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We report a detailed study of single-ion anisotropy and crystal-field effects in rare-earth clgy@tes,
(R=Nd, Pr, and Sm It is found that most of the magnetic properties are mainly due to the coupling between
the copper and rare-earth magnetic subsystem which exhibits a large single-ion anisotropy. This anisotropy
prefers ordering of rare-earth moments al¢hg0] for R=Pr and Nd and alonf001] for R=Sm. Combined
with a pseudodipolar interaction arising from the anisotropy of Ri€u exchange, we can explain the
magnetic structures of these materials. The spin reorientation transitions,@uld can be explained in
terms of a competition between various interplanar interactions which arises because of the rapid temperature
dependence of the Nd moment below about 100 K. Finally we introduce a simple two-dimensional model for
the Nd spin-wave spectrum. For zero wave vector, this model gives two optical modes involving Cu spins
whose temperature-dependent energies agree with experimental results and an acoustic mode whose energy is
predicted to be of ordey2k,A~5ueV, wherek, is the fourfold in-plane anisotropy constant akds the Nd
doublet splitting[S0163-18207)04525-4

[. INTRODUCTION (SCO, coexisting rare-earth magnetism and superconductiv-
ity has also been observéd@herefore the nature of magnetic
Magnetic interactions in rare-eartR) cuprateR,CuQ, interactions which determine the three-dimensio(@D)

(RCO) systems have been the subject of extensive §t‘8dy magnetic structure and the correlation between rare-earth
for various reasons. First and foremost Bieuprategwhich ~ magnetism and superconductivity are both of fundamental
become superconducting under electron dophaye a sim-  Importance. o . .
pler structure than the hole-doped superconducting cuprates. e start by giving a brief overview of some of the mag-
In particular,R,CuO, crystallizes in the tetragonal structére Netic properties of th&CO systems. An extensive study of
known as thel’ phase in which there are no apical O ions, neutron, specific heat, magnetization measurements, Raman,

Hence CuO sheets form a planar square lattice. However, ﬂnd_many more experiments have [ed to the followmg con-
%Iusmns. First of all, many magnetic properties of the Cu

has been observed that for too small or too large rare-eart bsystem irRCO are the same as those in LEM par-

ions, theT’ phase is nsoj stable, as evidel_’nt from thg djstorte icular, one hag1) very strong Cu-Cu exchange in the CuO
structlfre of G4Cu0,.”" Pr,Cu0, (PCO IS at the !'m't of plane, and2) very small Cu-Cu interplane exchange inter-
the T’ phase: the next compound V,‘”th a light®,  5ctions. As a consequené® the antiferromagneti¢AFM)
La,CuO, (LCO), crystallizes not in thel" phase, but in-  |ong range ordering of Cu spins is characteristic of a 2D
stead in the more compress@ephase, where the out-of- Hejsenberg antiferromagnet with weak anisotropies and in-
plane oxygens move to apical positiohin this phase there terplanar couplings which lead to & &ldemperatureTy , in

is an orthorhombic distortidfi which allows the existence of the range 250—-320 R.The fact that these features remain
a weak Dzialoshinskii-Moriya interaction, which gives rise the same in th&CO family indicates that the presence of the
to weak ferromagnetistt. Besides the direct structural evi- R subsystem does not significantly modify the properties of
dence from x-ra§ and neutron diffractiofi,the absence of the Cu subsystem. For example, the anisotropy of the spin-
weak ferromagnetism in thR,CuQ, systent with R=Nd,  1/2 Cu subsystem can obviously not be attributed to a single-
Pr, Sm, etc. is clear evidence for the absence of any distoien mechanism. Theoretical efforts, culminating in the work
tion away from tetragonal symmetry. Second, rare-earth cuef Refs. 12 and 13 have shown that this anisotropy can be
prates exhibit novel magnetic properties involving both theunderstood as arising from a small anisotropy in the ex-
Cu andR subsystems. In the case of Ce-doped,8m0O,  change tensor due to a mechanism involving the combined
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effects of Coulomb exchange and spin-orbit coupling. Wefavors alignment in the plane alofig[100] for NCO and
assume that the CuO planes are not very differelR@O  PCO and alond110] for SCO.

than in the tetragonal cuprate &uCl,0, (SCCQ which As mentioned above, we assume that the Cu-Cu interac-
has noR ions, so that the anisotropy of the Cu-Cu exchangedions are similar to those in LCO or other cuprates. Next, one
is the same in th&®CO systems as in SCCH1° may consider the Nd-Cu interactions. It has been sugg@sted

However, there are several important differences in thdhat the strongest interaction is a ferromagnetic interaction
magnetism and 3D spin structure of rare-earth cuprates arleetween the Cu ions and the two Nd ions which are its near-
other cuprates without a magnetic rare-earth ion, such agst neighbors along the tetragonal axis. In Sec. IV we discuss
LCO 2 and SCCA*!> Among these differences are the fol- the experimental evidence which impfshat the dominant
lowing. (1) Although it is now understood that the ions  Cu-Nd interactions are instead those between nearest neigh-
exhibit magnetic moments that are mainly induced by theboring Nd and Cu planes. As we shall discuss, these interac-
exchange field of the Cu iofisthe role of theR-R interac-  tions cannot be the usual isotropic exchange interactions, be-
tions is less well quantified2) Unlike LCO and SCCO, in cause in that case the exchange field on a Nd ion would
RCO the Cu spins prefer a noncollinear arrangeffent vanish when summed over the neighboring plaquette of Cu
(which we will describe in detail belowAlthough it seems ions. Accordingly, it is necessary to consider anisotropic in-
clear that this noncollinear structure is due to the presence @éractions, such as dipolar interactidfigdowever, the dipo-
the R ions, the detailed analysis of the energetics of thesdar interaction has the wrong algebraic sign to explain the
noncollinear structures on the basis of a microscopic moddbw-temperature phase of NCO. In any event, the magnitude
has not yet been give3) In particular, the sequence of spin of the dipolar interaction is too small to be relevant in this
reorientation phase transitions in MauO, (NCO)® (and the ~ context. For NCO it is therefore necessary to introduce a
absence of such reorientations in PClias not been ex- pseudodipolar interaction which results from the anisotropic
plained in terms of a microscopic modé#) The spin-wave component of the Nd-Cu exchange interactibithe domi-
spectrum observed in NCQRefs. 17—19 has not yet been nance of this interaction implies that a Cu plane together
obtained from a microscopic model which is consistent withwith the nearest-neighboring Nd planes are tightly coupled.
the lowest temperature spin structure and which also coe then explain the sequence of spin reorientations in NCO
rectly accounts for the temperature dependence of the Cand the lack of such transitions in PCO in terms of smaller
modes at zero wave vector. couplings between adjacent tightly bound units. Within these

There have been several theoretical efforts to understargimaller couplings, we infer the existence of competing Nd-
these properties. An attempt to explain some of these magNd, Nd-Cu, and Cu-Cu interactions. The rapid temperature
netic properties is that of Yablonsk.He developed a dependence of the Nd moment has a crucial effect on this
theory for the magnetic structure of NCO based on the symeompetition and, with a proper choice of parameters, can
metry of the system. He concluded that the noncollinear spitead to spin reorientation transitions at the obsetvedh-
structure was stabilized by biquadratic interactions. Recentlperatures. In addition, this result explains the absence of such
some of the present authors have developed a thkary transitions in PCO at atmospheric pressure. This explanation
which the various anisotropic magnetic interactions in theand the inferred dominance of the nearest-neighbor Cu-Nd
cuprates can be given a microscopic explanation. From theseteractions is the second important result of the present pa-
interactions it was possible to have a global understanding gfer.
the 3D spin structure of various layered magnetic systems The final phenomenon which we address in Sec. V of this
but the magnetic structure of NCO remained unexplainedpaper is the spin-wave spectrum of NCO. There are two new
The spin-wave spectrum of NCO has been the object of sevngredients in NCO which are not present in, say, LCO. The
eral experimental~'°and one theoretical investigatiéhAs first of these is the existence of low-energy excitations on the
a result of these studies one has a reasonable qualitative urare-earth sublattices. These excitations will give rise to
derstanding of the spectrum. However, as we will discusshearly flat optical magnon modes, reminiscent of the analo-
there are some inconsistencies in the calculation that shoulgous rare-earth excitations in the rare-earth iron gafiets.
be removed in order to arrive at a coherent picture of theThe second new feature of NCO is the noncollinearity of
spin-wave spectrum and its relation to the magnetic strucboth the Cu and Nd moment8 Another interesting feature
tures of NCO. In summary, a detailed consistent microscopiof this system is the existence of a Goldstone mode which
explanation of the properties mentioned in the precedingeflects a symmetry of the dipolar interactions with respect to
paragraph does not yet exist. It is the purpose of the preseat suitable rotation of the moments in the easy plane. When
paper to remedy this situation. the fourfold anisotropy which must occur in a tetragonal en-

Now we summarize the general features of the microvironment is taken into account, this mode will develop a
scopic interactions we will invoke in order to explain the small gap. Our model for the calculation of the spin-wave
magnetic properties and phases of NCO, PCO, and SCO. spectrum is somewhat similar to Thalmeié?'except that,
Sec. Il we present detailed calculations of the crystal-fieldas mentioned, we assume a different Cu-Nd interaction to be
states which verify previous wofk?* which showed that dominant than does Thalmeier. Also, because we wish to
NCO and PCO have an easy plane perpendicular to the teeproduce the interesting observétemperature dependence
tragonal axis. The same approach provides a microscopief the optical spin-wave modes which involve the Cu spins,
explanation for the observatiothat for SCO the tetragonal we introduce a simplified 2D model which includes both Nd
axis is an easy axis. This is the first important result of theand Cu spins, rather than assume a static Cu exchange field
present paper. We also obtain a systematic treatment of ttes Thalmeier does. Our treatment indicates the need for ad-
fourfold in-plane anisotropy due to the crystal field which ditional experiments to probe the very low-energy regions of
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FIG. 1. Possible relative orientations of spins
in the chemical unit cell of NgCuO,. Here the
open circles are Cu ions and the filled ories
ions. Experiments in a magnetic fie{Ref. 16
show that the actual structures are the noncol-
linear ones. We also indicate several of the inter-
actions in our models for NCO.

(c) Domains of Collinear Phase 1&I1I (d) Domains of Collinear Phase I

the spin-wave spectrum to locate the Goldstone mode reand whose existence has been inferred from experiment in a

ferred to above. related material' As we shall see, such an in-plane anisot-

ropy arises naturally in NCO from the much larger single-ion

Il. MAGNETIC STRUCTURE OF R,CUO, an!s?]tbropy of the Nd ion in tthtzI cbrys\t(aIbTIe%ailc f|elgé)(f)|ts
(R=ND, PR, AND SM) neighboring ions, as suggested by YablonskyFor

the single-ion mechanism may not be dominant, as we dis-

We summarize here various experimental results on theuss in Sec. ). In the ordered phase the Cu magnetization,
structure and properties of tHRCO compounds which are i.e., the thermally averaged value of the Cu sp),, of all
relevant to our work. We first discuss the features commorthe cuprates is the same and can be represent&&®%s®*
to all these materials. As the temperature is lowered, the 2D
AFM correlations between Cu ions, which are well described
by the 2D AFM Heisenberg modé&,grow and, in the pres- (Sr=B(1-TITY’. @)
ence of even weak interplanar coupling, [@ad a phase
transition at a temperature of ordEg~300 K, below which ~ For many cuprate@~0.2532*>3¢To reproduce(S); over
there is long-range 3D AFM orderingThe fact that the the entire temperature range for NCO we get0.3 (Ref.
magnetic order in somRCO systems is noncollinear, rather 33) and takeB=0.4.
than collinear as in LCO, is not expected to have a signifi- Next we discuss the noncollinear order found in the
cant effect on Ty.) In contrast to materials like RCO’s. In Fig. 1 we show two forms of noncollinear order
K ,MnF,,2° the magnetic anisotropy in the cuprates is suchand their collinearly ordered counterparts for NCO. In zero
that the moments lie in the plane perpendicular to the tetragnagnetic field the diffraction spectrum of a noncollinear
onal axis. In contrast to many materials where such anisotstructure is identical to that from a sample with equal popu-
ropy is explained in terms of single-ion anisotropy, herelations of domains of the two corresponding collinear
because the Cu spin is 1/2, this anisotropy has been estructures’ This fact caused some confusion which was re-
plained in terms of a Hubbard model in which the combinedsolved when the application of a symmetry-breaking mag-
effect of Coulomb exchange and spin-orbit interactions leadhetic field®>® showed that the noncollinear structures were
to a small anisotropy in the exchange interactions betweethe correct ones for NCO. Apart from field-dependent
neighboring Cu ions%'21%n NCO we assume that as far as neutron-diffraction experiments, the strongest evidence for
the Cu ions are concerned the picture for LCO remains inthe noncollinear spin structure comes from the single-crystal
tact. The fact that the interplanar couplings are stronger immagnetization experiment of Chereyal 28 They interpreted
NCO than in LCO will have only a small effect on the actual their data as showing a first-order phase transition for a field
value of Ty. In tetragonal SCCO, a small in-plane anisot-H applied along 4100] direction and a second-order phase
ropy in which the[100] direction for the Cu moments is transition forH applied along §110] direction, indicating
preferred over th¢110] direction, has been predicted theo- that the easy axis of the magnetization for Cu moments is
retically on the basis of zero-point spin-wave fluctuatiéhs, [100] in the NCO system. We now summarize the experi-
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I and III IT

(a) Noncollinear Phase of PCO (b) Noncollinear Phase of SCO

FIG. 2. The magnetic unit cell for the magnetically ordered
phases I, Il, and Ill of NCO. Note that the magnetic unit cell is
twice as large as the chemical unit cell shown in Fig. 1. Also note
that the[100] directions of the chemical unit cell are the diagonals
of the square plaquettes shown here. The open circles are Cu ior
and the filled one® ions. Note that in all phases each set of three
planes(one Cu plane together with its two neighboring Nd planes
forms a rigid unit(here labeled A and Bwithin which the relative
spin orientations remain fixed. In passing from one phase to anothe
the relative orientations of one rigid unit with respect to its neigh-
boring rigid unit is reversed. At the far right we indicate the inter-
action energies(, Y, andZ, associated with interactions between
spins in adjacent sets of planes. In each case, the interactions a (c) Collinear Domains of SCO
those between nearest neighbors of the type in question.

FIG. 3. As in Fig. 1.(a) The magnetic structure of PC(h) The

ments which bear on the magnetic structure and single-ioRoncollinear structure attribute@®efs. 34,47 to SCO forT<6 K.
properties of thesRCO systems. We algo_show in(c) the corresponding collinear structures, since
the existing data does not completely exclude them.

A. NCO performed* and the results have been interpreted in terms of

As the temperature is reduced, Taj~255 K the Cu mo- @ crystalline electric-field model. In the presence of the ex-
ments order in the noncollinear structure of Figa)l(phase change field from the Cu and Nd ions, the lowest doublet of
1), at T- =75 K the Cu spins reorder with the noncollinear the Nd ions has a splitting in energt~0.32 meV in the
structure of Fig. (b) (phase I}, and atT-=30 K the Cu  T=0 limit, as determined by specific-heat measureménts.
spins undergo another reorientation back to phase Ill whiciRaman experimerit$ give A=0.35 meV atT=20 K and
has the same noncollinear order as phase I, the higtinelastic neutron-scattering measureméhigive A=0.35
temperature phasé®39Below 2 K, there is evidence for meV.
two more transition§® The transition aff~1.5 K is attrib-
uted to ordering of Nd spins due to the Nd-Nd exchange
interactions and the one at 0.5 K has been attributed to
“hyperfine-induced nuclear polarization” by Chattopadhyay Long-range order of the Cu spins develops below
and Siemensmeyét.Nd moments have also been observedTy~285 K, with an induced Pr ordering observed at lower
below Ty, but above 1.5 K, which are supposed to be due tdemperatures. The Cu spin structure is a simple antiferromag-
the exchange interaction with the Cu moments. At 0.4 K thenet in thea-b plane andaccording to the neutron-scattering
Nd moment has been measured to beu.3 experiment with applied fielti along the[100] direction) is

In phases | and Il the Cu and Nd moments along zhe noncollinear with the moments alternating along {he0]
axis are parallel, while in phase Il they are antipardfféf  and[010] directions as one moves along th@xis as shown
This implies, as shown in Fig. 2, that the relative orientationsn Fig. 3@.% The ordered moments for the Cu and Pr spins
of the Cu spins within one plane and the Nd spins in theat about 10 K are 0.4 and 0.08g, respectively’. As the
nearest-neighboring planes above and below this Cu plartemperature is lowered no further transitions have been ob-
are fixed and do not change in going from one phase tserved in this system. However, under pressure of 0.25 GPa,
another. PCO behaves like NCO in having two spin reorientation

A systematic investigation of the crystal-field levels of the transitions’® At atmospheric pressure a nearest-neighbor ex-
Nd ion using inelastic neutron scattering has beerchange constant=(130*=30) meV and a spin-wave gap of

B. PCO
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~5 meV was observed, which correspond to the reduced H="Hecgr—J-h=Hcgrt Ve, 2)
anisotropy constant=(J—Jy,)/J~2X 10" 4. A systematic
investigation of the crystal-field levels of the Pr ion using
inelastic neutron scattering has been perforé&tiand the
results have been interpreted in terms of a crystallin
electric-field model.

whereHcge is the crystal electric-fieldCEF potential and
Ve IS the perturbation due to the exchange field. Our aim
dere is not to obtain a complete fit of all spectroscopically
determined crystal-field energy levels, but rather to explain
the anisotropy of theR ions. Accordingly we restrict our
treatment to states in the lowebkmultiplet. Within this mul-

C. SCo tiplet vectors are proportional tb according to the Wigner-

SCO differs significantly from NCO and PCO in several Eckart theoren® Accordingly, we arbitrarily define the ex-
of its magnetic properties. As the temperature is reduceghange field so that it couples dcand has the dimensions of
through Ty=280 K, the Cu moments order in a structure €Nergy.
with nonzero[ 330] neutron Bragg intensity, implying exis-
tence of either the noncollinear structure of Figb)lor its A. Crystalline electric-field Hamiltonian Hcge
collinear counterparts as shown in Figd1***’ Neutron-
scattering experimentts®” with an applied field along a 1, pe the most general one consistent with EBisite sym-
[110] direction indicate no hysteresis above 20 K, which ismetry Dy, is
consistent with the noncollinear spin structure shown in Fig. T
1(b) and exclude the possibility of collinear ordering. How- k 4 \123
ever, below 20 K, unlike for NCO and PCO, strong hyster-  Hege= >, > AM > (rYmQy)),
esis effects were observed. Such effects are not expected for k=24,6m=-k 2k+1] =1
noncollinear spin orderingbut are for collinear ordering )
The definitive determination of the spin structure in SCO hasvhere the sum overr is over the three electrons in the un-
to wait for a magnetization or neutron-scattering experimenfilled 4f shell and the sum ovek is restricted to 2, 4, and
with an applied field along §100] direction. Such experi- 6 because only these values lohave nonzero matrix ele-
ments were performed for NCO and unambiguously demonments within the manifold of=3 states of the # shell. In
strated the noncollinear spin structure of N&G° the sum ovem only terms for whichjm|/4 is an integer or

The second major difference between SCO and ofher zero are nonzero, as a result of the fourfold axis of rotation
cuprates is the magnetic ordering of fReéons. Above about about thez axis at theR site. The factorA]’ are approxi-

10 K, unlike NCO or PCO, no evidence was found for anymately the same for different rare earths in a given environ-
magnetic moment associated with Sm ions. In fact, our calment. It has been shown by Stev&hthat when we restrict
culations predict this moment to be much smaller than ingttention to a manifold of states corresponding to a single

NCO or PCO. So, although in principle this induced Smyalue ofJ, then this potential can be rewritten in terms of the
momentmustexist, it is apparently too small to be observed j gperators. In this case,

up to now. However, below 6 K Sm ions exhibit long-range
ordering with a spin structure totally different than that of Heer=BJ05+BJ0OJ+ B30+ B202+ B0z, (4
NCO and PCO, as shown in Fig(l8. The Sm magnetic
structure consists of ferromagnetic sheets within &b
planes, with the spins in alternate sheets alongchexis 09=332—J(J+1)

aligned antiparallel to one anothein this phase it is not 2 e ’

established whether the structure is the noncollinear one~o_ oz14 2 2 2 2
shown in Fig. 8b) or the collinear one shown in Fig(8. 904 380, 7300+ 1)J; +28); - 6JI+ 1)+ 37+ 1)%,
The value of Sm moment at about 2 K was measured to be 1

0.37ug . As the temperature is lowered, another transition of Oj=§(Ji+J‘l),

a continuous nature belol K was observed. As mentioned,
a very similar transition was also observed in NCO and was
attributed to nuclear polarization of thieions*

The crystal electric-field Hamiltoniaf{cge, constructed

where the Stevens operatddy' are

02=23118—315)(J+1)J%+ 73502+ 105%(J+ 1)2J?

—525)(J+1)J2+294)2,

Il. RARE EARTHS IN RCO B33+ 1)+ 4002(J+ 1)2— 6QI(J+ 1),
We now calculate the magnetic respons®o6f-ions sub-

ject to tetragonal crystalline fields and a molecular field gen-
erated by the copper spins. Except at temperatures below
about 10 K, one may neglect th®R interactions and their
contribution to the molecular field atR site. Here we cal- +(34+34)(112-3(3+1) - 38]}, 6)
culate the thermodynamic properties of tResubsystem at
temperatures above, say, 10 K. This calculation will explai
the easy axis of th&® magnetization irRCO. We will treat m_ amy .k m
the CuR interaction within the mean-field approximation. Bie=ArawlBic, ©
Therefore the Hamiltonian for the rare-earth ion in the preswhere(r¥) is the average of* taken over a 4 radial wave
ence of an exchange fieldis function® the factor oy is the Stevens coefficiefi, and

1

4:
OG 4

{[1232-3(J+1)—-38J3% +J%)

nand By are the CEF parameters
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TABLE I. The crystal-field parameteB;' of Eq. (4) (in ueV)

for R®* in RCO. Cubic Tetragonal

98.50

By Nd Pr Sm 54 33 _82
BS 128 170 —841.7 2083
BY 10 23 -59.1 ==
BS - 62 -170 —539.0 .
BY —0.064 0.05 7899
Be —4.877 7.4

ma . 37.76
By is given by Kassman In Table | we list the values of —_———
the B coefficients we obtained from various experimental 34.94
works*%2and which we have used for our simplifiéd that - =
we treat only the ground multiplet) calculations. We have E\&
verified that the corresponding valuesAff' obtained using 1870 1835
Eq. (6) do not vary greatly from on® ion in RCO to the K _16.18 _
next. One sees this from Table |l where we list the values 00 === =
AX(r*). (The values of r¥) are the same within a factor of 2 oo = . 00
from oneR ion to the nexf? —_— —

B. Crystal-field levels PryCu0, Nd,Cu0, SmyCu04
The ground-staté multiplet of any rare-earth iorR*", is FIG. 4. Schematic diagrams of the CEF energy levels and states

specified by Hund's rule¥’ The splitting of the 2+ 1-fold  of pcO(left pane), NCO (middle panel, and SCO(right pane] in
degenerate ground State in the tetragonal Crysta”ine enVirOﬁ\he cubic and tetragona| Crysta||ine_e|ectric f|QEF) Our ap-
ment of the various compounds can be qualitatively studiegroximate calculations agree qualitatively with more accurate cal-
using group theory? For quantitative results the potential of culations including all multipletéRef. 24.

Eq. (4) is diagonalized to get the eigenstates. For our study

of the rare-earth anisotropy, we confine our attention to the 1. Nd*2 44, (S=3/2, L=6, ground multiplet }=9/2, g; =8/11)
lowestJ multiplet. Accordingly,|M) will denote the wave
function |J,M), where the value of is implicit. Since one
expects that the tetragonal symmetry crystalline electric fiel
is not extremely different from what one would have under.
cubic symmetry, we will show how the energy-level schem
compares to the cubic symmetry results of Leaal.

(LLW).>® In the present case, the cubic CEF Hamiltonian, |A,)=0.4829/2)+ 0.6381/2)+ 0.601—7/2),  (8a)
Hcup, aSSumes the form

Group theory tells us that in view of the Kramers degen-
racy the tenfold degenerate ground multiplet will split into
ive doublets. Diagonalizing the CEF Hamiltonian, we find

the five doublets, whose wave functiofiis order of increas-
e|ng energy are

|A)=0.9715/2)—0.237— 3/2), 8b)
H =M(o°—5o4)+vw1—_|x|)(o°+2lo4) @
o= g) (05505 6 (06 &) |As)=0.5439/2)+0.3211/2—0.776 - 7/2),  (80)
|A,)=0.2315/2)+0.971 - 3/2), (8d)

where F(4)=60 andF(6) assumes the values 2520 and
1260 for Nd and Pr, respectively, and is irrelevant for Sm. _
The noncubic tetragonal componeritgg;, are fixed by the |As)=0.6889/2)~0.7041/2) +0.193-7/2).  (89)

condition TtH pHie=0 to be02+ 7Oﬁ‘1 and08—30é- Any  We have given only one of the partners in each doublet. The
tetragonal CEF is thus a unique linear combination of a cubigorresponding energies are shown in Fig. 4, where for com-
and a noncubic tetragonal CEF. parison we also show the levels scheme when only the cubic
component of the CEF is retained, where we have
TABLE II. The crystal-field parameter&;(r*) in meV for ~ x=—0.554 andW=—1.192 meV.

R3* in RCO. Since we will be carrying out perturbative and numerical
treatments of the effect of the exchange field on these states,

Nd Pr Sm we now discuss them briefly. Using the fact that the time-

AYr2) _ a0 _16 _408 ;?;/gsrzlszﬁgrﬁto@, acting on an angular momentum eigen-

AYrt -280 -251 -189

A(rY 204 221 206 O3, M)=(—1)>"M[3,— M), 9)

A(rS) 27 13

A1) 183 173 we find the partner dfA;) in theith doublet, denote(B;), to

be
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IBi)=(—1)0?B))=0|A)). (10) C. Effect of an exchange field on the rare-earth ion
Naturally, (B;|A;)=0. Note that even though the doublet is 1. Energy levels in the exchange field
degenerate, we may specify the doublet wave functions We start by discussing the calculation of the energy levels
uniguely to within a phase factor by requiring that rotationwhen the exchange interactiovi,, of Eq. (2), is treated per-
about thez axis by /2 gives back the original wave function turbatively. For the present it is not important which Cu ion
with at most an added phase. Note th&} and|B) satisfy  is responsible for this interaction. As we shall see, we will
this requirement but nontrivial linear combinations of themneed to obtain the energy levels correctly up to oftaer

do not. First we discuss the calculations for NC(he calcula-
tions for SCO, which is also a Kramer's ion, were done
2. Prt3 34, (S=1, L=5, ground multiplet J=4, g;=4/5) analogously. We consider the energies of the 10 levels of

Group theory tells us that the ninefold degenerate groun
multiplet will split into two doublets (D;) and|d;)) and five
singlets. We find the eigenstatéa order of increasing en-

ﬁwe J=9/2 state in aD, CEF and a weak exchange field,
, as expansions in powers bf Thus we write

Ei(h): E|(0)+ Ei1+ Ei2+ Ei3+ Ei4+ P EE,(O)"F Eil,
ergy) to be (13
|g)=|eo)=0.7012)+0.707 - 2), (119  where E;, is the nth order (in h) correction to the
E;(h=0) energy due to the exchange field. To develop the
|d;)=0.8763)+0.483—1), (11b perturbation series, we note that the states are doubly degen-

erate. To implement perturbation theory we must first diag-
e,)=—0.4274)+0.7970)— 0.427 — 4), 110 onalize the pe_rturbation matri,, within the doublet states.
le1) 14) 10) 1=4) (119 Then these eigenstates are used to perform the rest of the
perturbation calculation. We now evaluate the matrix ele-
ments of the potential between the various states. We start
with the relation

le,)=0.7074)—0.707 —4), (110)

|D;)=—0.4833)+0.876— 1), (118
0J0=-], (14)

|€3)=0.5644)+0.6040) +0.564 - 4), (119 where® is the time-reversal operator. This along with Eq.

|es)=—0.7012)+0.7071 - 2). (119 (10) gives us

+ _ +@ — -
The doublet partners arfl,)=0|d;) and |D,)=0|D;). (AJI7[B))=(A|OOITO0O|B)=(A[I"[By), (15
Here when the noncubic contributions to the CEF are newhereJ™ are the usual raising and lowering operators. From
glected one has the LLW parameters=0.807 and the form of the wave functions and the relation above we
W=2.051 meV. The eigenenergies are shown in Fig. 4 anthave
they agree with the observed energies to within an error of
20%. This error can be reduced if we include admixtures of (
the higherJ multiplets?* (

3. Sm*3 H, (S=5/2, L=5, ground multiplet J=5/2, g, =6/7) <<

Group theory tells us that in view of the Kramers degen-
eracy the sixfold degenerate grouhdultiplet will split into

AdY L :

Bl JT(|A)IB)) =x(oxtieqay), (163
A
k

(B |)J_(|AI>|BI>):XkI(Ux_iéklo'y)l (16b

three doublets. We find the eigenstaf@sorder of increas- (A
ing energy to be (<Bk|)JZ(|A|>|B|))=zk|oZ, (160
|A1)=0.9065/2) —0.423 - 3/2), (123 where |Ay),|By) are the two members of thih doublet,
defined in Eqs(8) and (10), o are the Pauli matrices, and
|A2)=1[1/2), (12b ¢ is given by
|Az)=0.4235/2)+0.906 — 3/2), (129 e=(—1'". (17)

In Tables Il and IV we list the values of the symmetric
atricesx,; andz, for NCO which we calculated from the
EF eigenstates of Eg$8). Tables V and VI contain the
analogous results for SCO based on H3g).

To get the zeroth-order wave function and the first-order
corrections to the energies we diagonalize

(Ad
(Bul

with the partners in the doublet given bg;)=©|A;). The
corresponding energies are shown in Fig. 4. When the non:
cubic components of the CEF are neglected, we have th
LLW parametersW=—4.763 meV andx=1.0. It is also
important to note that the lowest excited multiplet 7/2 lies

at about 150 meV above the ground stétepmpared to 270
meV for NCO(Ref. 56 and 300 meV for PCO’ Hence, of 2 h ol o9
all our results, those for SCO are the most likely to suffer ( kicz kL

, (18
from not includingJ-mixing effects.

)Vex(|Ak>| Bi)= (

Xk e'? —Zh,
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TABLE lll. The x,, matrix for Nd in NCO. TABLE V. The x,, matrix for Sm in SCO.
1 2 3 4 5 1 2 3
1 1.886 0.796 0.444 1.803 -0.358 1 —0.857 —0.598 0.718
2 0.796 —1.056 —1.694 2.033 0.780 2 —0.598 1.500 1.281
3 0.444 —1.694 —1.008 0.395 —-1.205 3 0.718 1.281 0.857
4 1.803 2.033 0.395 1.056 —1.575
5 —0.358 0.780 —1.205 —1.575 1.622

easy to see that the energy of the ground stateany state

for that matter has a linear dependence on the field, and
wherez,, andx, are defined in Eqg16), h, is the compo- hence it has a component dflong the exchange field given
nent of magnetic field perpendicular to theaxis, and¢ is by x41. The higher-order terms give the induced contribution
the angle between this component andxtexis. We denote to J due to the exchange field. The analogous results for the
the zeroth-order eigenstates ¥¢f, by |k+,0) and |[k—,0).  ground state of Pfwhich is not a Kramer’s ionare dis-

Under® we have cussed in Appendix C.
lk+,00=—02k+,0)=0|k—,0). (19 2. Susceptibilities and in-plane anisotropy
Using these, witl®V,0 =—V,,, we get Having the perturbation expansion for each energy level
we can easily obtain expansions in powershdbr the par-
Ex,1=(k+,0|Vedk+,00=—Ey 1, (200 tition function, Z=3;exp(—BE;) and then the free energy,

) i ) = —KkTInZ. For tetragonal symmetry this expansion takes
whereE, , is the first order correction to the energy of the ya torm (up to orderh?)

eigenstatdk = ,0). Similarly,

1 1
Ex,n=Ex_n, forevenn (219 F(h)ZF(O)—Z—ggXHh;— 2_g§XLhi+a4(h§+h§)+B4hg
Ex.n=—Ex_n, foroddn. (21b) +yshzhi+8,nThZ, (23)

We can calculate the various terms that appear in the expafe coefficients are given in Appendix B in terms of the

sion to fourth order in the perturbation theory to obtain ~ coefficients appearing in Eq22). The Landeg value ap-
pears here because the external field coupleg;dorather

Ei 1=Ni=VXih%+z:ih?, (229  than just toJ [see Eq(2)]. Incorporating the isotropic terms
i in Fo(h?), we may write

Ei p=agh? +DbyhZ, (22b 1 1
- _ 2 2 2
" - - , F(h)=Fy(h )+2—gz(X¢—XH) hz—3h )
Ei s=[aazi(hy+hy) +bghihy+cgihzhT +dgihz1/A;, J
(229 —Ky(hg+hy—6hZho)+ ..., (29
Ei 4= a4i(h§+ h‘y‘) + b4ih§h§+ c4ih§hf + d4ih§ , which defines the fourth-order anisotropy const&nt, given
+

(220 by K,=(ys—2a,4)/8. We have used the standard expres-
sions(given in Appendix B for NCO and SCO and in Ap-
whereh? =hZ+h? . Analytic expressions for the coefficients pendix C for PCQ to evaluate the susceptibilities for the
are given in Appendix A and their numerical values aresystems under consideration, and the results are shown in
listed in Table VII for NCO and in Table VIII for SCO. Fig. 5.
Keeping in mind that the third-order terms are more impor- Some comments on these results are in order. Note that
tant than the fourth-order termishese are relevant only in our results for Nd and Pr are very similar to those of
the high-temperature expansion of the free engrge can  Boothroydet al?* who took account of all multiplets. Also
see from the fact thatd ;—bs; is positive that the energy it is interesting that at high temperature the anisotropy be-
of the ground state is minimized when the exchange field isweeny, and x; (see Fig. % for Pr in PCO is much larger
along the[100] or [010] directions. Leth,=0. Then it is  than for Nd in NCO. This is an unexpected result: one might
have thought that Nd must have larger anisotropy, since it

TABLE IV. The z, matrix for Nd in NCO. has a moment whereas Pr has a nonmagnetic ground state.
1 2 3 4 5 TABLE VI. The z,, matrix for Sm in SCO.
1 —0.015 0.000 2911 0.000 0.864 1 5 3
2 0.000 2.275 0.000 0.922 0.000
3 2.911 0.000 —-0.729 0.000 2.090 1 1.784 0.000 1.533
4 0.000 0.922 0.000 —1.275 0.000 2 0.000 0.500 0.000
4 0.864 0.000 2.090 0.000 2.244 3 1.533 0.000 —0.784
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TABLE VII. The coefficients in the energy expansion for the 20
ith CEF doublet of Nd* in NCO. These coefficients are in units
such that when the exchange field is in meV, they give the energy 15
contribution in meV. Listed here are the values of 440), etc.

i=1  i=2  i=3  i=4 =5 10
10Pa,(i) -141 -385 15.1 30.4 7.1 5
10Pb,(i) -288 —45 21.4 4.5 7.4 =
10%as(i) -21 -87 -510 -59.7 -—1.9 g
10h,(i) -166 —25 17.0 -9.0 0.2 3
1Pcs(i) -18 -149 65 89  -1.0 £
10%d,(i) 0.0 -190 -32 -106 -34 ?
10a(i) 0.0 105 -381L 277  0.00 2
10Pb,(i) —1.27 2.87 1.88 —3.51 0.02 =
10%c,(i) -4.0 13.1 -5.4 -3.8 0.0
10%d,(i) 2.10 —1.45 214 1.45 0.04 0 . - 0 . :
0 100 200 300 O 100 200 300

However as we shall see below, the anisotropy within the Temperature (K) Temperature (K)
plane for Nd is much larger than for Pr at temperatures be-
low 150 K. The right panel of Fig. 5 shows the susceptibili- FIG. 5. Temperature dependence of the magnetic susceptibility

ties of Sm in SCO. Note that they are completely differentParallel (x)) and perpendicular(.) to the tetragonat axis for

from those of Pr and Nd. First of all, for Sm in SC@, is  (veeRCO's. Note that the anisotropfbetweeny, and y)) for

larger thany, . This indicates that Sm moments prefer to lie PCO is actually larger than fpr NCO at high temperature, which is

along the[001] direction. The second major difference con- &7 Unexpected resuit. The right panel showsandy, for SCO.

cerns the magnitudes ofy and x, , which are both much Note that for Sco.(un"ke for NCO or.P.(.:@ X 1S .sma"er than

smaller than in PCO or I‘\ICO Thl,,IS it is not surprising thatX!" Also the magnitude of the susceptibility of Sm is much smaller
. & sh that i SCb the S dc P bl gtt' than that of Pr and Nd. Our calculations agree with those of Refs.

Zfepenrg;‘ﬁ; d:C(;)J’;Ie da n € osm and LU SublatliceS,, and 23 for PCO and of Ref. 24 for NCO.

To analyze the anisotropy within the plane, it is necessary ) ) ,

to studyK,. If xj<x. , then the easy axis is[400] direc- mate evaluation oK, , by numerically calculating the free

tion if K, is positive and is 4110] direction ifK, is nega- €N€rgy,FiodT) for h along[100] and Fy,(T) for4h along

tive. We should also note that the anisotropylatO is eas- [110] and assomatm@llo(T)_—Floo(_'l_') with 2K ",

ily deduced from the expansion for the ground-state energy | N€ fact that for NCOK, is positive at all temperatures

given in Eq.(22). For SCO, we determine the easy direction INdicates that the Nd moments prefer the noncollinear struc-

of the Sm moments when they are constraifesiwe might

assume by their interactions with the Cu ipns lie in the 6

CuO plane. In Fig. 6 we show our calculations kj for

NCO and SCO done in two ways. At temperatures large

compared to the doublet splitting, we evaluated T -
Ka=(y4—2a,4)/8 using the analytic expressions for these 4 . 2 . Ng,CuO, K0y ] ]
coefficients in Appendix B. We also carried out an approxi- Pr,CuO, (KX10) = N

& 2 Sm,Cu0, (K,X10%]
TABLE VIII. The coefficients in the energy expansion for the % > [ -4 PR

ith CEF doublet of Sf* in SCO. These coefficients are in units £ Temperature (K)
such that when the field is in meV, they give the energy contribu- ;;
tion in meV. The doublets are labeled in order of decreasing energy.

. . . 0r

i=1 =2 i=3
10%a,(i) -3.31 —6.50 9.82
10%b,(i) -6.22 0.0000 6.22 - , , ,
10%a(i) -1.32 —-3.33 0.06 0 50 100 150 200
10Pby(i) 0.83 —-7.75 —4.36 Temperature (K)
10%c4(i) —7.63 —3.89 5.22
10%ds(i) —7.55 0.00000 —-3.32 FIG. 6. The in-plane anisotropg,(T) for NCO and SCQO({full
10%a,(i) —1.05 3.81 —2.76 line) calculated numerically, as described in the text, compared to
10%b4(i) —0.06 —4.94 4.99 the perturbation resu(totted ling K,= (y,—2a,4)/8. For PCO we
10%c,(i) -0.79 1.63 —-0.84 show only the numerical result. The zero-temperature result implied
10%d,(i) —-1.85 0.000000 1.85 by Eq. (25 agrees perfectly with the numerical result. Note that

K, is at least one order of magnitude larger for NCO than for SCO.
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ture in which they are oriented alofigj00] directions.(This
conclusion assumes that the exchange field acting on the N
spins is a pseudodipolar one, so that as far as such intera
tions are concerned, the collinear and noncollinear structure
would have the same energy, see discussion bgl&ar
SCO one sees the reverse result. However, one still has
consider the contribution from the anisotropic Cu-Cu ex-
change interactions to the anisotropy within the plane. We
study this effect in Appendix E for NCO and show that it is
dominated by the intrinsic Nd anisotropy due to the CEF
acting on the Nd ions. For SCO, whefg is at least an order
of magnitude smaller, and where the valuéa$ not known,

it is possible that the anisotropy due to the anisotropic Cu-Ci
exchange could be dominant. Since this anisotropy favor
orientation along100], we cannot be certain which direction
in the CuO plane is favored. Clearly this topic requires fur- oo b Lo e b L L 11 g

0.10 LANNL L Y ) I B LI

—— h=h, <S> (h,=0.130 meVatT=0K)

0.08

0.06

0.04

Magnetization M, (T) (U;)

0.02

ARARARRANERER RN AR ERUE R RERERANANE RS SRRRRE)

s b b be i iy

ther theoretical and experimental investigation. 0 50 100 150 200 250 300
For PCO we only carried out the perturbative evaluation LS e e e
of K, at zero temperature, since for a non-Kramer’s ion, the
temperature dependences will be less pronounced. The c: 3 LS gy
culation of the ground-state energy is simplified by the facl sk T
that only a few of the matrix elements df, are nonzero. 210 b ' weressels 1 1
The details of the calculation are given in Appendix C and <= 1.0 11 Nuckar Polarzate] ]
the final result is < C ' 1
< C 1 1 -
Eg=—0.38th? —0.04(hZ+0.00696h5 + hy) +0.016512h7 5 os [ 07 1
= )
— 51,4 2.2 N 0.5 — 03 TR ST N R W 4
+1.674<10 °h;—0.0044h7 hs, (25 g) . 0.0 25 50
whereEg4 andh are in meV. In the notation of Eq24) this s R ool 1 -
. T l Ll 1) l L1 1 L1t LI [N

result implies that K,(T=0)=y,/8— a,/4=3.2x10"*

0 10 20 30 40 50
meV. From Eq(25) we see that the terms of ordef lead to — .
an easy plane and the fact tHg} is positive indicates that 00 B L T S T T T
0 50 100 150 200 250 300

[100] is an easy direction of magnetization. The numerical
evaluation oK, (shown in Fig. 6 confirms that the essential
results are not very different at nonzero temperature.

We would point out an interesting behavior of the two Pr  FIG. 7. Fit of experimental magnetization of Nd in NQ@ot-
doublets in the presence of the exchange field. Normally &m) and Pr in PCQ(top) versus temperaturésolid circles com-
doublet will show an energy splitting linear m Here, this  pared to theoretical fitsolid line) based on the parameters dis-
happens if the field is oriented along theaxis. However, cussed in the text.
under normal conditions the exchange field is in the plane, in
which case the splitting is proportional b3. In general, the NCO and PCO. We obtained these data from a least-squares
splittings A4 and A, between the two states of the doubletsfit to a large number of the neutron magnetic Bragg

Temperature (K)

d; andD;, respectively, is given by reflections®® At aboutT=2 K, the Nd and Pr moments are
1.3 and 0.0g25, respectively, in good agreement with other
A,=2(pshZ+q,h?)2 (26)  studies® In order to understand these observed magnetic

moments of Nd and Pr we ought to consider the effect of the
exchange fields on the subsystem due to both the Cu ions
YGRS >‘2 and the otheR ions. However, for the purpose of this sec-
X alhac tion we will consider only the exchange field due to Cu ions.
This is a good approximation at allfor PCO and af >3 K
(27 for NCO. Accordingly we write the magnitude of the ex-

wherea=d ora=D labels the doublet. Numerically we find change fielch in Eg. (2), acting on arR ion as
pg=4.28, pp=0.0046, and in(meV) 2, g4=0.031, and
qp=0.25. h=\g(S)7, (28)

with

3

(2,0
— 2 _
pa_<al|‘]z|a1> v Oa ze Ea_ Ee

3. The rare-earth magnetic moments where(S)+, the thermally averaged value of the Cu spin is

In this section we discuss the magnetic moments of Ndjiven in Eg. (1). We fix the exchange constants; for
and Pr within the framework of the crystal-field approxima- R=Nd and Pr by fitting the experimental temperature depen-
tion given in Eqg.(2). In Fig. 7 we show the experimental dence of the magnetization shown in Fig. 7. The magnetiza-
results of the rare-earth magnetization versus temperature ftion is calculated from
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Mg(T)=(1/Z)Tr(we "KT)
=(U2) 2 (Wl | Wmye™ =T, (29

whereE,, and |¥ ) are the energies and associated eigen
functions of 1 in Eq. (2), Z=3e En/kT andu is the mag-
netic moment operator divided Qyg .

The fit to the experimental magnetization is excellent, as
shown in Fig. 7. The fitted values afyy and\p, are 0.1772
and 0.3474 meV, respectively. These values correspond
h=0.071 and 0.139 meV for Nd and Pr a0 K, respec-
tively. For Ndh=0.071 meV gives rise to a splitting of 0.27
meV for the ground-state doublet and 1.2/ zero-
temperature magnetization, in good agreement witt
experiment$:>4445For NCO, as we shall see in the follow-
ing sections, the Nd-Nd interactions are also important, par
ticularly at low temperatures, and one has to include them i
order to understand the spin waves, etc. Here it is difficult tc
separate the contribution to Bragg intensities coming from
the nuclear P(.)Ianzatlo.n' so the data below, .S-b‘y’B K are Cu ions, labeled 1, 2, 3, 4. The Nd ions in planes just alfbetow)
not as decisive as in some other experiments. For P'ihe Cu plane are labeled#" (* ).
h=0.139 meV splits the doublets as we discussed perturba-
tively in Eq. (27). A numerical diagonalization gives values

FIG. 8. Nd ions which are nearest neighboring to a plaquette of

which differ at the percent level from those predicted pertur- We write

batively. Forh=0.139 meV we find the numerical values of .

the splitting to be 6.8eV for the lower energy doublet and Hewm 2 2 T35SaSis (32
19.2 ueV for the upper energy doublet. These small split- (iyec ap

tings may not be observable via inelastic neutron scatteringshere o and B8 label spin components,andj are Cu site

within the current experimental uncertainty, but perhaps theyapels, andij)eC (and later(ij) e N) indicates a summa-

are accessible via other experimental techniques. tion over pairs of nearest-neighboring @Nd) sites. Now
Finally, we point out that, as an alternative to E20), an  consider the two pairs of Cu sites (1,4) and (1,2) in Fig. 8.

excellent fit to the data can be obtained by treating only therhe tetragonal symmetry of the lattice implies that
lowest doublet. In this approximation, the magnetic moment

per Nd ion(in units of Bohr magnetonsan be written as TIa=Ty5=T, Tp=Jw=J,, and Jr=J:=7,,
(33

and all other elements of the tensgrare zero. Since the
where A=2\(S)1X;;. The best fit to the data using this spins prefer to lie in thex-y plane, we know that
equation yields\g=0.17 meV,My=1.34, and the doublet 7 +.7, >2.7,. A spin-wave analysi¢see Ref. 12 or Sec. V,
splitting A=0.26 meV atT=0 K, which are in reasonable below) allows us to identify the exchange and anisotropy

M o T) = Mtani{( A/2kT), (30)

agreement with other experimental values. fields as
1
IV. MAGNETIC REORIENTATION PHASE TRANSITIONS _
He= (7 + +7;,
A. Model of interactions
! ' Ha=Jj+ 7. —27,. (34)

In this section we will construct a model which can ex- _ . : .
plain the sequence of spin reorientation phase transitions offYe Now setjj=J. . In Appendix E we show that including

served in NCO and shown in Fig. 2. The model we will the €ffect of 7j#7, has only a very small effect on the
introduce is a minimal model, in that one can add to it somd€Sults for NCO. The values of the exchange constants are
other interactions without modifying its main physical char- fixéd by many experimentS in the cuprates to be
acteristics. Some aspects of this model were already prd?e=130 meV andH,=0.1 meV. ,

posed in Ref. 26. The model that we treat is described by a W& now discuss the remaining interactions between Cu

Hamiltonian, H and Nd ions. An important observation concerning the mag-
Y netic structure of the three phases of NCO is that all three
H=Hcert Heut Heuna™ Hngnat V. (31) Phases can be considered as being constructed from three-

plane(Nd-Cu-Nd units (labeled A and B in Fig. 2 At each
where the first four terms describe the Hamiltonian of areorientation transition the orientation of unit A with respect
single three plane unisee Fig. 2 andV the coupling be- to that of unit B changes, but each unit remains intact. There-
tween adjacent units. We now discuss the terms in thifore, it seems clear that the interactions which hold each unit
Hamiltonian in turn.Hcge was discussed in E@3). together are dominant over the interactions between different
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units. This reasoning indicates that the strongest interactiofis+ 6;= — 7/2). This ordering is maintained in all three
between Cu and Nd ions is that between a plaquette of Cphases of NCO. The angular dependence of this interaction
ions in one plane with the Nd ions directly abofee below  is the same as that of the dipolar interactfomut the inter-
the center of the plaquette, as shown in Fig. 8. However, it igiction required to stabilize the spin structure of NCO is op-
also clear that if this interaction were isotropic, the total ef-posite in sign to that for the dipolar interaction. Hence we
fective field on a Nd ion due to a plaquette of Cu ions wouldca]| this a pseudodipolar interaction. In any event, the mag-
sum to zero. Thus we are led to consider an interactiopyjtde of the pseudodipolar interaction is much larger that
Hcu-na Which consists of anisotropic exchange interactionsya for dipolar interactions between the magnetic moments
b_etween the Qu spin 1 and _|ts neighboring Nd ioft™* in of the spins.
Fig. 8. We write this interaction as To summarize: because the orientations of the Nd spins
relative to the Cu spins in adjacent planes do not change as
_ i one passes through the reorientation transitions, it is reason-
HCU'Nd_iEEC J-;N QEB KagSiadip: 39 able to assume that the interactions discussed above are
dominant. Considering only these interactions, one sees that
the system naturally condenses into structures in which the

herei i e N) indi hat th i Il . I o
wherei < C (i €N) indicates that the sum overs over a three plane unitglabeled A and B in Fig. Rremain intact at

Cu (Nd) sites, andJ, ; is the 8 component of the angular . )
momentum operato]rﬁfor the Nd ion on siteWe will keep all temperatures. For PCO, the signof, must be opposite

only the symmetric part of this exchange tengtn.tetrago- to that for NCO, because in PCO the relative orientations of
nal symmetry the effect of the antisymmetric componentdh® Cu and Pr spins are opposite to what they are in NCO.
cancels out when summed over a plaquette of Cu jdftse The actual global spin structure now depends on the smaller
existence of a mirror plan@assing through sites 1, 3, and couplings between adjacent three plane units.

“+") implies that the exchange tensor between site We now consider the Nd-Nd interactions within a three-
andj =+ and (after rotating by 96) between sites=2 and  plane unit contained ir{yq.ng. Since these interactions
j=+ in Fig. 8 are of the form couple collinear spins, we parametrize them in a slightly
simplified way, namely, we set
Kxx ny sz
K+’1: ny Kxx KxZ y
K. K. K. Hnona= 2 INL iyt Jiydiy) + Nodiad]
o Ky Kz + 2 [ML it Jiydiy) + Mdizdy,]
K+'2: _ny Kxx _sz . (36) )

Ke  —Ka Ki + 3 [0, (Juditdiydiy) +0,3,3,], (39)

(ii)"
We can generate the exchange tensors for other pairs of near-
est Nd-Cu neighbors using the symmetry of the lattice. We C . . .
now use mean-field theory to discuss the effect of this interWhere()" indicates a sum over nearest-neighboring pairs of
action when the spins are constrained to lie inxhgplane ~ Nd spins whose separation vector is parallel to zhaxis,
and are specified by giving the vect®f= —S,=S. The Nd gnd()’ a sum over next-nearest-neighbor pairs of Nd spins
angular momentum of site is taken to beJ and that of the I the same plane. These couplings are indicated schemati-

oppositely oriented Nd moment is J. Then the mean-field cally in Fig. 1. _ , ,
interaction free energy per Nd ion is Finally we consider the interactio between adjacent

three-plane units. Referring to Fig. 2 it is natural to imagine
] that at high temperaturévhen the Nd moments are very
Fur=4Kyy[Sdy+ 5,0 =4K,,SEin(0s+ 6;), (37  gmall, the interactionglabeled ‘Z”) between Cu ions in
different units are dominant, whereas at very low tempera-
where 65 (6;) is the angleS (J) makes with thex axis. ture (when the Nd moments are comparable in size to the Cu
Several aspects of this result are noteworthy. First, bemoment$, their interaction(labeled “X”) dominates be-
cause of the frustration inherent in an antiferromagneticause their separation is much less than the Cu-Cu separa-
plaquette, only the anisotropic interactionkof, contributes  tion. To obtain two spin reorientation transitions we also
to the total field at an Nd site. Secondly, the resulting interinvoke an intermediate strength interactidabeled Y™ )
action has the very unique property that the energy is invaribetween Cu ions in one unit and Nd ions in an adjacent unit.
ant with respect to rotating one sublattice, say, counterclockin the case of theX and Z interactions, it is necessary to
wise and the other clockwise. This unusual symmetry lead#voke an anisotropic pseudodipolar interaction to avoid a
to a Goldstone mode in the absence of a fourfold anisotropycancellation in the mean field. Since tifeinteraction in-
Thirdly, we see that wheK,, (which by our definition refers  volves only pairs of spins, there is no cancellation and we
to the coupling tensor for the pair Cu,1 and Mdl,is posi- take this interaction to be isotropic. Accordingly, we write
tive, the orientations of the Nd planes relative to theirthe perturbatior’V which couples adjacent three-plane units
nearest-neighboring Cu planes are as shown in Figvih  in the following form>°
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2Xi Vi B. Mechanism for reorientation transitions
V=X > J(i)d,(jHaNN L . . Lo
P VI g X+ Vij We now consider the perturbative contributiaik ., to

the mean-field free energy per magnetic unit cell from the

S\ 1V ACN couplingV between adjacent three-plane units. In analogy to
Y&, SO A0A] Eq. (40) we have that
. . cc 2XijYij ) 5
+z CEJ) cSOSMAT G (39 SF yo= — 40Zme(T) [ 1+ y(T) + 4xyp(T)?]
sl ij i
=—40Zmc(T)?®(T), (43

wherer;;=(x;; ,yij ,zj) is the vector connecting sitésand
j, and theA factors are either 1 or 0 so as to limit the sSumSyyherey=—Y/Z, x=X/Z, (T)=X,;m\(T)/Mc(T), and o
to pairs of sites associated with the coupling constant indijs + 1 in phases I and Il and is-1 in phase II. It is clear

cated in Fig. A andA " are nonzero only if sittsand  that the free energy is minimized by the structure of phases |
j are nearest possible neighbors in nearest neighboring Cu @hd 111 if Zd(T) is positive and by that of phase Il if
Nd planes, respectively, anl;" is nonzero only if sites  zd(T) is negative. In order to obtain phase I between the
andj are nearest possible neighbors in next nearest neighwo reorientation transition temperatureéb, =30 K and
boring Cu and Nd planes. The geometrical factorT_=75K, it is necessary tha&>0 and

Xi;Yij /(xizj +yﬁ) has the transformation properties character-

istic of a pseudodipolar interaction between moments con-

strained to be perpendicular to the tetraganaixis. = 1 =51 y=— P(T-)+9(To) e
In Eq. (37) we have already identified the mean-field en- AP(T)P(T-) ’ HTHY(T>) ’
ergy due to the Nd-Cu interaction we believe to be dominant. (44)

We now give the mean field free energy per Nd spin associ-

ated with those terms in E(ﬁ31) involving the Nd Spin. In where we used Eqi]_) and (30) to Constructh(T) and
writing this result we setJ(i)-n(i))r=xy;my(T) for Nd  my(T) which we used to obtain the above numerical values.
spins and S(i) - n(i))t= mc(T) for Cu spins whera(i) is (These equat_ions give values W_hich are essentially eqqiva—
a unit vector along which thith moment is alignediin the  lent to experimental ongsWe reiterate that the magnetic
absence of quantum zero-point effectane(T=0)  dipole-dipole interaction dpes not explain the.gtablhty of
=my(T=0)=1.] We then find these phase¥.Sincemy(T) is small at both transitiongsee
Fig. 7), it is clear thatx>—y>1 or X>Y>Z. As we have
1 mentioned, the plausibility of this condition is obvious from
—_ _ the geometry, shown in Fig. 2.
Fur= = 514Ky~ oY Ixaamy(T)me(T) V\Q/]e can a>llso now include the effect of these small pertur-
bations on the Nd doublet splitting. Referring to E¢40)
_ E(4Ni —M,—40, +4aX)xf1mN(T)2, (40) _and(42) we see that the mean field _at the Nd_ ;ite will have a
2 jump at each of the two reorientation transitiofwghere o
changes sign and indeed the Raman d4tahows such a

where c=1 for phases | and lll ang=—1 for phase Il. discontinuity. However, the magnitude of the discontinuity is
Within this approximation the splitting of the lowest Nd dou- not easy to obtain from the data, because the data gives di-
blet is rectly only the sum of the splittings of the doublets of the

initial and final Raman states. In principle, a determination of
the jumps in the doublet splitting at these transitions would

A(T) == 29F e/ Imy(T) =[ 4Ky = oY IX1me(T) fix the magnitudes ofX, Y, and Z, since their ratios are

+(8NL—ZML—80L+80X)X§1mN(T) already fixed by Eq(44). In any event the sign of the dis-
continuity is not consistent with only magnetic dipole-dipole
=Act+Ay, (42 interactions. It remains to consider what this explanation im-

plies for PCO, if we assume that the valuesxoéndy for
whereA c= (4K, — oY)x,; is the part of the splitting of the PCO are the same as those for NCO. Note from Figs. 2 and
lowest Nd doublet due to the exchange field of the Cu ions? that PCO and NCQin phase ) differ in the three-plane
and Ay is the remaining part of the splitting due to the Units because the Cu spins are reversed in PCO from their
Nd-Nd interactions. Comparing to E(), we see that directions in NCO. That means that to treat PCO we should

change the signs of the(T)’s. This change is equivalent

to changing the sign of, or equivalently, the sign of.

h=2A/x1. (42) However, then botlx andy are positive and is positive at

all temperatures and the phase analogous to NCO phase |
The term in Eq(41) proportional toK,, is the dominant one. [i.e., the actual structure of PCO shown in Figa)3 is the
The next largest terms are thoseNh N, andO, which are  stable one. This argument is clearly rather speculative, be-
intraunit interactions. The effect of the weaker interactionscause then one would have to assert that under high pressure
between three-plane units on the mean-field energy will béwhen PCO does have a sequence of spin reorient&jons
neglected. the constany changes sign.
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V. SPIN WAVES IN NCO «~O— Q> O —O=>
A. General discussion § fx’ ", b ;
In this section we use our model to calculate the spin- @ & —N &
wave spectrum of NCO. Although Thalméighas given a *‘é‘ X N *%
very thorough treatment of the spin-wave spectrum of NCO , (0]
there are some aspects of his model that we find unsatisfa —O—> «O— _'Q_,\ <O—
tory, as we discuss below. In addition, his basic assumptio
that the dynamics of the Cu spins can be ignored is only Iy . &
appropriate as long as the wave vector is not too small. Thu ; é. %
his approach, although useful in many respects, is not apprc P, g i
priate for a discussion of the zero wave-vector modes. Fo RSO \ /
that purpose we have had recourse to a simplified 2D mod¢ QO— O «~O— M O

which enables us to easily take account of the motion of the

Cu Spins’ the details O.f their anisotropic co_upling to the Nd FIG. 9. 2D unit cell(indicated by the dashed squpfer our
SUblatt'_CeS’ and .the. anisotropy of the,Nd Spins caysed by tIA@mplified model of spin waves in NCO. The open circles are Cu
crystalline electric field. In the future, it may be of interest t0 ;.5 and the filled ones Nd ions. The darkéighten Nd arrows

extend our calculation to a full 3D model. . represent the Nd spins in planes just ab@velow) the Cu planes.
The Cu-Cu interactions are taken to be as in other cuThe Nd-Nd interactions scaled by the tenstds N, and O are

prates. The most important Cu-Nd interaction is fixed by thgngicated.
high-temperature limit of the Nd doublet splitting. We have
fixed the Nd-Nd interactions to get reasonable agreemer% .
with the experimental results of Henggeletal® for the D model, the spin-wave spectrum has 12 branches and each
spin-wave energies throughout the Brillouin zone. ParticuMode energy is a function of the 3D wave vector,
larly simple results are obtained at zero wave vector. Thél=(02,02). The actual spin-wave specFrﬂl‘?mc')nsmtmg of
temperature-dependent energies of the optical modes agréé Pranches has essentially no dispersion with respegf to
well with the experimental values of lvan@t al}” We also ~ because the coupling between one Nd-Cu-Nd set of planes
predict the energy gap in the acoustic mode due to the smafind the next such set of planes is relatively weak. Since the
fourfold in-plane anisotropy. 3D unit cell contains two nearly noninteracting sets of
The present discussion will assume the structure of phagglanes, the 12 branch spectrum at some value of
I, although as will be seen, most of our results apply to theg=(d,,q,) is the union of one six branch spectrum evalu-
spectrum in all three phases. As discussed in Sec. IV, wated atg, and another six branch spectrum evaluated at
may consider the entire system to be built up of weaklyRq,, whereR is a rotation by 99about thez axis. Therefore
interacting sets of planes, each set consisting of a Cu plaredmost all information is contained in our simplified 2D
with one Nd plane above it and another below it. Thus, formodel of one set of Nd-Cu-Nd planes. The unit cell for this
most purposes it suffices to consider a 2D model consistingnodel is shown in Fig. 9.
of a single set of Nd-Cu-Nd planes. In this 2D model the The exchange interactions for the model that we treat are
spin-wave spectrum has six branches, and the energies of ttiwose described previously in Sec. IV, so that the Hamil-
modes are functions of the 2D wave vectpr In the actual tonian is

H=HCEF+<,;C m(ﬁxswaysjy>+stzsjz]+iZC ,EN Eﬁ Kaﬁaaajﬁ(;N [N, (Jixdjt Jiydiy) + N3 ;]
ij)e € eN a ij)e

+ E [MJ_(Jix‘]jx+ Jiy‘]jy) +M zJinjz] + E [OJ_(‘]iijx+ ‘]iy‘]jy) + OzJiz‘]jz]- (45)
(i’ ("

The first line contains the first three terms in E8{) and the B. Transformation to bosons
remaining lines contain the Nd-Nd interactions shown in
Figs. 1 and 9. To discuss spin waves we will use th
Holstein-Primakoff(HP) transformation for the Cu spins and
a similar transformation to reproduce the dynamics of the N
spin within the lowest crystal-field doublet. This procedure _

will lead us to a bosonic Hamiltonian in which terms higher RS=(R)S)+(S) R+ 5XR)+ 5R3S, (46)

than quadratic in bosonic variables are neglected and iwhere() indicates an average in the mean-field ground state,
which quadratic excitations involving higher crystal-field and SR=R—(R). By expressingéR and &S in terms of
states are also ignored. bosonic excitations about the mean-field ground state one

The transformation to bosons is obtained by the following
egeneral algorithm for a bilinear interaction involving an op-
C]eratorR on one site an on another site. Write
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can obtain an expression for the bilinear interaction in termsvhere o, is a Pauli matrix and is the unit 2<2 matrix. In
of bosonic variables(In the case of isotropic spins, this pre- Appendix D we develop expressions for the stdggsand
scription is identical to that leading to the HP transforma-|e) of the lowest doublet in the presence of an exchange field
tion.) h, as power series in. We have carried these expansions up
There are two sublattices within a copper plane which weto orderh?® to obtain results for the constants in E¢97)—
call a andb. In the ground state tha sublattice spingS*) (D11). The anisotropic response of the Nd ion to a magnetic
point in the+ x direction, while theb spins(S°) pointin the field is due to the differences in the values fgf, Jy+ s
—X direction. The HP transformation may be writen as ~ —j,_, and j,. Setting all of them equal to each other
(Jx=Jz=ly+=—ly-) will make this an isotropic spin-1/2
system. The expansions of thi&s have to be carried to at
least second order il to get anisotropy within thex-y
X plane. At that ordef,, = —j,_=j,=X;;+0(h?) and Ap-
Si=S-a'a, §;=-S+b'b, (478 pendix D gives [,+],)/2~1.886. The anisotropy in the
plane is governed by the value pf—j,, which is of order
h? and which is evaluated in Appendix D to be
1.38<10 4. Thus Eq.(48) becomes
S=Vs2(a’+a), SH=\S2(b"+b), (47b)

J.={(g|3|g)+ (e|d,|e)—(g|J h=—j,+2j,n'n,
= [Foal-a), S=—i\Fb'-b). (@479 y=(9ldylg)+((eldyle)—(gldylg)n'n=—j, I

_ t —i(nt
There are two identically ordered Nd planes, one above, the J=(el3lg)n"+(g|Jeyn=j,(n"+n),  (50b

other below the Cu plane. We denote the sublattices above

(below) the Cu plane with moments along they direction

asn, (n_) and the other Nd sublattice aboffeelow) the Cu

plane asm, (m_). For the moment we consider a spin in J,=(el3lg)n"+(g|I,Je)n=ij,(nT—n). (500
one of then sublattices. In the presence of the exchange field

due to the other ions its lowest doublet will be split into a

ground statdg) and an excited state). Following the pre-

scription given above we write . .
P 9 In the m sublattices change the sign wfandz components

and replacen with m.
The splitting of the doubleA (when all ions are initially

Ja:<g|~]a|g>+§f: (F139)nT+ (9|3l F)ne+ (3,1 ) in their ground stateis
—(gl3adgnning+ 2 (F|3,|f")nfng, (49 |
1 A=; 2ijXy<sg>+2j§; Nl—2j§; M;Zji; o,
where we definen]|g)=|f), and|f) and|f') are excited —AK..i 4+ (8N. —2M . —80 )i2
states. We henceforth keep only bosonic excitations within xyly T (BN, + Ly
the lowest doublet. Thus in E¢48) the last term is dropped =Ac+Ay. (51

and in the first term the only excited state that entefg)s
and we letn denoten,. Note that in principle the admixture
of higher crystal-field states int[m) and |e) is taken into

account exactly. However, we did not calculate the moment§l€re the sums oveir encompass the shell of neighbors as-
of the Nd ions self-consistently, as this prescription requiresSociated with the exchange interaction in question. This re-

The effect of self-consistency is entirely negligible here.
For then sublattice(with Nd spins in the—y direction
we have,

A 1.
]xo-xaz(]y++]y7)| +§(]y+_Jy7)G-Za

(<e')a<|e>|g>)=
(9]

: (49

_szy

sult differs from Eq.(41) because the interactions between
different three-plane units are not included in the present
model. Also here we replacg; by j, . This replacement has
only a small effect numerically, but to treat tReanisotropy
correctly we have to include the dependence of the wave
functions onh.

C. Spin waves

After the above-described transformation to bosons is
used, the exchange Hamiltonian becomes
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H=

1
HE+ EHA+2A

1 1
% agap+2r b/b, +§HA§ Yor(@Jh, + b:ap)+ZHE§ Yor(@ibl +ayby)

{8, s, A(nl ng +m m)+y o [(NLEFNA2(NE nf +n ng ) +(NLjZ=Nzi)(n! ne +n{ ng )]

+2

S, t

ot a

s [(OLIX= 02D (N {41y ) +(OLj+ O (ng e ¢ ng )T+ 2 [(MLjX=MaiZ)(ny ni +ny ny )

PTRVIITV: t 0) At 1) At 0) .t 1) tot
+H(MLjZ+MiD(nf ng +nl ny )]+ g (K2 abng +Kl afn! +H. c)+> 2 (K agmy +KG alm{
a 'S a o

+H.c)+ 2 2 (K(Qbfng +K{ bin! +H. c.)+§ > (K9 bimy +K(Y b/m! +H.c), (52)

a 1., Ity

where the exchange fielddz, and anisotropy fieldH, 1 1

were defined in Eqs(34). Also p refers to sites on tha Ki=5 (Kyyix=Kzd ) + 5iKsalixtiz). - (54D
sublattice the b sublattice s, the n, sublattice, and, the

m,, sublattice, where the subscriptassumes the values

and — for the Nd sublattices, respectively, above and below

the Cu plane. In the third line of the above equation, the sum

overu is taken so thati, ranges over all sites in the, and
m, sublattices. Alsod, , is unity if u=v, vy, is unity if u
andv are nearest neighbors in the same plane and is ze
otherwise, andy?) is unity if u andv are next-nearest neigh-
bors in the same plane and is zero otherwise. We no
specify the interaction consta 0\2 whereu is a Cu site

andv a nearest-neighboring Nd site. For this purpose it is

convenient to introduce the notation that u+ad, where

thex andy components ob are each of magnitude 1/2 and Ci’r(q): NJcl’z cle iar, (55)
the z component ist 8. Then we writeK{)=K{(3). We rei

have

The other coupling constants can be obtained using the rela-
fions K (8) =K (= 8) andKM(8) =KV (8)*.

To obtain the spin-wave spectrum we introduce spatial
V\II:ourier transforms via

where N, is the number of unit cells in the systemgi

K(n)(E 1 B) _ K(n)( - ,8)* indicates that is summed over all sites in théh sublattice,
pl12’2’ p 2" 2 and the sublattices are labeled so that 1,2,3,4,5,6 correspond,
respectively, toa,b,n, ,m, ,n_,m_. Thus, ifr is in thea
11 1 1 \* sublattice, thert/=a. With this notation we have
:_K(n) ~-~.=.B :_K(n)_
p 2’2’ P12 2’

=Ko, ®3 H=3 |3 Ayl @

where

1
52 [Bi(acl@c/@+H.cly, (56

1 B T
Ko=5 (KaixtKed )+ 5iKealix—l2), (48
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1 1
HE+§HA+2AC ZHA(CX+CV) (2Koesey)'  —(2Koeyley)'  (2Kgewe,)' —(2Kgey/e,)’

1 1
“Ha(Cx+€y)  He+ sHa+2Ac —(2K¥eyle)’  (2KEew,)'  —(2Kgeyle)’  (2Kgecey)’

4 2
A= (2Koecey)’ —(2Kge,/ey)’  A+407c,c,  2(cytcy)NT M 0 (57
—(2Koeyley)’ (2K5ee,)’ 2(cytc,)N™  A+407c,c, 0 M+
2(Kgee,)’ —(2Koey/e,)’ M* 0 A+40%ccy  2(cytcy)N™
—(2Kgey /ey’ (2Kpexey)’ 0 M* 2(cy+c,)N™  A+407c,c,
i 1 ! ! * ! * /-
0 EHE(CXJF cy) (2K 1e48y) —(2Kqey/ey) (2K7 exey) —(2K7e, /ey
1 * ’ * ’ ’ !
EHE(CX-I— cy) 0 —(2K;e,/e,) (2KTeey) —(2K.ey/e,) (2K e48y)
B=| (2K.ecey)’ —(2KTeyle,)’ 40" ¢,cy 2(cytcy)NT M~ 0 , (58
—(2Kieyley)’  (2Kiecey)’ 2(ctcy)NT 407 c,c, 0 M~
2(Kiee,)’ —(2Kqey/ey)’ M~ 0 407 ¢c,cy 2(cytcy)NT
—(2KIeyle)’  (2Kqiecey)’ 0 M~ 2(cytcy)N* 407 ¢c,cy
|
where  c,=cosq,, cy=cosq, e,=exp(aq/2), 90° about the axis(so that thea sublattice spins now point

ey=exp(agy/2), (X)'=ReX, andX*= (Xijii Xy 5), where in the —y direction, and thd sublattice in thet+y direction,

X stands forM, N, or O. The eigenvalues of the matrix etc). From Egs.(57) and (58) one can see that whdfy is

(A+B)(A—B) give the squares of the energy of the normalreal (i.e., whenK,,=0), the spectrum is invariant under this

modes: R, operation. Even wherK,, is nonzero, this invariance

holds for wave vectors in high-symmetry directions. Thus in

(A+B)(A=B)xa)= () *)x-(q). 59 the complete model the spectrum consists of six nearly dou-

The eigenvalues are invariant with respect to the operatiobly degenerate modes which are split by weak couplings

g— —(q, as expected in view of time-reversal symmetry. Tobetween adjacent three-plane units.

see this explicitly note that changing the signgof equiva-

lent to interchanging rows and columns 3 and 5 and rows and

columns 4 and 6. D. Normal modes at ¢=0 and on the zone boundary

The complete model for the whole lattice will have two
layers of our 2D model per unit cell, with one rotated by  For g=0, we have the simpler forms

1 1
Het 5Hat+2A¢ >Ha 2Ky —2Kp  2Kp  —2Kg
1 1 ! ! ! ’
A= 2K — 2K} A+40"  4N” Mt 0 , (60)
— 2K} 2K AN~ A+40% 0 M*
2K} —2K§ M 0 A+40*  4AN-
— 2K} 2K} 0 M+ AN~ A+40%
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0 He  2K{ —2K| 2K, =—2K]]
He 0 —2K, 2K| -2K| 2K
2K, —2K] 40~ 4N* M~ 0
B=| _2k! 2k, 4N* 40 0 M~ (61)
2K,  —2K! M~ 0 40~ 4N*
—2K, 2K, 0 M~  4N* 40"

We can immediately identify several eigenmodes. For in-measure ofthe Nd-Nd interactions. One of the other modes
stance|1) and|2) are given, respectively, by the upper andis an out-of-plane Cu mode which would have energy
lower choices of sign inr(; + m,=n_*m_)/2. The energy ~/2H,H in the absence of the Nd ions. The Nd ions con-

of these modes is

03 =(A+4N"+40T+M")?—(4NT+40" =M )2

~A%+2Aj 40, +4N, =M, ].

(62

The other simple rare-earth mode i8)=(n,—m,

—n_+m_)/2, with

w53=(A+40"—4N"—M")2— (40" —4N*—M )2

~A%+2Aj 40, —4N, —M,].

(63

These three modes have energy which is split ftory the

Nd-Nd interactions.

tribute a staggered field of energyA2, so thatH, is here
replaced byH,+2A. Another mode is an in-plane optical
mode in which the staggered field iag but this mode does
not involve the out-of-plane anisotropM,, . This mode has
energy w~ given in Eq.(66). Finally, there is an acoustic
mode which involves the fourfold anisotropy. We may define
a phenomenological fourfold anisotropy constadntyia

1
E=- §k40054¢, (68)
whereE is the ground-state energy agdis the angle in the
x-y plane which the exchange field makes witfil®0] di-

The other three modes involve the Cu spins. One of thesEction. We will identifyk, by finding the ground-state en-
is the out-of-plane Cu modé4)=(a+ b)/\2. For it

ergy for small ¢ when the exchange Hamiltonian is

w‘21=(HE+HA+2AC)2—HE%2HE(HA+2AC). (64) 0.8 LI I LB —
The remaining two modes are linear combinations of excita
tions on the Cu, |5)=(a—b)/y2 and on the Nd,
|6)=(n,—m,+n_—m_)/2. In this subspace we have 0.6 —
He+2Ac 2V2(Kyyix+ Ko ) | S .
_ . , Q
A= 2\/§(nyJX+Kzsz) A+F, +F, ! 504
L | BT ]
- . 0 5 ' ]
B _-HE . 2\/§(nylx_ Kzsz) (65) ;ﬁ; \
| 2V2(Kyyi—Ked ) FL—F, : ™ " oo ;
L - 0.2 7
where F,=(M,—4N,+40))j2 and F,=(M,—4N,
+40,)j? and we used Eqg54). We denote the two eigen-
values of the matriXA+ B)(A—B) aSw2> anda)2< and find oo L 1 RN IS A B A I | ]
' [qqO X [190] M [q00] I'  DOS

(1)2>%4HEAC .

(66)

Neglecting terms of ordej2 and using the values of the
parameters given in Sec. VG, below, we have

P2
X
-2

w<=A<
y

1/2
) ~3.7 ueV.

(67)

FIG. 10. Full curves are the energiéat T=0) of the low-
energy modes with respect to the 2D wave vector calculated using
the values of the parameters as given in £E§4)—(88). In the full
3D model, each of these modes gives rise to two modes whose
splitting is determined mostly by the small coupling between adja-
cent sets of three planes. This coupling is neglected in the 2D
model. The squares, circles, and triangles are mode energies deter-

~We can understand these results in the following manneryined by the inelastic neutron experiments of Ref.(The data of
Since the Nd's mix with the Cu’s only via the uniform Nd Ref. 19 is similar to that shown hefeNote that the calculations
excitation (6)), we have three Nd modes whose energypredict a strong dispersion of the acoustic mode at small wave
(w, for k=1,2,3) is approximatelhA. The energy differ-
ences between these modes is causethhy therefore is a

vector. At the far right we show the density of stat€09) ob-
tained from an evaluation over the entire 2D Brillouin zone.
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Ve=—4K,n-J  with  n=(sing,cosp,0).  Thus A B AR
ky=0E/3¢?| 4—o. Using the matrix elements of the doublet 0.6 |
given in Eqg. (508, we write the exchange Hamiltonian in ;
terms of Pauli matrices within the lowest doublet as

Vex= 4ny[ =] yCOS(f)O'Z— Singj o] (69
For small¢ the ground-state energy is

<o
Y

e
=

ly

1 2
Eo=4Kyy —jy| 1-5¢

—j§¢2/<21y>] (70)

This result suggests that we make the identification

Energy (meV)
o

ko= (A12)(1—-j2/5)~A(1—j/j,)=7.3X10 °A 12
(71
and we write 8
w2 =2k,A~1.5X 10" %A, (72 A
In the absence of the fourfold anisotropy the acoustic modt
at zero wave vector would have zero energy. This follows
from the combined effects of two symmetries. First of all, 0
the diagonal components of the exchange tensor do not col
tribute to the energy of this mode because these Cu-Nd in Temperature (K)

teractions are completely frustrated. Secondly, as we saw i..
Eq. (37), the pseudodipolar energy is invariant with respect

.to rotating the Cu and Nd SpIns thr'ough thg same angle, bLf&mpera\ture dependence of the spin-wave modes in NCO at zero
in an opposite sense. Obviously, Introductlo_nkgf breaks wave vector. In the top panel we show the three modes at zero wave
this symmetry and leads to a nonzero acoustic mode energyector which do not involve motion of the Cu spins. These energies

We can also obtain simple results for wave vectors on th@ssentially are proportional to the moment of the Cu spins. In the
zone boundary, i.e., fom(qx+qy)=m. Along that line  pottom panel we show the three modes at zero wave vector which
cy=—c, and the matriceé\(q) andB(q) for the Nd sector involve motion of the Cu spins. The experimental points of lvanov
break up into two identical 2 matrices. Neglecting the et al. (Ref. 17 for two of these modes are shown by filled and open
very small effect of the coupling to the high-energy Cucircles. The bottom curve is 2@Q.. This mode has not yet been
modes, we thereby find the spin-wave energies to be observed.

FIG. 11. As in Fig. 10, the full lines are our calculations of the

03=(A-40"c;=M*)?~ (40 c;¥M )% (73 (473 one replaces$ by (S), for which we use Eq(1). One
sees thas (which we had previously set equal $pis now
renormalized by a factof(T)=2(S);, whereas the trans-
w2 =A2—8A0,i2c2+2AM, 2. 74y  verse components of the Cu spin, which are proportional to
B LI hx 7 JS, are renormalized by a factoféc(T). We follow the
Approximately, therefore, we have two doubly degeneratesame rule for the Nd spin in terms of a facty(T) where,
Nd modes on the zone boundal’y with energieS giVen by neg|ecting quantum Zero_point motion, one r[aee Eq

(30)]

It is a good approximation to s¢;=0, in which case

w.~A—40 jici+M |} (75)
En(T)=tanH A/(2kT)]. (76)

E. Normal modes at arbitrary wave vectors Thus the temperature dependence of the spin-wave matrices

We have evaluated energies of the normal modes fois obtained from Eqs(57) and(58) by the replacements
wave vectors in various high-symmetry directions from Eq.

(59). Results for the low-lyingNd) modes for selected val- He—Hgéc(T), Ac—Acén(T),
ues of the parameters are shown in Fig. 10. We also show the
density of spin-wave states for energy up to 0.8 meV. Ky—Ka[Ec(T)éEn(T) YA,
F. Temperature dependence of normal modes A—Acéc(T)+ANEN(T)=A(T), XT—=X"Ey(T).

An approximate treatment of the temperature dependence 77
of the mode energies is based on a generalization of thiNote that whereA appears it actually represents the ex-
random-phase approximation. Within this approximation, ashange field acting on the Cu ions due to the Nd moments
developed for spin systems, one replaGggwherez is the  and hence it is renormalized by a fact(T).] In this for-
direction of long-range magnetic ordeby its thermally av- mulation we treaH 5 as a temperature-dependent parameter
eraged value(S,);. For instance, in the relations of Eq. and although our prescription indicates tka{T) is propor-
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TABLE IX. Values for the contributions to the splitting in energy of the lowest Nd doublet from various
interactions according to mean-field theory. In columns IabbF@We list values(at T=0) associated with
the interactions;, of Thalmeier(Ref. 22 compared to the corresponding valigsirom the interactiord in
our theory. The first four columns refer to the exchange field due to Cu spins and the remaining columns to
the exchange field due to other Nd spins. Thalmeier’s theory has no splitting analogous to ourk gusdo
we leave the first column of the table blaniSince we have not made any numerical estimateX ahd
Y, we leave their entries blank. Entries in the last row are all in meV. The total Nd doublet splitting, as
defined by Eq(41), is A=0.41 meV using our parameters and 0.44 meV using Thalmeier's.

Cu Nd
- hg heu  hy hy hm hy  hx | hs hx hy ho
Kyiy | hew =Y | 37 —2M 2| 0 8X | =213 B8N, | 213  —80,j}
- 0.57 | 0.59 -0.21 -0.18 0 014 011| —0.08 —0.09

tional to A(T), it may be more realistic to also regard the values of the Nd crystal-field matrix elements, j,,
ks(T) as a temperature-dependent parameter. Following thandj, were calculated in Appendix D. We summarize these:

same analysis as fafr=0, we now find that the results of o
Eqs(62)_(64) become HE:140 meV, HA:01 meV, (Jx+1y)/2: 1.886,

w2 ~[Acéc(T)+AnEn(T) 12+ 2[Acéc(T) Jy=ix=1.4x10"%j,= -0.015. (84)

+AN§N(T)]§N(T)J.)2([4OL+4NLiMi]v (78) We note the very small value gf,. Conslder_lng 'thIS, the
values of the exchange parameters which invalyehave

little influence on the results. Therefore, we have set
w3~[Acéc(T)+ Anén(T) 2+ 2[ Acéc(T)

+Anén(T)Ien(T)IZ40, — 4N, =M. ], (79 Nz=M2=0.=0. ®9
and We now fit the other parameters by comparing with the
observed spectrum of Nd spin excitations in N&n mak-
wi~2Heéc(T)[Ha+2AcE0(T)]. (80)  ing this comparison we note that the experiment shows more

_ . _than four low-energy spin-wave modes. This observation in-
The energy of two mixed modes assumes a simple form iglicates that our assumption that the interaction between ad-

the low-temperature limifwhenHgéy(T)>AcEc(T) ]: jacent three-plane units is negligible, is not totally correct, at
) ) least in this context. However, the dispersion alangis
0o~ 4AcHEENEC, @i 2Ka(T)[A(T) +2FEn(T)], small, in conformity with our assumption. As a result, the

(81)  comparisor(shown in Fig. 10 of our simple 2D model with
the actual data is somewhat approximate. However, we do
seem to capture the main physical effects with our simple 2D
1 model. To estimate the numerical values of the parameters,
ks(T)= EA(T)[l— (jxljy)z]. (82  we use Eq(75) to identify the observed splitting of 0.3 meV
at theM point with 2M , j2, so that

where

In the high-temperature limigwhenHgéy<A :
gh-temp twhenHefy<Actc) oM, j2=0.3 meV. (86)
~ 2 .
wopr~Acéc, wa~8K4i(T)Heén(T). (83 Also we note that on average the mode energies are about 0.1
meV higher at theX point (c,=c,=0) than at theM point

In all these results we assumed t He dominates all
fal He (cx=—cy=—1). Thus we deduce that

other coupling constants arfl) A &c(T)>ka(T).
The temperature dependence&f(T) has a very strong 40, j;=0.1meV. (87)
effect at temperatures where the thermal enekdy,passes
throughA. In Fig. 11 we show a graph of the temperatureWe now adjust the other parameteks,, andN, to fit the
dependence of the modes. In a moment we will discuss theemaining aspects of the observed spectrum. We found that a
extent to which these results are consistent with experimentseasonable fit to the spin-wave spectrum determined by in-
elastic neutron scatterity'® could be obtained by takingll

G. Comparison with experiments in meV)

There are several features of our calculations which can K, ,=0.075, K,,=0.01, K,,=0.50, N, =0.004,
be compared with the experimental data. To make this com-

parison we first discuss how we fix the various parameters M, =0.0250, =0.003. (89)
which enter the calculation. As mentioned above, the Cu-Cu
exchange interactions, which give rise th- and H, are Note that with this parameter set, we obtain a reasonable

fixed from their values in many other cuprates. In addition,fit to various other data. For instance, in Fig. 11, we show the
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temperature dependence of the optical modes involving théhe Cu-Nd interaction has a tensor with two components, one
Cu sublattices versus temperature. One sees a very godar interactions in thg001] plane and another for interac-
agreement between theory and the observations of Ilvanaions involving z components of spin is not appropriate for
et all’ They interpreted their results in a qualitative way asthe local symmetry of the interaction bond. In fact, as
showing two zero wave-vector modes with energy gaps propointed out® the pseudodipolar Nd-Nd interactions arise
portional to VvHgH,. The detailed theory presented herefrom the anisotropic exchange interaction only when the cor-
gives their argument a firm theoretical basis. Also in Fig. 10rect symmetry of the bond is taken into account. This pecu-
one sees that the density of states indicates a gap to a peakliar symmetry is particularly important in the case of the
the density of states at an energy of about 0.28 meV, in spiteearest-neighbor Cu-Nd interactions of E86). As we have

of the fact that the mean-field splittiniy given in Eq.(41),is  seen, the crucial part of this interaction is the pseudodipolar
somewhat largef0.41 meV, see Table X This peak value part proportional toK,,. The other Nd-Nd interactions we

in the density of states is in very good agreement with theuse are very similar to those of Thalmeier, as can be seen by
detailed analysis of the specific heat of NCRef. 4 which  the comparison shown in Table IX, where we give the con-
gave a splitting of 0.33 meV\3.7 K in temperature units  tributions to the splitting from various interactions.
Our fit in Fig. 7 to the Nd magnetization in NCO gave 0.30[Thalmeier’'s contribution to the doublet splitting frohy

meV for this splitting. So our theoretical spin-wave spectrum(due to hisl;) vanishes because he does not allow for the
is in broad agreement with the various thermodynamic meapseudodipolar component of exchange interactions between
surements. Finally, based on our calculations we proposRd nearest neighbors.

that a measurement of the lowest gamat0 and low tem- Finally we mention the earlier calculation of Sobolev
peratures would be a useful measure of the fourfold anisotet al®* In that calculation the degrees of freedom describing
ropy and would confirm the physics of our model. the Nd spins have been removed, so that there are just four

Cu spins per unit cell. This actually is not too bad, since the
) ) ) ) highest mode is exact, and the other mode is reasonably
H. Comparison with previous calculations close to one of our modes with Nd-Cu mixed in. Of course,
From our results one sees that the approach used Bjis approach cannot describe either the Nd modes or the
Thalmeief? (in which the Cu spins create a fixed exchangelow-frequency mode due to Nd-Cu collective excitation.
field at the Nd sitesis not correct for very small wave vec-
tors. In particular, at zero wave vector such an approach, if
used for our model, would give three of the Nd modes cor-
rectly, because as we have seen from our exact solution for We may summarize our conclusions as follows.
g=0, these modes are confined to the Nd sublattices. Of (i) We show that due to the exchange field acting on the
course, treating only the Nd spins cannot possibly give aare-earth ion and crystalline electric-field interactions, there
reasonable estimate of the energy of the low@sbusti¢  is a strong single ion anisotropy which aligns the Cu and
mode for small, since this mode is a collective mode of the R=Pr, Nd magnetization along tH&00] axis, as observed.
Nd and Cu sublattices. Our treatment is only necessary nedihis same type of calculation also indicates that for Sm in
zero wave vector. In fact, from Fig. 10, one sees the exSCO the easy axis lies alofi§01], again in agreement with
tremely strong dependence of the lowest energy mode abservations. Interestingly, our calculation shows that within
small wave vector such thatg<+A/Hg~0.06. For larger the plane, the Sm anisotropy favors alignment alckid). If
g one has four Nd modes with energies ndarin treating  this anisotropy is the dominant in-plane anisotropy, the mag-
the acoustic mode it is also important to incorporate the infetic structure would then be a collinear one. The experi-
plane anisotropy of the Nd doublet, as we have done hergnents are not conclusive as to whether or not the magnetic
Finally, we give here an approximate treatment of the temstructure of SCO is noncollinear, especially in the Sm-
perature dependence of the spectrum. Because we assumrelered phase fof <6 K.
that the coupling between adjacent three-plane units is small, (ii) Crystalline electric-field theory with a CR-exchange
our calculations apply to all three phases of NCO. interaction such that the exchange field, defined to couple to
A significant difference between our model and Thalmei-J as in Eq.(2), of the order 0.080 meV for N¢correspond-
er's is that in his work the values assigned to the variousng to a splitting of the lowest doublet of 0.3 mgVand
exchange tensors are chosen in a way which seems to 139 meV for Pr successfully explains many properties,
inconsistent with the type of order actually found in the vari-such as the induce® magnetization, the splitting of the
ous phases. In particular, his choice of the largest Cu-NdKramers doublet, etc., at all temperatures.
interaction to be a ferromagnetic offmesumably between a (iii ) We propose a model in which a Cu plane with its two
Cu spin and the Nd ions directly above and below it in theNd neighboring planes form a tightly bound unit due to in-
z direction seems to be contradicted by the fact that thesderactions between the Cu plaquette and the Nd ions adjacent
spins change their relative orientations during the spin reorito it. In view of the frustration only pseudodipolar interpla-
entation transitions. As discussed in Sec. IV, we would exnar interaction% effectively contribute. We propose a model
pect that the spin reorientations would preserve the strongestvolving Cu-Cu, Cu-Nd, and Nd-Nd interactions between
coupling and break only less dominant couplings. This obneighboring tightly bound units. The strengths of the inter-
servation motivated our choice of model in which the domi-planar couplings are assumed to decrease rapidly with dis-
nant Nd-Cu interaction is that from the anisotropic exchangeance, but in NCO they can compete because the temperature
interaction between nearest Cu-Nd neighbors. Also, we magependence of the Nd is extremely rapid. This is the simplest
mention that the form of the exchange anisotropy in whichmodel which explains both the three consecutive phase tran-

VI. CONCLUSION
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sitions observetlin NCO as well as the absence of suchnot yet been observed, but clearly its observation is highly

phase transitions in PCO. desirable.
(iv) We have calculated the spin-wave spectrum of
Nd,CuQ, within a simplified three-plane model which quali- ACKNOWLEDGMENTS
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APPENDIX A: COEFFICIENTS IN THE PERTURBATION EXPANSION

The coefficients that appear in Eq82) are

’ Xj
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| il
Xit XimXmi Xﬁ
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whereE; |=E;—E;, ¥’ indicates that the summed indéor indiceg may not assume the valugand
EP: (= D)PP(ZyZimXmi) = (Zi ZimXmi ™ Zit XimZemi+ Xit ZimZmi) - (A2)

Numerical values of the coefficients are listed in Table VII.



282 RAVI SACHIDANANDAM et al. 56

APPENDIX B: COEFFICIENTS OF THE FREE-ENERGY
EXPANSION

5
1
F2(T)=22(0)'2> eﬁEio( —dai+ 5 b5 + Bl
=1

Here we list the coefficients that appear in the expansions

for the free energy and the partition function.

1
5 2XL =AZ(T)!

Bl
293 (613
1

Z?JXZ: E(T), (B1b)

1 2
—a,=Bz(T)- EBAZ(T)v (B1o)

1 2
—Ba=Fz(T)— EﬁEz(T). (B1d)
—4=Cz(T)— BAY(T), (Ble)
—64=Dz(T) = BAZ(T)E(T), (B1f)

where
5

2(0)= 221 e PEio, (B2)

5
A (T)= 22(0)*121 e~ PEio

1 5
—ap+ §,3Xii ) , (B3)

5
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APPENDIX C: GROUND-STATE ENERGY AND

SUSCEPTIBILITY OF PR

We first give the matrix elements involvirty, . Here ¢
refers to the angle which, makes with thex axis:

|dy) e’
(g|J~h( )=1.8831L( B );

|d2) e !¢
ioa)-0sm. 5o
(gl3-h D,) =0.67%, it (C1a
do)) e_id))_
<e1|J~h(|d2>)—0.3321(_ei¢ ;
oo
(e113-h D,) =1.85%, _aid] (Cib
g0
(€5/d-h Id,) =0.87th, oo |
[os)-o%en e}
(€5/3-h D,) =0.48%h, it | (Clo
g 2o e}
(es]d-h 1d) _l'SSJhL(—ei“’ ;
[ioo)-07m.{ e
(e3d-h D,) =0.79h, _eid] (C19
gl ossm( )
(e4J3-h Id,) =0.43h, g
|D1>>_ ( e‘¢)
(e4|J-h(|D2> =1.95%, oid]: (C1e
The only nonzero matrix elements involviig are
<|d1>)_ 1 0\
(<dl|<d2|)thz |d2> _2-06911<0 1 ’
(e4|3;h,|g)=—2.00tn,, (C2a
[og-oom 53
(<D1|<D2|)‘thz |D2> _0-0681z 0 1]’
<e3|\]zhzlez>:3.19(hz, (C2b)

|d1) -1 0}
(<Dl|<D2|)thz( |d2>> = 1-69212( 0 l) )
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where i is the magnetic moment operat¢rF,) is a crystal-

field state forh=0, andEy is the corresponding eigenvalue.
Now we use these results to implement perturbatiorHereX’ indicates a sum over statds’) that are identical to

theory. In our numerical results, all energies dn@re ex- or degenerate withl'), andX” indicates a sum over states

pressed in meV. First-order perturbation of the ground statél"’) that are nondegenerate in energy wjth). The first

is zero. For the second-order perturbation of the ground staterm gives the temperature-dependence of the magnetic sus-

(e5]d,h,]ey) = —2.415,. (C20

we evaluate terms of the form

<g|Vex| a><a|vex|g>
% (Eg_Ea)

There are two kinds of quantities from this term

(C3

dy.dy Eg_Ed Dy.Dy EQ_ED
2(1.883%h?  2(0.675°h?
= =—-0.38%?2, C4
Ey—Eq Eq—Eb L (C4
and
VoJea)(edV —4h?
<g| ex| 4>< 4| ex|g>: 98522_0-04061?- (C5)

Eq—Ee,

The third-order terms vanish. The fourth-order terms are pro;

portional to (+hy), hzhZ, hy andh?hZ. There are two

types of matrix elements that we have to evaluate:

<g|Vex| 0‘><a|vex|:8><:8|vex| '}’><7’|Vex|g>

1
M 2 = (€, E.(E, EpE, E,
From this term we get —h{[9.68<10 “cog(2¢)

+3.23x 10" *sinf(2¢)]—0.0054612h? which can be written
as

—9.68<10 *(hy+hy)+6.44< 10" *h?h7—0.0054613h? .
(Co)

<g|vex| a><a’|vex|g><g|vex|18><ﬁ|vex|g>
@ aZ%% (Eq—E)(Eg—Ep)*

This will only give quantities proportional th! , hi and
h?hZ which are

0.0079%% +1.674x 10" °h2+0.0009882h* .  (C7)
Hence the ground-state energy in a field is given by
Eg=—0.38%7 —0.04062 +0.00696h + h)) +0.01651sh7

+1.674x 10 °h3—0.0044h?h2. (C8

ceptibility and the second term gives a relatively temperature
independent paramagnetism.

APPENDIX D: THE STATES |g) AND |e)

Here we develop expressions for the statgsand|e) of
the lowest doublet in the presence of an exchange field. For
that purpose it is convenient to label the ten zero-field states
as doublets from 1 to 5 in order of increasing energy. We use
perturbation expansions identical to those of Sec. Ill.C. to
develop expansions fgg) and|e) in terms of the ten doubly
degenerate states of tle= 9/2 multiplet. The exchange field
at a Nd ion in ann sublattice due to all its Cu and Nd
neighbors lies along thg axis. The magnitude of the ex-
change fieldh, will be fixed to give the observed doublet
splitting.

We first diagonalize the potential due to interactions with
this magnetic field within the ground-state doublet to give
the stated1=). We will use the fact, shown in Sec. llIC,
that the matrix elements of theoperators between any two
sets of doublets are like Pauli spin matrices. Forrhsub-
lattice (with Nd moment along the-y direction we have

U AR
((i_|>‘](|]+>|]_>):(XijUx.finiJO'z,—Zija'y),
(D1)

where ¢ are the Pauli spin matrices,j are labels of the
doublets, and;; , x;;, andz; are defined in Eq(16).

From the diagonalization of the potential matfior a
field in the —y direction, carried out in Sec. llICwe can
see that the zeroth-order ground stagk, is the state labeled
|1—), while the zeroth-order first excited stag, is labeled
|1+). Explicitly we have

|1_>E|9>o:%[|Al>_i®|A1>]:
1

V2

where |A;) and ® are given in Eqs(8e) and (9), respec-
tively. At this order there is no difference between thand

|1+)=[e)o=—=[0]|A)—i|A})], (D2

We also quote here the general formula for the susceptiy directions, but there is one between thdirection and the

bility for a non-Kramer’s ion,

1(1 ,
Xaa(T): = _2 eiEr/kTE |<F|MQ|F,>|2
Z kT I r’

—Ep IKT_ a—Epr IKT

—e
Er —Er ‘

n e
+3 3" Kl
F/

(C9

x or y directions, reflecting the tetragonal symmetry of the
lattice. To see an anisotropy in the-y plane we need to
carry the expansion to higher order. We can find the correc-
tions to the zeroth-order wave function to firgt {,1)) sec-
ond (1=,2)) and third order [L+,3)) in the fields. These
will be orthogonal to the original state, that is, the correc-
tions to any state will only involve the states belonging to the
four other doublets. In this formulation the eigenstate is not
normalized to unity.
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where the repeated indicep,€) are summed from 2 to 5.
Let

fi(h) =1 h+fPh2+fIh®. (D4)
Then the two lowest states are given by
5
le)=[14)+ 2, fuhendk+), (D53
5
l9)=11,-)+ 2, fu(~henlk=).  (OSH

For then sublattice(with Nd spin in the—y direction we
have

. 1 .
]xo'xaz(]y++]yf)|

(<el)a<le>| )=
(gl 9=

1 . .
+§(Jy+_1y7)0'zy_Jzo'y , (D6)

where | is the unit 2<2 matrix and the expressions for
jx---j,are

5
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+ 2 Xef(h)fp(h), (D9)
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5
C2j,_=Cy(gl3yla) = —X11— X, Xl fe(h) +Fi(—h)]

k=2
5
— 2 Xpf(—h)fy(—h), (D10)
k,p=2

where Ci=(ele) and Cj=(glg). One sees that
8jy=ly+*Jy- is of orderh® and 8j, =j,—jy is of order
h?, wherej,=(jy+—jy-)/2, whereag, and the average in
planej = (j,+j)/2 both are of ordeh®. ForA=0.3 meV,
i.e.,, for h=A/(2j,)=0.07954, we find that
8jy=—1.0x10"% &j,=1.38<10 % j,=-0.0151, and
j 2= 1.886.

APPENDIX E: ANISOTROPY DUE TO ZERO-POINT
FLUCTUATIONS

In this appendix we consider the effect of the in-plane
anisotropy of the Cu-Cu exchange interactions when
6J=J— J, is nonzero. We consider only the calculation for
T=0. Then it is convenient to follow the analysis of Sec. V
of Ref. 12. There one sees in BE§7) that within noninter-
acting spin-wave theory there is no gap in the spin-wave
spectrum even whe#éJ is nonzero. Although one can calcu-
late the gap due t8J using nonlinear spin-wave theory, it is
much easier to estimate this gap by constructing an effective
Hamiltonian, Hzp, from the dependence of the quantum
zero-point energy on the orientation of the staggered mo-
ment. This anisotropy is not a long-wavelength
phenomenon—in simple cases it can be estimated from the
short-wavelength fluctuatio’$.53 Therefore, it is justified to
use the effective Hamiltonian given in Eq6) of Ref. 12 for
the Cu system without any rare-earth spins. In the present
notation[and withJ,,= (7, + J))/2] we have

Hzo=43a60S ° 2, S8

=430

2 ot24 ot
% [a3+(a])?+2a]a,]

+> [a?+(a)?+2ala]], (ED)
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where 5,,=2C,(8J/J,)*~10"? involves a sum over the now have the altered matrix elementsA;;=Hg
zero-point energy of modes in the entire Brillouin zone. This+2A .+ 4J,,6,, and By;= —Hg+4J,,8,,. Then, whens,,
effect is clearly negligible except possibly for zero wave vec-can be treated perturbatively, we find

tor. This interaction can be included in the dynamical matri-
ces, in which case in Eq60) we should replaceHg by ) ) 2

He+4J,,8,, and the zero entries in the Cu sector of F&f) wZ~0-(5;,=0)| 1+ A= i) (E2
should be replaced by3}4,5,,. One sees that this modifica- ¢ i

tion has no effect at all on the energy of the modesand  Using the known values of the parameters we see that includ-
w3, and a completely negligible effect @sy. In Eqg. (65 we  ing the effect ofd;, has an effect of about 1% ab. .
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