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Magnetocrystalline anisotropy energy of transition-metal thin films: A nonperturbative theory
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The magnetocrystalline anisotropy energyEanis of free-standing monolayers and thin films of Fe and Ni is
determined using two different semiempirical schemes. Within atight-binding calculationfor the 3d bands
alone, we analyze in detail the relation between band structure andEanis, treating spin-orbit coupling~SOC!
nonperturbatively. We find important contributions toEanis due to the lifting of band degeneracies near the
Fermi level by SOC. The important role of degeneracies is supported by the calculation of the electron
temperature dependence of the magnetocrystalline anisotropy energy, which decreases with the temperature
increasing on a scale of several hundred K. In general,Eanis scales with the square of the SOC constant
lso. Including 4s bands ands-d hybridization, thecombined interpolation schemeyields anisotropy energies
that quantitatively agree well with experiments for Fe and Ni monolayers on Cu~001!. Finally, the anisotropy
energy is calculated for systems of up to 14 layers. Even after includings bands and for multilayers, the
importance of degeneracies persists. Considering a fixed fct-Fe structure, we find a reorientation of the mag-
netization from perpendicular to in-plane at about 4 layers. For Ni, we find the correct in-plane easy axis for
the monolayer. However, since the anisotropy energy remains nearly constant, we do not find the experimen-
tally observed reorientation.@S0163-1829~97!00629-2#
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I. INTRODUCTION

The dependence of the total energy of a ferromagn
crystal on the direction of magnetization originates from
magnetic dipole-dipole interaction as well as from spin-or
coupling ~SOC!, as proposed by van Vleck.1 The magnetic
anisotropy energy is expected to be enlarged in system
low symmetry, i.e., at surfaces, interfaces, and thin films2 or
in one-dimensional systems such as quantum corrals.3 Re-
cently, a magnetization easy-axis perpendicular to the
plane has been observed for a wide variety of thin film s
tems, for example for thin films of fcc Fe on Cu~001!.4–6

Some of these systems are promising candidates for m
netic high-density storage media.

In spite of many theoretical attempts,7–15 the relationship
between the electronic structure and magnetocrystalline
isotropy energyEaniscould not be fully clarified so far. Som
very important questions are subject to intense discussion~i!
Which band structure details lead to significant contributio
to Eanis? Especially the treatment of degenerate bands n
the Fermi level has brought up controversies.11–13 ~ii ! How
doesEanis depend on the SOC strengthlso? ~iii ! How is it
influenced by the substrate lattice constant? Moreover, th
is no unified thermodynamic and electronic theory to de
mine the temperature dependence ofEanis. Finally, the cor-
rect prediction of magnetic anisotropy for real systems s
remains a challenge, since due to the quenching of orb
angular momentum in 3d transition metal systems,Eanis is
several orders of magnitude smaller than other contributi
to the total energy of a crystal~typically about 0.121 meV
per atom in ultrathin films!.

The magnetic anisotropy of thin films has been inve
gated using two essentially different approaches. In se
empirical calculations,7,8,10,14 the magnetocrystalline aniso
ropy energyEanis is determined by means of parametriz
tight-binding band structures. Usually, spin-orbit coupling
560163-1829/97/56~5!/2594~11!/$10.00
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restricted to second-order perturbation theory. On the o
hand,ab initio calculations have been made9,12,13,15and lead
to realistic band structures. Most calculations make use
the controversial force theorem.16 Convergence, however, i
difficult to achieve; sometimes, additional assumptions
made in order to obtain converged results~state tracking
method.12!

The structure of thin Fe films deposited on Cu~001! has
been widely investigated, especially the dependence of
structure and magnetization orientation on the temperat
For films of less than 5 monolayers~ML ! deposited at low
temperatures, a distorted fcc structure is found, with mag
tization perpendicular to the film plane. At 5 ML, a transitio
to in-plane magnetization is observed, as well as a restru
ration of the film. It is still not clear if this reorientation
transition is an effect of the structural changes taking plac
the film at 4–5 ML.5,17–20

In this paper, we investigate a simple quadratic Fe and
monolayer and fcc multilayer systems up to 14 ML epita
ally grown on the Cu~001! surface and neglect further inte
actions with the substrate. The band structures are calcul
within two different semiempirical schemes, including SO
completely nonperturbatively without resorting to degener
or nondegenerate perturbation theory of any order. Atight-
binding calculationof the 3d bands allows for a detailed,k-
space resolved analysis of the role of degeneracies
Eanis. It is shown that degeneracies located near the Fe
level can yield significant contributions, if they occur alon
lines in k space. We find for these that generallyEanis}lso

2

holds. Including 4s bands by means of thecombined inter-
polation scheme21 and fitting the parameters toab initio cal-
culations, we obtain the correct sign and values ofEanis for
the systems considered with this fully convergent meth
That could be achieved neither by a fit using bulk parame
nor by employing a real-space density of states calculat
the so-called recursion method.11 Moreover, we find the
2594 © 1997 The American Physical Society
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56 2595MAGNETOCRYSTALLINE ANISOTROPY ENERGY OF . . .
characteristic scale for the temperature dependence of
magnetic anisotropy to belso, rather than the bandwidth
This supports the significance of the lifting of degenerac
at EF by lso and demonstrates the importance of contrib
tions to magnetic anisotropy due to Fermi-edge smearin

Finally, we calculate the anisotropy energy of multilay
systems. For systems of tetragonally distorted Fe of 2 to
ML, we find a transition from magnetization perpendicular
the plane to in-plane magnetization at about 4 ML. We c
clude from our calculation that the experimentally observ
reorientation at five layers is not necessarily caused b
structural phase transition. For Ni, we find a nearly const
anisotropy energy from the fourth layer on, in disagreem
with the results of Schulz and Baberschke,22 who find a re-
orientation from in-plane to parallel magnetization at 7 M
In both cases, the degeneracies near the Fermi level
found to play an important role for the dependence of
anisotropy energy on the film thickness.

This paper is organized as follows. In Section II, the
terpolation schemes~II A, II B, II C ! and the determination
of Eanis ~II D ! are presented. The results obtained from
tight-binding scheme ford bands alone are shown in Se
III A, the role of degeneracies is analyzed in detail in S
III B while the results for the completes- andd-band calcu-
lation for Fe and Ni monolayers on Cu~001! and other sub-
strates are given in Sec. III C. The influence of crystal fi
splitting is investigated. Some aspects of the temperature
pendence of magnetic anisotropy are considered in S
III D, and the results for multilayer systems are presented
Secs. III E and III F. Section IV sums up the most importa
results.

II. THEORY

A. Band structures

The magnetocrystalline anisotropy energyEanis depends
sensitively on the electronic structure of the system. To s
plify the analysis, the band structure of the monolayer
calculated in two steps. First, the 3d bands are describe
within a tight-binding scheme. Although the resultingEanis
as a function of the 3d-band filling nd shows already the
most important features, the 4s bands ands-d hybridization
have to be taken into account for a correct numerical ev
ation of Eanis.

For the 3d bands, the tight-binding formalism introduce
by Fletcher23 and Slater and Koster24 is adapted to the mono
layer. The HamiltonianHd5Hat1DU is set up as a
10310 matrix with respect to the basis of Bloch wave fun
tions

cnk~r !5
1

AN
(
R

eik•Rfn~r2R!. ~1!

Here,Hat is the atomic Hamiltonian,DU the additional crys-
tal field in the monolayer.f i , i 51, . . . ,5 (i 56, . . .,10) are
the atomic 3d orbitals commonly denoted byxy, yz, zx,
x22y2, and 3z22r 2, respectively, together with the spi
eigenstateu↑& (u↓&) with respect to the spin quantization ax
zM . In the simple quadratic monolayer, only orbitals locat
on neighboring atoms are included. The extension to sec
nearest neighbors does not lead to further insight.25 With the
he
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x and y axes oriented along axes connecting nearest ne
bors in the monolayer, the spin-polarized Hamilton mat
has~within the three-center approximation! the form

H11
d 5E01DNi

V 12B̃1~cos2j1cos2h!2Jex/2,

H22
d 5E012B̃2cos 2j12B̃3cos2h2Jex8 /2,

H33
d 5E012B̃3cos2j12B̃2cos2h2Jex8 /2,

~2!

H44
d 5E01DFe

V 12B̃4~cos2j1cos2h!2Jex8 /2,

H55
d 5E01DNi

V 1DFe
V 12B̃5~cos2j1cos2h!2Jex/2,

H45
d 5H54

d 5H9,10
d 5H10,9

d 52B̃6~cos2j2cos2h!,

and

Hii
d 5Hi 25,i 25

d 1Jex for i 56,10,

Hii
d 5Hi 25,i 25

d 1Jex8 for i 57,8,9.

Here,j5 1
2kxa andh5 1

2kya are the normalized componen
of the crystal momentumk, a is the lattice constant of the
simple quadratic monolayer. For qualitative results it
sufficient to use bulk values for the parameters of the pa
magnetic band structureB̃i , the crystal field paramete
DFe/Ni

V , and the spin splitting parametersJex and Jex8 . For
Ni, the parameters are taken from Weling and Callaway,26,27

for Fe from Pustogowaet al.28,29 The B̃i and DV are listed
in the first column of Table I. We have usedJex50.1 eV
andJex8 50.4 eV for Ni andJex5Jex8 51.78 eV for Fe. Due to
the higher symmetry in fcc or bcc bulk crystals, only o
crystal field parameterDFe

V (DNi
V ) appears in the correspond

ing Fe~Ni! bulk Hamiltonian. For the monolayer, one wou
have to consider three differentD’s because of the reduce
symmetry, but these parameters are not known. Hence,
DFe/Ni

V has been considered in Eq.~2!. The influence of fur-
ther crystal field effects onEanis in the monolayer, which was
stressed by Bruno,10 is investigated in Sec. III C.

For a quantitative comparison with experiment, howev
4s states have to be included~within the so-called ‘‘com-
bined interpolation scheme’’21! due to the strong overlap an
hybridization between 3d and 4s bands in 3d transition met-
als. According to the pseudopotential method by Harrison30

the 4s electrons are described by a set of plane waves

cK jk
~r !5

1

ANv
ei ~k2K j !•r,

where theK j are a set of reciprocal lattice vectors. The
have to be chosen such that at least the lowest eigenstat
the considered part of the two dimensional Brillouin zo
~irreducible part, see below! are described. For simple qua
dratic monolayers, this yieldsK15(0,0), K252p/a(1,0),
K352p/a(0,1), K452p/a(1,1), K552p/a(21,0), and
K652p/a(1,21). To maintain the symmetry of the prob
lem ~and thus the correct occurrence of band degenera
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2596 56A. LESSARD, T. H. MOOS, AND W. HU¨ BNER
that turn out to be very important forEanis), symmetry factors
Fi have to be introduced into the Hamilton matrix.21 This
leads to

Hi j
s 5^cK ik

uHucK jk&5H V001a~k2K i !
2 for i 5 j ,

VKj2Ki
FiF j else.

V00, V10, V11, V12, andV02 are the Fourier components o
the pseudopotential,a is the dispersion of the 4s band. The
symmetry factors are

F151, F25sin2j, F35H sin2h for h>0,

0 else,

F45F2F3 , F55H sin2h for h<0,

0 else,
F65F2F5 .

Thes-d hybridizationHsd between states of parallel spins
calculated according to Hodgeset al.21 with the parameters
B1 andB2. To obtain accurate parameters, we perform a
to the full-potential linear muffin-tin orbitals~LMTO! calcu-
lation for a free-standing Fe monolayer by Pustogowaet al.31

and to the linear augmented plane wave~LAPW! calculation
for a Ni monolayer by Jepsenet al.32 The resulting param-

TABLE I. Band structure parameters within the combined int
polation scheme for Fe and Ni~001! monolayers with lattice con-

stanta. The parametersB̃i andDV are taken from Pustogowaet al.
~Refs. 28 and 29! for Fe and from Weling and Callaway~Refs. 26
and 27! for Ni ~bulk parameters!. The other parameters are obtain
from a fit toab initio calculations for freestanding~001! monolayers
by Pustogowaet al. ~Ref. 31! for Fe and Jepsenet al. ~Ref. 32! for
Ni.

Fe Ni

B̃1~eV! 0.077 4 0.152 923

B̃2 ~eV! 20.008 16 20.015 135

B̃3 ~eV! 0.077 4 0.227 635

B̃4 ~eV! 20.153 24 20.25

B̃5 ~eV! 20.056 52 20.071 149

B̃6 ~eV! 0.083 76 0.119 380

DV ~eV! 0.068 0.059 360

S↑ 2.06 1.33
S↓ 2.63 1.52
Jex ~eV! 2.18 0.87
Jex8 ~eV! 2.18 1.17
E0 ~eV! 20.54 20.935

a ~eV! 20.0 25.2
V00 ~eV! 24.20 24.60
V10 ~eV! 1.2 0.4
V11 ~eV! 1.0 2.0

B1 ~eV! 7.5 5.0
B2 ~eV! 5.1 12.8

a ~Å! 2.76 2.49
t

eters are listed in Table I. In order to to reduce the numbe
free parameters in the fit, thed-band parametersBĩ andDV

are still taken from the corresponding bulk crystals~see
above!. To obtain correctd-band widths, however, theB̃i are
scaled with the fitted parametersS↑ and S↓ for the spin-up
and spin-down bands, respectively. Finally, thes- and
d-band widths ands-d-hybridization parameters are scale
with t according to Harrison33 to take into account the Cu
surface lattice constanta:

S a

a0
D q

5S t

t0
D ~3!

with a0 the surface lattice constant of Fe or Ni,t0 the corre-
sponding hopping parameters, andq being 25 for the dd
parameters,22 for thess parameters, and27/2 for thesd
parameters. The in-plane lattice constant is taken to be
of the Cu substrate for all considered systems (a 5 2.56 Å!.
This is correct for Ni, which is known to have a larg
pseudomorphic growth range.22 For Fe, however, both an
in-plane nearest-neighbor distance similar to that of Cu an
smaller one34 have been reported.

B. Spin-orbit coupling

Spin-orbit coupling~SOC! between thed states, leading
to magnetocrystalline anisotropy, is introduced in the us
form asHso5lsol•s. It can be expressed8 by the components
of the orbital momentum operatorl in the rotated frame
(xM ,yM ,zM). Here,zM is the spin quantization axis, whic
is parallel to the direction of magnetization (u,f).35

Hso5:S Hso
↑↑ Hso

↑↓

Hso
↓↑ Hso

↓↓D 5
lso

2 S l zM
l xM

2 i l yM

l xM
1 i l yM

2 l zM

D . ~4!

Expressed in the basis of Eq.~1!, Hso is a matrix function of
the magnetization direction (u,f). The SOC constantlso is
taken from the corresponding atom:lso570 meV for Ni and
50 meV for Fe.36

Unlike in usual tight-binding calculations,7,8,10,14SOC is
included nonperturbatively37 in our treatment. Thus, we ob
tain important information on howEanis scales with the SOC
constantlso, which contributes to our analysis of the orig
of Eanis in terms of band structure properties~see below!.

C. Multilayers

We build up the Hamiltonian of a system ofl layers by
coupling l monolayer HamiltoniansHmono

i 51••• l together. The
coupling of the layers is described within the tight-bindin
nearest-neighbor formalism used for the monolayer. Beca
of the missing periodicity in thez direction, we obtain terms
that depend only onj andh. For the sake of simplicity, we
take only s bonds into account and obtain the followin
terms for the coupling of the orbitalj of the monolayeri
with the orbitalk of the monolayeri 11, H j ,k

i ,i 11 :

H22
i ,i 11522B̃1cos2h,

H33
i ,i 11522B̃1cos2j,

-
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with i 51••• l 21. The (22l 322l ) coupling matrix thus has
only elements in the (l 21) ~22322! blocks just above and
below the diagonal. The parameterB̃1 is the same as used fo
the monolayers, but it yet has to be scaled to the interla
distance of the tetragonally distorted system, according
Eq. ~3!. We consider equidistant layers. For Ni, we take in
account the reported compression of 3.2% to scale the in
layer hoppings.22 For Fe, we assume an expansion of ab
5% as reported by Mu¨ller et al.18

D. Anisotropy energy

The magnetic anisotropy energy per atom is defined a

Eanis~n!:5Etot~u50;n!2Etot~u5p/2,f0 ;n!, ~5!

whereEtot(u,f;n) is the ground-state energy per atom w
a total ofn 3d and 4s electrons per atom, and the magne
zation direction35 is denoted by (u,f). The in-plane angle
f0 is chosen such that the resultinguEanisu is the largest
possible. At first, the anisotropic dipole-dipole interaction
neglected, since it hardly depends on the electronic struc
Nevertheless, it may be of the same order of magnitude
the magnetocrystalline anisotropy resulting from SOC a
will thus be included later to obtain quantitative results. T
total energy per atomEtot ~with the k-space resolved energ
Ek) is given by

Etot~u,f;n!5
1

N(
k

Ek~u,f;n!

5
1

N(
m,k

Emk~u,f! f 0@Emk~u,f!2EF~u,f;n!#,

~6!

with N the number of atoms.f 0(DE) is the Fermi function at
zero temperature andEF(u,f;n) is the Fermi energy which
for a given band fillingn, is determined self-consistently b

n5
1

N(
m,k

f 0@Emk~u,f!2EF~u,f;n!#.

Emk(u,f) is the mth eigenvalue with crystal momentumk
and magnetization along (u,f) of the Hamiltonian

Hmono5Hd1Hso

for the monolayer in the tight-binding scheme and

Hmono5Hs1Hd1Hsd1Hso

for the monolayer in the combined interpolation scheme.
multilayer systems, we have the following Hamiltonian:

H5Hmono
1

% •••% Hmono
n 1Hcoupling.

In Eq. ~6!, we use the so-calledforce theorem, the validity of
which has been assumed in all calculations of the magn
crystalline anisotropy so far.

The complete Brillouin zone~BZ! summation overk is
performed as a weighted summation over the irreducible
of the BZ ~for an arbitrary direction of magnetization!. For
the d electrons with SOC, that means a summation over
of the BZ. About 2000 points of the 1/4 BZ are then suf
cient to achieve convergence. Note that we do not hav
er
to

r-
t

re.
as
d
e

r

o-

rt

/4

to

exclude any parts of the BZ to obtain convergence, unl
Wanget al.12 Adding s electrons ands-d hybridization im-
plies a coupling of non-SOC-coupled states with the SO
coupledd states and results in a reduced symmetry. It is th
necessary to perform the summation over 1/2 of the BZ.
then need 150 000 points to obtain the correct fourfold sy
metry of the in-plane anisotropy energy as a function of
magnetization direction in the plane~cos4f!. Fortunately,
the out-of-plane anisotropy energyEanis as defined by Eq.
~5!, which is larger by two orders of magnitude in our ca
culation (Eanis

in-plane.1.2 meV for Fe!38 already converges fo
about 7000 points, so that calculations for systems of up
14 layers are feasible.

III. RESULTS AND DISCUSSION

A. Monolayers within the tight-binding scheme

In Figs. 1 and 2, results forEanis as a function of the 3
d-band filling nd are presented~solid lines! for the param-
eters of Fe and Ni monolayers, respectively. We use the
tice constant of 2.56 Å to simulate epitaxial growth o
Cu~001!. These figures demonstrate the correspondence
tween electronic structure and magnetic anisotropy and s
that our method will yield convergent results for the who
transition metal series and for large~Fe! and small~Ni! ex-

FIG. 1. Dependence of the magnetocrystalline anisotropy
ergy Eanis on the 3d-band filling nd for a monolayer with param-
eters referring to Fe, calculated within the tight-binding sche
~solid curve!. Negative values ofEanis yield perpendicular anisot-
ropy. The origin of the peaks denoted by A, B, and C can be tra
back to degeneracies in the band structure~see text, Fig. 3, and
inset!. The dashed and dotted curves show the contributionsEanis

par

and Eanis
antipar to Eanis from the spin-orbit coupling between paralle

spins and antiparallel spins, respectively. Inset: Occurrence~thin
line! and lifting ~thick line! of a ‘‘line’’ degeneracy for two differ-
ent directions of magnetization,zM

X andzM
J , respectively.k1 corre-

sponds to one particular direction ink space. Perpendicular tok1,
the intersecting bands are nondispersive throughout the BZ.
energy gained by the lifting of this degeneracy is given
DEanis5

1
2 lsoF, if EF falls in between the two subbands~dotted

line!. Here,F is the fraction of the involved states ink space. If
EF lies below or above the two subbands,DEanis is zero.
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change coupling. They will be analyzed in the followin
Yet, the numerical value ofEanis for Fe and Ni monolayers
cannot be extracted from these figures until the 4s electrons
are included~see Sec. III C!, since the exact 3d-band filling
of the monolayers is not known.

Splitting the spin-orbit coupling matrixHso into two
parts, one of them (Hso

par) containing only coupling betwee
states of parallel spin, the other one (Hso

antipar) between states
of opposite spin, and recalculatingEanis as a function of
nd with either of the two matrices instead ofHso itself,
we obtain the curvesEanis

par (nd) and Eanis
antipar(nd), respec-

tively ~Figs. 1 and 2, dashed and dotted lines, respective!.
Note that to a good approximationEanis

par (nd)1Eanis
antipar(nd)

'Eanis(nd) is valid. For Fe parameters,Eanis
antipar(nd) is very

small due to the large exchange splittingJex that completely
separates the spin subbands. Thus,Eanis

antipar(nd) is ineffective
and may therefore be neglected for further analysis. T
curve Eanis

par (nd)'Eanis(nd) consists of two parts of equa
shape, viz., forndP@0;5# ~spin-up band! and ndP@5;10#
~spin-down band!. In the case of Ni, Eanis

par (nd) and
Eanis

antipar(nd) are of the same order of magnitude, since ther
a considerable overlap between the spin-up and spin-d
subbands.

The curvesEanis(nd) show a number of pronounced pea
~A, B, C, E, F in Figs. 1 and 2!, the origin of which has to be
clarified. Two possible contributions toEanis are discussed in
the literature.11–13~i! The SOC-induced shifting of occupied
nondegenerate bands leads to contributions toEanis in
second-order perturbation theory with respect to the S

FIG. 2. Dependence of the magnetocrystalline anisotropy
ergy Eanis on the 3d-band filling nd for a monolayer with param-
eters referring to Ni, calculated within the tight-binding schem
~solid curve!. Negative values ofEanis yield perpendicular anisot
ropy. The origin of the peaks denoted by E and F can be traced
to degeneracies in the band structure~see text!. The dashed and
dotted curves show the contributionsEanis

par andEanis
antipar to Eanis from

the spin-orbit coupling between parallel spins and antiparallel sp
respectively. Inset: Irreducible part of the two-dimensional B
louin zone of Fe for the tight-binding scheme.a is the lattice con-
stant of the monolayer. The main contribution toEanis at n58.8
~corresponding tond57.6 in the tight-binding calculation! results
from the lifting of degeneracies along the lineLL8.
e

is
n

C

constantlso: Eanis}lso
2 . The first order vanishes due to tim

reversal symmetry.10 ~ii ! The contribution of the lifting of
degenerate bands, which are shifted linearly withlso, de-
pends on the fraction of states ink space influenced by the
degeneracy. Whether this fraction is of the order oflso

2 ,
which would yield12 Eanis}lso

3 , or of lower order which
would yield important contributions toEanis,

11,13 has been a
controversial question. Anyway, the scaling ofEanis with
lso can present important information about the domin
contributions toEanis. Thus, it is very useful not to restric
calculations to second-order perturbation theory as has b
frequently done.10,14 Remarkably, we findEanis(nd)}lso

2 for
most of thend values in agreement with Wanget al.12 Un-
like stated by those authors, however, this does not rule
contributions toEanis of the lifting of degeneracies~ii !. In
Sec. III B and Fig. 1, we show explicitly that such contrib
tions play a very important role forEanis in the monolayers
considered. This is true as well for the multilayers~see the
discussion in Secs. III E and III F!.

The dependence ofEanis on the scaling of alld-electron
hopping parameters with a common parametert was
checked. We found that the overall shape of the cur
Eanis(n) will not change if t is varied. uEanisu increases for
decreasingt ~decreasing bandwidth!. This leads to the gen
eral trend ofuEanisu increasing with increasing lattice consta
a of the monolayer, sincet is proportional toa25 ~see Sec.
III C !.33

B. The electronic origin of Eanis

In this chapter we discuss in detail how the magnetocr
talline anisotropy energy can be related to the electro
band structure. A 3d-band degeneracy can make large co
tributions toEanis, if ~i! it is lifted by SOC for one direction
of magnetization (zM

J ) and remains for another (zM
X ), ~ii ! it is

located near the Fermi levelEF , ~iii ! it runs along a line ink
space, and~iv! the degenerate bands have no or very lit
dispersion along this line. Before showing that such deg
eracies indeed occur in the band structures, we estimate
contribution within a linearized band structure~see inset of
Fig. 1!. If EF is situated below or above the two subband
no contribution toEanis results,DEanis50. The maximal con-
tribution occurs when the degeneracy lies exactly at
Fermi levelEF and amounts to

DEanis5
lso

2
F5lso

2 S ]E

]k1

p

a D 21

~7!

since the fractionF of involved states in the irreducible
quarter of the BZ is F5(Dk1 /p/a)(p/a/p/a)
52lso@(]E/]k1)(p/a)#21. The preferred direction of mag
netization iszM

J .
Thus,DEanis is proportional tolso

2 for a degeneracy tha
occurs along aline with the involved bands being nondispe
sive along that line. This agrees with the scaling ofEanis
observed above. In their estimate of the contribution of
generacies, Wanget al.12 implicitly assume that the degen
erate bands are dispersive in either dimension ofk space.
This would lead toF}lso

2 andEanis}lso
3 and justify the ex-

clusion of degeneracies from their calculation in order
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improve convergence. In the light of our results, howeve
this assumption is incorrect and it neglects very importa
contributions toEanis.

In Fig. 3, some degeneracies are shown in the band str
ture of the Fe monolayer. For example, the degeneracyA

that occurs forM i ẑ and is lifted forM i x̂ is located at the
Fermi level fornd57.6 ~dotted lines in Fig. 3! and leads to
the peakA in Fig. 1. It runs along a line ink space, which is
shown in the inset of Fig. 2. According to Eq.~7!, with
]E/]ky50.6 eV/p/a ~taken from the band structure!, this
contribution should beDEanis'4 meV, which agrees in the
order of magnitude with the calculated valu
Eanis(nd57.6)56 eV.

Several tests have been made to support that hypothe
Excluding the states influenced by the degeneracyA ~4.3%
of the total of 3d states! from the calculation ofEanis, the
height of peakA is reduced to 40%. Thek-space resolved
analysis ofEanis(nd57.6) also shows clearly thatEanis re-
sults from the states near the degeneracy.

Analogous degeneracies are found in the Ni band stru
ture contributing to the peaks E and F~Fig. 2!. Note that the
lifting of degeneracies can favor in-plane as well as perpe
dicular magnetization. This is in contradiction to the resul
of Daalderopet al. for a Co~111! monolayer,13 who state that
degeneracies should always favor perpendicular magnet
tion.

Since the 3d-band degeneracies are so important f
Eanis, we analyze in the following the occurrence and liftin
of degeneracies in the band structure. It can be shown tha
terms of the basis of Eq.~1!, the Hamilton matrixHd @Eq.
~2!# has the simplest block diagonal form with only fou
off-diagonal elements~ODE’s! H45

d 5H54
d and, equivalently,

H9,10
d 5H10,9

d . To find out which additional ODE’s are intro-

FIG. 3. Band structure of the 3d minority spin band of the Fe
monolayer, calculated within the tight-binding scheme. The magn

tization M is directed along the layer normalẑ ~upper part! and

in-plane alongx̂ ~lower part!. The degeneracies denoted by A, B
and C contribute to the peaks A, B, and C in Fig. 1. The dotted lin

denote the Fermi level fornd57.6, respectively. Ḡ5(0,0),

X̄5(p/a,0), Ȳ5(0,p/a), and M̄5(p/a,p/a) are the high sym-
metry points of the irreducible part (0<kx , ky<p/a) of the Bril-
louin zone.a is the lattice constant of the monolayer.
r,
t

c-

is.

c-

n-
s
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r
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duced by SOC for a given direction of the magnetizati
M , we analyze the form ofHso in Eq. ~4!. States with parallel
spins are coupled if they contain equal orbital momenta w
respect to the spin quantization axiszM , whereas states with
opposite spins must show a difference of one in the orb
momenta to yield nonvanishing ODE’s. The real space co
ponents of the atomic statesf i , i 51, . . . ,5, are composed o
eigenstates ofl z with the eigenvalues (22,2), (21,1),
(21,1), (22,2), and 0, respectively. In terms of eigensta
of l x one has the eigenvalues (21,1), (22,2), (21,1),
(22,0,2), and (22,0,2), respectively. This yields a couplin

for M i ẑ within the groups of statesc i with i 51,4,5,7,8 and

with i 52,3,6,9,10, and, in the case ofM i x̂, within the
groups of statesc i with i 52,4,5,6,8 andi 51,3,7,9,10, re-
spectively. In both cases, the Hamiltonian can be split i
two 535 blocks, and subbands belonging to different bloc
will intersect. Between states of the same block, the deg
eracies will usually be removed. Especially the subba
c1 and c2 ~and, correspondingly,c6 and c7) change their

roles if the magnetization is changed fromẑ to x̂ and vice
versa, because the orbitalsxy and yz have different orbital
momenta with respect to thex and z axes. These subband
will thus be involved in the lifting of degeneracies by alte
ing magnetization and possibly, as shown above, yield
portant contributions toEanis. In the case of Fe parameter
the situation is even simpler since coupling between state
opposite spin (c i andc j with i<5, j ) can be neglected.

As an example, peak A in the curveEanis(n) of Fe at
n57.6 ~Fig. 1! results from the degeneracy A~Fig. 3! of the
subbands corresponding to the statesc7 and (c9 ,c10). Thus,
it occurs forM i ẑ, and is lifted forM i x̂, since in the second
case the subbands belong to the same block of the Ha
tonian, whereas in the first they do not.

As a conclusion, it has been shown that 3d-band degen-
eracies along lines of constant energy result in import
contributions toEanis if they occur near the Fermi level. The
can favor in-plane and perpendicular magnetization and n
not occur near high symmetry points of the BZ. Thus,
~001! layers, it is not sufficient to consider only bands at hi
symmetry points as was done by Daalderopet al.13 for a
Co~111! monolayer. Furthermore, for such contributio
from degeneracies,Eanis}lso

2 and, approximately,Eanis

}1/]E/]k1 is valid ~the band dispersion]E/]k1 is approxi-
mately proportional to the scalingt of the hopping param-
eters! which agrees with the observations reported abo
Note that the analysis is very simple due to the analytic fo
and low dimension of the 3d tight-binding matrix, which is
an advantage of the semiempirical scheme. It remains v
if the extension tos states is performed~see below!.

C. The results of the combined interpolation scheme

Results forEanis(n) obtained from the combined inter
polation scheme~including s and d bands as well ass-d
hybridization! for the monolayer are presented in Fig.
for Fe parameters and Fig. 5 for Ni parameters with
lattice constant of the Cu~001! surface in both cases~solid
curves; the discussion of the curves for two and three lay
is postponed to Secs. III E and III F!. These results for
the monolayer are similar to the curves ford bands only
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~Figs. 1 and 2!. n is the total filling of thes and d band
(n58 for Fe andn510 for Ni!. We find for a Fe mono-
layer Eanis(Fe/Cu)520.41 meV per atom and for Ni
Eanis(Ni/Cu)50.10 meV per atom. The dipole-dipole inte
action is included under the assumption of a point dip
located at each site, carrying the magnetic moment of
unit cell. The~spin! magnetic moment per atom is calculat
from the band structure@m(Fe/Cu)53.3mB and m(Ni/Cu)
50.91mB#. The dipole anisotropy~equivalent to the shap
anisotropy in the monolayer! always prefers in-plane magne
tization. Altogether, we obtain for the total magnetic anis
ropy energy per atom of a Fe and Ni monolayer with t
lattice constant of Cu~001!

Eanis
tot ~Fe/Cu!520.17 meV

and

Eanis
tot ~Ni/Cu!50.12 meV

FIG. 4. Magnetic anisotropy energy of Fe as a function thes-
andd-band filling for one layer~solid curve!, two layers~dashed!,
and three layers~dotted!. Peaks A and D are caused by the resp
tive degeneracies in the band structure shown in Fig. 9.

FIG. 5. Magnetic anisotropy energy of Ni as a function thes-
andd-band filling for one layer~solid curve!, two layers~dashed!,
and three layers~dotted!.
e
e

-

with the easy axis perpendicular to the monolayer for Fe
in-plane for Ni. Note that correspondingab initio results for
a free-standing Fe-monolayer yielded20.42 meV,9,12 but
previous tight-binding calculations gave the too large va
of 25.5 meV.14

In the case of Fe, the perpendicular easy axis of ultrat
Fe films on Cu~001! is reproduced correctly. Direct compar
son with a Fe monolayer on Cu~001! is difficult due to film
growth problems.4 It is common to separate the anisotrop
energy of thin films into a volume and a surface term:5,22

Eanis~d!5K v1
2K s

d
, ~8!

The first term, K v , describes the thickness-independe
contributions to the anisotropy energy and the second,K s ,
the thickness-dependent contributions and the surface
fects. Fowler and Barth measured the following anisotro
constants:5 K v50.132 meV/atom andK s50.11 meV/atom
for the distorted fcc films at 100 K. The valu
K v12K s50.352 meV/atom is comparable to our resu
This result has been calculated with the measured anisot
field using the bulk saturation magnetization of bcc Fe. F
Ni, our result also agrees very well with experiments22 which
yields Eanis(Ni/Cu)50.125 meV at 300 K. The anisotrop
constantsK s and K v are temperature dependent. Measu
ments of the anisotropy constants as a function of the
duced temperature have been made,39 but the correct ex-
trapolation toT50 K is not known yet. While in experiment
the values ofKv and Ks have to be compared at the sam
reduced temperature because of the thickness dependen
Tc , the theoretical values are for 0 K and thus independen
of the difference of absolute and reduced temperature.

Note that in Fig. 5, the curveEanis(n) for the Ni mono-
layer ~solid curve! has zeros nearn510. Hence, the numeri
cal result for Ni is not very stable and the excellent agr
ment with experiment should not be overemphasiz
Nevertheless, for Fe and Ni, the sign and the order of m
nitude ofEanis turn out to be remarkably stable upon para
eter variations: Sign changes do not occur upon variation
the pseudopotential ands-d hybridization parameters by a
much as 40%. Moreover, we find in agreement with Wa
et al.12 a perpendicular easy axis also for Fe monolayers t
ing ~001! surface lattice constants imposed by substra
such as Pd, Ag, and V~2.77, 2.89, and 3.03 Å!, respectively.
This stability again demonstrates the validity of our resu
for Eanis. The good agreement of the results both withab
initio theories and experiments is due to the fact that
parameters were obtained by a fit toab initio calculations for
Fe and Nimonolayersrather than takingbulk parameters.

To investigate crystal field effects, an additional para
eterD is introduced10 to take into account the different effec
of the monolayer geometry on orbitals that lie in the plane
the monolayer (xy and x22y2) and out-of-plane orbitals
(yz, zx, and 3z22r 2). In addition to Eq.~2!, the on-site
energies of the latter are lowered byD with respect to the
former. The dependence ofEanis on D is shown in Fig. 6 for
Fe and Ni parameters~solid and dashed curve, respectively!.
Remarkably,D50.2 eV changes the sign ofEanis for both
systems considered. Thus, it is important to determineD
from theab initio band structures. In the case of Fe, the fit

-
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the 3d bands near theḠ point of the BZ can be significantly
improved by choosing D50.08 eV. The resulting
Eanis(Fe/Cu) amounts to20.30 meV, still with a perpendicu-
lar easy axis even if the dipole-dipole interaction is adde
For Ni, the introduction ofD doesnot improve the fit. Those
results forD differ substantially fromD520.5 eV given by
Bruno10 which has been determined by a fit to the Ni~111!
monolayer but employed for both Fe and Ni~001! monolay-
ers also. Pick and Dreysse´11 state that for~001! monolayers a
crystal field parameter is not necessary. For Ni, this is s
ported by our result; even in Fe, our value ofD is small
compared to other band structure parameters. Cinalet al.14

reportD520.14 eV for the Ni~001! monolayer.
Finally, a detailed investigation of the band structures25

shows that the analysis given in Sec. III B for 3d bands is
still valid for the combined interpolation scheme. As ev
dence, consider Figs. 1 and 4~solid curves!: There is a one-
to-one correspondence between the peaks inEanis in both
curves. This correspondence can be shown to result fr
similar band structure details. In particular, the role
3d-band degeneracies stressed in Sec. III B remains the s
in the complete scheme.

D. Temperature dependence

One of the greatest challenges in the investigation of m
netic anisotropy is the calculation of reorientation transitio
with temperature. Up to now, a complete electronic and th
modynamic theory is lacking. Here, one-particle effects
temperature are investigated. It turns out that they again s
port the role of degeneracies for magnetic anisotropy a
moreover, are comparable in order of magnitude with t
many-particle aspects usually considered.40

The free magnetic anisotropy energyFanis depends on
temperatureT due to~i! the Fermi distribution of electronic
statesf T(DE), ~ii ! the hopping integrals, which depend o

FIG. 6. Dependence of the magnetocrystalline anisotropy
ergy Eanis on the crystal field splittingD for the Fe monolayer on
Cu~001!, n58 ~solid curve! and the Ni monolayer on Cu~001!,
n510 ~dashed curve!. Negative values ofEanis yield perpendicular
anisotropy. The vertical line denotes the best fit forD for the Fe
monolayer. In the case of Ni, the fit cannot be improved by t
introduction ofD ~see text!.
.
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T because of the lattice expansion of the substrate,~iii ! the
entropyS(T), and~iv! the effects of spin-waves, resulting i
a temperature dependence of the magnetizationM (T). In this
work, the first three effects are analyzed. More precisely,
thermal expansion~ii ! of the lattice constanta(T) is included
by means of the empirical lawa(T)5a(T50)(aT11).
a5231025/K is the expansion coefficient for the C
substrate.41 The expression for the entropy~iii ! of noninter-
acting particles is

S52kB(
m,k

^nmk& ln^nmk&1~12^nmk&!ln~12^nmk&!

with ^nmk&5 f T@Emk(u,f)2m(u,f;n)#. In analogy to Eq.
~5!, the free magnetocrystalline anisotropy energyFanis is
defined as the difference in the free energyF5E2TS for
two different directions of magnetization.

Figure 7 showsFanis(T) (d-band calculation for the
monolayer, Fe parameters,nd56). Including only Fermi sta-
tistics @~i! dashed curve#, the characteristic energy scale fo
the decrease ofuFanisu with T is about 1000 K~100 meV!,
which corresponds to the energy 2lso, but not to the 3
d-band width of approximately 3 eV. This becomes imm
diately plausible if one notices that the SOC-induced lifti
of degeneracies occurs near the Fermi level. Thus, one
pects a measurable effect onFanis due to Fermi statistics a
soon askBT becomes larger than or comparable to 2lso. In
addition, we must conclude from our results that shifting
subbands far below the Fermi level is not so important, si
then Fanis could not be essentially lowered on such a sm
temperature scale.

The characteristic increase ofuFanisu with increasing tem-
perature forT,500 K is a direct result of the lifting of
degeneracies. Consider again Fig. 1. ForM izM

J ~lifted degen-

n-

e

FIG. 7. Temperature dependence ofFanis(T) for a Fe-
parametrizedd-band calculation for the monolayer withd-band fill-
ing nd56 (d-electrons only, dashed curves! and for three layers
with band fillingn58 (s andd electrons, solid line!. For the upper
dashed curve, only Fermi statistics are taken into account, for
middle curve the lattice expansion is added, and the dotted c
includes the effects of Fermi statistics, lattice expansion, and
tropy. The calculation for three layers includes Fermi statistics,
tice expansion, and entropy fors andd electrons.
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2602 56A. LESSARD, T. H. MOOS, AND W. HU¨ BNER
eracy!, which is the energetically favored case, Fermi sta
tics induces only little changes in the occupation of the el
tronic states, if kBT,lso; for the degenerate band
(M izM

X ), however, states in the upper band are significan
occupied even forkBT,lso. Thus, the total energy fo
M izM

X rises with respect toT50 in this temperature range
This leads to an increase ofuFanisu with increasingT, if
kBT,lso550 meV (T,500 K!.

The inclusion of lattice expansion@~ii ! solid curve in Fig.
7# has only a small effect onFanis. The narrowing of bands
with increasing temperature due to the scaling of the h
pings leads to an increase inuFanisu for small T, which was
already discussed forT50. For larger T, the influence of
Fermi statistics on narrowed bands is larger, leading t
stronger decrease ofuFanisu.

The entropy@~iii ! dotted curve# has a damping effect on
the curve Fanis(T), but maintains the features discuss
above. This results from the fact that, in the case of deg
erate bands, the entropy is larger than for nondegene
bands, since states located nearer to the Fermi level h
larger entropy.

Fanis(T) was also calculated for three layers within t
combined interpolation scheme~Fig. 7!, taking into account
all three mentioned effects and shows a decrease with
creasing temperature on the same scale as for the monol
Hence, this analysis ofFanis(T) shows the significant contri
bution of temperature-induced changes of the degenera
to the anisotropy energy. It is remarkable that the three t
perature effects mentioned above, and particularly the e
tron temperature dependence of the Fermi function, are
equal magnitude as the temperature effects of spin wave
M (T).

E. Fe Multilayers

Figure 8 shows the calculated magnetic anisotropy ene

FIG. 8. Magnetic anisotropy energy of Fe and Nickel as a fu
tion of the number of layers calculated in the combined interpo
tion scheme. The calculation for 1/4 BZ for Fe~dashed line! yields
periodic oscillations caused by the incorrect symmetry ofEanis

in-plane.
Summation over 1/2 BZ~solid line! corrects this problem. For the
Fe bilayer, the square and diamond are calculations with 15 356
108 228 points in the 1/2 BZ, respectively. For Nickel~broken line:
1/2 BZ, squares: 1/4 BZ!, the convergence is better.
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for Fe films of 1 to 14 layers. Calculations for both 1/4 B
and 1/2 BZ are included. The values obtained when the s
mation overk is performed over 1/4 BZ lead to periodicall
recurring positive values ofEanis ~for films of 2, 6, 9, and 12
layers!. The positive value for a film thickness of 2 laye
can be traced back to the occurrence of degeneracy A a
Fermi level. For the other positive values, the easy and h
axes are found to be in-plane, an effect of the wrong sy
metry resulting from the summation over 1/4 BZ, leading
an overestimation of thein-plane anisotropyEanis

in-plane. We
perform thek-space summation again, this time over 1/2 B
thus respecting the symmetry of thes-d hybridized system.
This reduces the importance of degeneracy A and we
positive values only at 2 and 6 ML. It turns out that a ne
degeneracy D is responsible for the negative values. In o
to demonstrate this relationship between the easy axis
the band structure for the multilayer systems, we go bac
the monolayer at a slightly different band filling. The dege
eracy A observed for the monolayer in the tight-bindi
scheme is easy to recognize in Fig. 9, and a new degene
D is found near theM point for M i x̂. Degeneracy D is lifted
for M i ẑ, thus leading to a negative anisotropy energy. T
k-space analysis of the anisotropy energy confirms the
portance of degeneracy D, which causes the ring-shaped
aroundM . The structure seen along the lineLL8 ~see the
inset of Fig. 2! is the onset of the positive peak in the aniso
ropy energy caused by degeneracy A~see Fig. 4!. Summa-
tion of the contributions of thek points in the tenth of the BZ
near M already gives half of the total anisotropy energ
Multilayer systems show per se more degeneracies t
monolayers, and the contribution of these to the total anis
ropy energy is not as clear as for the monolayer. Still, fo
three layer system, we find again degeneracy D at the Fe
level, and recognize also in thek space resolved anisotrop
energy the characteristic structure it causes aroundM .

Taking Fig. 8 again and excluding the points of wron
symmetry~easy and hard axes in-plane! and the points where

-
-

nd

FIG. 9. Monolayer band structure of the 3s and 4s band for Fe
parameters, calculated within the combined interpolation sche
with the magnetizationM parallel to the layer normalz in the upper
part and in-plane parallelx in the lower part. High symmetry points
are the same as in Fig. 3.
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we find degeneracy A at the Fermi level, we obtain the fi
thickness dependence of the magnetic anisotropy en
shown in Fig. 10.Eanis is plotted as a function of 1/l . We
expected a linear behavior@see Eq.~8!# and thus performed a
linear least-square fit to the data. Although it is obvious t
the calculated values do not exhibit the linear behavior v
well, our fit yields K v520.17 meV per atom and
K s520.14 meV per atom, which is in very good agreeme
with Fowler and Barth.5

Including the dipole-dipole anisotropy energy as c
culated by Szunyoghet al.,15 we find for Fe a change o
the easy axis from perpendicular to in-plane at 4 M
@Eanis

dip ~4 layers!50.59 meV#. Our result indicates that the ex
perimentally observed transition at 5 ML might be an intr
sic quality of fct films grown at low temperature. Szunyo
et al. calculated the anisotropy energy of thin fcc-Fe film
on Au ~001! and also observed oscillations and strong dev
tions from the expected linear behavior. They obtained
reorientation transition from perpendicular to in-plane ma
netization at 4 ML.

In order to compare our calculated dependence ofEanis of
Fe on the 3d- and 4s-band filling n with experiment, we go
back to Fig. 4. For the monolayer at as- andd-band filling
of n58, we are near a zero of the curve, and atn58.2 we
already have a positive value ofEanis caused by the growing
influence of degeneracy A. We would thus expect a mo
layer of a FexCo12x alloy to have an in-plane magnetizatio
already at small Co concentrations. This was in fact m
sured by Dittscharet al.42 for x50.95. We would predict an
increase of the anisotropy energy with increasing Co conc
tration. For three layers, we would expect the same behav
the structure of the curveEanis(n) nearn58 being similar to
that of the monolayer. This alloying behavior found bo
theoretically and experimentally supports the relevance
degeneracies for the anisotropy energy, as claimed by D
deropet al. and disputed by Wang, Wu, and Freeman. In
case of FexCo12x , there is no doubt that the magnetic m
ment persists.

FIG. 10. Magnetic anisotropy energy of Fe as a function of
1/l ( l : number of layers!. Including the dipole-dipole anisotrop
energy, we obtain in-plane magnetization from the fourth layer
A linear least square fit yieldsK v520.17 meV per atom and
K s520.14 meV per atom.
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F. Ni multilayers

In this paragraph, we discuss the thickness dependenc
the magnetic anisotropy energy of Ni and thus refer to
remaining curves of Figs. 5 and 8. The anisotropy for
bilayers and trilayers as a function of band filling is show
by the dashed and dotted curves in Fig. 5. Although
general shape of the curves closely resembles that of
monolayer, the peak positions and thus the direction of
easy axis at a given number of 4s and 3d electrons may
differ. The magnetic anisotropy of Ni calculated for system
of 1 to 14 ML is shown in Fig. 8. We include again calc
lations using 1/4 of the BZ and 1/2 BZ, but this time no po
has to be excluded.Eanis of the second layer is much bigge
than that of the monolayer, a fact which perhaps indica
that the influence of the substrate cannot be neglected.
anisotropy then drops again and remains approximately c
stant at a value of about 0.14 meV~which is still bigger than
the value obtained for the monolayer!. Schulz and
Baberschke22 report for Ni a transition from in-plane to per
pendicular magnetization at 7 ML, due to a largeK v which
favors a perpendicular orientation of the magnetization. O
theory does not reproduce this reorientation.

For Fe, the behavior of the films as a function of thickne
could be related to the degeneracies occurring at the Fe
level. The contribution of these degeneracies to the total
isotropy of the film would be expected to decrease with
creasing number of layers, as their weight in the summa
over all atoms~number of points in the BZ3 number of
layers! decreases: that is in fact what we find for Fe. For N
however, the contribution of the degeneracies to the ani
ropy energy is not so evident. The minority and majority sp
bands mix much more than in the case of Fe because o
small exchange coupling. This is a possible reason for
nearly constant anisotopy energy we obtain. The occurre
of a degeneracy of al -times degenerated band would al
probably lead to a thickness independent contribution
Eanis.

So far, no other monolayer calculation lead to the corr
in-plane anisotropy for the Ni monolayer. In a calculation f
the fct bulk, Eriksson43 finds a perpendicular easy axi
which is correct for fct Ni. Upon varying thec/a ratio in
their calculation, however, these authors are unable to ob
in the limit of fcc Ni (c/a51) the correct easy axis, which i
along the~111! direction. The same problem occurred in
previous total energy calculation of the same group for
Ni.44 This seems to be a general problem of all calculatio
We obtain the correct in-plane anisotropy for the monolay
but the wrongK v . So, a three-dimensional calculation for f
Ni and variablec/a ratio also does not really tackle the pro
lem of fcc Ni and cannot explain the behavior of the magn
tization.

Ni is a delicate system. Maybe many-body effects can
be neglected~i.e., the force theoremdoes not work well!.
The dependence between the anisotropy energy and the
structure seem to be very subtle and the smallest de
can influence the results.45,46

IV. CONCLUSIONS

A calculation of the magnetocrystalline anisotropy ener
Eanis of Fe and Ni monolayers on Cu~001! is performed. In
agreement with experiments, we find a perpendicular e

e
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axis for Fe and an in-plane easy axis for Ni. The results
fully converged without any additional assumption to im
prove convergence. SOC is included nonperturbatively. I
an important result that large contributions toEanis can result
from the SOC-induced lifting of degeneracies occuring alo
lines in k space at the Fermi level. The contributions of tho
degeneracies scale with the square of the SOC cons
lso, as contributions from nondegenerate bands do. The
currence and lifting of degeneracies in the 3d band has been
discussed in general. Evidence for the important contribu
to Eanis of the degeneracies at the Fermi-level are~i! the
groove and the ring-shaped dip in thek space resolved an
isotropy for the monolayer in the tight-binding scheme, a
e

y

e
b

re

is

g
e
nt
c-

n

d

in the combined interpolation scheme respectively,~ii ! the
temperature dependence~the characteristic energy scale fo
the decrease of the free magnetocrystalline anisotropy en
uFanisu as a function of the temperature is determined
lso), ~iii ! the finite anisotropy energy atTc , and ~iv! the
alloying behavior of FexCo12x . We obtain for Fe a reorien
tation transition from perpendicular to in-plane magnetiz
tion at 4 ML, which is independent of any restructuration
the fct film. Since it can be seen from Figs. 4 and 5 that b
Fe and Ni do not exhaust the maximal anisotropy possi
our calculation ofEanisshould also be important for the tech
nologically relevant maximization of magnetic anisotropy
appropriate surface-alloy formation.
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