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Piezoelectric effects in quasicrystals
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Piezoelectric effects in quasicrystals induced by both phonon and phason fields are investigated. Some
characteristic features are predicted. Nonvanishing piezoelectric coefficients are deduced for two-dimensional
quasicrystals with crystallographically allowable and forbidden symmetries as well as three-dimensional icosa-
hedral and cubic quasicrystals. Our results show that~1! while there may be no piezoelectric effect in quasi-
crystals induced by phonon fields, the effect may yet be nonzero due to phason fields, and~2! the piezoelectric
effect may be due~a! only to phonon fields,~b! only to phason fields, or~c! to both.@S0163-1829~97!01129-6#
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I. INTRODUCTION

Since the discovery of a quasicrystal~QC! in an Al-Mn
alloy in 1984, significant progress has been made concer
the structural and static properties. However, the knowle
and understanding of the physical properties beyond th
are still limited. Some investigations on elasticity have be
made by a number of authors.1–4 Fujiwara, Laissardiere, an
Yamamoto5 have discussed the electronic structure and e
tron transport of quasicrystals. Brandmu¨ller and Claus6 have
calculated the piezoelectricity tensor which is restricted
that part associated with the phonon degree of freedom.
viously, a full description of piezoelectric effects in QC
requires one to consider both phonon and phason fie
Yang and co-workers7,8 have recently studied the thermod
namics of equilibrium properties of QC’s, which is realize
by extending related formulation for ordinary crystals9 to the
case of QC’s.

On the other hand, the extensive usage of piezoelec
crystals has made a great change in this world.9,10 It is natu-
ral to ask what is the piezoelectric behavior of a quasicrys
Although it is still difficult to investigate this property ex
perimentally because of the small size of the samples
most of the quasicrystals and the difficulty to measure effe
pertaining to the phason field, we think it is worthwhile
propose a theoretical insight into it. This is the purpose
this paper. We will use group theory to explore the piez
electricity of QC’s including the contribution from both pho
non and phason fields. With the help of this method we d
cuss piezoelectric effects in all two-dimensional~2D!
quasicrystals with crystallographically allowable and forb
den symmetries11 and three-dimensional~3D! icosahedral
and cubic quasicrystals. It is found that the piezoelectric
havior of QC’s is more complicated than that of ordina
crystals because of the presence of the phason field.
nonvanishing piezoelectric constants are tabulated for all
and 3D QC’s in Tables I–III. The following section is de
voted to deducing the nonvanishing piezoelectric com
nents of QC’s by means of thermodynamic and gro
theoretical methods. Conclusions are given in Sec. III.

II. NONVANISHING PIEZOELECTRIC CONSTANTS

A. Thermodynamic consideration

It is well known that a prominent feature that disti
guishes QC’s from ordinary crystals is the appearance of
560163-1829/97/56~5!/2463~6!/$10.00
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phason degree of freedom in hydrodynamics for QC’s, wh
leads to two kinds of strain fields, the phonon strain

Ei j 5
1

2
~] jui1] iuj !, ~1!

and the phason strain

Wi j 5] jwi

as well as two kinds of stress fields: the phonon stressTi j
and the phason stressHi j .3,4 In this case, the first and secon
laws of thermodynamics take the following form:

dU5Ti j dEi j 1Hi j dWi j 1FidDi1udS. ~2!

The Gibbs free energy is

G5U2Ti j Ei j 2Hi j Wi j 2FiDi2uS. ~3!

Combining it with Eq.~2! we have

dG52Ei j dTi j 2Wi j dHi j 2DidFi2Sdu, ~4!

whereF is the electric field,D is the electric displacement,u
is the temperature, andS is the entropy. In isothermal con
ditions, the electric displacement caused by stresses~direct
piezoelectric effect! obeys

dDi52S ]2G

]Fi]Tjk
D

u

dTjk2S ]2G

]Fi]H jk
D

u

dHjk

5di jk
~1!dTjk1di jk

~2!dHjk . ~5!

For the converse piezoelectric effect

dEi j 52S ]2G

]Ti j ]Fk
D

u

dFk5dI i jk
~1!dFk ,

~6!

dWi j 52S ]2G

]Hi j ]Fk
D

u

dFk5dI i jk
~2!dFk .

The coefficientsdi jk
(1) , di jk

(2) , dI i jk
(1) , dI i jk

(2) are called piezoelectric
constants, which are the tensors of rank 3. The compon
can be divided into two types denoted by superscripts~1! and
~2!, which are associated with the phonon and phason fie
2463 © 1997 The American Physical Society
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TABLE I. Piezoelectric constants for 2D QC’s with crystallographically allowable symmetries. In this table the indicesjk in the phason
strainWjk are arranged in the order of 11, 22, 23, 12, 13, and 21.

Point groups

Piezoelectric constants

d(1) d(2)

1 Sd11
~1! d12

~1! d13
~1! d14

~1! d15
~1! d16

~1!

d21
~1! d22

~1! d23
~1! d24

~1! d25
~1! d26

~1!

d31
~1! d32

~1! d33
~1! d34

~1! d35
~1! d36

~1!
D

18

S d111
~2! d122

~2! d123
~2! d112

~2! d113
~2! d121

~2!

d211
~2! d222

~3! d223
~2! d212

~2! d213
~2! d221

~2!

d311
~2! d322

~2! d323
~2! d312

~2! d313
~2! d321

~2!
D

18

2
(2ix2) S 0 0 0 d14

~1! 0 d16
~1!

d21
~1! d22

~1! d23
~1! 0 d25

~1! 0

0 0 0 d34
~1! 0 d36

~1!
D

8

S 0 0 d123
~2! d112

~2! 0 d121
~2!

d211
~2! d222

~2! 0 0 d213
~2! 0

0 0 d323
~2! d312

~2! 0 d321
~2!
D

9

2
(2ix3) S 0 0 0 d14

~1! d15
~1! 0

0 0 0 d24
~1! d25

~1! 0

d31
~1! d32

~1! d33
~1! 0 0 d36

~1!
D

8

S 0 0 d123
~2! 0 d113

~2! 0

0 0 d223
~2! 0 d213

~2! 0

d311
~2! d322

~2! 0 d312
~2! 0 d321

~2!
D

8

m
(m'x2) Sd11

~1! d12
~1! d13

~1! 0 d15
~1! 0

0 0 0 d24
~1! 0 d26

~1!

d31
~1! d32

~1! d33
~1! 0 d35

~1! 0
D

10

S d111
~2! d122

~2! 0 0 d113
~2! 0

0 0 d223
~2! d212

~2! 0 d221
~2!

d311
~2! d322

~2! 0 0 d313
~3! 0

D
9

m
(m'x3) Sd11

~1! d12
~1! d13

~1! 0 0 d16
~1!

d21
~1! d22

~1! d23
~1! 0 0 d26

~1!

0 0 0 d34
~1! d35

~1! 0
D

10

S d111
~2! d122

~2! 0 d112
~2! 0 d121

~3!

d211
~2! d222

~2! 0 d212
~2! 0 d221

~2!

0 0 d323
~2! 0 d313

~2! 0
D

10

222 S 0 0 0 d14
~1! 0 0

0 0 0 0 d25
~1! 0

0 0 0 0 0 d36
~1!
D

3

S 0 0 d123
~2! 0 0 0

0 0 0 0 d213
~2! 0

0 0 0 d312
~2! 0 d321

~2!
D

4

mm2
(2ix3) S 0 0 0 0 d15

~1! 0

0 0 0 d24
~1! 0 0

d31
~1! d32

~1! d33
~1! 0 0 0

D
5

S 0 0 0 0 d113
~2! 0

0 0 d223
~2! 0 0 0

d311
~2! d322

~2! 0 0 0 0
D

4

2mm
(2ix1) Sd11

~1! d12
~1! d13

~1! 0 0 0

0 0 0 0 0 d26
~1!

0 0 0 0 d35
~1! 0

D
5

S d111
~2! d122

~2! 0 0 0 0

0 0 0 d212
~2! 0 d221

~2!

0 0 0 0 d313
~2! 0

D
5

4 S 0 0 0 d14
~1! d15

~1! 0

0 0 0 d15
~1! 2d14

~1! 0

d31
~1! d31

~1! d33
~1! 0 0 0

D
4

S 0 0 d123
~2! 0 d113

~2! 0

0 0 d113
~2! 0 2d123

~2! 0

d311
~2! d311

~2! 0 d312
~2! 0 2d312

~2!
D

4

4̄ S 0 0 0 d14
~1! d15

~1! 0

0 0 0 2d15
~1! d14

~1! 0

d31
~1! 2d31

~1! 0 0 0 d36
~1!
D

4

S 0 0 d123
~2! 0 d113

~2! 0

0 0 2d113
~2! 0 d123

~2! 0

d311
~2! 2d311

~2! 0 d312
~2! 0 d312

~2!
D

4

422 S 0 0 0 d14
~1! 0 0

0 0 0 0 2d14
~1! 0

0 0 0 0 0 0
D

1

S 0 0 d123
~2! 0 0 0

0 0 0 0 2d123
~2! 0

0 0 0 d312
~2! 0 2d312

~2!
D

2

4mm S 0 0 0 0 d15
~1! 0

0 0 0 d15
~1! 0 0

d31
~1! d31

~1! d33
~1! 0 0 0

D
3

S 0 0 0 0 d113
~2! 0

0 0 d113
~2! 0 0 0

d311
~2! d311

~2! 0 0 0 0
D

2
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TABLE I. ~Continued!.

Point groups

Piezoelectric constants

d(1) d(2)

4̄2m
(2ix1) S0 0 0 d14

~1! 0 0

0 0 0 0 d14
~1! 0

0 0 0 0 0 d36
~1!
D

2

S 0 0 d123
~2! 0 0 0

0 0 0 0 d123
~2! 0

0 0 0 d312
~2! 0 d312

~2!
D

2

3 S d11
~1! 2d11

~1! 0 d14
~1! d15

~1! 22d22
~1!

2d22
~1! d22

~1! 0 d15
~1! 2d14

~1! 22d11
~1!

d31
~1! d31

~1! d33
~1! 0 0 0

D
6

S d111
~2! 2d111

~2! d123
~2! 2d222

~2! d113
~2! 2d222

~2!

2d222
~2! d222

~2! d113
~2! 2d111

~2! 2d123
~2! 2d111

~2!

d311
~3! d311

~2! 0 d312
~2! 0 2d312

~2!
D

6

32
(2ix1) Sd11

~1! 2d11
~1! 0 d14

~1! 0 0

0 0 0 0 2d14
~1! 22d11

~1!

0 0 0 0 0 0
D

2

S d111
~2! 2d111

~2! d123
~2! 0 0 0

0 0 0 2d111
~2! 2d123

~2! 2d111
~2!

0 0 0 d312
~2! 0 2d312

~2!
D

3

3m
(m'x1) S 0 0 0 0 d15

~1! 22d22
~1!

2d22
~1! d22

~1! 0 d15
~1! 0 0

d31
~1! d31

~1! d33
~1! 0 0 0

D
4

S 0 0 0 2d222
~2! d113

~2! 2d222
~2!

2d222
~2! d222

~2! d113
~2! 0 0 0

d311
~2! d311

~2! 0 0 0 0
D

3

6 S 0 0 0 d14
~1! d15

~1! 0

0 0 0 d15
~1! 2d14

~1! 0

d31
~1! d31

~1! d33
~1! 0 0 0

D
4

S 0 0 d123
~2! 0 d113

~2! 0

0 0 d113
~2! 0 2d123

~2! 0

d311
~2! d311

~2! 0 d312
~2! 0 2d312

~2!
D

4

6̄ S d11
~1! 2d11

~1! 0 0 0 22d22
~1!

2d22
~1! d22

~1! 0 0 0 22d11
~1!

0 0 0 0 0 0
D

2

S d111
~2! 2d111

~2! 0 2d222
~2! 0 2d222

~2!

2d222
~2! d222

~2! 0 2d111
~2! 0 2d111

~2!

0 0 0 0 0 0
D

2

622 S 0 0 0 d14
~1! 0 0

0 0 0 0 2d14
~1! 0

0 0 0 0 0 0
D

1

S 0 0 d123
~2! 0 0 0

0 0 0 0 2d123
~2! 0

0 0 0 d312
~2! 0 2d312

~2!
D

2

6mm S 0 0 0 0 d15
~1! 0

0 0 0 d15
~1! 0 0

d31
~1! d31

~1! d33
~1! 0 0 0

D
3

S 0 0 0 0 d113
~2! 0

0 0 d113
~2! 0 0 0

d311
~2! d311

~2! 0 0 0 0
D

2

6̄m2
(m'x1) S 0 0 0 0 0 22d22

~1!

2d22
~1! d22

~1! 0 0 0 0

0 0 0 0 0 0
D

1

S 0 0 0 2d222
~2! 0 2d222

~2!

2d222
~2! d222

~2! 0 0 0 0

0 0 0 0 0 0
D

1

In other cases d(1)5d(2)50
ct
t

tr

d to
on-

’s
g a
respectively. From the symmetry propertyEi j 5Eji provided
by their definition~1! we have

di jk
~1!5dik j

~1! , dI i jk
~1!5dI j ik

~1! . ~7!

Furthermore, by comparing Eqs.~5! and ~6! we have

di jk
~1!5dI jki

~1! , di jk
~2!5dI jki

~2! . ~8!

Consequently, the number of the independent piezoele
constantsdi jk

(1) and dI i jk
(1) is 18. The number of independen

coefficientsdi jk
(2) anddI i jk

(2) is 27 for 3D QC’s and 18 for 2D
QC’s, since for 2D QC’sWi j with i 51,2 have only six com-
ponentsW11, W22, W23, W12, W13, and W21. However,
additional restrictions arise from the point-group symme
ric

y

inherent in the quasicrystal considered and generally lea
a reduction in the number of independent piezoelectric c
stants. This is discussed in the following.

B. Number of independent piezoelectric constants

According to the higher-dimensional description of QC
a quasicrystal structure can be generated by projectin
higher-dimensional lattice (V) onto the physical space
(VE) where V5VE1VI with VI being the complementary
space. Consequently, a vector inVE transforms under the
vector representation (GA) of the symmetry group of the
structure considered, whereas a vector inVI transforms un-
der another irreducible representation (GB). Once the trans-
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TABLE II. Piezoelectric constants for 2D QC’s with noncrystalline symmetries. In this table the indicesjk in the phason strainWjk are
arranged in the order of 11, 22, 23, 12, 13, and 21.

d~1!5

5,10,8,12

S 0 0 0 d14
~1! d15

~1! 0

0 0 0 d15
~1! 2d14

~1! 0

d31
~1! d31

~1! d33
~1! 0 0 0

D
4

d~1!5

5m,10mm,8mm,12mm

S 0 0 0 0 d15
~1! 0

0 0 0 d15
~1! 0 0

d31
~1! d31

~1! d33
~1! 0 0 0

D
3

d~1!5

52,1022,822,1222

S 0 0 0 d14
~1! 0 0

0 0 0 0 2d14
~1! 0

0 0 0 0 0 0
D

1

d~2!5

5,10

S d111
~2! 2d111

~2! 0 d112
~2! 0 d112

~2!

d112
~2! 2d112

~2! 0 2d111
~2! 0 2d111

~2!

0 0 0 0 0 0
D

3

d~2!5

52,102m~with 2'x1!

S d111
~2! 2d111

~2! 0 0 0 0

0 0 0 2d111
~2! 0 2d111

~2!

0 0 0 0 0 0
D

1

d~2!5

5m,10m2~with m'x1!

S 0 0 0 d112
~2!0 0 d112

~2!

d112
~2!0 2d112

~2! 0 0 0 0

0 0 0 0 0 0
D

1

d~2!5

8̄,12

S 0 0 d123
~2! 0 d113

~2! 0

0 0 2d113
~2! 0 d123

~2! 0

d311
~2! 2d311

~2! 0 d312
~2! 0 d312

~2!
D

4

d~2!5

8̄2m,122m~with 2ix1!

S 0 0 d123
~2! 0 0 0

0 0 0 0 d123
~2! 0

0 0 0 d312
~2! 0 d312

~3!
D

2

d~2!5

8̄mX2,12m2~with m'x1!

S 0 0 0 0 d113
~2! 0

0 0 2d113
~2! 0 0 0

d311
~2! 2d311

~2! 0 0 0 0
D

2

In other cases
Either d(1)50

or d(2)50
or d(1)5d(2)50

TABLE III. Piezoelectric constants for 3D QC’s. In this table the indicesjk in the phason strainWjk are arranged in the order of 11, 22
33, 23, 31, 12, 32, 13, and 21.

Point groups

Piezoelectric constants

d(1) d(3)

23 S0 0 0 d14
~1! 0 0

0 0 0 0 d14
~1! 0

0 0 0 0 0 d14
~1!
D

1

S 0 0 0 d123
~2! 0 0 d132

~2! 0 0

0 0 0 0 d123
~2! 0 0 d132

~2! 0

0 0 0 0 0 d123
~2! 0 0 d132

~3!
D

2

4̄3m S0 0 0 d14
~1! 0 0

0 0 0 0 d14
~1! 0

0 0 0 0 0 d14
~1!
D

1

S 0 0 0 d123
~2! 0 0 d123

~2! 0 0

0 0 0 0 d123
~2! 0 0 d123

~2! 0

0 0 0 0 0 d123
~2! 0 0 d123

~3!
D

1

432 d(1)50 S0 0 0 d123
~2! 0 0 2d123

~2! 0 0

0 0 0 0 d123
~2! 0 0 2d123

~2! 0

0 0 0 0 0 d123
~2! 0 0 2d123

~2!
D

1

m3̄,m3̄m
235,m3̄ 5̄

d(1)5d(2)50
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56 2467PIEZOELECTRIC EFFECTS IN QUASICRYSTALS
formation properties of these vectors are specified, the ph
cal property tensor of any rank can be determined by gr
representation theory.

To illustrate this procedure, consider the example of
tagonal quasicrystals withS8(8̄) symmetry. This point group
is a cyclic group, which has eight elements, and hence e
irreducible representations.12 All are one-dimensional~1D!.
Among them one is the identity representation (G1), one is
the alternate representation (G2), and the six other represen
tations are decomposed into three pairs (G3 ,G4 ,G5). Two
representations of each pair are conjugate to each othe
this case,GA5G21G3 andGB5G4 . Therefore, the compo
nentsdi jk

(1) (dI i jk
(1)) transform under

~G21G3!3@~G21G3!3~G21G3!#s54G214G31G4

12G5 , ~9!

where@•••#s is the symmetric part of the direct product. Th
componentsdi jk

(2) (dI i jk
(2)) transform under

~G21G3!3@~G21G3!3G4#54G11G314G412G5 .
~10!

As it is well known, the number of nonvanishing indepe
dent components of a physical property tensor is just
number of the identity representations which are containe
the direct product. Since there is no identity representatio
Eq. ~9!, di jk

(1)50. This means that there is no piezoelect
effect caused by the phonon field. From Eq.~10! it follows
that there are four independent components fordi jk

(2) . The
number of independent piezoelectric constants for each p
group considered in this paper is listed in Tables I–III a
subscript attached to each matrix.

C. Matrix form of the piezoelectric constants

The determination of explicit forms for these independ
components is much more complicated than counting t
number. From Eqs.~5! and ~6! we can see that the transfo
mation properties ofdi jk

(2) (dI jki
(2)) follow directly from those

for Di(Fi) andH jk(Wjk). If we find the precise component
of Di and Wjk that transform under the same constitue
representations we can construct all the invariants formed
their combinations, and then establish the independent c
ponents (di jk

(2)). Using the same method given in Ref. 12, w
find thatW112W22, W211W12, andD3 transform under the
same representation (G2) giving two invariants

D3~W112W22!, D3~W211W12!. ~11!

Thus, we obtain the nonvanishing components

d311
~2!52d322

~2! , d321
~2!5d312

~2! . ~12!

Similarly, (D1 ,D2) and (W23,W13) transform under the
same representation (G3) giving two other invariants

D1W231D2W13, D1W132D2W23. ~13!

Then the corresponding nonvanishing components are

d123
~2!5d213

~2! , d113
~2!52d223

~2! . ~14!
si-
p

-

ht

In

-
e
in
in

int
a

t
ir

t
y

m-

The piezoelectric constant tensor for point groupS8(8̄) can
be also written in the matrix form

d~2!5S 0 0 d123
~2! 0 d113

~2! 0

0 0 2d113
~2! 0 d123

~2! 0

d311
~2! 2d311

~2! 0 d312
~2! 0 d312

~2!
D

4

,

~15!

where the subscript 4 stands for the number of independ
components. The double indices labeling the phason str
are arranged in the order of 11, 22, 23, 12, 13, 21. Using
method we can determine the matrix forms of the piezoe
tric properties for all QC’s. All the results for 2D and 3D
QC’s are given in Tables I–III. Most of the piezoelectr
constantsd(1) for 2D QC’s with crystallographically allow-
able symmetries listed in Table I have already been given
Refs. 9 and 13. The forms of the piezoelectric tensors
some crystallographically forbidden symmetries can also
found in Refs. 6 and 14. These results coincide with o
d(1) given in this paper.

III. CONCLUSION

Our results show that~1! 2D QC’s with crystallographi-
cally allowable symmetries can be divided into two class
according to their piezoelectric properties. One consists
those QC’s with central symmetry, which have no piezoel
tric effects. The other consists of those QC’s without cen
symmetry, which have piezoelectric effects induced by b
phonon and phason fields.

~2! 2D QC’s with crystallographically forbidden symme
tries can be divided into four classes. The first class cons
of those QC’s with central symmetry~5̄,5̄m,N/m, N/mmm
with N510,8,12!, which have no piezoelectric effects. Th
second class consists of those QC’s with fivefold symme
(5,52,5m), which have piezoelectric effects induced by bo
phonon and phason fields. The third class consists of th
QC’s with evenfold rotoinversion symmetry~N̄,N̄m2 with
N510,8,12!, which have only a piezoelectric effect induce
by the phason field. The fourth class consist of those Q
with evenfold proper rotation symmetries~N,N22, Nmm
with N510,8,12!, which have only a piezoelectric effect in
duced by the phonon field.

~3! 3D QC’s can be divided into three classes. The fi
class~m3̄,m3̄m, 235,m35̄! has no piezoelectric effects. Th
second class (23,4̄3m) has piezoelectric effects induced b
both phonon and phason fields. The third class~432! has
only piezoelectric effect induced by the phason field.

From the above characteristics it follows that we c
separate the influence of the phonon and phason fields
piezoelectric effects in some QC’s. An important cons
quence may be that experiments on piezoelectric effect
QC’s of different classes can provide information about
phonon and phason fields, respectively. If such experime
could be performed, one could work backwards and use
results given here to extract information about the phon
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and phason fields. This would help in further understand
the physics of QC’s.

Finally we would like to say something about our tw
papers,7,8 in which the piezoelectric behaviors of some QC
were discussed and where a mistake slipped in. The t
class~d(1)50, d(2)Þ0! mentioned in item~2! was left out.
ei

B

i.

c

g

rd

This has been corrected in the present paper.
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