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Order versus disorder in the quantum Heisenberg antiferromagnet on thekagomelattice
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A group-symmetry analysis of the low-lying levels of the spin-k&jomeHeisenberg antiferromagnet is
performed for small samples up d=27. This approach allows one to follow the effect of quantum fluctua-
tions when the sample size increases. The results contradict the scenario of “order by disorder” which has
been advanced on the basis of lafealculations. A large enough second-neighbor ferromagnetic exchange
coupling is needed to stabilize th8x 3 pattern: the finite-size analysis indicates a quantum critical transi-
tion at a nonzero couplingS0163-182@M7)05229-9

[. INTRODUCTION simpler situations where there is a classical degeneracy be-
tween two kinds of order&?® The J,—J, model on the
There are very few simple two-dimensional magnetstriangular lattice for large enough (J,/J;>1/8) possesses
which fail to order afT=0. There is now a large amount of classically degenerate ordered ground states with, respec-
evidence that thé= 1/2 nearest-neighbor Heisenberg anti-tively, two and four sublattice¥. Large spin calculations
ferromagnet is ordered not only on the square lattivet have predicted that quantum fluctuations should select the
also on the triangular latticerAH).2-° The reduction of the two sublattices ordet"*®The study of small samples spectra
order parameter by quantum fluctuations is about 40% foP@S conﬂrme(g this prediction and shown the mechanism of
the square lattice and of the order of 50% for the triangulr:uth'S selectmr?; . . .
lattice: frustration indeed enhances the role of the quanturB The kagc;mﬁant_lf?_rrpmagneé ISa fmolre protﬂerr:jaﬂc ISsue
fluctuations but the relatively high coordination number ecause of the infinite number of classically degenerate

playsagainst the. THagoriatice whch can be seen as Y20 e The inear spinsave sporoach fr e
a diluted triangular latticésee Fig. 1 exhibits both frustra- 9 9 9

. . . eracy of the classical ground stdt this order the spectrum
tion and low coordinance number and e 1/2 Heisenberg o o gnetic excitations possesses a whole branch of zero
antiferromagnet on thkagome(KAH) is a good candidate modesi®3%33 One has to invoke nonlinear processes to sta-

for a disordered t\(vo—(_jimensionallqugntum liquid. bilize the y3x /3 ordered solutio®2%220n the other hand,
Exact diagonalizations on periodic samples have showRne should note that in this class of problem there exist some
that the spin-spin correlations decrease indeed very rapidlyitations where the “order by disorder” phenomenon fails
with distance®~** Series expansion from the Ising limit and for systems with a ground-state manifold associated with an
high-temperature series point to the absence of magnetigxtensive entropy. An example is the quantum Heisenberg
order’®**LargeN approaches, using SgJ bosons®>find a  antiferromagnet on the triangular Husimi cacfushere the
disordered ground state with unbroken symmetry for smalkystem prefers to remain a spin liquid rather than localizing
enough spin while, using SBK) fermions, a spin-Peierls in a particular ordered state that breaks the degeneracy of the
phase or a chiral phase is suggesfe@he best variational classical ground-state manifold. Moreover, the possibility of
energies for theN=36 sample are built from the short- a quantum tunneling between different classical states might

ranged dimerized basts. prevent the system from localizing in a particular ordered
On the other hand, semiclassical approathé8plead in  solution3334
favor of a magnetic ordefthe y3x /3 state, see Fig.)1 This paper is a scrutiny of the conjecture of selection of

induced by quantum fluctuationgorder by disorder.’?® order by quantum fluctuations based on the study of the low-
This kind of phenomenon has already been seen in muclying levels of exact spectra. The paper is organized as fol-
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\/ \/ antiferromagnet(classical or quantujnis the existence of
3 xV3 ferromagnetic sublattices: the total spin of each ferromag-

netic sublattice is the collective variable relevant for the de-
scription of the low-energy spectrum of the system. On a
finite lattice withp sublattices of) sites(the total number of

A C A B sites beingN=pQ), thep identical spingQ/2 couple to form

the rotationally invariant states that are the low-lying eigen-
states of the Hamiltonian. Thege coupled spins form a
“generalized top” which precesses freely: elementary me-
A chanics(confirmed by the nonlinear model approach—>%
indicates that the leading term of this precession is

Heﬁ:m- (1)
In an ordered systenhy, the inertia of the top is an exten-

A B sive quantity, proportional to the perpendicular susceptiblity
of the magnet®’ In a disordered system with a gap this
quantity is asymptotically constant, and at the quantum criti-

=0 cal point between the two regimég is expected to vary as

B N~Y237 The coupling of thepQ/2 spins givesNg(N,S,p)
states for eacl$ value of the total spin of the sample and a
total of (Q+1)P levels obeying the effective dynamics of
Eq. (1). These levels form the quantum counterpart of the
C A A A classical ground state: they represent the tower of states in-

dicated by Anderson in his 1952 famous papem our
spectral representation where the eigenstate energies are dis-
played as a function od8(S+ 1) in order to exhibit the free
B B B precessiofiEqg. (1)], the tower is in fact a “Pisa tower” with

a slope decreasing with the sample size. In the thermody-
namic limit, all these low-lying levelgcalled QDJS in Ref. 4
for quasidegenerate joint statesollapse to the absolute

A A A ground state adl~!. An experimental proof of these levels

has recently been reported in the analysis of macroscopic
quantum coherence in antiferromagnétk.could be noticed
that in the thermodynamic limit these levels give a ground-
state entropy proportional to INf). Above these first family

B B of levels, the spectrum of an ordered antiferromagnet exhib-
its the magnon spectrum; the low-lying levels of this part of
FIG. 1. Two classical planar states of the KAH: ti@x \3 and  the spectrum collapse more slowly than the QDJS to the
q=0 states. ground state with a scaling lalN~ 2. Three features of the
Pisa tower of QDJS are thus essential:
lows: A brief presentation of our method to investigate the (i) the overall effective dynamics of a finite family of
finite-size properties of an ordered antiferromagnet is givenevels (of the order ofNP) and its finite-size scaling leading
in the next section. In Sec. Ill, we apply this method to theto a clear cut separation from the first inhomogeneous mag-
search of the selection of thé8x \/3 state by quantum fluc- non excitationgthe absence of separation between the scal-
tuations. In Sec. IV, we introduce a second-neighbor ferroing laws would sign a quantum critical behavior
magnetic exchange coupling4{<0) and show that for large (i) the numbers of leveldNg(N,S,p) in eachS subset
enough|J,|, the system orders through th@x /3 state.  which for givenN and$S is determined by the number of
The rigidity of the KAH and the hypothesis of an incommen- ferromagnetic sublattices of the underlyingeNerder,
surable planar order are investigated in Sec. V. Section VI, (iii) the spatial symmetries of thedég(N,S,p) levels:
finally, summarizes our results and lists some open quesFhe number and nature of the space group irreducible repre-

tions. sentations (SGIR) that appear in eactS subspace are
uniquely determined by the geometrical symmetries of the
Neel order.

Il. REVIEW OF THE METHOD . L . . .
The exact diagonalization of the Heisenberg Hamiltonian

The presence of order in a quantum antiferromagnet i®n small samples enables us to examine these features and to
readily seen by examination of the low lying levels of its determine the nature of the ordering. This approach has been
spectrum. The method used in this work has been describatsed for the quantum Heisenberg antiferromagnet on the tri-
in detail in Refs. 4, 7 and 29. We give here a summary of itsangular lattic’ and theJ;—J, problem on the triangular
most important features. The first characteristic of an orderethttice >
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lying doublet states below the firs=3/2 eigenstates,
whereas their numbeXg and nature are strictly determined
in the case of an ordered solution.

;= —0.41 One could argue that the proliferation of these low-lying
Y levels are the quantum counterpart of the infinite degeneracy
. of the classical ground state with respect to local spin rota-
) tions. The real question is: do the quantum fluctuations show
/ any trend to select a specific dleorder?
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is the favored solution found in the semiclassical
approache$®22The smallest lattices where periodic bound-

X! — I
- — /! = 042 We have looked to this question for the so-caltge 0
v e order, the3x \/3 order and for any planar ordésee Sec.
I | V). Theq=0 order is studied in Ref. 41. We give here the
~-0.36 = A o4 details of the analysis concerning th@x /3 order, which

AH KAH
1 ary conditions are compatible with this order &te-9, 27,
FAN b et and 36 sites. In this section, we shall consider explicitly the
0 480 4 8 N=27 sample since th&l=9 sites is too small and the
S(S+1) S(S+1)

N=36 sample is too large to compute all the levels in each

FIG. 2. The low-lying energy levels of the TAH and KAH spec- S Sector. The QDJS associated with ti@x 3 state are
trum of theN=27 sample. The levels which possess the symmetryiOmogeneous on each ferromagnetic sublattibeir wave
expected for an ordered solution are denoted by a star. The Pis¢ctors are eithek=0 or k= *Kk,: corners of the Brillouin
tower of the TAH is easily seen, quite distinct from the first- zong. They do not break th€;, symmetry of the lattice.
magnon excitations. In the KAH, on the contrary, the levels candi-The three irreducible representatioiR’s) characterizing
date for the building of a tower of states are mixed with otherthe \/§>< \/§ order are the following:
representations in a continuum of excitations.

I': [k=0R, V=V Ry s¥V=V,0,¥=V]

[y [k=0R¥==-V Ry s¥V=¥,00¥=V] (3
. The Hamiltonian of the KAH, including further-neighbor Iy [k=*Kg,Rpms¥ =V,0 W =W],
interactions, has the form

Ill. THE LOW-LYING LEVELS OF THE KAH

whereR, is a rotation of anglep and o, denotes an axial

H=2] .S +2] S, 2 symmetry. The numbefdg(N,S,p=3) of levels in the Pisa
1@2,') 35 2((%» 3 S @ tower for each value of the total spin are given by the cou-
where theS are spin-1/2 quantum operators on the sites oPI'ng of threeN/6 spins:

the kagomelattice and(i,j) (respectively((i,k))) denotes a N/6

sum over first(respectively, seconcdeighbors. In this sec- DNI6 g DNBg, DN/6— E (2S+1)DS

tion, we shall only consider first-neighbor exchange interac- $=0

tions (J,=0). At first sight, the spectrum of the KAH has N2

one feature which is common to all the Heisenberg antifer- B S

romagnet spectra that we have been studying: the absolute JFS:NE,‘SJr1 (N2=S+1)D% (4

ground state has a total sp8=0 or 1/2 depending on the

number of sites of the sampl&&9,12,15,18,21,24,27) and Where DS denotes the irreducible representation for a spin
the ground-state enerdy,(S) of the S sectors order with S. Therefore, one obtains the numb&tg(N,S,p=3):
increasingS values. Lieb and Mattf§ have shown that this

result is exact for bipartite lattices: our numerical results tend ~ Ns(N,S,p=3)=(25+1)min(25+1N/2-S+1). (5

to indicate an extremely robust propettiie theorem seems We notice that in eacB sector, an ordered solution contains

to be true for the Heisenberg antiferromagnet on the triangué number of levels which is strictly related to the number of
lar andkagomelattices and for thel; — J, problem: none of Y

these situations can be reduced to a bipartite problemSUblatt'Ces of the selected order: in the loesubspace this

Taken apart from this feature the spectra of the KAH appea umber is independent of the sample sizeffer3 [it is the

totally different from the spectra of the TAH. In Fig. 2, the iibert space_dimension of a rotator or a symmetric top for
low-lying levels of the TAH and of the KAH are shown for p=2 (respectivelyp=3)]. In eachS subspace, amongst the

the 27 site samples: Ns(N,S,p=3) levels, the number of appearanagy) of

(i) whereas the Pisa tower is easily seen on the TAHheT'; IR can be computed following Refs. 7 and 29:
spectrum, well separated from the magnons spectrum, there
is absolutely no such scale in the KAH one,

(ii) the effective dynamics of the low-lying levels of the
KAH spectrum do not scale &&S+1),

(iii) the symmetries of the lowest lying levels of eash where the summation indékruns through the classes of the
subspace do not allow the description of an ordered strucS; group(isomorphic toCs,); xi(K), Ng(k) denotes, respec-
ture: for N=27, all the SGIR, but one, appear in the low- tively, the characters of th&; IR and the number of ele-

1
= 52 Tr(Rds)xi(KINa(K), ©®
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TABLE I. Character table of the permutation gro8p The first
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TABLE Ill. Lowest eigenenergie$with degeneracy and quan-

line indicates classes of permutations. The number of elements itum numbersof the N=27 sample spectrum. Componentscdre

each class ifNg.

in units 6x/N. In the three last columns, 1 stands for invariant
under the symmetry, 0 for no symmetry, and -1 for a nontrivial

S; I (A,B,C) (A,B) phase factor under the above mentioned symmétey, e for
Ng, 1 2 3 the rotation of 27/3 and -1 for the two otheysStars indicate states
possessing the symmetries associated with\{B& /3 state. The
Iy 1 1 1 double horizontal bar indicates the omission of 12%¥1/2 states
I 1 1 -1 before the first levels in th&=3/2 subspace.
I's 2 -1 0
N= (25-5) 2S Deg. k Roriz - O
ments in the clask (see Table)l The traces of the permu- -0.43627796 1 4 00 1 1 0
tations of S; in the S subspace, denoted R|s), are *-0.43627796 1 4 3 6 1 0o 1
determined as -0.43622206 1 12 0 3 0 0 -1
-0.43593382 1 12 0 3 0 0 1
Tr(Ry|g)=Tr( Rk|Sz: g)—Tr( Rk|Sz: s+ 1) (7) -0.43591527 1 8 3 6 -1 0 o0
-0.43563229 1 12 0 3 0 0 1
and
-0.42632327 3 8 0 O -1 1 0
( N6 *0.42632327 3 8 3 6 1 0o 1
Tr(lgls)= 2 Sipexs, 042630998 1 8 3 6 -1 0 O
Lo x==N/o 042615931 3 16 3 6 -1 0 0
o *042577308 3 4 0 0 1 1 1
T(AB)s)= 2 darus, ®) 0425626900 3 8 0 0 -1 1 0O
’ N6 -0.42562690 3 8 3 6 1 0 1
-0.42485791 1 8 3 6 -1 0 0
\ Tr((A'B’C”Sz)_t:ZN,G 93,5, -0.42483901 1 4 0 0 -1 1 0
-0.42483901 1 4 3 6 1 0 1
where @A,B) [respectively A,B,C)] stands for a two-body -0.42479279 1 4 0 0 -1 1 0
(respectively, three-bodypermutatiosn ofSz. The final re- L0.42479279 1 4 3 6 1 0 -1
sults of the computation of them(ri) are given for the 042455077 3 24 0 3 0 0o 1
N=27 sample in Table II. -0.42419453 3 16 3 6 -1 0 0
The lowest levels in the firs subspaces of thdl=27 -0.42419310 3 4 0 O 1 1 1
sample spectrum are given in Table Ill. The levels which -0.42417083 1 2 0 0 1 1 1
have the good symmetries to describe/2x /3 antiferro- -0.42405358 1 2 00 1 1 -1
magnet are displayed with an asterisk: most of these -0.42405358 1 2 0 0 1 1001
Ng(N=27S,p=3) levels are rather far in the spectrum and -0.42394796 1 8 3 6 1 0 0
many levels belonging to other SGIR proliferate between 2042391172 3 24 0 3 0 0 1
them. In fact, in the oddN samples, the number of low-lying -0.42372061 3 24 0 3 0 0o -1
S=1/2 states below the firs=3/2 states increases very -0.42366979 1 2 0 0 1 1 1
rapidly with the system size, the trend seems the same in the 042347751 3 4 0 0 1 1 1
even samplegsee Fig. 3. Altogether these numbers of low- 042333145 3 24 0 3 0 0o -1
lying Iev_els grow seem|_ngly roughly as™ W|_th a=1.18 042324731 3 8 0 0 -1 1 0
(respectively, a=1.14) in the odd (respectively, even 042324731 3 8 3 6 1 0 1
samples. Note that these numbers lay between the ground- -0.42318668 3 4 0 3 0 0 -1
state degeneracy of the three-states Potts rffodel .
(@=1.134) and the degeneracy of the Dimer mbdel 0.42314189 -3 4 00 1l
‘T 9 y 042314189 3 4 0 0O 1 1 -1

(a=2%3=1.26). This exponential proliferation of low-lying

levels with all spatial symmetries is certainly the deepest

TABLE II. Number of occurrencea{® of each irreducible rep-

proof of the absence of long-range antiferromagnetic order: it

resentatior’; (i =1,2,3) with respect to the total spH

N=27
2S 1 35 7 9

11 13 15 17 19 21 23 25 27

nf® 011122 1 2 1 1 1 1

nf’ 011121 1 1 1 0 1 0

n 112333 3 2 2 2 1 1

signs both the absence of a finite number of ordered sublat-
tices (that is the absence of an antiferromagnetic order pa-
rametey and the impossibility of a N&d symmetry breaking.
The selection of order by quantum fluctuations previously
observed in thel; —J, model on a triangular lattice is quite
different?® In that last model the four-sublattice QDJS fam-
ily is perfectly pure on the smallest nonfrustrating sample
spectra: the two-sublattice QDJS family is a subset of the
first family. Quantum fluctuations just stabilize this subset
relatively to the entire four-sublattice family and thus build a
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FIG. 3. Logarithm of the numbek, of S=1/2 levels below the FIG. 4. Low-lying spectrum of theN=9 sample with
first S=3/2 level as a function of the sample side (black tri-  J2|/J1=1 and periodic boundary conditions, as a function of
angles. This number, which does not take into account the twofoldS(S+1). Note the Pisa tower associated with ti@x 3 state.
magnetic degeneracy, is compared to the same qua(sifyare
symbols for the everN samplegi.e., number 0f5=0 levels below Sﬁ
the firstS=1 level.

Heﬁzm,

©)

simpler structure with an order parameter of higher symmewherel, is the inertia of the top along the axis. The de-
try: They do not create the order parameter, but just renorgeneracy of each? subspace is 24 S,). The IR character-
malize it and increase its intrinsic symmetry. izing the 3x\3 order is I';: [k=0,R,,;¥="V,
oW ="]. Figure 5 shows the tower of states associated
with the 3x 3 order for the N=21 sample with
IV. ORDERING WITH A SECOND-NEIGHBOR |32/J1|=1,
FERROMAGNETIC EXCHANGE COUPLING

| I

‘\\\ l;\l\\\

In order to ascertain our conclusion and reinforce the
credibility of the method, we have studied with the same
protocol the problem of thé&kagomelattice with a first-
neighbor antiferromagnetic interactiody and a second
neighbor ferromagnetic interactiah [see Eq.(2)] favoring
the existence of a/3x /3 order. For large enough,<O0,
the spectrum has all the expected features of a Pisa tower 0 =,
QDJS(dynamics, number of states, and symmejrassoci- Q
ated with this orde(see Fig. 4 for thé&N=9 sample. When o
|J,|/J; decreases the Pisa tower disappears, indicating the
existence of a quantum phase transition. The estimate of the
critical value ofJ,/J, is a difficult task requiring a study of
finite-size effects. The smallest sizes compatible with the
V3% /3 order areN=9,27,36 sites: computing time and
memory requirements for such an extensive study remain
prohibitive. However, using appropriate twisted boundary
conditions (27/3 around thez axis, see Ref. 7 and the
Appendix, we can use the intermediaké=12,21 samples.

The twisted boundary conditions break the rotational spin

symmetry of the Hamiltonian and fix the"blleplane perpen- FIG. 5. Low-lying spectrum of theN=21 sample with
dicular to the twist axis. The helicity of N order is thus |3,//3,=1 as a function ofS?. A twist of 27/3 in the boundary
fixed along thez axis and the free dynamics of the systemconditions is applied to accomodate th@x 3 state with the

reduces to the precession of the total spin aroandhe  sample size. Due to the boundary conditions, the Pisa tower reduces
effective Hamiltonian reads: to one IR for eacts, value.

*
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naive way by looking at the spin gap between the ground
state ofS, nn andS, nmint+1: in the ordered phase this quan-
tity should scale ad\~* (respectively N~*? andN° in the

1 critical and disordered phasehis study is done in Fig. 6 for
* * T the case|J,/J,|=0 (pure KAH). It shows, thanks to the
trends in the larger sample sizes, that the KAH is certainly
E not ordered, probably not critical but truly disordered.

This naive use of the Pisa tower does not account for the
whole qualitative information contained in the QDJS family
which is described both by the effective Hamiltonian and by
the space-group symmetry of the levels. This information is
1 incorporated in the indeR measuring the “degree of order”
present in the low lying levels, and defined as follows:

(i) First, we consider the ordered phasévith
|J,/31|=1) and concentrate on all the low-lying levels of
the Pisa tower that are lower in energy than the softest mag-
8 nons: for each sample size this determines the number of
S, sectors which give a consistent picture of the “quasiclas-
sical ground state.” Precisely we search for the lower level
of the spectrum with a nonzero wave vector in the magnetic
Brillouin zone[ E (k)] and determines, ., as the largest
value ofS, such thatEg[ S, maxt 1]<Epin(k). By definition

FIG. 6. Finite-size study of the “spin gap”AEs  Eg(S,maxt 1) is thus smaller than the energy of the softest
=Eo(S; mint 1)~ Eo(S,min) of the pure KAH §,=0) as a func- magnon of the sample and in the thermodynamic limit
tion of the sample size. This energy@{N®) with a=~1,-1/2, S, .. grows roughly adNl4
or 0 whether the system is ordered, critical or disordered. Continu- (jj) |n eachS, subspace considering all the levels in the

ous lines(respectively, broken lingsre guides for the eye through energy rangé Eq(S,),Eq(S,+1)] we definerg as the ratio
the evenN (respectively, odd\) results. The comparison of the ‘

three quantities\E,, N2 AE,, andNx AE, versusN~ favors  Of the number of levels compatible witfBx \/3 order to the
the hypothesis of spin disorder. total number of levels of this ranged is a number between

0 and 1).
The order parameter or the spin stiffness of these levels (i) We then compute the indeR measuring the degree
scale aN~ 12 whereas the slope of the Pisa tower scales a8f order of the sample as the average of the ratigsfor
N2, At first sight, it seems thus more efficient to use thisS, running from O(respectively, 1/2) up t&, max.
information to look at the transition between order and dis- This index is equal to one if the lowest levels form a true
order as|J,|/J; is decreased. This can be done in a ratheiPisa tower and decreases when other IR’s appear in the low-
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FIG. 8. Variation of the energy per link2S-S;) of the low- N -1
lying levels of theN=21 sample versus twisted boundary condi-
tions®, (®,=0). O; are the points wher® ;=0 (mod 277). O is FIG. 9. Variations of the “spin gap” with boundary conditions:

the first point where the twist per link is @nod 2r). The points  the small horizontal tick gives the value of the gap for periodic
A, [®,=7 (mod 27)] are in the middle oD; andO;, ;. Because boundary conditions. There is a systematic effect:Alge=1 exci-

the figure is symmetric with respect #,, the partA;— O is not  tation energy decreases with the twists of the boundary conditions
represented here. Note that most of the levels do not come back {8 the evenN samples and increases in the dddnes.

their original assignation after ar2twist of the boundary condi-
tions. In fact on this small size sample, due to an extra symmetr

when®; =0, the uniformk=0 ground state is degenerate with the d " Id be si d b L f th d
first star ofk # 0 eigenstates. Only tHe=0 states and their continu- er, It any, wou e signed by a minimum of the grouna-

ation have been shown @A;. The six othek+#0in OA are found state energy for a given pair of twist angleB (P ) and_ the
by folding the O;A; onto OA. Full lines stand for states going @PPearance of a Pisa tower for these paraméte_rwpucal
continuously tok=0 chiral states(complex IR’s of C), dashed result of a set of diagonalizations is shown in Fig. 8 for the
lines stand for states going continuously to the first stak #f0 N=21 sample. Sweeping the Brillouin zone fab {,®,), we
eigenstates, thk=0 nonchiral statestrivial IR of C5); bold line: ~ have studied in this way the spectra of the

ntiferromagnetically ordered configurations, either com-
ensurate or incommensurate. The existence of a planar or-

the firstS,=3/2 level. N=9,12,15,18,21,24,27 samples. We observe the following
properties:
lying levels of the spectrum whed,/J,| is decreasecR is (i) The influence of the twisted boundary conditions is

thus a measure of the breakdown of order which include¥ery small, much smaller than for the TAH: on the=21
qualitative information on the low-lying levels. It stands on S&Mple the effect of the twist on the ground state of the KAH

the quantities that scale more rapidly with the system size.iS only 8% of the same effect on the TAH. This is coherent
The variations of this index as a function|df|/J, and of ~ With the picture of a disordered, liquid system.

the sample size are given in Fig. 7. Whgl/J,|=0 this ('II) We do not find a signature of any planar antiferromag-
index goes very rapidly to zero wifK: this supports the idea netic order for any size. Very shal_low minima appear in the
that the KAH is indeed disordered and that quantum fluctuaSPECtra, but they are never associated with a tower of QDJS
tions show no tendency to select “order from disorder” in @1d the position of these minima changes from place to place
the disordered phase. More unexpected, the finite-size scalith the Sanl? size.

ing onR indicates that a small ferromagnetic exchange is not (i) The “spin gap” between the ground-state energy of
sufficient to establish long-range order in the system and th4f!® S;=0 (or 1/2) subspace and the ground-state energy of

the value of the critical ratio|d,|/J;), is probably larger the S;+1 subspacg AE=Eq(S,+1)—Eq(S)] has only
than 0.5. small variations with the twistgFig. 9). These variations

appear systematic, and show a different trend in the even and
odd samples: this could be related to the fact that the odd
V. INCOMMENSURATE MAGNETIC ORDER samples only accomodate spin-1/2 excitations of the thermo-
dynamic absolute ground state which is a true sindlEtis
The previous study discards the hypothesis af3x y3  hypothesis is examined in a companion paffer.
order in the pure KAHwe did the same check with the same
conclusion for theq=0 order in Ref. 41 Using twisted
boundary conditionsS 1 _ ,=RAP.-17)S; across the Using the analysis of the low-lying levels of the Heisen-
sample defined by the vectofs,-; , (see the Appendix for berg antiferromagnet on kagomelattice we have shown
more details we have extended our search to any planarvidence that the system has no planar antiferromagnetic

VI. CONCLUSION
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long-range order afT=0. Introducing a small second- whereu; andu, are two unit vectors of thkagomelattice,
neighbor ferromagnetic exchange coupling does not seem tandm andn are two integers related to the number of sites
be sufficient to establish long-range order: from the experiof the sample byN=23(I?+m?+Im), the boundary condi-
mental point of view this is good news as it could perhapsions are defined through
enlarge the number of candidates for a spin-liquid behavior.

The theoretical study of the tower of low-lying levels
(Pisa towey that we have developed in this paper seems St =RAPa19S, (A2)
potentially useful to give an approximate location of the tran- =12 oo
sition from order to disorder even on small samples: its ad-

vantage over other approaches stands on the finite-size SClnerer. denotes the sites of thegomelattice. In order to

!ngtrc])_f the para{netefr we ;a_tretlloolqr}g at &t‘.nd on t?he inclusione oy er the translation invariance that seems to be broken by
In this-parameter ol qualitative information on theé macro-y, g boundary conditions, the spin frame at the point

scopic ground state. _ ; _ , .
According to our present results, this spin-1/2 model ext it (respectively,r;+uy) is rotated with respect to the

hibits a quantum critical point at a nonzgd|/J;. It would spin frame at point; by an angle, (respectively ;). The
be interesting to investigate the universality class of thigoundary angle®,_, are related @, , by the relations
guantum critical point and see how it may compare to the

theoretical predictions of the nonlinear model for canted

antiferromagneté> ®,=2(1+m)0;,+2mo,

A3
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APPENDIX: TWISTED BOUNDARY CONDITIONS H= 2J1i=21N §, R 0M)§ri+uﬂ- (A4)
/L:i,3

For a sample defined by the two vectors:

T1:2(| +m)ul+ 2mU2

0, and 9, are changed step by step so tthgtandd, sweep
(A1)
T2=2|u1+ 2(| +m)u2,

the appropriate fraction of the Brillouin zone of this problem.
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