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A group-symmetry analysis of the low-lying levels of the spin-1/2kagome´ Heisenberg antiferromagnet is
performed for small samples up toN527. This approach allows one to follow the effect of quantum fluctua-
tions when the sample size increases. The results contradict the scenario of ‘‘order by disorder’’ which has
been advanced on the basis of large-S calculations. A large enough second-neighbor ferromagnetic exchange
coupling is needed to stabilize theA33A3 pattern: the finite-size analysis indicates a quantum critical transi-
tion at a nonzero coupling.@S0163-1829~97!05229-6#
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I. INTRODUCTION

There are very few simple two-dimensional magn
which fail to order atT50. There is now a large amount o
evidence that theS51/2 nearest-neighbor Heisenberg an
ferromagnet is ordered not only on the square lattice1 but
also on the triangular lattice~TAH!.2–9 The reduction of the
order parameter by quantum fluctuations is about 40%
the square lattice and of the order of 50% for the triangu
lattice: frustration indeed enhances the role of the quan
fluctuations but the relatively high coordination numb
plays against them. Thekagome´ lattice which can be seen a
a diluted triangular lattice~see Fig. 1! exhibits both frustra-
tion and low coordinance number and theS51/2 Heisenberg
antiferromagnet on thekagome´ ~KAH ! is a good candidate
for a disordered two-dimensional quantum liquid.

Exact diagonalizations on periodic samples have sho
that the spin-spin correlations decrease indeed very rap
with distance.10–12Series expansion from the Ising limit an
high-temperature series point to the absence of magn
order.13,14Large-N approaches, using Sp(N) bosons,15 find a
disordered ground state with unbroken symmetry for sm
enough spin while, using SU(N) fermions, a spin-Peierls
phase or a chiral phase is suggested.16 The best variationa
energies for theN536 sample are built from the shor
ranged dimerized basis.17

On the other hand, semiclassical approaches18–22plead in
favor of a magnetic order~the A33A3 state, see Fig. 1!
induced by quantum fluctuations~‘‘order by disorder.’’23!
This kind of phenomenon has already been seen in m
560163-1829/97/56~5!/2521~9!/$10.00
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simpler situations where there is a classical degeneracy
tween two kinds of orders.24,25 The J12J2 model on the
triangular lattice for large enoughJ2 (J2 /J1.1/8) possesses
classically degenerate ordered ground states with, res
tively, two and four sublattices.26 Large spin calculations
have predicted that quantum fluctuations should select
two sublattices order.27,28The study of small samples spect
has confirmed this prediction and shown the mechanism
this selection.29

The kagome´ antiferromagnet is a more problematic iss
because of the infinite number of classically degener
ground states.30,31 The linear spin-wave approach for th
kagome´ antiferromagnet does not lift the extensive dege
eracy of the classical ground state~at this order the spectrum
of magnetic excitations possesses a whole branch of
modes.18,30,31! One has to invoke nonlinear processes to s
bilize theA33A3 ordered solution.19,20,22On the other hand,
one should note that in this class of problem there exist so
situations where the ‘‘order by disorder’’ phenomenon fa
for systems with a ground-state manifold associated with
extensive entropy. An example is the quantum Heisenb
antiferromagnet on the triangular Husimi cactus32 where the
system prefers to remain a spin liquid rather than localiz
in a particular ordered state that breaks the degeneracy o
classical ground-state manifold. Moreover, the possibility
a quantum tunneling between different classical states m
prevent the system from localizing in a particular order
solution.33,34

This paper is a scrutiny of the conjecture of selection
order by quantum fluctuations based on the study of the l
lying levels of exact spectra. The paper is organized as
2521 © 1997 The American Physical Society
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2522 56P. LECHEMINANT et al.
lows: A brief presentation of our method to investigate t
finite-size properties of an ordered antiferromagnet is gi
in the next section. In Sec. III, we apply this method to t
search of the selection of theA33A3 state by quantum fluc
tuations. In Sec. IV, we introduce a second-neighbor fer
magnetic exchange coupling (J2,0) and show that for large
enoughuJ2u, the system orders through theA33A3 state.
The rigidity of the KAH and the hypothesis of an incomme
surable planar order are investigated in Sec. V. Section
finally, summarizes our results and lists some open qu
tions.

II. REVIEW OF THE METHOD

The presence of order in a quantum antiferromagne
readily seen by examination of the low lying levels of
spectrum. The method used in this work has been descr
in detail in Refs. 4, 7 and 29. We give here a summary of
most important features. The first characteristic of an orde

FIG. 1. Two classical planar states of the KAH: theA33A3 and
q50 states.
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antiferromagnet~classical or quantum! is the existence of
ferromagnetic sublattices: the total spin of each ferrom
netic sublattice is the collective variable relevant for the d
scription of the low-energy spectrum of the system. On
finite lattice withp sublattices ofQ sites~the total number of
sites beingN5pQ), thep identical spinsQ/2 couple to form
the rotationally invariant states that are the low-lying eige
states of the Hamiltonian. Thesep coupled spins form a
‘‘generalized top’’ which precesses freely: elementary m
chanics~confirmed by the nonlinears model approach35–37!
indicates that the leading term of this precession is

Heff5
S2

2I N
. ~1!

In an ordered system,I N , the inertia of the top is an exten
sive quantity, proportional to the perpendicular susceptib
of the magnet.4,37 In a disordered system with a gap th
quantity is asymptotically constant, and at the quantum c
cal point between the two regimesI N is expected to vary as
N21/2.37 The coupling of thepQ/2 spins givesNS(N,S,p)
states for eachS value of the total spin of the sample and
total of (Q11)p levels obeying the effective dynamics o
Eq. ~1!. These levels form the quantum counterpart of t
classical ground state: they represent the tower of states
dicated by Anderson in his 1952 famous paper.38 In our
spectral representation where the eigenstate energies are
played as a function ofS(S11) in order to exhibit the free
precession@Eq. ~1!#, the tower is in fact a ‘‘Pisa tower’’ with
a slope decreasing with the sample size. In the thermo
namic limit, all these low-lying levels~called QDJS in Ref. 4
for quasidegenerate joint states! collapse to the absolute
ground state asN21. An experimental proof of these level
has recently been reported in the analysis of macrosc
quantum coherence in antiferromagnets.39 It could be noticed
that in the thermodynamic limit these levels give a groun
state entropy proportional to ln(Np). Above these first family
of levels, the spectrum of an ordered antiferromagnet exh
its the magnon spectrum; the low-lying levels of this part
the spectrum collapse more slowly than the QDJS to
ground state with a scaling lawN21/2. Three features of the
Pisa tower of QDJS are thus essential:

~i! the overall effective dynamics of a finite family o
levels ~of the order ofNp) and its finite-size scaling leadin
to a clear cut separation from the first inhomogeneous m
non excitations~the absence of separation between the s
ing laws would sign a quantum critical behavior37!.

~ii ! the numbers of levelsNS(N,S,p) in eachS subset
which for givenN andS is determined by the numberp of
ferromagnetic sublattices of the underlying Ne´el order,

~iii ! the spatial symmetries of theseNS(N,S,p) levels:
The number and nature of the space group irreducible re
sentations ~SGIR! that appear in eachS subspace are
uniquely determined by the geometrical symmetries of
Néel order.

The exact diagonalization of the Heisenberg Hamilton
on small samples enables us to examine these features a
determine the nature of the ordering. This approach has b
used for the quantum Heisenberg antiferromagnet on the
angular lattice4,7 and theJ12J2 problem on the triangular
lattice.29
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III. THE LOW-LYING LEVELS OF THE KAH

The Hamiltonian of the KAH, including further-neighbo
interactions, has the form

H52J1(
^ i , j &

Si•Sj12J2 (
^^ i ,k&&

Si•Sk , ~2!

where theSi are spin-1/2 quantum operators on the sites
the kagome´ lattice and̂ i , j & ~respectivelŷ ^ i ,k&&) denotes a
sum over first~respectively, second! neighbors. In this sec
tion, we shall only consider first-neighbor exchange inter
tions (J250). At first sight, the spectrum of the KAH ha
one feature which is common to all the Heisenberg anti
romagnet spectra that we have been studying: the abs
ground state has a total spinS50 or 1/2 depending on the
number of sites of the sample (N59,12,15,18,21,24,27) an
the ground-state energyE0(S) of the S sectors order with
increasingS values. Lieb and Mattis40 have shown that this
result is exact for bipartite lattices: our numerical results te
to indicate an extremely robust property~the theorem seem
to be true for the Heisenberg antiferromagnet on the trian
lar andkagome´ lattices and for theJ12J2 problem: none of
these situations can be reduced to a bipartite proble!.
Taken apart from this feature the spectra of the KAH app
totally different from the spectra of the TAH. In Fig. 2, th
low-lying levels of the TAH and of the KAH are shown fo
the 27 site samples:

~i! whereas the Pisa tower is easily seen on the T
spectrum, well separated from the magnons spectrum, t
is absolutely no such scale in the KAH one,

~ii ! the effective dynamics of the low-lying levels of th
KAH spectrum do not scale asS(S11),

~iii ! the symmetries of the lowest lying levels of eachS
subspace do not allow the description of an ordered st
ture: for N527, all the SGIR, but one, appear in the low

FIG. 2. The low-lying energy levels of the TAH and KAH spe
trum of theN527 sample. The levels which possess the symme
expected for an ordered solution are denoted by a star. The
tower of the TAH is easily seen, quite distinct from the firs
magnon excitations. In the KAH, on the contrary, the levels can
date for the building of a tower of states are mixed with oth
representations in a continuum of excitations.
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lying doublet states below the firstS53/2 eigenstates
whereas their numberNS and nature are strictly determine
in the case of an ordered solution.

One could argue that the proliferation of these low-lyi
levels are the quantum counterpart of the infinite degener
of the classical ground state with respect to local spin ro
tions. The real question is: do the quantum fluctuations sh
any trend to select a specific Ne´el order?

We have looked to this question for the so-calledq50
order, theA33A3 order and for any planar order~see Sec.
V!. The q50 order is studied in Ref. 41. We give here th
details of the analysis concerning theA33A3 order, which
is the favored solution found in the semiclassic
approaches.18–22The smallest lattices where periodic boun
ary conditions are compatible with this order areN59, 27,
and 36 sites. In this section, we shall consider explicitly
N527 sample since theN59 sites is too small and the
N536 sample is too large to compute all the levels in ea
S sector. The QDJS associated with theA33A3 state are
homogeneous on each ferromagnetic sublattice~their wave
vectors are eitherk50 or k56k0: corners of the Brillouin
zone!. They do not break theC3v symmetry of the lattice.
The three irreducible representations~IR’s! characterizing
the A33A3 order are the following:

H G1 : @k50,RpC5C,R2p/3C5C,sxC5C#

G2 : @k50,RpC52C,R2p/3C5C,sxC5C#

G3 : @k56k0 ,R2p/3C5C,sxC5C#,

~3!

whereRf is a rotation of anglef and sx denotes an axia
symmetry. The numbersNS(N,S,p53) of levels in the Pisa
tower for each value of the total spin are given by the co
pling of threeN/6 spins:

DN/6
^DN/6

^DN/65 (
S50

N/6

~2S11!DS

1 (
S5N/611

N/2

~N/22S11!DS, ~4!

whereDS denotes the irreducible representation for a s
S. Therefore, one obtains the numbersNS(N,S,p53):

NS~N,S,p53!5~2S11!min~2S11,N/22S11!. ~5!

We notice that in eachS sector, an ordered solution contain
a number of levels which is strictly related to the number
sublattices of the selected order: in the lowerS subspace this
number is independent of the sample size forp<3 @it is the
Hilbert space dimension of a rotator or a symmetric top
p52 ~respectively,p53)#. In eachS subspace, amongst th
NS(N,S,p53) levels, the number of appearance (nG i

(S)) of

the G i IR can be computed following Refs. 7 and 29:

nG i

~S!5
1

6(k
Tr~RkuS!x i~k!Nel~k!, ~6!

where the summation indexk runs through the classes of th
S3 group~isomorphic toC3v); x i(k), Nel(k) denotes, respec
tively, the characters of theG i IR and the number of ele
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2524 56P. LECHEMINANT et al.
ments in the classk ~see Table I!. The traces of the permu
tations of S3 in the S subspace, denoted Tr(RkuS), are
determined as

Tr~RkuS!5Tr~RkuSz5S!2Tr~RkuSz5S11!, ~7!

and

5
Tr~ I duSz

!5 (
t,v,x52N/6

N/6

d t1v1x,Sz

Tr~~A,B!uSz
!5 (

t,v52N/6

N/6

d2t1v,Sz

Tr„~A,B,C!uSz
…5 (

t52N/6

N/6

d3t,Sz
,

~8!

where (A,B) @respectively (A,B,C)# stands for a two-body
~respectively, three-body! permutation ofS3. The final re-
sults of the computation of thenG i

(S) are given for the

N527 sample in Table II.
The lowest levels in the firstS subspaces of theN527

sample spectrum are given in Table III. The levels wh
have the good symmetries to describe aA33A3 antiferro-
magnet are displayed with an asterisk: most of th
NS(N527,S,p53) levels are rather far in the spectrum a
many levels belonging to other SGIR proliferate betwe
them. In fact, in the oddN samples, the number of low-lying
S51/2 states below the firstS53/2 states increases ver
rapidly with the system size, the trend seems the same in
even samples~see Fig. 3!. Altogether these numbers of low
lying levels grow seemingly roughly asaN with a.1.18
~respectively, a.1.14) in the odd ~respectively, even!
samples. Note that these numbers lay between the gro
state degeneracy of the three-states Potts mod42

(a.1.134) and the degeneracy of the Dimer mode43

(a521/3.1.26). This exponential proliferation of low-lying
levels with all spatial symmetries is certainly the deep

TABLE I. Character table of the permutation groupS3. The first
line indicates classes of permutations. The number of elemen
each class isNel .

S3 I (A,B,C) (A,B)
Nel 1 2 3

G1 1 1 1
G2 1 1 21
G3 2 21 0

TABLE II. Number of occurrencesnG i

(S) of each irreducible rep-
resentationG i ( i 51,2,3) with respect to the total spinS.

N527
2S 1 3 5 7 9 11 13 15 17 19 21 23 25 2

nG1

(S) 0 1 1 1 2 2 1 2 1 1 1 1 0 1

nG2

(S) 0 1 1 1 2 1 1 1 1 0 1 0 0 0

nG3

(S) 1 1 2 3 3 3 3 2 2 2 1 1 1 0
e

n

he

d-
l
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proof of the absence of long-range antiferromagnetic orde
signs both the absence of a finite number of ordered sub
tices ~that is the absence of an antiferromagnetic order
rameter! and the impossibility of a Ne´el symmetry breaking.

The selection of order by quantum fluctuations previou
observed in theJ12J2 model on a triangular lattice is quit
different.29 In that last model the four-sublattice QDJS fam
ily is perfectly pure on the smallest nonfrustrating sam
spectra: the two-sublattice QDJS family is a subset of
first family. Quantum fluctuations just stabilize this subs
relatively to the entire four-sublattice family and thus build

in
TABLE III. Lowest eigenenergies~with degeneracy and quan

tum numbers! of theN527 sample spectrum. Components ofk are
in units 6p/N. In the three last columns, 1 stands for invaria
under the symmetry, 0 for no symmetry, and -1 for a nontriv
phase factor under the above mentioned symmetry~i.e., ei2p/3 for
the rotation of 2p/3 and -1 for the two others!. Stars indicate states
possessing the symmetries associated with theA33A3 state. The
double horizontal bar indicates the omission of 127S51/2 states
before the first levels in theS53/2 subspace.

N527 ^2Si•Sj& 2S Deg. k R2p/3 Rp sx

-0.43627796 1 4 0 0 -1 1 0
*-0.43627796 1 4 3 6 1 0 1
-0.43622206 1 12 0 3 0 0 -1
-0.43593382 1 12 0 3 0 0 1
-0.43591527 1 8 3 6 -1 0 0
-0.43563229 1 12 0 3 0 0 1

-0.42632327 3 8 0 0 -1 1 0
*-0.42632327 3 8 3 6 1 0 1
-0.42630998 1 8 3 6 -1 0 0
-0.42615931 3 16 3 6 -1 0 0

*-0.42577308 3 4 0 0 1 1 1
-0.42562690 3 8 0 0 -1 1 0
-0.42562690 3 8 3 6 1 0 1
-0.42485791 1 8 3 6 -1 0 0
-0.42483901 1 4 0 0 -1 1 0
-0.42483901 1 4 3 6 1 0 1
-0.42479279 1 4 0 0 -1 -1 0
-0.42479279 1 4 3 6 1 0 -1
-0.42455077 3 24 0 3 0 0 1
-0.42419453 3 16 3 6 -1 0 0
-0.42419310 3 4 0 0 1 1 1
-0.42417083 1 2 0 0 1 1 1
-0.42405358 1 2 0 0 1 1 -1
-0.42405358 1 2 0 0 1 -1 1
-0.42394796 1 8 3 6 -1 0 0
-0.42391172 3 24 0 3 0 0 1
-0.42372061 3 24 0 3 0 0 -1
-0.42366979 1 2 0 0 1 1 1
-0.42347751 3 4 0 0 1 -1 -1
-0.42333145 3 24 0 3 0 0 -1
-0.42324731 3 8 0 0 -1 1 0
-0.42324731 3 8 3 6 1 0 1
-0.42318668 3 24 0 3 0 0 -1

*-0.42314189 3 4 0 0 1 -1 1
-0.42314189 3 4 0 0 1 1 -1
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simpler structure with an order parameter of higher symm
try: They do not create the order parameter, but just ren
malize it and increase its intrinsic symmetry.

IV. ORDERING WITH A SECOND-NEIGHBOR
FERROMAGNETIC EXCHANGE COUPLING

In order to ascertain our conclusion and reinforce
credibility of the method, we have studied with the sam
protocol the problem of thekagome´ lattice with a first-
neighbor antiferromagnetic interactionJ1 and a second
neighbor ferromagnetic interactionJ2 @see Eq.~2!# favoring
the existence of aA33A3 order. For large enoughJ2,0,
the spectrum has all the expected features of a Pisa tow
QDJS~dynamics, number of states, and symmetries! associ-
ated with this order~see Fig. 4 for theN59 sample!. When
uJ2u/J1 decreases the Pisa tower disappears, indicating
existence of a quantum phase transition. The estimate o
critical value ofJ2 /J1 is a difficult task requiring a study o
finite-size effects. The smallest sizes compatible with
A33A3 order areN59,27,36 sites: computing time an
memory requirements for such an extensive study rem
prohibitive. However, using appropriate twisted bounda
conditions (62p/3 around thez axis, see Ref. 7 and th
Appendix!, we can use the intermediateN512,21 samples
The twisted boundary conditions break the rotational s
symmetry of the Hamiltonian and fix the Ne´el plane perpen-
dicular to the twist axis. The helicity of Ne´el order is thus
fixed along thez axis and the free dynamics of the syste
reduces to the precession of the total spin aroundz. The
effective Hamiltonian reads:

FIG. 3. Logarithm of the numberDN of S51/2 levels below the
first S53/2 level as a function of the sample sizeN ~black tri-
angles!. This number, which does not take into account the twof
magnetic degeneracy, is compared to the same quantity~square
symbols! for the evenN samples~i.e., number ofS50 levels below
the firstS51 level!.
-
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Heff5
Sz

2

2I 3
, ~9!

where I 3 is the inertia of the top along thez axis. The de-
generacy of eachSz

2 subspace is 2 (6Sz). The IR character-
izing the A33A3 order is G1 : @k50,R2p/3C5C,
sxC5C]. Figure 5 shows the tower of states associa
with the A33A3 order for the N521 sample with
uJ2 /J1u51.

FIG. 4. Low-lying spectrum of theN59 sample with
uJ2u/J151 and periodic boundary conditions, as a function
S(S11). Note the Pisa tower associated with theA33A3 state.

FIG. 5. Low-lying spectrum of theN521 sample with
uJ2u/J151 as a function ofSz

2 . A twist of 2p/3 in the boundary
conditions is applied to accomodate theA33A3 state with the
sample size. Due to the boundary conditions, the Pisa tower red
to one IR for eachSz value.
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The order parameter or the spin stiffness of these le
scale asN21/2, whereas the slope of the Pisa tower scales
N22. At first sight, it seems thus more efficient to use th
information to look at the transition between order and d
order asuJ2u/J1 is decreased. This can be done in a rat

FIG. 6. Finite-size study of the ‘‘spin gap’’ DEs

5E0(Sz,min11)2E0(Sz,min) of the pure KAH (J250) as a func-
tion of the sample size. This energy isO(Na) with a521, 21/2,
or 0 whether the system is ordered, critical or disordered. Cont
ous lines~respectively, broken lines! are guides for the eye throug
the evenN ~respectively, oddN) results. The comparison of th
three quantitiesDEs , N1/23DEs , andN3DEs versusN21 favors
the hypothesis of spin disorder.
ls
s

-
r

naive way by looking at the spin gap between the grou
state ofSz,min andSz,min11: in the ordered phase this qua
tity should scale asN21 ~respectively,N21/2 and N0 in the
critical and disordered phase!: this study is done in Fig. 6 for
the caseuJ2 /J1u50 ~pure KAH!. It shows, thanks to the
trends in the larger sample sizes, that the KAH is certai
not ordered, probably not critical but truly disordered.

This naive use of the Pisa tower does not account for
whole qualitative information contained in the QDJS fam
which is described both by the effective Hamiltonian and
the space-group symmetry of the levels. This information
incorporated in the indexR measuring the ‘‘degree of order’
present in the low lying levels, and defined as follows:

~i! First, we consider the ordered phase~with
uJ2 /J1u>1) and concentrate on all the low-lying levels
the Pisa tower that are lower in energy than the softest m
nons: for each sample size this determines the numbe
Sz sectors which give a consistent picture of the ‘‘quasicl
sical ground state.’’ Precisely we search for the lower le
of the spectrum with a nonzero wave vector in the magn
Brillouin zone @Emin(k)# and determineSz,max as the largest
value ofSz such thatE0@Sz,max11#<Emin(k). By definition
E0(Sz,max11) is thus smaller than the energy of the softe
magnon of the sample and in the thermodynamic lim
Sz,max grows roughly asN1/4.

~ii ! In eachSz subspace considering all the levels in t
energy range@E0(Sz),E0(Sz11)# we definer Sz

as the ratio

of the number of levels compatible withA33A3 order to the
total number of levels of this range (r Sz

is a number between

0 and 1).
~iii ! We then compute the indexR measuring the degre

of order of the sample as the average of the ratiosr Sz
for

Sz running from 0~respectively, 1/2) up toSz,max.
This index is equal to one if the lowest levels form a tr

Pisa tower and decreases when other IR’s appear in the

u-

FIG. 7. Behavior of the ‘‘index of order’’ (R) as a function of
uJ2u/J1 and of the system size.



de
n
e

ua
in
c

no
th

e

na

m-
r or-
d-

he

e
ing

is

H
nt

g-
he
DJS
lace

of
of

and
odd
mo-

n-

etic

di-

ck

et
e

-

g

:
ic

ions

56 2527ORDER VERSUS DISORDER IN THE QUANTUM . . .
lying levels of the spectrum whenuJ2 /J1u is decreased.R is
thus a measure of the breakdown of order which inclu
qualitative information on the low-lying levels. It stands o
the quantities that scale more rapidly with the system siz

The variations of this index as a function ofuJ2u/J1 and of
the sample size are given in Fig. 7. WhenuJ2 /J1u50 this
index goes very rapidly to zero withN: this supports the idea
that the KAH is indeed disordered and that quantum fluct
tions show no tendency to select ‘‘order from disorder’’
the disordered phase. More unexpected, the finite-size s
ing onR indicates that a small ferromagnetic exchange is
sufficient to establish long-range order in the system and
the value of the critical ratio (uJ2u/J1)c is probably larger
than 0.5.

V. INCOMMENSURATE MAGNETIC ORDER

The previous study discards the hypothesis of aA33A3
order in the pure KAH~we did the same check with the sam
conclusion for theq50 order in Ref. 41!. Using twisted
boundary conditionsSr i1Ta51,2

5Rz(Fa51,2)Sr i
across the

sample defined by the vectorsTa51,2 ~see the Appendix for
more details!, we have extended our search to any pla

FIG. 8. Variation of the energy per link̂2Si•Sj& of the low-
lying levels of theN521 sample versus twisted boundary con
tionsF1 (F250!. Oi are the points whereF150 ~mod 2p). O7 is
the first point where the twist per link is 0~mod 2p!. The points
Ak @F15p ~mod 2p)# are in the middle ofOi andOi 11. Because
the figure is symmetric with respect toA3, the partA32O7 is not
represented here. Note that most of the levels do not come ba
their original assignation after a 2p twist of the boundary condi-
tions. In fact on this small size sample, due to an extra symm
whenF i50, the uniformk50 ground state is degenerate with th
first star ofkÞ0 eigenstates. Only thek50 states and their continu
ation have been shown inOA1. The six otherkÞ0 in OA are found
by folding the OiAi onto OA. Full lines stand for states goin
continuously tok50 chiral states~complex IR’s of C3), dashed
lines stand for states going continuously to the first star ofkÞ0
eigenstates, thek50 nonchiral states~trivial IR of C3); bold line:
the firstSz53/2 level.
s
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antiferromagnetically ordered configurations, either co
mensurate or incommensurate. The existence of a plana
der, if any, would be signed by a minimum of the groun
state energy for a given pair of twist angles (F1,F2) and the
appearance of a Pisa tower for these parameters.7 A typical
result of a set of diagonalizations is shown in Fig. 8 for t
N521 sample. Sweeping the Brillouin zone for (F1,F2), we
have studied in this way the spectra of th
N59,12,15,18,21,24,27 samples. We observe the follow
properties:

~i! The influence of the twisted boundary conditions
very small, much smaller than for the TAH: on theN521
sample the effect of the twist on the ground state of the KA
is only 8% of the same effect on the TAH. This is cohere
with the picture of a disordered, liquid system.

~ii ! We do not find a signature of any planar antiferroma
netic order for any size. Very shallow minima appear in t
spectra, but they are never associated with a tower of Q
and the position of these minima changes from place to p
with the sample size.

~iii ! The ‘‘spin gap’’ between the ground-state energy
the Sz50 ~or 1/2) subspace and the ground-state energy
the Sz11 subspace@DEs5E0(Sz11)2E0(Sz)# has only
small variations with the twists~Fig. 9!. These variations
appear systematic, and show a different trend in the even
odd samples: this could be related to the fact that the
samples only accomodate spin-1/2 excitations of the ther
dynamic absolute ground state which is a true singlet.~This
hypothesis is examined in a companion paper.44!

VI. CONCLUSION

Using the analysis of the low-lying levels of the Heise
berg antiferromagnet on akagome´ lattice we have shown
evidence that the system has no planar antiferromagn

to

ry

FIG. 9. Variations of the ‘‘spin gap’’ with boundary conditions
the small horizontal tick gives the value of the gap for period
boundary conditions. There is a systematic effect: theDS51 exci-
tation energy decreases with the twists of the boundary condit
in the evenN samples and increases in the oddN ones.
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long-range order atT50. Introducing a small second
neighbor ferromagnetic exchange coupling does not see
be sufficient to establish long-range order: from the exp
mental point of view this is good news as it could perha
enlarge the number of candidates for a spin-liquid behav

The theoretical study of the tower of low-lying leve
~Pisa tower! that we have developed in this paper see
potentially useful to give an approximate location of the tra
sition from order to disorder even on small samples: its
vantage over other approaches stands on the finite-size
ing of the parameter we are looking at and on the inclus
in this parameter of qualitative information on the mac
scopic ground state.

According to our present results, this spin-1/2 model
hibits a quantum critical point at a nonzerouJ2u/J1. It would
be interesting to investigate the universality class of t
quantum critical point and see how it may compare to
theoretical predictions of the nonlinears model for canted
antiferromagnets.45
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APPENDIX: TWISTED BOUNDARY CONDITIONS

For a sample defined by the two vectors:

H T152~ l 1m!u112mu2

T252lu112~ l 1m!u2 ,
~A1!
ev

ev
to
i-
s
r.

s
-
-
al-
n
-

-

s
e

-

whereu1 andu2 are two unit vectors of thekagome´ lattice,
andm andn are two integers related to the number of sit
of the sample byN53(l 21m21 lm), the boundary condi-
tions are defined through

Sr i1Ta51,2
5Rz~Fa51,2!Sr i

, ~A2!

wherer i denotes the sites of thekagome´ lattice. In order to
recover the translation invariance that seems to be broke
these boundary conditions, the spin frame at the po
r i1u1 ~respectively,r i1u2) is rotated with respect to the
spin frame at pointr i by an angleu1 ~respectively,u2). The
boundary anglesFa51,2 are related toua51,2 by the relations

H F152~ l 1m!u112mu2

F252lu112~ l 1m!u2 .
~A3!

The Hamiltonian in the new frame reads

H52J1 (
i 51,N
m51,3

S̃r i
.Rz~um!S̃r i1um

. ~A4!

u1 andu2 are changed step by step so thatF1 andF2 sweep
the appropriate fraction of the Brillouin zone of this problem
tto,
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