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Resistance statistics in one-dimensional systems with correlated disorder

M. J. de Oliveira and A. Petri*

Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 20516, 01452-990 Sa˜o Paulo–São Paulo, Brazil
~Received 1 November 1996!

We address the general problem of computing dc resistance fluctuations in one-dimensional Anderson
models with spatially correlated disorder and discuss some examples of binary systems with Markovian
correlations. As in the general case of uncorrelated disorder, we observe a growth of the relative resistance
fluctuations^rN

2 &/^rN&2 with the system lengthN. The largest sample-to-sample fluctuations are found in
certain energy regions of quasipure systems with very low concentrations of defects, whereas constitutional
entropy seems to rule the behavior of typical values of the resistance in different regions and no role appears
to be played by the potential correlation length. We express the growth of relative fluctuations in terms of the
entropy function characterizing different possible localization lengths of the wave function and observe con-
vergence toward a universal lognormal distribution in the presence of an extended state.
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I. INTRODUCTION

Dynamical properties of one-dimensional systems are
importance for understanding the behavior of many str
tures, like superlattices, multilayers, and linear polymers
is quite well established that in the presence of disorder t
possess localized eigenstates, and that quantum diffusio
absent under very general circumstances.1–3However, differ-
ent behaviors are often found when certain rules or corr
tions are imposed on the disorder. For example, mem
effects may lead to unexpected behaviors of the eigens
localization lengths; e.g., they can be inversely proportio
to the correlation length of the disorder in some regions
the spectrum of electronic4 and harmonic5 chains. Moreover,
there are disordered heterostructures exhibiting prope
similar to those of aperiodic ordered structures with sa
composition6 or short-range correlation.7 Other examples of
the influence of disorder correlation on the dynamics o
system are the existence of a point spectrum of exten
eigenstates in one-dimensional Schro¨dinger equations with
correlated potential barriers or wells1,8 and in other
models,9,10 where in some cases anomalous quantum di
sion may take place in spite of the disordered nature of
system.9 As a matter of fact, spatial correlations of disord
lead in many cases to the appearance of peculiar and no
tuitive properties.

In the present work we investigate the statistical prop
ties of electrical dc resistance in some one-dimensio
Anderson models with Markov-correlated disorder. We co
sider the case of diagonal disorder, in which motion is
scribed by the stationary equation

Ecn5«ncn1cn211cn21 , ~1!

whereE is the system energy,«n are site energies, andcn
the wave function amplitude at siten.

The resistance of one-dimensional disordered electro
systems is a random variable, taking different values in
ferent systems with identical statistical composition. Samp
to-sample fluctuations can be very large, and in the gen
560163-1829/97/56~1!/251~9!/$10.00
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case of uncorrelated disorder the variance of resistance
tribution is found to grow faster than the mean value.11 The
four-probe resistancerN atT50 for a system ofN sites and
Fermi energyE is given by the Landauer formula12–14

rN5
h

qe
2

RN~E!

TN~E!
, ~2!

whereqe is the charge of the carriers,h the Planck constant
and TN(E) and RN(E) are the transmission and reflectio
coefficients. WhenN is largeTN!RN , and typical, i.e., most
probable, values of resistancer̃ grow exponentially with the
length of the system at a rate given by the Lyapunov ch
acteristic exponentl:1,14

r̃N.
h

qe
2e

2Nl. ~3!

The Lyapunov exponentl is a function of the energyE
yielding the most probable rate of exponential growth
particular solutions of Eq.~1!: cN'c0

Nl . According to the
Borland conjecture1 l is equal to the inverse of the localiza
tion lengthj of eigenstatesf of Eq. ~1!, having about the
same energy asc, i.e.,fN'f0

2N/j ; l being not random, the
logarithmic resistance turns out to be a self-averag
quantity:13

lim
N→`

1

N
lnrN5 lim

N→`

1

N
^ lnrN&52l,

where ^•••& denotes the average over the disorder reali
tions.

In analogy with Eq.~3!, theqth moment of the probability
distribution ofr is related to the exponential growth rate
the 2qth moment of wave functions. By defining

L~q!5 lim
N→`

1

N
lnK U cN

c0
UqL , ~4!

it follows from Eq. ~2!
251 © 1997 The American Physical Society
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lim
N→`

1

N
ln^rN

q &5L~2q!, ~5!

and fluctuations ofrN grow asymptotically as

^rN
q &.eNL~2q!.

L(q) are called generalized Lyapunov exponents and
connected to the local growth rates of solutions of Eq.~1!
~Ref. 14! ~see also the discussion in Sec. IV!.

The purpose of this paper is to show howL(q) can be
computed in the case of spatially correlated disorder, an
discuss some physically relevant examples. To this aim,
make use of a method developed recently for computing
generalized Lyapunov exponents of Markov-correlated r
dom matrices.15 This method is illustrated in Sec. II, wher
the motion equation~1! is therefore recast in terms of tran
fer matrices. Section III is devoted to discussing the res
from different models characterized by different correlati
rules, focusing in particular on the growth rate of typic
resistivity r̃, of first low momentsL(2q), and of relative
fluctuations^rN

2 &/^rN&2, and investigating their behavior a
functions of energy and composition. We consider for si
plicity binary systems, examining in detail the three ca
specified below.

~a! Thecorrelated alloy~Sec. III A 1!, in which the prob-
ability of occurrence of each type of atom at a given s
depends on the type that occurred at the previous site an
different from zero.

~b! The chain with single insertions, a model resembling
the structure of some linear polymers in which one of
two kinds of sites can appear only individually~Sec. III B!.

~c! The random dimer model~Sec. III C!, introduced by
Wu and co-workers,9 where one of the two species can a
pear consecutively only an even number of times, and wh
may possess an extended state.

For comparison we also discuss some properties of
uncorrelated binary alloy~Sec. III A 2!. In Sec. IV the be-
havior of resistance fluctuations is put in connection with
entropy function characterizing the probability density of d
ferent wave function growth rates, and the main findings
given in Sec. V.

In all the cases considered here it turns out that there
value of concentration of the two species, which depends
the energy and which produces the largest growth rate
fluctuations. The very interesting point is that this value
different from the value which gives rise to the large
growth of resistance. There are regions of the spect
where fluctuations grow faster while resistance gro
slowly, if the abundance of nonconducting species is v
low. In other regions of the spectrum both seem to re
their maximum growth for maximum compositional entrop
In none of the analyzed cases does a relation with the sp
correlation length of the potential emerge, and growth of
variance is always found to be larger than the growth of
average resistance, implying the divergence of relative fl
tuations with the system size.
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II. GENERALIZED LYAPUNOV EXPONENTS
OF WAVE FUNCTIONS IN CORRELATED

RANDOM POTENTIALS

Techniques dealing with products of random matrices
be used in the present problem by rewriting the motion eq
tion, Eq. ~1!, in the matrix form

ui5A iui21 ,

where

ui215S c i

c i21
D and A i5SE2« i 21

1 0 D , ~6!

where i>1 and c050. Exponential growth rates of mo
ments of the wave function, Eq.~4!, are then given by

L~q!5 lim
N→`

1

N
lnK UANAN21•••A2A1u0

u0
UqL .

In Ref. 15 explicit expressions forL(q) in the case of
Markov-correlated random matrices have been derived. S
expressions are generalizations of the respective expres
for the uncorrelated case14 based on the fact that, apart from
exceptional cases, the product in the above equation is do
nated for largeN by its largest eigenvalue in modulo
Thus L(q) can be determined by computin
limN→`1/Nln^uTrXNuq&, with XN5ANAN21•••A2A1. Com-
putation can be simplified by exploiting the identity~holding
for any matrix M and positive integer q)
(TrM )q5Tr(M ^q), where ^ indicates the direct product
and

Let us consider the case in which local energies« i in Eq.
~6! are chosen from a discrete set ofQ values. For a Markov-
correlated process the probability of a given sequence$« i% in
a chain of lengthN is

PN~$« i%!5T~«N,«N21!T~«N21,«N22!•••T~«2,«1!P1~«1!,
~7!

whereT(« i ,« j )5Ti j is the stochastic matrix element givin
the conditional probability of getting« i after« j andP1 is the
probability for the sequence to start with«1. Therefore, by
denotingB5A^q, the average ofXN

^q can be written as

^XN
^q&5(

$« i %
B~«N!T~«N ,«N21!B~«N21!

3T~«N21 ,«N22!•••B~«2!T~«2 ,«1!B~«1!P1~«1!.

~8!

By introducing the 2qQ32qQ matrix

Y~ l ,«; l 8,«8!5Bll 8~«!T~«,«8!, ~9!

Eq. ~8! turns into
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56 253RESISTANCE STATISTICS IN ONE-DIMENSIONAL . . .
^~XN
^q! lm&5(

$« i %
(
$ l i %

Y~ l ,«N ; l N21,«N21!

3Y~ l N21 ,«N21 ; l N22,«N22!•••

3Y~ l 2 ,«2 ; l 1,«1!B~«1!P1~«1!.

Because the process in Eq.~7! is supposed to converge to
stationary state forN→`, in this limit the quantity between
brackets should not depend on the initial mat
B(«1)P1(«1). We thus choseP1(«1)[(«0

T(«1 ,«0) and re-
write the above equation as

^~XN
^q! lm&5(

«N
(
«0

YN~ l ,«N ,;m,«0!,

so that for evenq

^uTrXNuq&5^uTr@XN
^q#u&5^Tr@XN

^q#&5Tr^XN
^q&

5(
l

^~XN
^q! l l &5TrYN.

For largeN the rightmost expression is dominated by t
largest eigenvalue in the modulus ofY, y(q),

^uTr@XN
^q#u&.auy~q!uN,

where a is a constant independent ofN, and generalized
Lyapunov exponents are given by

L~q!5 lnuy~q!u. ~10!

This expression holds forq even or for any positive intege
q wheneverYi j.0 ; i , j .

III. RESISTANCE FLUCTUATIONS IN CORRELATED
RANDOM BINARY SYSTEMS

In this section we discuss the behavior of the dc resista
and of its relative fluctuations in some different cases
which the site energies« i , Eq. ~1!, are allowed to assum
two values«a and«b . We consider first the case of acorre-
lated alloy ~Sec. III A! where sites of energy« i may follow
sites of energy« j with a finite probabilityTi j . A comparison
between the behavior of this system and the one of theun-
correlated alloywill put into a major evidence the effects o
correlation. We then discuss a model that we have called
chain with single insertions, in which two consecutive site
of energy«b are not allowed, i.e.,Tbb50 ~Sec. III B!. This
model is inspired to the basical structure of some linear po
mer in which two consecutive units of the same kind do
occur. An example of such a system is doped emeraldin16

in which two consecutive units of iminequinone are nev
found in practice. The chain with single insertions is also
some relation with the other case that we consider, theran-
dom dimer model~Sec. III C!. Here one of the two specie
can appear only in pairs,9 giving rise to an extended stat
which is responsible for conduction and, according to n
merical simulation, to quantum diffusion. This model h
been used to represent protonated polyaniline,9 a good con-
ducting polymer obtained from doped polyaniline by pr
tonic addition.16

Computation ofL(q), Eq. ~10!, has been done by selec
ce
n

he

-
t
,
r

-

ing y(q) through iterated applications ofY to an arbitrary
initial vector. Besides computing the first lowL(2q)’s we
have considered the quantity

b~E!5L~4!22L~2!5 lim
N→`

1

N
ln

^rN
2 &

^rN&2
. ~11!

Abrahams and Stephen11 have shown that in the general ca
of uncorrelated disorder this quantity is positive, implyin
fluctuations of resistance growing faster than its aver
value for increasingN. The Lyapunov exponentl, which
yields the growth of the typical resistancer̃, Eq. ~3!, has
been also computed by a Monte Carlo procedure, and
dependence ofl andb on the transition probabilitiesTi j has
been investigated in the energy ranges relevant for the c
sidered models.

A. Random alloys

1. Correlated alloy

The stochastic matrix for this model is given by

T5S p 12p

12p p D ,
Tab representing the probability of finding a site of ener
«a after a site of energy«b . Note that besides the usua
normalization of the conditional probabilities,S iTi j51, the
above matrix also satisfiesS jTi j51, implying for this case
the same average concentration for the two types of s
ni50.5;Y in Eq. ~9! takes the form

Y5S pAa
^q ~12p!Aa

^q

~12p!Ab
^q pAb

^q D ,
whereAa5A(«a) andAb5A(«b).

A spatial correlation function for the potential can be d
fined as^«n«m&, from which results the spatial correlatio
length

l215 lim
un2mu→`

lnu^«n«m&u
un2mu

52 lnu122pu. ~12!

Notice that whenp51/2 the correlation length vanishes, an
the largest eigenvalue ofY is the same as that of the matr
(Aa

^q1Ab
^q)/2 ~see Appendix A!, which corresponds to the

uncorrelated case.14Whenp→1 the system shows very lon
homogeneous sequences with the same« i , whereas when
p→0 it resembles a periodic system with a few defects.
both limits, l→`.

The correlated random alloy has been investigated by s
eral authors,4,5 showing, among other results, that the loc
ization lengthj defined as the inverse of the Lyapunov e
ponent is not generally proportional to the spatial correlat
length of the potential.

In Fig. 1, 2l52j21 is plotted for differentp as a func-
tion of E for «a52«b5«50.5. The band spectrum of th
pure« i system is given by« i22<E<« i12 whereas, with
this choice of parameters, the spectrum of the pure perio
system is«2<E2<41« (0.5<uEu<A4.5). WhenE is close
to or in the gap of the periodic system obtained forp50,
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254 56M. J. de OLIVEIRA AND A. PETRI
l is maximum at small values ofp and decreases for increas
ing p. On the contrary, whenE approaches the band edge o
the periodic system (uEu.1.5),l shows a maximum at high
values ofp, i.e., when long sequences of pure« i chains are
present in the system, and decreases asp decreases. This
behavior is independent of the potential correlation leng
and can be understood if one notes that at a given energy
largest contributions to the Lyapunov exponent, i.e., to t
localization of the wave function, are given by sequences
sites that are ‘‘out of the band’’ at that energy, i.e., sequen
whose characteristic energy band~obtained in the infinite
length limit! does not contain the considered energy. The
fore, when the system is very similar to a periodic one t
wave function is more localized for energies near or in t
gap, while foruEu.22u« i u one of the two types of site is ou
of its own band, and maximum localization is obtained wh
long sequences of consecutive identical sites are genera
i.e., for p close to 1.

Figure 2 shows that the first low moments of resistan
grow with the system size in the same qualitative way
l, but from Fig. 3 it can be seen that relative fluctuation
Eq. ~11!, behave in a quite different way,b exhibiting a very
different dependence onp andE. WhenE is in the gap of

FIG. 1. Exponential growth rate of the typical resistance 2l for
the correlated random alloy~Sec. III A! at different values of cor-
relation:p50.2 ~thin solid line!, p50.4 ~dotted line!, p50.6 ~thick
line!, andp50.8 ~bullets!.

FIG. 2. CumulantsL(2q) and double of the Lyapunov exponen
2l for the correlated alloy atp50.4:q51 ~thin line!, q52 ~dotted
line!, q53 ~thick line!, q54 ~bullets!, and 2l ~bold line!.
h
the
e
f
s

-
e
e

n
ed,

e
s
,

the pure periodic system,20.5<E<0.5, the smallest value
of b are obtained when more sequences ‘‘in the band’’
present~that is, forp close to unity! in analogy withl and
L(q). But the largest values are not attained forp tending to
zero, as one could expect. Depending on the energy, the
some intermediate value ofp which maximizes fluctuations
The same happens between the band edge of the per
system and that of a pure« i system (1.5,uEu,'2.1). In
these regions a maximumb is reached forp'0.4. Such a
behavior could suggest for these energy regions a pro
tionality between the relative fluctuations of resistance a
the potential correlation length, with maximum fluctuatio
corresponding to about the minimum correlation. For t
particular model in consideration, the inverse correlat
length as a function ofp, Eq. ~12!, is approximately propor-
tional to the entropy funtion measuring the degree of cor
lated disorder,

H52S jnjS iTi j lnTi j , ~13!

which in the present case reads

H52pln~p!2~12p!ln~12p!.

Both l21 andH are convex functions ofp, with a maximum
at p50.5, and vanish atp50 andp51. Nevertheless, such
a common behavior is not general. In the cases discus
below these quantitities will be found to behave in differe
ways, showing that at least at some energy values resist
fluctuations seem rather to be related to the entropy tha
the potential correlation length. One more thing to note
that b is always positive. Since the same property is o
served in all the cases considered in the following, we c
clude that a faster growth of variance with respect to
average value when the system size increases can be l
considered a general property of correlated system, in a
ogy to the case of uncorrelated potentials.11

2. Uncorrelated alloy

It can be interesting to compare the present model w
the case of an uncorrelated alloy. Figure 4 shows the re
tance growth rate for a system in which«a («b) occurs with
unconditional probability p (12p). As expected the
Lyapunov exponent is larger when the presence of the s

FIG. 3. Exponential growth rate of relative fluctuationsb in the
correlated alloy at different correlations:p50.2 ~thin line!, p50.4
~dotted line!, p50.6 ~thick line!, andp50.8 ~bullets!.
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‘‘out of the band’’ is larger. However, it is just in this situ
ation that fluctuations attain their minimum~Fig. 5!. In the
region 1.5,E,2.5 (22.5,E,21.5), which is out of the
band of«a («b), fluctuations grow faster when there are fe
sites of energy«a («b). Thus we come to the unexpecte
result that in an almost pure system with a low defect c
centration, fluctuations of resistance depend very heavily
the position and on the actual number of these defects.
the other hand, intuition would suggest that maximum flu
tuations should correspond to the maximum entropy of
systemS52S i pi lnpi , which is attained atp50.5. Actually
it can be seen that this happens only at energies within
band gap of the limit periodic system~Fig. 5!. Similar fea-
tures are found in the correlated systems discussed be
suggesting that they could be common to those disorde
chains composed of two fundamental units, when one of
two is present at low values of concentration and the ene
is out of its characteristic band. In the absence of correla
such units are to be identified with sites of the two spec
a and b. When correlation is introduced, the role of bas
elements in the system is played by consecutive sequenc
identical sites or of alternate sites, namely, consecutivea,
b, or ab sequences. From this point of view, while the u
correlated alloy and the other systems discussed in the
lowing are formed by only two of such units, the correlat

FIG. 4. Lyapunov exponentl for the uncorrelated alloy~Sec.
III A ! at different concentrationsp of the a species:p50.2 ~thin
line!, p50.4 ~dotted line!, p50.6 ~thick line!, andp50.8 ~bullets!.

FIG. 5. b for uncorrelated alloy at different concentration
p50.2 ~thin line!, p50.4 ~dotted line!, p50.6 ~thick line!, and
p50.8 ~bullets!.
-
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alloy has the structure of a ternary system since all the ab
three types of sequence appear in it.

B. Single insertion chain

The introduction of Markovian correlations makes it po
sible to construct a variety of very different models. One
these is inspired to the structure of disordered doped p
naniline ~emeraldine!, a linear polymer in which quinoid
rings are randomly placed in a chain of benzoid rings, a
that is an important intermediate stage in the realization
conducting polyaniline.16 However, we are not intereste
here in a faithful modeling of such polymers which wou
need the introduction of different hopping terms in Eq.~1!.

Correlation in this case is described by the matrix

T5S p 1

12p 0D ,
implying, as desired, that a site of kinda may be followed by
another site of the same kind with probabilityp, and that a
site of kindb is never followed by a site of the same kin
The average concentration of the two species
na51/(22p) andnb5(12p)/(22p); as a curiosity it can
be note that maximum compositional entropy of the syst
is obtained forp5pm5(A521)/2, the golden mean.

The behavior of the Lyapunov exponent, shown in Fig.
can be understood in this case with the same arguments
for the correlated and uncorrelated alloys discussed ab
when the system is similar to a periodic one with defec
that is, at low values ofp, maximum typical resistance
growth is obtained out of the band of the pure periodic s
tem. It is also obtained when the system resembles a p
a type system, i.e., forp close to 1, at energiesE.«a12
~Fig. 7!, that is, out of the band of the purea system. On the
other hand,b is found to have a maximum atp'pm in the
whole relevant energy range, with the exception of the
gion E,'2A41e. This region belongs only to the spec
trum of the purea system, and possesses maximum fluct
tions at very low concentration ofab sequences (p→1). On
the other hand, low concentrations ofa sequences (p→0)
give rise to relevant fluctuations forE.21ea51.5, namely,

FIG. 6. l for the chain with single insertion at different value o
correlation ~Sec. III B!: p50.2 ~thin line!, p50.4 ~dotted line!,
p50.6 ~thick line!, andp50.8 ~bullets!.
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256 56M. J. de OLIVEIRA AND A. PETRI
out of the characteristic band ofa but within the character-
istic band of the periodic system. Thus from this point
view we are in a situation very similar to that of the unco
related alloy, where changes in the position of a few defe
(ab pairs in the present case! or statistical fluctuations o
their concentration can sensibly modify the value of res
tance.

Finally, this case yields strong evidence for the absenc
a relation among the typical growth ratel, its fluctuations
b, and the potential correlation lengthl . Indeed, in the
present case the potential spatial correlation lengthl and the
generalized entropyH behave in a completely different wa
as functions ofp:

H52
p

22p
lnp2

12p

22p
ln~12p!

is a convex function with a maximum atp5pm , and

l52
1

ln~12p!

is monotone with limit valuesl50 for p51 and l5` for
p50.

C. Random dimer model

This model has been investigated quite extensively in
last years9,10 because, at variance with uncorrelated dis
dered one-dimensional systems, it has been found to sup
quantum diffusion. It has also been used9 for describing the
structure of some conducting conjugate polymers, like p
tonated emeraldine.16 In this model one of the energies, sa
«b , can occur only in pairs. Whenu«a2«bu<2 ~that is,
when «b is in the band of the pure«a system! it possesses
one extended state at the energyE05«b that, together with a
set of states very close in energy, is responsible for lo
range electronic transport.

We can write the stochastic matrix describing this mo
as

FIG. 7. Growth rateb for the single insertion chain:p50.2
~thin line!, p50.4 ~dotted line!, p50.6 ~thick line!, and p50.8
~bullets!.
f

ts

-

of

e
-
ort

-

-

l

T5S p 0 p

12p 0 12p

0 1 0
D .

In fact, the probability of getting a site of energy«a is non-
zero only if it occurs after another«a or after an«b pair.
Consequently we can distinguish three different kinds
sites. Sites of type 1, which possess energy«a and which
may appear after another site of the same type, or afte
integer number of«b pairs; sites of type 2, with energ
«b , which may appear after sites of type 1 or after an inte
number of«b pairs; and sites of type 3, which have the sam
energy as type 2 but always occur after one such site
order to complete the dimer. On the whole, the relative c
centration of sites with energy«a and «b is na5p/(22p)
andnb52(12p)/(22p), respectively, and according to Eq
~9!:

Y5S pAa
^q 0 pAa

^q

~12p!Ab
^q 0 ~12p!Ab

^q

0 Ab
^q 0

D .
Numerical resources required for computation of the ma
mum eigenvalue of the above matrix are sensibly reduced
the observation~Appendix B! thatY possesses the same e
genvalues as

S pAa
^q Ab

^q

~12p!Ab
^q 0 D

~the remaining eigenvalues being equal to zero!.
The existence of the extended state is signaled by a v

ishing Lyapunov exponentl at E05«b ~Fig. 8!. This hap-
pens independently of the probabilityp, which, on the other
hand, rules the behavior ofl in the whole energy range. A
in the previous cases the dependence ofl on p can be un-
derstood in terms of the probability of the occurrence
‘‘in-band’’ and ‘‘out-of-band’’ sequences of sites and is n
ruled by the potential correlation length which has the sa
dependence onp as in the single insertion chain:

FIG. 8. Lyapunov exponentl for the random dimer model~Sec.
III C ! for different values of correlation:p50.2 ~thin line!,
p50.4 ~dotted line!, p50.6 ~bold line!, andp50.8 ~bullets!.
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l52
1

ln~12p!
;

also in this case maximum entropy is obtained
p5pm5@A(5)21#/2.

With respect to the growth of fluctuations the same c
siderations made in the previous cases hold, with larger
ues corresponding to large compositional entropies at e
gies belonging to the common band of the two constitu
species, and to low concentration of one of the two specie
energies not belonging to the band of the corresponding p
system. Moreover, as we have shown in a previous pap15

this model exhibits universal fluctuations of the finite-si
localization lengths when the energy is close to the one
extended state. WhenE approachesE0 the probability distri-
bution for different growth ratesg in finite sequences tend
to a log normal whose mean and variance depend on a s
parameter, the typical localization length:

P~g!5A j

2pN
expH 2

~g2N/j!2

2N/j J . ~14!

This implies in turn a log-normal statistics for resistanc
since the ratio between reflection and transmission co
cients in Eq.~2! is exponetially dominated by the Lyapuno
exponent for largeN. Thus the localization length is also th
only parameter ruling the behavior of resistance in t
asymptotic limit. Convergence toward such a distributi
seems to be characteristic of localization-delocalization tr
sitions, and has been observed both in one-dimensional
tems at low values of disorder and in higher-dimensio
systems close to the mobility edge.17

IV. FLUCTUATIONS AND WAVE FUNCTION GROWTH
RATE PROBABILITIES

It has been observed in the previous section that
growth of resistance fluctuations can be very large at e
gies out of the characteristic band of the pure system form
by one of the two basic units composing the alloy. Rema
ably, the largest fluctuations in this situation are not obtain
at high concentrations of this unit or for large values of t
compositional entropy, but when such a unit is very sca
Thus, the physical picture is that in a quasipure system w
a low concentration of defects~i.e., of units for which the
considered energy is out of the related energy band! the ac-
tual value of resistance can change very much from sam
to sample, due to a different position of the defects or to th
different concentration, which is sample independent only
the thermodynamic limit. On the other hand, in alloys w
comparable concentrations of the two basic sequences,
averaging appears to become more effective, making or
ing and the actual concentration in the chain less import
with maximum fluctuations corresponding to about ma
mum values of the compositional entropy. As recalled
Sec. I the growth of resistance is connected with the gro
of solutions of Eq.~1!. It is therefore possible to relate resi
tance fluctuations to the probability distribution of differe
growth rates in finite systems.

The problem of different growth rates of the wave fun
tion in different realizations of a disordered chain has be
addressed by Paladin and Vulpiani18 by introducing an en-
r
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tropy function describing the limit probability distributio
for growth rates different from the Lyapunov exponentl. By
grouping together the sequences which lead to a growth
within a rangedg around a valueg, the moments of the
wave function, Eq.~4!, are expressed by

^ucNuq&'E dgPN~g!eNqg,

wherePN(g) is the probability density for an exponentia
growth rateg in a chain ofN sites. By assumingPN(g) to
vanish exponentially forN→`, the entropyS(g)>0 is de-
fined by

PN~g!}e2NS~g!.

For g5l, S50, and a saddle point approximation for th
integral yields

~15!

generating the Legendre transformation

dL~q!

dq
5g*

and

L~q!5qg*2S~g* !;

g*5g* (q) is the value ofg that maximizes Eq.~15! for
each givenq, yielding the most relevant contribution to th
integral for largeN.

The entropyS(g* ) can be obtained fromL(q) by invert-
ing the above relations:

S~g* !5q
dL~q!

dq
2L~q!. ~16!

It is easily seen thatb of Eq. ~11! ~see Fig. 9! can be ex-
pressed as an integral ofS, establishing a relation betwee
the exponential growth rate of relative fluctuations of res
tance and the wave function probability distribution:

FIG. 9. Fluctuation exponential growth rateb for the random
dimer model:p50.2 ~thin line!, p50.4 ~dotted line!, p50.6 ~bold
line!, andp50.8 ~bullets!.
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^rN
2 &

^rN&2
.expF4NE

2

4S~g* !

q2
dqG . ~17!

In the Gaussian case S takes the form
S(g)5(g2Nl)2/(2Ns2), and

^rN
2 &

^rN&2
.e4Ns2.

V. SUMMARY

We computed and discussed the dc resistance fluctua
in some one-dimensional Anderson models with correla
random potentials. We considered in particular t
asymptotic growth rates of the first low moments and fou
that the variance grows faster than the average resist
when increasing the system length, as in the case of un
related disorder.11 In all the examined models first to fourt
moments of the resistance distribution have been observe
behave qualitatively in the same way as the typical value,
the growth of relative fluctuationŝrN

2 &/^rN&2 has been
shown to be possibly very large also when typical and av
age resistance grow slowly. In particular, at energies ou
the characteristic band of the system made of only one k
of atom, we observe the fastest growth when such a kin
present in a small quantity, showing that the resistance
different realizations of slightly doped systems with sa
statistical composition is very sensible to the actual posit
and concentration fluctuations of few defects. This is cau
by the different values taken by the localization lengths
the eigenstates in different realizations or system portio
and can be quantitatively related to the entropy funct
characterizing the corresponding probability distribution.
evidence is found of a dependence of statistical quantitie
the potential correlation length, but in some limited range
energy a qualitative relation with compositional entropy c
be observed.
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APPENDIX A: THE CORRELATED RANDOM ALLOY

The stochastic matrixT is in this case

T5S p 12p

12p p D
andY is

Y5S pBa ~12p!Ba

~12p!Bb pBb
D ,

where Ba5 @A(«a)#
^q and Bb5@A(«b)#

^q. Notice that
whenp51/2 the correlation is lost and the largest eigenva
of Y is the same as that of the matrix (Ba1Bb)/2 which is
ns
d
e
d
ce
r-

to
ut

r-
of
d
is
of
e
n
d
f
s,
n

on
f
n

of

e

the correct expression for the uncorrelated case.14 Indeed,
whenp51/2, the following identities hold:

1

2 SBa Ba

Bb Bb
D S U

2UD 50,

whereU is a column matrix and

~V V !
1

2 SBa Ba

Bb Bb
D 5@ 1

2 V~Ba1Bb!
1
2 V~Ba1Bb!#

5l~V V !,

whereV is a row matrix or

1
2 V~Ba1Bb!5lV,

from which follows that each eigenvalue of (Ba1Bb)/2 is an
eigenvalue ofY. The remaining eigenvalues are equal
zero.

APPENDIX B: THE RANDOM DIMER MODEL

In this case the stochastic matrix is given by

T5S p 0 p

12p 0 12p

0 1 0
D ,

so that

Y5S pBa 0 pBa

~12p!Bb 0 ~12p!Bb

0 Bb 0
D .

Consider the identity

S pBa 0 pBa

~12p!Bb 0 ~12p!Bb

0 Bb 0
D S U

0

2U
D 50,

whereU is a column matrix and

~V W V !S pBa 0 pBa

~12p!Bb 0 ~12p!Bb

0 Bb 0
D

5@pVBa1~12p!WBb WBb pVBa1~12p!WBb#

5l~V W V !.

This is equivalent to

~V W !S pBa Bb

~12p!Bb 0 D 5l~V W !,

whereV andW are row matrices. We can conclude that ea
eigenvalue of the matrix

S pBa Bb

~12p!Bb 0 D
is an eigenvalue ofY, the remaining eigenvalues being equ
to zero.
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