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Correspondence of anharmonic localized vibrations tdN-phonon bound states
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(Received 18 February 1997

A discussion of the interrelation of anharmonic localized modes and their quantum-mechanical analogs, the
so-calledN-phonon bound states, is presented. For small systems and moderate quantum numbers, the “exact”
eigenvalue spectrum is obtained by direct numerical diagonalization. A variational ansatz is presented which
allows one to estimate analytically the energy levels of strongly anharmonic systems, exemplified here by a
single quartic oscillator and a dimer model. It is shown that expectation values and level spacings for
N-phonon bound states are in close agreement with estimates derived from the classical anharmonic localized
vibrations. Finally, an estimate is given for the action of anharmonic localized modes in infinite higher-
dimensional systems. This estimate suggests a threshold for anharmonic localized mode existence in three-
dimensional latticeq.50163-18207)03325-(

[. INTRODUCTION enological potential$®> and twofold-degenerate levels were
found for high quantum numbers. However, a small set of
For perfect anharmonic lattices, stationary localized solubasis functions was used and a quantitative comparison with
tions of Newton’s equations of motion can exist under cer<lassical localized modes was not performed. In the present
tain conditions:~3 whereas all stationary modes of the cor- work a similar approach is used, but it avoids these limita-
responding quantum-mechanical problem may be classifietions. Recently a six-atom chain was also analyzed using
with respect to a wave vector and thus are delocalized. Howdirect numerical diagonalizatiort, independent of the
ever, in the latter case nearly degenerate bands of site-siggesent work? It was shown thatN-phonon bound states
correlated phonons have been found. These so-callg@ersist even if the full Hamiltonian is taken into account.
N-phonon bound states were first discussed by Agranovich The aim of the present paper is to discuss the correspon-
and co-workeré:® In the weak anharmonic limit, vibrational dence of classical localized vibrations and bound states of
systems may be described by suitable discrete self-trappinghonons in more detail. The paper is organized as follows: In
equations. The quantum-mechanical features of such systerc. Il a single anharmonic oscillator is analyzed classically
have been analyzed by Scettal, first for a dimer mod& and quantum mechanically. It is demonstrated that the effec-
and later for infinite linear chaifiga related system was also tive Hamiltonian approach is limited to small quantum num-
studied recently by Aubnet al®). For a given number of bers. To overcome this limitation, a variational approach is
phonons these authors found narrow bands of bounéntroduced which gives approximate eigenvalues. These ei-
phonons with energies separated from the continuum of urgenvalues are compared with the “exact” eigenvalues ob-
correlated states. This conclusion became possible only bé&ained from direct diagonalization and also with semiclassi-
cause the approach based on the discrete self-trapping equi@! eigenvalues obtained from the Bohr-Sommerfeld
tion allows for classification of the energy levels with respectquantization. In Sec. Il these tools are applied to the case of
to the number of phonons. a dimer with strongly anharmonic on-site potentials. First the
In the general case of anharmonic systems, the number 6gxact” eigenvalue spectrum is determined by direct nu-
phonons is not a good quantum number. Nevertheless, it igerical diagonalization of the Hamiltonian matrix. Using a
interesting to note that a three-atom periodic chain with harvariational ansatz we identify eigenstates and compare their
monic and quartic intersite coupling is integrablend the  expectation values and level spacings with classical predic-
corresponding quantum-mechanical problem can be solveions; the correspondence Ntphonon bound states and an-
completely!® Unfortunately, normal modes and localized harmonic localized modes is thereby established. In Sec. IV
modes are identical and no bifurcation of normal modes ocan estimate for the action of anharmonic localized modes in
curs in this system. infinite higher-dimensional lattices is introduced. It is shown
In general, anharmonic chains are nonintegrable. In thighat for weak anharmonicity a minimum number of phonons
case one can construct an effective Hamiltonian for an infiis required for the formation of bound states in three-
nite chain with weak cubic anharmonicities which then con-dimensional crystals. The paper is concluded in Sec. V.
serves the number of particles, as suggested by Bogdan and
Kosevich! However, it will be shown below that this effec- Il. SINGLE OSCILLATOR
tive Hamiltonian approach is not useful in the regime of a ) ) _ )
large number of phonons; therefore it cannot serve as a link We analyze a single anharmonic oscillator with megs
to classical dynamics. described by the Hamiltonian,
In the strong anharmonic case one has to diagonalize the
full Hamiltonian. This method has been used to determine H= L 94
! k ) = uc+ —u”, (2.9
the eigenenergies of aJ® molecule described by phenom- 2m
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with the conjugate variablesu(p). Within the effective TABLE I. Comparison of the 10 lowest “exact” eigenenergies
Hamiltonian approaclﬁ one would model Eqg(2.1) by with results from the variational ansatz and the semiclassical ap-
proximation for a purely quartic oscillator. We too&,=0,
Hef=eoa’a+T'atataa, (22 o,=m=h=1.
with .Bos.e operatorsaT a”‘?' a. Obviously,. th? effective Quantum number Exact Variational Semiclassical
Hamiltonian has energy eigenvalues which increase qua-
dratically in the limit of large quantum numbers. As we will 1 0.421 0.430 0.340
see below, the semiclassical approach predicts an asymptotic 1.508 1.527 1.474
growth of the energy levels as*®. Hence the effective 3 2.959 2.951 2.913
Hamiltonian approach does not apply in the classical limit. 4 4.621 4.593 4.562
We now introduce frequency-dependent operatif®) 5 6.453 6.404 6.378
and b™(w) (which for fixed frequencyw satisfy the usual 6 8.429 8.358 8.335
commutator relationb(w),b’(w)]=1): 7 10.53 10.44 10.41
8 12.74 12.62 12.60
U= ’L[b(w) + bT(u))], 9 15.05 14.91 14.89
2mo 10 17.45 17.29 17.27
. [Amow
p=—i \/T[b(w)—bT(w)]- (2.3 We now solve the classical equation of motion within the

well-established rotating wave approximati@dWA) by set-
Let us consider approximate states for e quantum level, ting u(t)=a cos(t) and neglecting higher harmonics; for

defined by 0,=0, the RWA is known to yield an accurate description of
N . the stationary modes within a few percent, and it can easily
In)y=[b"(n)]"0), (24 pe extended to more complex situations such as higher-
where the effective frequenay, for the nth level is deter- dimensional vibrational systems. By evaluation of E{j10
mined from the variational principle fo_r the RWA trajectoryfwith p(t) = — mwa sin(wt)], we ob-
tain
7 nHIn) 0 25 3o 1
— (N n =0. . 2
("7(0(lS ¢ w=w, w3=§ W—(n E . (21])
This leads to a cubic equation iy, , whose solution yields The total energy computed by averaging over one RWA pe-
the following approximation for the eigenenergies: riod is
_ 113 43
E,=(n[H|n) E _§ E m—23oY3543 n+ =
2 2 Bohr-SommerfeId’4 2 4 2 ,
MOt 02 o1y 4 %% (6n2+6n+3 (212
ama, NPT 17,2607 eNE3). o '
which is identical with Eq(2.9).
(2.6) To check the variational ansatz in the regime of small

uantum numbers, we calculate the eigenvalues of the
amiltonian by direct numerical diagonalization, using a fi-
nite set of harmonic eigenfunctions. We denote these values

For example, in the case of vanishing harmonic couplin
(0,=0), one readily obtains

3 %o, 1 1 to be the “exact” eigenenergies. In the second column of
wﬁzz W <n+ 5) + m} (2.7 Table I, the first 10 energies are given for a purely quartic
oscillator[0,=0,0,=m=7%=1] based on a set of 100 har-
and monic eigenfunctions. Tests with 140 eigenfunctions did not
change these values. The results of the variational principle
3fi[ 0gh |1 B 3 shown in the third column of Table | are within a few per-
=7\ amz] |Nt 3] (Bn"+6n+3)7" (28 cent The semiclassical values given in the third column are
o seen to work well, beginning with the third eigenvalue.
In the limit of large quantum numbers E(.8) becomes Hence the variational ansatz may be used both in the small-
13 413 and large-quantum-number regimes.
En~ —(—) m~ 2% n+ 5 (2.9
412 2 Ill. DIMER MODEL

To check the validity of this variational ansatz, we com- We now analyze a dimer model, which provides the sim-
pare this last result for large with the semiclassical Bohr- plest vibrational system for which a bifurcation from normal
Sommerfeld quantizatiofsee Ref. 15 modes to anharmonic localized modes exists. The Hamil-
tonian describes two particles with massas which are
coupled by harmonic forcek§) and which interact with a

1
n+3): (210 substrate via anharmonic potentiats, (0,4):

2

S= fﬁ p dg=2=%h
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_p1p2k2 2,9 5 o0 04 4 4
H—ﬁ+ﬁ+?(ul—u2) +?(u1+u2)+ Z(u1+u2).
(3.1

This Hamiltonian is suitable for the description of a light
diatomic molecule adsorbed on the surface of a heavier mon-
atomic crystale.g., H, on S{111)]. For reasons of simplic-

ity we neglect cubic anharmonicities. In the case of displace-
mentsu; normal to the surface the symmetric normal mode
obeysu;=u, and the antisymmetric mode obeys= —u,
(note that this classification is switched for longitudinal vi-
brationg. For this system one can easily calculate the classi-
cal stationary vibrations within the RWAu,=a,cos(t)].
Here one finds three solutions:

3
mw§202+zo4a§, symmetric:a;=a,, (3.2

3 . .
Mmw3=0,+2k,+ —0,a%, antisymmetric:a,;=—ay,

4
(3.3
FIG. 1. Energy eigenvalues vs the expectation valueiaf,
5 3 5 g . (upper pangland p,p, (lower panel for the dimer modelx and
Mw3=0,+ky+ Zo4a1+ 30,22 localized: |a;|#|a,, O marks symmetric and antisymmetric eigenstates, respectively.
491 (3.4 Additionally, the corresponding classical curves for the symmetric

(dotted ling, antisymmetriddashed ling and localizedsolid line)
where the amplitude of the second particle is given by RWA solutions are shown. The nearly degenerate energy levels lie
) close to the solid line of the localized modes. Here we used

0,+ Ky — Mw? 30 ) k,=0,=0,=m=#=1.
a2=k—'a1+ 2 k—Aai’ i=1,3. (3.5 2

2 2 . . .
gquantum-mechanical problem of stationary modes is linear
We now define a classical expectation value of an observand hence all eigenstates are symmetric or antisymmetric.

able A for a given classical trajectory by Thus no(stationary localization of energy is possible. A
guantum-mechanical analysis of a weak anharmonic dimer
(A(P1,Uy,P2,Uz))¢ was presented earlier by Scott and Eilbdk.this case one

introduces a slowly varying variablg, :

1T
:Tlinﬁfo ALP1(t),us(t),pa(1),ux(t)] dt. (3.6) U= gexp( —i wgt) + C.c., 3.9

This expectation value depends on the phase space regiggin Mw?=0,, and for| ;| <|wyi| one obtains
sampled by the classical trajectory. In particular, we consider

the expectation values of the energy,u3il,, and ofp;p,; 1 for =2

these quantities are most useful for the comparison betweeim ;= 30,| 4|2+ Ko(h— ¥7), | = ’
classical trajectories and quantum-mechanical eigenstates, as 2 for I=1.
will be shown below. We compute the classical expectation (3.9

values for the three RWA solutions given above. For X this approximation not only is the energy conserved, but
ample, the energy corresponding to a RWA solution be- PP y 9y '

comes also
N= 4|2+ 2]?, (3.10

and the system becomes integratfléthe Hamiltonian is
1 quantized by settingg=b, ¥* =b', where p, b") are Bose
+ Zk2(a1_a2)2- 3.7 operators, and it is then diagonalized in the subspace of fixed
N. This procedure corresponds to the effective Hamiltonian
In Fig. 1 the energy versu&i u,)y and{pip,)y is shown approach discussed above, which cannot be used for the
for the symmetric, the antisymmetric, and the localizedstudy of the semiclassical limit because it leads to an incor-
RWA solutions. One sees that in Fig. 1 the branch of antitect asymptotic behavior of the energy levels.
symmetric vibrations exhibits a bifurcation, giving rise to the In the strongly anharmonic case, nonparticle-conserving
branch of localized modes. contributions of the Hamiltonia(8.1) become important and
We now come to the quantum-mechanical analysis of thishe corresponding classical system is nonintegrable. To ob-
system. Contrary to the classical equations of motion, théain the eigenvalue spectrum of the Hamilton{&nl), a di-

1 3
(E)a=7 (M +0)(a7+a3) + 3504(a1+a5)
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rect numerical diagonalization of the Hamiltonian matrix us-
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TABLE Il. Comparison of the 12 lowest exact eigenenergies

ing a finite set of harmonic eigenfunction is performed. Theand the result of the symmetry-adapted variational ansatz

states are written in the form

|¢>: 2 Cnln2|n11n2>1 (3.1
ni.ny

wheren; andn, are the quantum numbers of the first and
second oscillators. Here we ukg=0,=0,=m=7#=1 and
include harmonic product statefn;,n,) with n;+n,
<Nax for N,a= 60. Separate calculations of the symmetric

and antisymmetric states allow a considerable reduction of

the numerical effort. By lowerindy,,.x, the range of conver-

gence was determined. Thus we obtain the “exact” eigen-

value spectrum shown in Fig. 1.
To further classify the eigenstaft¢) we use the quantum-
mechanical expectation values wfu,, given by

(UqUg) gm=(¥|uup| ) (3.12

and similarly forp,p,. In Fig. 1 the eigenenergies versus the
expectation values of these correlation functions are plotte
along with the corresponding classical curvigke index

gm is dropped. On the branch of classical localized vibra-

|5>:|ns:nA>7¢-

Eexact EZ/B

1.538 1.542
2.906 2914
3.505 3.511
4.413 4.430
5.086 5.099
5.555 5.553
6.040 6.064
6.741 6.789
7.328 7.325
7.689 7.665
7.771 7.799
8.490 8.569

Then we quantizeug and U, by introducing symmetry-
gdapted frequency-dependent operatniso;) andb [ (w;),

tions, pairs of nearly degenerate eigenstates are seen in Fig.
1. In the high-energy region, where the antisymmetric mode
is known to be unstable, no quantum mechanical eigenstates

twofold-degenerate eigenstates correspond in both panels of
Fig. 1 to the localized states, we conclude that they cover

U= \/%[Bi(wi)JrB?(wi)], i=SA, (318

are close to the antisymmetric branch. Since the nearland similarly forp;. The corresponding states

similar regions of phase space.

|6)=|ns.na)3=[D L we) 1" D A(wa)]™|0) (3.19

To analyze these nearly degenerate eigenstates in moage characterized by the number of phonons in the symmetric
detail, we now apply the variational methods introduced innormal mode {g) and the antisymmetric normal mode
the preceding section. Introducing the frequency-dependerfn,). Now two effective frequenciess and w, are deter-

operatorb,(w) associated with site=1,2, we consider ap-
proximate states of the form

| $y=In1.n5) 4 =[bi(w)]"[b}(w)]"0), (3.13
whereb,(w) and b,T(w) are defined by
h +
U=\ 5ol bi(@) +bl ()], (3.14

. [Ame T
p=-—I T[b|(w)—b|(a))], |:1;2 (315)

The effective frequency = w(n,n,) will be determined for
each stat¢n, ,n,) 4 separately using the variational principle

=0.

o=o0(ny,n,)

(3.16

J
—(¢lH|9)

This real-space ansatz is constructed such that spatial vari

tions of a state(as are present in the classical localized
mode may be described. Alternatively we first transform the

Hamiltonian(3.1) to normal coordinates:
~ 1 _ 1
US:E(Ul‘FUz), UA:E(Ul_Uz)- (3.17

mined from the variational principle.

In the low-energy regime, the exact eigenenergies are
close to the results obtained using the symmetry-adapted
variational ansatfns,n,)7, as shown in Table Il. Hence the
phase space in this regime is very well described by normal
coordinates. However, the near degeneracy of the eigenval-
ues shown in Fig. 1 is not reproduced by this variational
ansatz. To identify these levels, we apply the variational an-
satz in the real-space frame using E813. From Table I
it becomes clear that the degenerate levels correspond to
variational state in the real-space frame,

TABLE Ill. Comparison of nearly twofold-degenerate energy
levels (having almost identical expectation values foju, and
p1p,) and the result of the variational ansatz within the real-space
frame|¢)=|ny,Ny) 4.

Eexact,l Eexact,z Edz nl n2

25.002 25.004 24.6 10 0
5?.823 27.823 27.4 11 0
30.713 30.713 30.3 12 0
33.669 33.669 33.3 13 0
36.687 36.687 36.3 14 0
38.465 38.466 38.2 14 1
39.765 39.765 394 15 0
41.537 41.537 41.3 15 1
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4F . - ever, the Bohr-Sommerfeld quantization rule may be applied
[ to integrable systems only,and a justification of the factor
3/4 is missing.

IV. INFINITE HIGHER-DIMENSIONAL SYSTEMS

Strongly anharmonic higher-dimensional systems have
been discussed both classically and quantum mechanically.
For example the hydrogen covered1dil) surface may give
rise to an anharmonic localized motleThe corresponding
two-phonon bound state has been calculated by Li and
Vanderbilt® in good agreement with the experiments of
Guyot-Sionnest? A similar analysis was performed by Chin
et al?° for the hydrogen-covered (C11) surface. For the

FIG. 2. Frequency of the symmetridotted ling, antisymmetric  case of higher-dimensional ferromagnets the related two-
(dashed ling and localized(solid line) classical stationary modes magnon bound states have been discussed by Wbttighe
vs their energy. The boxes show the level spaciig.;—Ey)/A  limit of large quantum numbers Ivanov and KoseVfchave
between the N+ 1)- andN-phonon bound states divided lyvs  analyzed the interrelations with classical solitary waves.
their center energyHy .+ Ey)/2, whereEy denotes the energy of These authors showed that two-magnon bound states of
the N-phonon bound state. The parameter values are the same as i¢iree-dimensional magnetic systems may exist only for suf-
Fig. 1. ficiently strong anharmonicity.

In the small-amplitude limit the classical anharmonic lo-
1 calized modes are well described by the envelope solitons of
|¢)wT[|n,m>¢t|m,n)¢], n<m.  (3.20  the nonlinear Schiinger equatios>?* which is known to
2 have localized solutions for arbitrary small anharmonicity
and arbitrary small amplitude§n an infinite system?® At
first sight this seems to contradict the results for magnetic
systems. To investigate this problem, we consider a simple
scalar model with Hamiltonian

For n=0 this allows for the identification of the nearly de-
generate levels with th&l-phonon bound states discussed
earlier in literature(see, e.g., Refs. 4 and.5Table Il not
only lists states of the fornmiN,0), but also lists states of
the form |N,1), which correspond to nearly degenerate P2 k K
eigenstates that are close to the branch of classical local- H=>, L2 (u—up )%+ —42 (u—up)4,
ized modes in Fig. 1. To the author's knowledge, the latter T 2m 2<||'> 4<||'>

form has not yet been discussed in the literature. Our numeri- 4.9

cal results suggest that for even higher energies, additionor the dynamics of a-dimensional crystal. The classical
al pairs of nearly degenerate states of the formgcalized modes may again be obtained within the RWA.
12[|n,m) 4 =|m,n) s]exist for[m—n[>1. For the interpre-  \ye study the classical actidh, {p, du, of the stationary
tation of classical localized modes as a coherent superpoSjcalized solution; in the harmonic limit this is proportional
tion of nearly degenerate eigenstates, such states are necg$-the number of phonons in the mode. To calculate the
sary in order to accurately describe the motion not only Ofaction for localized modes in the strongly anharmonic limit,
the atom with maximum amplitude but also of the atom withye yse in one dimension an 80-atomic chain, in two dimen-
smaller amplitude. sions a (206 200)-square lattice, and in three dimensions a

Let us focus now on the statéhl,0). As shown above (20x 20x 20)-cubic lattice. We consider the stable anhar-
they sample similar areas in phase space as the classical Iginic localized mode, i.e., in one dimension the

calized modes. To establish complete correspondence, W@ —1 1,0) modd and in two and three dimensions the

finally need to show that the level spacing between thgg 1 0) moded. These modes are easily calculated using the
N-phonon bound states fits the frequency curve of the clasself.consistency scheme described in Ref. 26.

sical localized modegtimes?:). As one can see in Fig. 2, the 1o compute the action of anharmonic localized modes in
agreement is very good. A similar comparison has also beeghe small-amplitude limit, we apply the continuum approxi-

performed by Resler and Pade for the case of the inte- mation of the nonlinear Schdinger equatiof®?* Here one
grable translationaly invariant three-atom chain in order toggtg

establish correspondence between classical and quantum- .
mechanical states. One can also see in Fig. 2 that the level u(t)=(—DMyt,rpe “t+cc., 4.2

spacing of theN-phonon bound states differs significantly . : .
from the frequencies of the normal-mode vibrations. Accord\Vhere the factor € 1)l means that neighboring particles

ingly, the classical localized modes may be interpreted agwovel antiphase. The SIOWI% varyi?g spatial and temporal
coherent superpositions ®f-phonon bound states. The re- €NVelopey is governed by the nonlinear Safinger equa-

sults of Fig. 2 suggest that a semiclassical quantization of thﬂOn (NLS)

localized vibration similar to the Bohr-Sommerfeld approach i 9= KA Ut 2 4

is feasible. In fact, setting=,p, du,=2%(n+3/4) for the = KoA g Kol 917 “.3
anharmonic localized modes, one obtains a good approximd-he parametert’,, X, may be obtained from knowledge of

tion to the energy levels of tH¥-phonon bound states. How- the harmonic dispersion and from perturbation theédr$ta-
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5 T T T T 3 1dim 2dim

4 4
0 1 2 3 4 5
¢
FIG. 3. Radially symmetric solutiom(&) for the nonlinear o N NI
Schralinger equation in one dimensiddotted ling, two dimen- 0.0 1.0 0.0 1.0 0.0 1.0
Amplitude Amplitude Amplitude

sions(dashed ling and three dimensionsolid line).

tionary solutions of Eq(4.3) are well knowR® and radially ) ¢ the localized modes for th | del
symmetric localized modes may be found using the ansatz FIG. ?t /SCII;JH of t etoca IzedTho esd_ort e_sca} al“ttm € Vtsh
#(r,t)=y(r)e” ™. The equations for the radially symmetric ¢ 2MP/1tude for one-, two-, and fhree-dimensional fattices wi

stationary problem i dimensions are rescaled b k,=k,=1. The dotted line corresponds to the RWA solutions of
yp y the discrete lattice and the solid line to the continuum approxima-

é= mr tion of the NLS.
u(§)=VKaIN 9 . 2.1, d=1,
to give Mg= fo d¢ ¢4 tu(g) =4 1.9, d=2,
15, d=3.
" ( _1) i 3
u(é)=u"+ u'+u (4.9 . ) . .
& The resulting estimates for the action of anharmonic lo-

Note thatu may be chosen to be real. The solutions of Eq.calizeéd modes in one-, two-, and three-dimensional lattices

(4.4) are known analytically fod=1. Ford=2,3 one easily &€ shoyvn in F_lg. 4. The most str_lklng fez_iture is that the

obtains accurate soiutions numerically by a “shooting and®ction diverges in the three-dimensional lattice for small am-

matching method”(see, e.g., Ref. 28 The solutions are plitudes. Hen_ce. the small-amplitude limit doast corre-

shown in Fig. 3. qund to the limit ofaf(_aw phonons. For Ia_rge amplltu_des'th_e

We can use this rescaled function to estimate the action giction also grows, leading to a nonzero minimum. This mini-
an anharmonic localized mode in closed form, mum value divided by: corresponds to the minimum num-

ber of phonons required for the existence of a bound state;

) thus the apparent discrepancy mentioned above between ear-
S= Z é p du= szl a lier works on two-magnon bound states and the intuitive pic-
ture based on the NLS is resolved. A similar estimate for the

q ) energy of anharmonic localized vibrations was found inde-
“477‘”f dr[ %, pendently by Flacket al?®
ICZ d/2 a(d) d-2
=47w(249) QgM 4| = , V. CONCLUSION
Ky o

In this paper we have presented an analysis of the inter-
relation between anharmonic localized modes and the corre-
spondingN-phonon bound states which arise in a quantum-

where 2/, denotes the maximum amplitude of the mode.
The integrals were evaluated numerically, yielding

2, d=1 mechanical treatment of certain vibrational systems. The first
' ’ section presents a variational ansatz which yields a good es-

a(d)=y 2.21, d=2, timate for the energy levels of a single, strongly anharmonic
4.34, d=3, oscillator over the entire range of quantum numbers. Then

the “exact” eigenenergies of an anharmonic dimer model

[ ol |2 were obtained by direct numerical diagonalization and a

w(2¢o) =2dky+ 4/C4< a(d)) : comparison was made with the result of the variational an-

satz. Nearly twofold-degenerate eigenstates were identified,

2, d=1, which correspond to th&l-phonon bound states previously
B discussed in the literature within an effective Hamiltonian
Qg=y 27, d=2, approach:>!! Note that the classification oN-phonon

47, d=3 bound states in these earlier investigations was possible only
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because the effective Hamiltonian conserves the number dfigh number of bound phonons, in agreement to earlier in-
phonons. We have shown here that for Hamiltonians whiclvestigation on magnetic systems.

do notconserve the number of phonons, such states still exist
and approximate quantum numbers may be determined using
a variational ansatz. Comparison of the level spacings and of
expectation values for selected correlation functions of these
nearly degenerate eigenstates with semiclassical estimates The author would like to thank A. P. Mayer for support
derived from the classical localized modes revealed a closand stimulating discussions and J. B. Page for careful read-
correspondence. For the case of infinite higher-dimensionahg of the manuscript. This work was also supported by the
lattices, an estimate for the action of localized modes wa®eutsche Forschungsgemeinschaft, Grant No. Ma 1074/
given which suggests that anharmonic localized vibration®4-2, NSF Grant No. DMR 9510182, and by the Feodor
can exist in three-dimensional lattices only for a sufficientlyLynen program of the Humboldt foundation.
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