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Correspondence of anharmonic localized vibrations toN-phonon bound states

D. Bonart*
Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany

~Received 18 February 1997!

A discussion of the interrelation of anharmonic localized modes and their quantum-mechanical analogs, the
so-calledN-phonon bound states, is presented. For small systems and moderate quantum numbers, the ‘‘exact’’
eigenvalue spectrum is obtained by direct numerical diagonalization. A variational ansatz is presented which
allows one to estimate analytically the energy levels of strongly anharmonic systems, exemplified here by a
single quartic oscillator and a dimer model. It is shown that expectation values and level spacings for
N-phonon bound states are in close agreement with estimates derived from the classical anharmonic localized
vibrations. Finally, an estimate is given for the action of anharmonic localized modes in infinite higher-
dimensional systems. This estimate suggests a threshold for anharmonic localized mode existence in three-
dimensional lattices.@S0163-1829~97!03325-0#
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I. INTRODUCTION

For perfect anharmonic lattices, stationary localized so
tions of Newton’s equations of motion can exist under c
tain conditions,1–3 whereas all stationary modes of the co
responding quantum-mechanical problem may be class
with respect to a wave vector and thus are delocalized. H
ever, in the latter case nearly degenerate bands of site
correlated phonons have been found. These so-ca
N-phonon bound states were first discussed by Agrano
and co-workers.4,5 In the weak anharmonic limit, vibrationa
systems may be described by suitable discrete self-trap
equations. The quantum-mechanical features of such sys
have been analyzed by Scottet al., first for a dimer model6

and later for infinite linear chains7 ~a related system was als
studied recently by Aubryet al.8!. For a given number of
phonons these authors found narrow bands of bo
phonons with energies separated from the continuum of
correlated states. This conclusion became possible only
cause the approach based on the discrete self-trapping e
tion allows for classification of the energy levels with resp
to the number of phonons.

In the general case of anharmonic systems, the numbe
phonons is not a good quantum number. Nevertheless,
interesting to note that a three-atom periodic chain with h
monic and quartic intersite coupling is integrable,9 and the
corresponding quantum-mechanical problem can be so
completely.10 Unfortunately, normal modes and localize
modes are identical and no bifurcation of normal modes
curs in this system.

In general, anharmonic chains are nonintegrable. In
case one can construct an effective Hamiltonian for an i
nite chain with weak cubic anharmonicities which then co
serves the number of particles, as suggested by Bogdan
Kosevich.11 However, it will be shown below that this effec
tive Hamiltonian approach is not useful in the regime o
large number of phonons; therefore it cannot serve as a
to classical dynamics.

In the strong anharmonic case one has to diagonalize
full Hamiltonian. This method has been used to determ
the eigenenergies of a H2O molecule described by phenom
560163-1829/97/56~1!/244~7!/$10.00
-
-

d
-
ite
ed
h

ng
ms

d
n-
e-
ua-
t

of
is
r-

ed

c-

is
-
-
nd

k

he
e

enological potentials,12 and twofold-degenerate levels we
found for high quantum numbers. However, a small set
basis functions was used and a quantitative comparison
classical localized modes was not performed. In the pres
work a similar approach is used, but it avoids these limi
tions. Recently a six-atom chain was also analyzed us
direct numerical diagonalization,13 independent of the
present work.14 It was shown thatN-phonon bound state
persist even if the full Hamiltonian is taken into account.

The aim of the present paper is to discuss the corresp
dence of classical localized vibrations and bound states
phonons in more detail. The paper is organized as follows
Sec. II a single anharmonic oscillator is analyzed classic
and quantum mechanically. It is demonstrated that the ef
tive Hamiltonian approach is limited to small quantum nu
bers. To overcome this limitation, a variational approach
introduced which gives approximate eigenvalues. These
genvalues are compared with the ‘‘exact’’ eigenvalues
tained from direct diagonalization and also with semiclas
cal eigenvalues obtained from the Bohr-Sommerf
quantization. In Sec. III these tools are applied to the cas
a dimer with strongly anharmonic on-site potentials. First
‘‘exact’’ eigenvalue spectrum is determined by direct n
merical diagonalization of the Hamiltonian matrix. Using
variational ansatz we identify eigenstates and compare t
expectation values and level spacings with classical pre
tions; the correspondence ofN-phonon bound states and a
harmonic localized modes is thereby established. In Sec
an estimate for the action of anharmonic localized mode
infinite higher-dimensional lattices is introduced. It is show
that for weak anharmonicity a minimum number of phono
is required for the formation of bound states in thre
dimensional crystals. The paper is concluded in Sec. V.

II. SINGLE OSCILLATOR

We analyze a single anharmonic oscillator with massm,
described by the Hamiltonian,

H5
p2

2m
1
o2
2
u21

o4
4
u4, ~2.1!
244 © 1997 The American Physical Society
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56 245CORRESPONDENCE OF ANHARMONIC LOCALIZED . . .
with the conjugate variables (u,p). Within the effective
Hamiltonian approach11 one would model Eq.~2.1! by

Heff5e0a
†a1Ga†a†aa, ~2.2!

with Bose operatorsa† and a. Obviously, the effective
Hamiltonian has energy eigenvalues which increase q
dratically in the limit of large quantum numbers. As we w
see below, the semiclassical approach predicts an asymp
growth of the energy levels asn4/3. Hence the effective
Hamiltonian approach does not apply in the classical lim

We now introduce frequency-dependent operatorsb(v)
and b†(v) „which for fixed frequencyv satisfy the usual
commutator relations@b(v),b†(v)#51…:

u[A \

2mv
@b~v!1b†~v!#,

p[2 iA\mv

2
@b~v!2b†~v!#. ~2.3!

Let us consider approximate states for thenth quantum level,
defined by

un&f[@b†~vn!#
nu0&, ~2.4!

where the effective frequencyvn for the nth level is deter-
mined from the variational principle

]

]vf^nuHun&fU
v5vn

50. ~2.5!

This leads to a cubic equation invn , whose solution yields
the following approximation for the eigenenergies:

En5^nuHun&

5\
mvn

21o2
4mvn

~2n11!1
\2o4

16m2vn
2 ~6n216n13!.

~2.6!

For example, in the case of vanishing harmonic coupl
(o250), one readily obtains

vn
35

3

2

\o4
m2 F S n1

1

2D1
1

4~n11/2!G ~2.7!

and

En5
3\

4 S o4\4m2D 1/3S n1
1

2D
2/3

~6n216n13!1/3. ~2.8!

In the limit of large quantum numbers Eq.~2.8! becomes

En'
3

4S 32D
1/3

m22/3o4
1/3\4/3S n1

1

2D
4/3

. ~2.9!

To check the validity of this variational ansatz, we com
pare this last result for largen with the semiclassical Bohr
Sommerfeld quantization~see Ref. 15!:

S5 R p dq52p\S n1
1

2D . ~2.10!
a-

tic

g

-

We now solve the classical equation of motion within t
well-established rotating wave approximation~RWA! by set-
ting u(t)5a cos(vt) and neglecting higher harmonics; fo
o4>0, the RWA is known to yield an accurate description
the stationary modes within a few percent, and it can ea
be extended to more complex situations such as hig
dimensional vibrational systems. By evaluation of Eq.~2.10!
for the RWA trajectory@with p(t)52mva sin(vt)#, we ob-
tain

v35
3

2

o4\

m2 S n1
1

2D . ~2.11!

The total energy computed by averaging over one RWA
riod is

EBohr-Sommerfeld5
3

4S 32D
1/3

m22/3o4
1/3\4/3S n1

1

2D
4/3

,

~2.12!

which is identical with Eq.~2.9!.
To check the variational ansatz in the regime of sm

quantum numbers, we calculate the eigenvalues of
Hamiltonian by direct numerical diagonalization, using a
nite set of harmonic eigenfunctions. We denote these va
to be the ‘‘exact’’ eigenenergies. In the second column
Table I, the first 10 energies are given for a purely qua
oscillator @o250,o45m5\51# based on a set of 100 ha
monic eigenfunctions. Tests with 140 eigenfunctions did
change these values. The results of the variational princ
shown in the third column of Table I are within a few pe
cent. The semiclassical values given in the third column
seen to work well, beginning with the third eigenvalu
Hence the variational ansatz may be used both in the sm
and large-quantum-number regimes.

III. DIMER MODEL

We now analyze a dimer model, which provides the si
plest vibrational system for which a bifurcation from norm
modes to anharmonic localized modes exists. The Ham
tonian describes two particles with massesm, which are
coupled by harmonic forces (k2) and which interact with a
substrate via anharmonic potentials (o2 ,o4):

TABLE I. Comparison of the 10 lowest ‘‘exact’’ eigenenergie
with results from the variational ansatz and the semiclassical
proximation for a purely quartic oscillator. We tooko250,
o45m5\51.

Quantum number Exact Variational Semiclassica

1 0.421 0.430 0.340
2 1.508 1.527 1.474
3 2.959 2.951 2.913
4 4.621 4.593 4.562
5 6.453 6.404 6.378
6 8.429 8.358 8.335
7 10.53 10.44 10.41
8 12.74 12.62 12.60
9 15.05 14.91 14.89
10 17.45 17.29 17.27
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246 56D. BONART
H5
p1
2

2m
1

p2
2

2m
1
k2
2

~u12u2!
21

o2
2

~u1
21u2

2!1
o4
4

~u1
41u2

4!.

~3.1!

This Hamiltonian is suitable for the description of a lig
diatomic molecule adsorbed on the surface of a heavier m
atomic crystal@e.g., H2 on Si~111!#. For reasons of simplic-
ity we neglect cubic anharmonicities. In the case of displa
mentsul normal to the surface the symmetric normal mo
obeysu15u2 and the antisymmetric mode obeysu152u2
~note that this classification is switched for longitudinal v
brations!. For this system one can easily calculate the cla
cal stationary vibrations within the RWA@ul5alcos(vt)#.
Here one finds three solutions:

mv1
25o21

3

4
o4a1

2 , symmetric: a15a2 , ~3.2!

mv2
25o212k21

3

4
o4a1

2 , antisymmetric:a152a2 ,

~3.3!

mv3
25o21k21

3

4
o4a1

21
4

3

k2
2

o4a1
2 , localized: ua1uÞua2u,

~3.4!

where the amplitude of the second particle is given by

a25
o21k22mv i

2

k2
a11

3

4

o4
k2
a1
3 i51,3. ~3.5!

We now define a classical expectation value of an obs
ableA for a given classical trajectory by

^A~p1 ,u1 ,p2 ,u2!&cl

5 lim
T→`

1

TE0
T

A@p1~ t !,u1~ t !,p2~ t !,u2~ t !# dt. ~3.6!

This expectation value depends on the phase space re
sampled by the classical trajectory. In particular, we cons
the expectation values of the energy, ofu1u2, and ofp1p2;
these quantities are most useful for the comparison betw
classical trajectories and quantum-mechanical eigenstate
will be shown below. We compute the classical expectat
values for the three RWA solutions given above. For e
ample, the energy corresponding to a RWA solution
comes

^E&cl5
1

4
~mv i

21o2!~a1
21a2

2!1
3

32
o4~a1

41a2
4!

1
1

4
k2~a12a2!

2. ~3.7!

In Fig. 1 the energy versuŝu1u2&cl and ^p1p2&cl is shown
for the symmetric, the antisymmetric, and the localiz
RWA solutions. One sees that in Fig. 1 the branch of a
symmetric vibrations exhibits a bifurcation, giving rise to t
branch of localized modes.

We now come to the quantum-mechanical analysis of
system. Contrary to the classical equations of motion,
n-

-

i-

v-

ion
r

en
, as
n
-
-

i-

is
e

quantum-mechanical problem of stationary modes is lin
and hence all eigenstates are symmetric or antisymme
Thus no ~stationary! localization of energy is possible. A
quantum-mechanical analysis of a weak anharmonic di
was presented earlier by Scott and Eilbeck.6 In this case one
introduces a slowly varying variablec l :

ul5c lexp~2 iv0t !1c.c., ~3.8!

with mv0
25o2, and foruc̈ l u!uv0ċu one obtains

2imv0c l53o4uc l u2c l1k2~c l2c l̄ !, l̄ 5H 1 for l52,

2 for l51.
~3.9!

In this approximation not only is the energy conserved,
also

N5uc1u21uc2u2, ~3.10!

and the system becomes integrable.16 The Hamiltonian is
quantized by settingc5b, c*5b†, where (b, b†) are Bose
operators, and it is then diagonalized in the subspace of fi
N. This procedure corresponds to the effective Hamilton
approach discussed above, which cannot be used for
study of the semiclassical limit because it leads to an inc
rect asymptotic behavior of the energy levels.

In the strongly anharmonic case, nonparticle-conserv
contributions of the Hamiltonian~3.1! become important and
the corresponding classical system is nonintegrable. To
tain the eigenvalue spectrum of the Hamiltonian~3.1!, a di-

FIG. 1. Energy eigenvalues vs the expectation value ofu1u2
~upper panel! andp1p2 ~lower panel! for the dimer model.3 and
h marks symmetric and antisymmetric eigenstates, respectiv
Additionally, the corresponding classical curves for the symme
~dotted line!, antisymmetric~dashed line!, and localized~solid line!
RWA solutions are shown. The nearly degenerate energy level
close to the solid line of the localized modes. Here we us
k25o25o45m5\51.
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56 247CORRESPONDENCE OF ANHARMONIC LOCALIZED . . .
rect numerical diagonalization of the Hamiltonian matrix u
ing a finite set of harmonic eigenfunction is performed. T
states are written in the form

uc&5 (
n1 ,n2

cn1n2un1 ,n2&, ~3.11!

wheren1 andn2 are the quantum numbers of the first a
second oscillators. Here we usek25o25o45m5\51 and
include harmonic product statesun1 ,n2& with n11n2
<Nmax for Nmax560. Separate calculations of the symmet
and antisymmetric states allow a considerable reduction
the numerical effort. By loweringNmax, the range of conver-
gence was determined. Thus we obtain the ‘‘exact’’ eig
value spectrum shown in Fig. 1.

To further classify the eigenstateuc& we use the quantum
mechanical expectation values ofu1u2, given by

^u1u2&qm5^cuu1u2uc& ~3.12!

and similarly forp1p2. In Fig. 1 the eigenenergies versus t
expectation values of these correlation functions are plo
along with the corresponding classical curves~the index
qm is dropped!. On the branch of classical localized vibr
tions, pairs of nearly degenerate eigenstates are seen in
1. In the high-energy region, where the antisymmetric mo
is known to be unstable, no quantum mechanical eigenst
are close to the antisymmetric branch. Since the ne
twofold-degenerate eigenstates correspond in both pane
Fig. 1 to the localized states, we conclude that they co
similar regions of phase space.

To analyze these nearly degenerate eigenstates in m
detail, we now apply the variational methods introduced
the preceding section. Introducing the frequency-depend
operatorbl(v) associated with sitel51,2, we consider ap
proximate states of the form

uf&[un1 ,n2&f5@b1
†~v!#n1@b2

†~v!#n2u0&, ~3.13!

wherebl(v) andbl
†(v) are defined by

ul[A \

2mv
@bl~v!1bl

†~v!#, ~3.14!

pl[2 iA\mv

2
@bl~v!2bl

†~v!#, l51,2. ~3.15!

The effective frequencyv5v(n1 ,n2) will be determined for
each stateun1 ,n2&f separately using the variational princip

]

]v
^fuHuf&U

v5v~n1 ,n2!

50. ~3.16!

This real-space ansatz is constructed such that spatial v
tions of a state~as are present in the classical localiz
mode! may be described. Alternatively we first transform t
Hamiltonian~3.1! to normal coordinates:

ũS5
1

A2
~u11u2!, ũA5

1

A2
~u12u2!. ~3.17!
-
e

of

-

d

ig.
e
tes
ly
of
er

re
n
nt

ia-

Then we quantizeũS and ũA by introducing symmetry-
adapted frequency-dependent operatorsb̃ i(v i) and b̃ i

†(v i),

ũ i5A \

2v i
@ b̃ i~v i !1 b̃ i

†~v i !#, i5S,A, ~3.18!

and similarly for p̃ i . The corresponding states

uf̃&5unS ,nA&f̃5@ b̃ S
†~vS!#

nS@ b̃ A
†~vA!#nAu0& ~3.19!

are characterized by the number of phonons in the symme
normal mode (nS) and the antisymmetric normal mod
(nA). Now two effective frequenciesvS andvA are deter-
mined from the variational principle.

In the low-energy regime, the exact eigenenergies
close to the results obtained using the symmetry-adap
variational ansatzunS ,nA&f̃ , as shown in Table II. Hence th
phase space in this regime is very well described by nor
coordinates. However, the near degeneracy of the eigen
ues shown in Fig. 1 is not reproduced by this variation
ansatz. To identify these levels, we apply the variational
satz in the real-space frame using Eq.~3.13!. From Table III
it becomes clear that the degenerate levels correspon
variational state in the real-space frame,

TABLE II. Comparison of the 12 lowest exact eigenenerg
and the result of the symmetry-adapted variational ans

uf̃&5unS ,nA&f̃ .

Eexact Ef̃

1.538 1.542
2.906 2.914
3.505 3.511
4.413 4.430
5.086 5.099
5.555 5.553
6.040 6.064
6.741 6.789
7.328 7.325
7.689 7.665
7.771 7.799
8.490 8.569

TABLE III. Comparison of nearly twofold-degenerate energ
levels ~having almost identical expectation values foru1u2 and
p1p2) and the result of the variational ansatz within the real-sp
frame uf&5un1 ,n2&f .

Eexact,1 Eexact,2 Ef n1 n2

25.002 25.004 24.6 10 0
27.823 27.823 27.4 11 0
30.713 30.713 30.3 12 0
33.669 33.669 33.3 13 0
36.687 36.687 36.3 14 0
38.465 38.466 38.2 14 1
39.765 39.765 39.4 15 0
41.537 41.537 41.3 15 1
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248 56D. BONART
uc&'
1

A2
@ un,m&f6um,n&f], n!m. ~3.20!

For n50 this allows for the identification of the nearly de
generate levels with theN-phonon bound states discuss
earlier in literature~see, e.g., Refs. 4 and 5!. Table III not
only lists states of the formuN,0&, but also lists states o
the form uN,1&, which correspond to nearly degenera
eigenstates that are close to the branch of classical lo
ized modes in Fig. 1. To the author’s knowledge, the la
form has not yet been discussed in the literature. Our num
cal results suggest that for even higher energies, addit
al pairs of nearly degenerate states of the fo
1/A2@ un,m&f6um,n&f]exist for um2nu@1. For the interpre-
tation of classical localized modes as a coherent superp
tion of nearly degenerate eigenstates, such states are n
sary in order to accurately describe the motion not only
the atom with maximum amplitude but also of the atom w
smaller amplitude.

Let us focus now on the statesuN,0&. As shown above
they sample similar areas in phase space as the classic
calized modes. To establish complete correspondence
finally need to show that the level spacing between
N-phonon bound states fits the frequency curve of the c
sical localized modes~times\). As one can see in Fig. 2, th
agreement is very good. A similar comparison has also b
performed by Ro¨ssler and Page10 for the case of the inte
grable translationaly invariant three-atom chain in order
establish correspondence between classical and quan
mechanical states. One can also see in Fig. 2 that the
spacing of theN-phonon bound states differs significant
from the frequencies of the normal-mode vibrations. Acco
ingly, the classical localized modes may be interpreted
coherent superpositions ofN-phonon bound states. The re
sults of Fig. 2 suggest that a semiclassical quantization of
localized vibration similar to the Bohr-Sommerfeld approa
is feasible. In fact, settingr( l pl dul52\(n13/4) for the
anharmonic localized modes, one obtains a good approx
tion to the energy levels of theN-phonon bound states. How

FIG. 2. Frequency of the symmetric~dotted line!, antisymmetric
~dashed line!, and localized~solid line! classical stationary mode
vs their energy. The boxes show the level spacing (EN112EN)/\
between the (N11)- andN-phonon bound states divided by\ vs
their center energy (EN111EN)/2, whereEN denotes the energy o
theN-phonon bound state. The parameter values are the same
Fig. 1.
al-
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ever, the Bohr-Sommerfeld quantization rule may be app
to integrable systems only,15 and a justification of the facto
3/4 is missing.

IV. INFINITE HIGHER-DIMENSIONAL SYSTEMS

Strongly anharmonic higher-dimensional systems h
been discussed both classically and quantum mechanic
For example the hydrogen covered Si~111! surface may give
rise to an anharmonic localized mode.17 The corresponding
two-phonon bound state has been calculated by Li
Vanderbilt18 in good agreement with the experiments
Guyot-Sionnest.19 A similar analysis was performed by Chi
et al.20 for the hydrogen-covered C~111! surface. For the
case of higher-dimensional ferromagnets the related t
magnon bound states have been discussed by Wortis.21 In the
limit of large quantum numbers Ivanov and Kosevich22 have
analyzed the interrelations with classical solitary wav
These authors showed that two-magnon bound state
three-dimensional magnetic systems may exist only for s
ficiently strong anharmonicity.

In the small-amplitude limit the classical anharmonic l
calized modes are well described by the envelope soliton
the nonlinear Schro¨dinger equation,23,24 which is known to
have localized solutions for arbitrary small anharmonic
and arbitrary small amplitudes~in an infinite system!.25 At
first sight this seems to contradict the results for magn
systems. To investigate this problem, we consider a sim
scalar model with Hamiltonian

H5(
l

pl
2

2m
1
k2
2 (

^ l l 8&
~ul2ul 8!

21
k4
4 (

^ l l 8&
~ul2ul 8!

4,

~4.1!

for the dynamics of ad-dimensional crystal. The classica
localized modes may again be obtained within the RWA.

We study the classical action( l Rpl dul of the stationary
localized solution; in the harmonic limit this is proportion
to the number of phonons in the mode. To calculate
action for localized modes in the strongly anharmonic lim
we use in one dimension an 80-atomic chain, in two dim
sions a (2003200)-square lattice, and in three dimension
(20320320)-cubic lattice. We consider the stable anh
monic localized mode, i.e., in one dimension t
(0,21,1,0) mode3 and in two and three dimensions th
(0,1,0) modes.2 These modes are easily calculated using
self-consistency scheme described in Ref. 26.

To compute the action of anharmonic localized modes
the small-amplitude limit, we apply the continuum approx
mation of the nonlinear Schro¨dinger equation.23,24 Here one
sets

ul~ t !5~21! u l uc~ t,r l !e
2 ivt1c.c., ~4.2!

where the factor (21)u l u means that neighboring particle
move antiphase. The slowly varying spatial and tempo
envelopec is governed by the nonlinear Scho¨dinger equa-
tion ~NLS!

i ] tc5K2Dc1K4ucu2c. ~4.3!

The parametersK2, K4 may be obtained from knowledge o
the harmonic dispersion and from perturbation theory.27 Sta-

for
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56 249CORRESPONDENCE OF ANHARMONIC LOCALIZED . . .
tionary solutions of Eq.~4.3! are well known25 and radially
symmetric localized modes may be found using the an
c(r ,t)5c(r )e2 ilt. The equations for the radially symmetr
stationary problem ind dimensions are rescaled by

j5Al/K2r ,

u~j!5AK4 /l c~j!

to give

u~j!5u91
~d21!

j
u81u3. ~4.4!

Note thatu may be chosen to be real. The solutions of E
~4.4! are known analytically ford51. Ford52,3 one easily
obtains accurate solutions numerically by a ‘‘shooting a
matching method’’~see, e.g., Ref. 28!. The solutions are
shown in Fig. 3.

We can use this rescaled function to estimate the actio
an anharmonic localized mode in closed form,

S5(
l

R pl dul5pv(
l
al
2

'4pvE ddr ucu2,

54pv~2c0!VdMdFK2

K4
Gd/2Fa~d!

c0
Gd22

,

where 2c0 denotes the maximum amplitude of the mod
The integrals were evaluated numerically, yielding

a~d!5H A2, d51,

2.21, d52,

4.34, d53,

v~2c0!52dk214K4S uc0u
a~d! D

2

,

Vd5H 2, d51,

2p, d52,

4p, d53

FIG. 3. Radially symmetric solutionu(j) for the nonlinear
Schrödinger equation in one dimension~dotted line!, two dimen-
sions~dashed line!, and three dimensions~solid line!.
tz

.

d

of

.

Md5E
0

`

dj jd21u~j!5H 2.1, d51,

1.9, d52,

1.5, d53.

The resulting estimates for the action of anharmonic l
calized modes in one-, two-, and three-dimensional lattic
are shown in Fig. 4. The most striking feature is that th
action diverges in the three-dimensional lattice for small am
plitudes. Hence the small-amplitude limit doesnot corre-
spond to the limit of a few phonons. For large amplitudes t
action also grows, leading to a nonzero minimum. This min
mum value divided by\ corresponds to the minimum num
ber of phonons required for the existence of a bound sta
thus the apparent discrepancy mentioned above between
lier works on two-magnon bound states and the intuitive p
ture based on the NLS is resolved. A similar estimate for t
energy of anharmonic localized vibrations was found ind
pendently by Flachet al.29

V. CONCLUSION

In this paper we have presented an analysis of the int
relation between anharmonic localized modes and the co
spondingN-phonon bound states which arise in a quantum
mechanical treatment of certain vibrational systems. The fi
section presents a variational ansatz which yields a good
timate for the energy levels of a single, strongly anharmon
oscillator over the entire range of quantum numbers. Th
the ‘‘exact’’ eigenenergies of an anharmonic dimer mod
were obtained by direct numerical diagonalization and
comparison was made with the result of the variational a
satz. Nearly twofold-degenerate eigenstates were identifi
which correspond to theN-phonon bound states previously
discussed in the literature within an effective Hamiltonia
approach.4,5,11 Note that the classification ofN-phonon
bound states in these earlier investigations was possible o

FIG. 4. Action of the localized modes for the scalar model v
the amplitude for one-, two-, and three-dimensional lattices w
k25k451. The dotted line corresponds to the RWA solutions
the discrete lattice and the solid line to the continuum approxim
tion of the NLS.
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because the effective Hamiltonian conserves the numbe
phonons. We have shown here that for Hamiltonians wh
donotconserve the number of phonons, such states still e
and approximate quantum numbers may be determined u
a variational ansatz. Comparison of the level spacings an
expectation values for selected correlation functions of th
nearly degenerate eigenstates with semiclassical estim
derived from the classical localized modes revealed a cl
correspondence. For the case of infinite higher-dimensio
lattices, an estimate for the action of localized modes w
given which suggests that anharmonic localized vibratio
can exist in three-dimensional lattices only for a sufficien
of
h
ist
ng
of
e
tes
se
al
s
s

high number of bound phonons, in agreement to earlier
vestigation on magnetic systems.
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