermodynamic limit for all tempera-It is roughly size independent fof <Ts, with kgT/J=1.3. Ex-

tures.

in the thermodynamical limit for all temperatures. Therefore
both C, and its replica exhibit in equilibrium the same aver-

age bond abundance.

trapolation of the numerical results for the liniit-« indicates that
D, vanishes folT—¢e, but remains finite for finite temperatures.

'‘pronounced maximum at a temperature arokg@/J=1.3,

the height of which depends on the size of the system very
weakly. We can associate this peak with some sort of a char-

However, the difference in the bond abundance itself isycieristic spreading temperatufe<T, .

not sufficient to completely characterize the degree of likeli-

Another interesting feature of the data in Fig. 4 is that for

hood of two diagram configurations, once they can also diftemperatures higher thafiy the smaller the system, the
fer in the total number of bonds as well as on their propeigreater the relative Hamming distance. As a possible expla-
cycle structure. In order to take the first of these possibilitiesiation for this phenomenon, we can argue that, when the
into account when computing the damage spreading, we inemperature is high enough, the cyclic structure in the per-
troduce another definition of the Hamming distance, whichmutations(or, in other words, the cluster structure on the

we call therelative Hamming distance

ni(l) ni(Z)

0@

)

lattice) affects weakly the transition probabilities. Then, in a
first approximation one can neglect its influence and there-
fore the choice of bonds becomes random with a uniform
probability distribution. Only the total number of bondss
determined by the temperature arid,. In this case

the numbers® andr® being, respectively, the total num- (ry=Ng, which causes the discussed behavior of the relative

ber of bonds inC, and its replica. In practice, we are taking famming distance. . L
into account the fact that the replica and the original configu- 1€ above arguments can be illustrated by a finite-size
rations start to have different lengths as the Markov proces&c@ling analysigsee Fig. 3. The data on this figure suggest
evolves. By using the above definition, we are normalizingthat the closer the temperature isTo, the weaker the size

the bond abundanag to the total number of bondsof each

dependence of the relative Hamming distance becomes. This

diagram, and comparing just relative quantities. In this way12PPens, probably, due to the greater influence of the cyclic
we can distinguish diagram configurations which exhibit theStructure on the dynamics in the vicinity and beldw. In-

same bond abundance but distinct lengths. o ) X i .
The thermal dependence of the relative Hamming dis€quilibrium diagram configurations shall be on their cycle

tance is displayed in Fig. 4 for systems of different sizes. Thétructure, which explain the fact th& (T—0)—0. The
characteristic feature of this dependence is that it displays ghapes of the size dependences of the relative Hamming dis-

deed, at low temperatures the dominant distinction among

tance display a tendency to saturation. However, the higher
the temperature is, the slower this saturation appears to be.

07 ' ' ‘ ' The crossover to size-independent behavior takes place at
O - =0 4x4x4 : ; ;
0.6 - N O — ©8x8x8 Ts, while the arguments above rule out the saturation in the
) jﬁ??g» v -—v 16x16x16 limit of very high temperatures. Therefore, we can distin-
05 | F T 0BG | guish two dynamical regimes. FaF=>T, the dynamics is
o f dominated by the bond abundance on the diagram configu-
045 ¢ rations, whereas the cycle structure of the permutations be-
o comes the relevant feature for<T,. The fact that the ob-
03 r I served characteristic spreading temperature is smaller than
\\‘\‘qﬂ' the Curie temperature reflects the inability of the so defined
0'20_0 10 20 30 40 50 relative Hamming distance in distinguishing the cycle struc-

ture of the diagrams.

IV. CONCLUSIONS

FIG. 4. The relative Hamming distance vs temperature. Notice
that it becomes roughly size independent below a characteristic In the present paper we introduced a possible way of ap-

temperaturel < T,..

plication of the spreading of damage technique to the Hand-
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scomb Monte Carlo dynamics. We chose as an example th&udying classical characteristics of the diagrams, as it was
S=1/2 quantum Heisenberg ferromagnet on a simple cubidiscussed before. The cyclic structure may provide us with
lattice. We showed that, for an appropriately defined analogn insight to the quantization effects on the damage spread-
for the Hamming distance, named tfedative Hamming dis-  ing. Work in this direction would certainly be valuable. Fur-
tance there is a characteristic temperature at which the danthermore, it would be interesting to seek an explanation for
age spreading is maximal, being roughly size independent dhe displayed size dependence of the relative Hamming dis-
lower temperatures. tance.

We should point out here that there might be another,
perhaps, more physical way to introduce damage for this ACKNOWLEDGMENTS
guantum Monte Carlo dynamics. If we define the Hamming
distance as a measure of the difference in the cycle structure This work was partially supported by CNPqg and FINEP
of the diagrams, we might be able to achieve a relation befBrazilian research agencjes.V.R. would like to acknowl-
tween the spreading properties and the magnetic ordering iedge the kind hospitality of the Physics Department of
the lattice. As well, when we investigate the spreading ofUFAL and the FAPEAL agencyAlagoas, Brazjl for finan-
damage in the bond abundance only, in some sense we at&l support of this study.
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