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Resistance statistics in one-dimensional systems with correlated disorder
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We address the general problem of computing dc resistance fluctuations in one-dimensional Anderson
models with spatially correlated disorder and discuss some examples of binary systems with Markovian
correlations. As in the general case of uncorrelated disorder, we observe a growth of the relative resistance
fluctuations(p%)/{pn)? with the system lengtiN. The largest sample-to-sample fluctuations are found in
certain energy regions of quasipure systems with very low concentrations of defects, whereas constitutional
entropy seems to rule the behavior of typical values of the resistance in different regions and no role appears
to be played by the potential correlation length. We express the growth of relative fluctuations in terms of the
entropy function characterizing different possible localization lengths of the wave function and observe con-
vergence toward a universal lognormal distribution in the presence of an extended state.
[S0163-182607)14617-3

I. INTRODUCTION case of uncorrelated disorder the variance of resistance dis-
tribution is found to grow faster than the mean vatt@he
Dynamical properties of one-dimensional systems are ofour-probe resistancey at T=0 for a system oN sites and
importance for understanding the behavior of many strucFermi energyE is given by the Landauer formdfa*
tures, like superlattices, multilayers, and linear polymers. It
is quite well established that in the presence of disorder they _ h Rn(E)
possess localized eigenstates, and that quantum diffusion is pN_q_g TN(E)’
absent under very general circumstantésowever, differ-
ent behaviors are often found when certain rules or correlaWherede is the charge of the carrierss,the Planck constant,
tions are imposed on the disorder. For example, memortnd Tn(E) and Ry(E) are the transmission and reflection
effects may lead to unexpected behaviors of the eigenstaté9efficients. WhemN is largeTy<Ry, and typical, i.e., most
localization lengths; e.g., they can be inversely proportionaProbable, values of resistanpegrow exponentially with the
to the correlation length of the disorder in some regions oféngth of the system at a rate given by the Lyapunov char-
the spectrum of electrorfiand harmonitchains. Moreover, acteristic exponer:***
there are disordered heterostructures exhibiting properties
similar to those of aperiodic ordered structures with same ~ h o2\ 3)
compositiofi or short-range correlatiohOther examples of PNT Gz
the influence of disorder correlation on the dynamics of a ] ]
system are the existence of a point spectrum of extende§h€ Lyapunov exponernk is a function of the energ§
eigenstates in one-dimensional Salinger equations with yielding the most probable rate ofNexponentlaI growth of
correlated potential barriers or weifs and in other Particular solutions of Eq(1): ¢~yg" . According to the
models>1® where in some cases anomalous quantum diffuBorland conjecture\ is equal to the inverse of the localiza-
sion may take place in spite of the disordered nature of th&on length¢ of eigenstatesp of Eq. (1), having about the
systen® As a matter of fact, spatial correlations of disordersame energy a, i.e., oy~ o " ¢; \ being not random, the
lead in many cases to the appearance of peculiar and nonifegarithmic resistance turns out to be a self-averaging
tuitive properties. quantity?3
In the present work we investigate the statistical proper-
ties of electrical dc resistance in some one-dimensional
Anderson models with Markov-correlated disorder. We con-
sider the case of diagonal disorder, in which motion is de-

@
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lim NlnpN= lim N(InpN)=2)\,
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scribed by the stationary equation where(- - -) denotes the average over the disorder realiza-
tions.
Eyp=enthn+ 1+ thn_1, 1) In analogy with Eq(3), theqth moment of the probability

distribution of p is related to the exponential growth rate of
whereE is the system energy,, are site energies, angl,  the 2qth moment of wave functions. By defining
the wave function amplitude at site
The resistance of one-dimensional disordered electronic L(g)= lim iln< ¥n
systems is a random variable, taking different values in dif- Noo N Yo
ferent systems with identical statistical composition. Sample-
to-sample fluctuations can be very large, and in the generat follows from Eq. (2)

q> , 4
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1 Il. GENERALIZED LYAPUNOV EXPONENTS
lim N|n<pﬁ,)= L(2q), (5 OF WAVE FUNCTIONS IN CORRELATED
N—eo RANDOM POTENTIALS

Techniques dealing with products of random matrices can
and fluctuations opy grow asymptotically as be used in the present problem by rewriting the motion equa-
tion, Eq.(1), in the matrix form

(pfy=eNt2a), Ui=AjUi_g,
where
L(q) are called generalized Lyapunov exponents and are
connected to the local growth rates of solutions of Ex. W dA E-ei -1 5
(Ref. 14 (see also the discussion in Sec)IV Ui-1 - andAi={ 4 0/’ (6)

AnAN-1 " AZA Uy
Uo

1
L(g)= lim Nln<

N— o0

The purpose of this paper is to show hdawWq) can be
computed in the case of spatially correlated disorder, and therei=1 and ,=0. Exponential growth rates of mo-
discuss some physically relevant examples. To this aim, wéents of the wave function, E¢4), are then given by

make use of a method developed recently for computing the

generalized Lyapunov exponents of Markov-correlated ran- a

dom matrices?® This method is illustrated in Sec. II, where :

the motion equationil) is therefore recast in terms of trans-

fer matrices. Section Ill is devoted to discussing the result$n Ref. 15 explicit expressions fok(q) in the case of
from different models characterized by different correlationMarkov-correlated random matrices have been derived. Such
rules, focusing in particular on the growth rate of typical expressions are generalizations of the respective expressions
resistivity p, of first low momentsL(2q), and of relative for the uncorrelated ca¥tbased on the fact that, apart from
fluctuations(p2)/{pn)?, and investigating their behavior as exceptional cases, the product in the above equation is domi-
functions of energy and composition. We consider for sim-nated for largeN by its largest eigenvalue in modulo.
plicity binary systems, examining in detail the three caseshus L(Q) can be determined by computing
specified below. limy o ININ(TrXy[9), with Xy=AnAy-1- - -AzA;. Com-

(a) The correlated alloy(Sec. 11l A 1), in which the prob-  Putation can be s!mpllﬂed by explmtmg_the |d_ent(t}old|ng
ability of occurrence of each type of atom at a given sitefor any matrix M —and positive integer q)
depends on the type that occurred at the previous site and (§™)%=Tr(M®9), where ® indicates the direct product,
different from zero. and

(b) The chain with single insertionsa model resembling M2®I=MeM®--- QM.
the structure of some linear polymers in which one of the ~
two kinds of sites can appear only individualigec. Il B). ¢ times

(c) The random dimer mode{Sec. Ill O, introduced by ) ] ] o
Wu and co-workerg,where one of the two species can ap- L€t Us consider the case in which local energies Eq.
pear consecutively only an even number of times, and whic) are chosen from a discrete set@falues. For a Markov-
may possess an extended state. correlgted process .the probability of a given sequéngein

For comparison we also discuss some properties of th@ chain of lengtfN is
uncorrelated binary alloy(Sec. IIl A 2). In Sec. IV the be-
havior of resistance fluctuations is put in connection with the Pn({ei}) =T(enen-1)T(en-18n-2) - T(e281)Pa(e1),
entropy function characterizing the probability density of dif- (7
;ei\rltzr;]t i\;lvasvscf.u\?.ctlon growth rates, and the main findings ar(\a/vhereT(:e.i,gj)=Tij is t_he stocha.stic matrix elemeqt giving

In all the cases considered here it turns out that there is t(.pe con_d_ltlonal probability of getting; aﬁersj andP, is the
value of concentration of the two species, which depends o roba_b|I|ty f°r®t;‘e sequence to st%r; widh. The(efore, by
the energy and which produces the largest growth rate gf€NotingB=A"", the average oKy"" can be written as
fluctuations. The very interesting point is that this value is
different from the value which gives rise to the largest ,ycqy _
growth of resistance. There are regions of the spectrurn<xN ) {;} Blen)T(en on-1)Blen-1)
where fluctuations grow faster while resistance grows
slowly, if the abundance of nonconducting species is very XT(en-1,8n-2) " B(e2)T(e2,81)B(e1)Pi(er).
low. In other regions of the spectrum both seem to reach (8)
their maximum growth for maximum compositional entropy.

In none of the analyzed cases does a relation with the spati@ly introducing the 2Q < 29Q matrix
correlation length of the potential emerge, and growth of the
variance is always found to be larger than the growth of the Y(l,e;1",e")=B):(e)T(e,e’), (9)
average resistance, implying the divergence of relative fluc-
tuations with the system size. Eq. (8) turns into
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ing y(q) through iterated applications of to an arbitrary
®q _ .
(X Dim) {% % Y(heniln-12n-1) initial vector. Besides computing the first lols(2q)’'s we
have considered the quantity
XY(In-1,8n-13IN-28N-2)" "

2
XY(l2,e2;1181)B(e1)Pi(eq). B(E)=L(4)—2L(2)= lim ilnﬂz. (12)
N—oo N <pN>

Because the process in E) is supposed to converge to a

stationary state foN— o, in this limit the quantity between Abrahams and Steph€rhave shown that in the general case
brackets should not depend on the initial matrixOf uncorrelated disorder this quantity is positive, implying
B(e1)P1(e4). We thus Chosgl(gl)zz%'r(gl,go) and re- fluctuations of resistance growing faster than its average
write the above equation as value for increasingN. The Lyapunov exponert, which
yields the growth of the typical resistange Eq. (3), has
been also computed by a Monte Carlo procedure, and the

((xﬁq)m):; 82 YN(I,en,im, &), dependence of and on the transition probabilitie¥;; has
NoTo been investigated in the energy ranges relevant for the con-
so that for every sidered models.

(ITrXNI D = (I TIXR Y = (T XN ®9]) =Tr(X\*9) A. Random alloys

=2 (XD =TryN 1. Correlated alloy
N .
! The stochastic matrix for this model is given by
p1- p)
1-p p !

|\ ~ N
(X" I)=aly@I", T,p representing the probability of finding a site of energy
where a is a constant independent of, and generalized ¢, after a site of energy,. Note that besides the usual

For largeN the rightmost expression is dominated by the
largest eigenvalue in the modulus %f y(q), :(

Lyapunov exponents are given by normalization of the conditional probabilitie®, T;;=1, the
above matrix also satisfies;T;;=1, implying for this case
L(a)=Inly(q)|. (10 the same average concentration for the two types of sites:

This expression holds fay even or for any positive integer M=0-5;Y in Eq. (9) takes the form
q wheneverY;;>0 Vi,j. pAST (1-p)AST
a a
lll. RESISTANCE FLUCTUATIONS IN CORRELATED (1-p)Aye pAp“
RANDOM BINARY SYSTEMS whereA,=A(e,) andA,=A(ey).

In this section we discuss the behavior of the dc resistance A spatial correlation function for the potential can be de-
and of its relative fluctuations in some different cases infined as(enen), from which results the spatial correlation
which the site energies;, Eq. (1), are allowed to assume length
two valuese , ande,,. We consider first the case ofcarre- In|(e )]
lated alloy (Sec. 11l A) where sites of energy; may follow ["1= |im ——mil_ —In|1-2p]. (12)
sites of energy; with a finite probabilityT;; . A comparison In—m|—c0 [n—m|
between the behavior of this system and the one ofuthe ) ) )
correlated alloywill put into a major evidence the effects of Notice that wherp=1/2 the correlation length vanishes, and
correlation. We then discuss a model that we have called th@ne@largegt eigenvalue of is the same as that of the matrix
chain with single insertionsn which two consecutive sites (Aa "+ A %)/2 (see Appendix A which corresponds to the
of energys, are not allowed, i.eT,,=0 (Sec. Il B). This  uncorrelated casé.Whenp— 1 the system shows very long
model is inspired to the basical structure of some linear polyhomogeneous sequences with the samewhereas when
mer in which two consecutive units of the same kind do not?—0 it resembles a periodic system with a few defects. In
occur. An example of such a system is doped emeralfine, both limits, | —c.
in which two consecutive units of iminequinone are never The correlated random alloy has been investigated by sev-
found in practice. The chain with single insertions is also ineral authoré;® showing, among other results, that the local-
some relation with the other case that we considerraime  ization length¢ defined as the inverse of the Lyapunov ex-
dom dimer mode(Sec. Il O. Here one of the two species ponentis not generally proportional to the spatial correlation
can appear only in paifsgiving rise to an extended state length of the potential.
which is responsible for conduction and, according to nu- In Fig. 1, 2v=2¢" is plotted for differentp as a func-
merical simulation, to quantum diffusion. This model hastion of E for e,= —&,=£=0.5. The band spectrum of the
been used to represent protonated polyaniflinegood con- puree; system is given by;—2<E<g;+2 whereas, with
ducting polymer obtained from doped polyaniline by pro-this choice of parameters, the spectrum of the pure periodic
tonic addition'® system iss?<E?<4+¢ (0.5<|E|< 4.5). WherE is close

Computation ofL(q), Eg. (10), has been done by select- to or in the gap of the periodic system obtained ot 0,
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FIG. 3. Exponential growth rate of relative fluctuatigisn the
correlated alloy at different correlationg= 0.2 (thin line), p=0.4
(dotted ling, p=0.6 (thick line), andp=0.8 (bullets.

FIG. 1. Exponential growth rate of the typical resistanaef@r
the correlated random allojBec. 11l A) at different values of cor-
relation: p= 0.2 (thin solid line, p=0.4 (dotted ling, p=0.6 (thick

line), andp=0.8 (bullets. the pure periodic system; 0.5<E=<0.5, the smallest values

) ) , of B are obtained when more sequences “in the band” are
A is maximum at small values @f and decreases for increas- present(that is, forp close to unity in analogy withx and
ing p. On the contrary, whek approaches the band edge of | (4) Byt the largest values are not attained fatending to
the periodic system|E|>1.5),\ shows a maximum at high ,er. as one could expect. Depending on the energy, there is
values ofp, i.e., when long sequences of purgchains are  gome intermediate value gf which maximizes fluctuations.
present in the system, and decreaseg atecreases. This The same happens between the band edge of the periodic
behavior is independent of the potential correlation 'engﬂbystem and that of a pure system (1.5|E|<~2.1). In
and can be understood if one notes that at a given energy thfase regions a maximuré is reached fop~0.4. Such a
Iarge_st gontr|but|ons to the Lyapunov _exponent, i.e., 10 th&yanavior could suggest for these energy regions a propor-
localization of the wave function, are given by sequences Ofisnglity between the relative fluctuations of resistance and

sites that are “out of the band” at that energy, i.e., sequencege notential correlation length, with maximum fluctuations
whose characteristic energy bafebtained in the infinite  corresponding to about the minimum correlation. For the

length limit) does not contain the considered energy. Thereyaricylar model in consideration, the inverse correlation

fore, when the system is very similar to a periodic one thqength as a function op, Eq. (12), is approximately propor-

wave function is more localized for energies near or in thejong) 1o the entropy funtion measuring the degree of corre-
gap, while forE|>2—|e;| one of the two types of site is out |5ted disorder

of its own band, and maximum localization is obtained when
long sequences of consecutive identical sites are generated, H=—3;n,3T;InT;, (13)
i.e., forp close to 1.

Figure 2 shows that the first low moments of resistancevhich in the present case reads
grow with the system size in the same qualitative way as
X\, but from Fig. 3 it can be seen that relative fluctuations, H=—pIn(p)—(1-p)In(1-p).
Eq. (11), behave in a quite different wa, exhibiting a very

_1 . . .
different dependence op and E. WhenE is in the gap of Both|™* andH are convex functions gb, with a maximum

at p=0.5, and vanish gp=0 andp=1. Nevertheless, such
a common behavior is not general. In the cases discussed
; below these quantitities will be found to behave in different
2\, L(2q) | J ways, showing that at least at some energy values resistance
6 ke fluctuations seem rather to be related to the entropy than to
3 the potential correlation length. One more thing to note is
that B is always positive. Since the same property is ob-
served in all the cases considered in the following, we con-
clude that a faster growth of variance with respect to the
average value when the system size increases can be likely
considered a general property of correlated system, in anal-
ogy to the case of uncorrelated potentidis.

2. Uncorrelated alloy

It can be interesting to compare the present model with
the case of an uncorrelated alloy. Figure 4 shows the resis-
FIG. 2. Cumulants.(2q) and double of the Lyapunov exponent tance growth rate for a system in whiel (¢,) occurs with
2\ for the correlated alloy g=0.4:q=1 (thin line), g=2 (dotted ~ unconditional probability p (1—p). As expected the
line), q=3 (thick line), q=4 (bullety, and 2 (bold line). Lyapunov exponent is larger when the presence of the sites
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FIG. 4. Lyapunov exponent for the uncorrelated alloySec. FIG. 6. \ for the chain with single insertion at different value of
IlTA) at different concentrationp of the a speciesip=0.2 (thin  correlation (Sec. 11l B): p=0.2 (thin line), p=0.4 (dotted ling,
line), p=0.4 (dotted ling, p=0.6 (thick line), andp=0.8 (bullets. p=0.6 (thick line), andp=0.8 (bullets.

“out of the band” is larger. However, it is just in this situ- gjjoy has the structure of a ternary system since all the above
ation that fluctuations attain their minimu(fig. 5. In the  {pree types of sequence appear in it.
region 1.5<E<2.5 (—2.5<E< —1.5), which is out of the
band ofe, (¢gy), fluctuations grow faster when there are few
sites of energy, (g,). Thus we come to the unexpected
result that in an almost pure system with a low defect con- The introduction of Markovian correlations makes it pos-
centration, fluctuations of resistance depend very heavily osible to construct a variety of very different models. One of
the position and on the actual number of these defects. Otese is inspired to the structure of disordered doped poly-
the other hand, intuition would suggest that maximum fluc-naniline (emeralding a linear polymer in which quinoid
tuations should correspond to the maximum entropy of theings are randomly placed in a chain of benzoid rings, and
systemS= —3,;p;Inp;, which is attained ap=0.5. Actually  that is an important intermediate stage in the realization of
it can be seen that this happens only at energies within theonducting polyaniliné® However, we are not interested
band gap of the limit periodic systeffig. 5. Similar fea- here in a faithful modeling of such polymers which would
tures are found in the correlated systems discussed belowgeed the introduction of different hopping terms in Eb.
suggesting that they could be common to those disordered Correlation in this case is described by the matrix
chains composed of two fundamental units, when one of the
two is present at low values of concentration and the energy ( p 1)

T= )

B. Single insertion chain

is out of its characteristic band. In the absence of correlation 1-p O

such units are to be identified with sites of the two species

a and b. When correlation is introduced, the role of basic

elements in the system is played by consecutive sequencesiBiPlying, as desired, that a site of kimdmay be followed by
identical sites or of alternate sites, namely, consecugive another site of the same kind with probabilpy and that a

b, or ab sequences. From this point of view, while the un- site of kindb is never followed by a site of the same kind.
correlated alloy and the other systems discussed in the folthe average concentration of the two species is

lowing are formed by only two of such units, the correlatedNa=1/(2—p) andn,=(1—-p)/(2—p); as a curiosity it can
be note that maximum compositional entropy of the system

is obtained forp=p,=(y/5—1)/2, the golden mean.

ﬂo.s The behavior of the Lyapunov exponent, shown in Fig. 6,
0.7 can be understood in this case with the same arguments used
06k for the correlated and uncorrelated alloys discussed above:
05 when the system is similar to a periodic one with defects,

“r that is, at low values ofp, maximum typical resistance

0.4 growth is obtained out of the band of the pure periodic sys-

0.3 tem. It is also obtained when the system resembles a pure
a type system, i.e., fop close to 1, at energieB>e,+2

0-2 (Fig. 7), that is, out of the band of the puaesystem. On the

0.1 other handg is found to have a maximum @t~ p,, in the

0 ! ) . . whole relevant energy range, with the exception of the re-

-2 -1 0 1 g 2 gion E<~ — 4+ €. This region belongs only to the spec-

trum of the purea system, and possesses maximum fluctua-
FIG. 5. 8 for uncorrelated alloy at different concentrations: tions at very low concentration (?fb sequencesp—1). On
p=0.2 (thin line), p=0.4 (dotted ling, p=0.6 (thick line), and  the other hand, low concentrations @fsequencesp— 0)
p=0.8 (bullets. give rise to relevant fluctuations f&>2+ ¢,= 1.5, namely,
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FIG. 8. Lyapunov exponent for the random dimer modéBec.
IIC) for different values of correlationp=0.2 (thin line),
p=0.4 (dotted ling, p=0.6 (bold line), andp=0.8 (bullets.

FIG. 7. Growth rateg for the single insertion chainp=0.2
(thin line), p=0.4 (dotted ling, p=0.6 (thick line), and p=0.8

(bullets.

out of the characteristic band af but within the character- P 0 P
istic band of the periodic system. Thus from this point of T=|1-p 0 1-p
view we are in a situation very similar to that of the uncor- 0 1 0

related alloy, where changes in the position of a few defects

(ab_ pairs in thg present ca)s.er statis.tical fluctuations of. In fact, the probability of getting a site of energy is non-
their concentration can sensibly modify the value of resis~q o only if it occurs after another, or after ane,, pair
a .
tanqe. . . . onsequently we can distinguish three different kinds of
Finally, this case yields strong evidence for the absence ofjios  sites of type 1, which possess enesgyand which
a relation among the typical growth rake its quctugtlons may appear after another site of the same type, or after an
B, and the potential correlation length Indeed, in the integer number ofs, pairs; sites of type 2, with energy

present.case the potential spgtial correlation Igrhgihd the &, which may appear after sites of type 1 or after an integer
generalized entropil behave in a completely different way o mper ofe,, pairs; and sites of type 3, which have the same

as functions op: energy as type 2 but always occur after one such site, in
order to complete the dimer. On the whole, the relative con-
p 1-p centration of sites with energy, and e, is n,=p/(2—p)
H=- ﬁlnp— ﬁln(l— p) andn,=2(1—p)/(2—p), respectively, and according to Eq.
(9):

is a convex function with a maximum at=p,,, and
=Py pqu 0 pqu

L Y=| (1-pA® 0 (1-pAy"
" n(l-p) 0 Ap 0

] o Numerical resources required for computation of the maxi-

is monotone with limit value$=0 for p=1 andl=% for  ym eigenvalue of the above matrix are sensibly reduced by

p=0. the observatiorfAppendix B thatY possesses the same ei-
genvalues as

C. Random dimer model

This model has been investigated quite extensively in the
last year$'® because, at variance with uncorrelated disor-
dered one-dimensional systems, it has been found to support
quantum diffusion. It has also been u$éor describing the (the remaining eigenvalues being equal to zero
structure of some conducting conjugate polymers, like pro- The existence of the extended state is signaled by a van-
tonated emeraldin¥. In this model one of the energies, say, ishing Lyapunov exponent at Eq= ¢, (Fig. 8). This hap-
gp, can occur only in pairs. Whete,—ep|<2 (that is, pens independently of the probabilipy which, on the other
when e, is in the band of the pure, system it possesses hand, rules the behavior af in the whole energy range. As
one extended state at the eneky= ¢, that, together with a  in the previous cases the dependence a@n p can be un-
set of states very close in energy, is responsible for longderstood in terms of the probability of the occurrence of
range electronic transport. “in-band” and “out-of-band” sequences of sites and is not

We can write the stochastic matrix describing this modelruled by the potential correlation length which has the same
as dependence op as in the single insertion chain:

pAZY Ay
(1-pA;? 0



56 RESISTANCE STATISTICS IN ONE-DIMENSIONAL . .. 257

1 .
~In(1-p)’

also in this case maximum entropy is obtained for
p=pm=[V(5)-1]/2.

With respect to the growth of fluctuations the same con-
siderations made in the previous cases hold, with larger val-
ues corresponding to large compositional entropies at ener-
gies belonging to the common band of the two constituent
species, and to low concentration of one of the two species at
energies not belonging to the band of the corresponding pure
system. Moreover, as we have shown in a previous paper,
this model exhibits universal fluctuations of the finite-size
localization lengths when the energy is close to the one of
extended state. Wheth approache&, the probability distri- FIG. 9. Fluctuation exponential growth rag for the random
bution for different growth ratey in finite sequences tends gimer model:p= 0.2 (thin line), p=0.4 (dotted lin, p=0.6 (bold
to a log normal whose mean and variance depend on a singl@e), andp=0.8 (bullets.
parameter, the typical localization length:

tropy function describing the limit probability distribution

P(y)= 1 / § exp — (y=N/§)? (14) for growth rates different from the Lyapunov expon&nBy
27N 2N/¢ ' grouping together the sequences which lead to a growth rate

This implies in turn a log-normal statistics for resistance,Wlthln a rangedy around a valuey, the moments of the

since the ratio between reflection and transmission coeffi/2V¢ function, Eq(4), are expressed by

cients in Eq.(2) is exponetially dominated by the Lyapunov
exponent for largd\. Thus the localization length is also the <|¢N|q>~f dyPy(y)eN?,
only parameter ruling the behavior of resistance in this
asymptotic limit. Convergence toward such a distributionwhere Py(y) is the probability density for an exponential
seems to be characteristic of localization-delocalization trangrowth ratey in a chain ofN sites. By assumin@y(y) to
sitions, and has been observed both in one-dimensional syganish exponentially foN— o, the entropyS(y)=0 is de-
tems at low values of disorder and in higher-dimensionafined by
systems close to the mobility edge.
Pn(y) e NS,
IV. FLUCTUATIONS AND WAVE FUNCTION GROWTH

RATE PROBABILITIES For y=\, S=0, and a saddle point approximation for the

integral yields

It has been observed in the previous section that the 1 .
growth of resistance fluctuations can be very large at ener- L(g)= lim N1n< —_— q> =max [gy—S(v)],
gies out of the characteristic band of the pure system formed N—e 0 :\;—; (15)

by one of the two basic units composing the alloy. Remark-

ably, the largest fluctuations in this situation are not obtained

at high concentrations of this unit or for large values of thegenerating the Legendre transformation
compositional entropy, but when such a unit is very scarce.

Thus, the physical picture is that in a quasipure system with dL(q)
a low concentration of defects.e., of units for which the dq Y
considered energy is out of the related energy baine ac-

tual value of resistance can change very much from sampl@nd

to sample, due to a different position of the defects or to their . .
different concentration, which is sample independent only in L(@)=qy* =S(»");

the thermodynamic limit. On the other hand, in alloys with ,* = y*(q) is the value ofy that maximizes Eq(15) for

comparable concentrations of the two basic sequences, sefach givenq, yielding the most relevant contribution to the
averaging appears to become more effective, making ordejntegral for largeN.

ing and the actual concentration in the chain less important, The entropyS(y*) can be obtained frorh(q) by invert-
with maximum fluctuations corresponding to about maxi-jng the above relations:
mum values of the compositional entropy. As recalled in

*

Sec. | the growth of resistance is connected with the growth dL(q)

of solutions of Eq(1). It is therefore possible to relate resis- S(y*):qd—q —L(q). (16)
tance fluctuations to the probability distribution of different

growth rates in finite systems. It is easily seen thaB of Eq. (11) (see Fig. 9 can be ex-

The problem of different growth rates of the wave func- pressed as an integral & establishing a relation between
tion in different realizations of a disordered chain has beerthe exponential growth rate of relative fluctuations of resis-
addressed by Paladin and Vulpighby introducing an en- tance and the wave function probability distribution:
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(PR 4S(y*)
W*XP{“NLT“

the correct expression for the uncorrelated ¢4sedeed,
. (17 whenp=1/2, the following identities hold:

In the Gaussian case S takes the form 1(Ba Ba|[ U _o
S(y)=(y—N\)?/(2Ng?), and 2\B, By/\—-U/
whereU is a column matrix and
<Pl2\l> 2
(PN) et 1(Ba Ba 1 1
N (v V)§ B. B =[2V(Ba+By) 3;V(BytBy)]
b b
V. SUMMARY =V V)

We computed and discussed the dc resistance fluctuatiogghereV is a row matrix or
in some one-dimensional Anderson models with correlated
random potentials. We considered in particular the 3 V(B,+Bp)=\V,
asymptotic growth rates of the first low moments and foun . . .
the)(t tﬂe vaﬁance grows faster than the average resistand&%)m which follows that each (_a|genyalue @{+By)/2 s an
when increasing the system length, as in the case of unco(;_lgenvalue ofY. The remaining eigenvalues are equal to
related disordet! In all the examined models first to fourth 20"
moments of the resistance distribution have been observed to

behave qualitatively in the same way as the typical value, but APPENDIX B: THE RANDOM DIMER MODEL

the growth of relative fluctuationgp{)/(py)® has been In this case the stochastic matrix is given by
shown to be possibly very large also when typical and aver-

age resistance grow slowly. In particular, at energies out of p O p

the characteristic band of the system made of only one kind T=|1-p 0 1-p

of atom, we observe the fastest growth when such a kind is '
present in a small quantity, showing that the resistance of 0 10

different realizations of slightly doped systems with samegq that
statistical composition is very sensible to the actual position

and concentration fluctuations of few defects. This is caused pB, 0 pB,
by the different values taken by the localization lengths of v (1-p)B, 0 (1-p)B
the eigenstates in different realizations or system portions, b b
and can be quantitatively related to the entropy function 0 By 0
characterizing the corresponding probability distribution. Nocgnsider the identity

evidence is found of a dependence of statistical quantities on

the potential correlation length, but in some limited range of pPBa 0 PB4 u
Egec:ggee:vqelééhtatwe relation with compositional entropy can (1-p)B, O (1-p)B, 0

[
e

0 B, 0 ~u
ACKNOWLEDGMENTS whereU is a column matrix and
A.P. acknowledges the Department of General Physics of pB 0 B
the University of Sa Paulo for the hospitality. This work a a
was supported by a USP/INFN grant. (V. W V) (1=p)By, 0 (1-p)By

0 B, 0
APPENDIX A: THE CORRELATED RANDOM ALLOY

=[pVB,+(1—p)WB WB VB,.+(1—p)WB
The stochastic matriff is in this case [PVBat (1-p)WB, b PVBat (1-p)WB,]

=AMV W V).
( p 1—p) This is equivalent to
T:
teop (v W)( % Bb) =MV W)
andy is (1-p)B, O ’
whereV andW are row matrices. We can conclude that each
pB, (1-p)B, eigenvalue of the matrix
_<<1—p>Bb PBp ) PBa Bb)

where B,= [A(e,)]®9 and B,=[A(gp)]®Y. Notice that (1-p)B, O

whenp=1/2 the correlation is lost and the largest eigenvalugg 5 eigenvalue of, the remaining eigenvalues being equal
of Y is the same as that of the matriB{+ B;,)/2 which is {5 zer0.
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