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Equation of state of the hard-disc solid
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We present a study of the equation of state of the hard-disc solid, including the freezing transition. The study
is based on a weighted-density approximation scheme for the free-energy density functional of hard discs.
Using a standard procedure to construct such a functional in terms of a suitably chosen weighting function,
augmented to include a cubiather than quadrati@pproximation for the density dependence of the latter, we
obtain the equation of state of the solid and use it to locate the densities where solid and fluid coexist. The
equation of state is compared with constant-pressure Monte Carlo simulation data obtained by us and reason-
able agreement is found. Also the location of the freezing transition is compared with available estimates based
on extensive simulations performed by other groups. Although our mean-field-type theory does not take proper
account of fluctuations and defecishich are believed to be important to determine the nature of this transi-
tion) are not treated at all, its prediction for the transition densities are quantitatively correct; however, the
density gap at théfirst-ordep transition is overestimated. In addition, we observe that our results for the
location of the transition crucially depend on how accurately the weighting function models the direct corre-
lation function of the uniform fluid: As this description becomes better, the agreement with simulations
improves.[S0163-18207)02329-1

I. INTRODUCTION correlations in nonuniform phases. Recently an accurate and
easy-to-implement perturbation theory for classical three-
Two-dimensional systems have attracted considerable irdimensional solids has been developetf: The theory has
terest in the last few decadedwo issues are of particular been shown to provide accurate results for a variety of model
importance: the effect of the low dimensionality on melting, systems, ranging from Lennard-Jones to very short-range at-
and the phase behavior and nature of phase transitions tractive interaction potentials, intended to mimic real sys-
adsorbates physisorbed on substrates, which can exhildiéms(e.g., colloidal suspensionsThe basic ingredients of
competition between commensurate and incommensuratee theory are a new theoretical procedure to approximate the
phaseg. two-body correlation function, together with one of the avail-
These topics have been tackled using a number of differable density-functional approximations for the hard-sphere
ent theoretical tools. Classical density-functional theory turnsolid equation of state and density distribution.
out to provide a useful framework since it gives a unified Similar progress for two-dimensional solids is still lack-
description of fluid and solid phasésThus far, however, ing, due in part to the fact that the natural reference system in
effort has been mainly concentrated on the development divo dimensions, the hard-disc model, has not been studied
accurate free energy density functionals for threewith so much detaif:® The nature of the melting transition
dimensional models, most notably hard spheres, and relan two-dimensional systems of particles interacting via short-
tively successful approximations have been construtted. range potentials, and hard discs in particular, has been stud-
These approximations give very accurate results for the melied by computer simulation, but it still remains a debated
ing properties of hard spheres. When combined with ideasubject*~'8On top of that, there is no adequate theoretical
borrowed from perturbation theory for fluidshese approxi- framework providing information on the thermodynamics
mations provide an accurate theoretical device with whichand correlations of the hard-disc solid. This is a severe limi-
one can predict thermodynamic and structural properties dfation for the successful implementation of the perturbative
model systems of molecules interacting through both repulprogram in two-dimensional systems. For example, a struc-
sive and attractive interaction®:*2 tured substrate generates a certain amount of order in the
In perturbation theory the thermodynamic potential of aadsorbed film, even if the latter is fluid; the precise nature of
realistic molecular system is expressed in terms of the therthe ensuing correlations is unknown, and the situation wors-
modynamic and correlation functions of a reference system.ens if the film becomes solid. This poses some difficulties in
The importance of the hard-sphere fluid as a useful model ithe development of any theoretical scheme aimed at a quan-
perturbation theories largely stems from this fact. Knowl-titative understanding of film phase behavior.
edge about correlations of the reference system is a basic A few years ago Mederost al® attempted to generalize
requirement of the theory. Unfortunately the implementatiornthe zeroth-order weighted-density approximation, developed
of the perturbative program in the context of solids is not asdy Tarazon4to describe the freezing transition in systems of
direct as one might think, due to lack of knowledge abouthard spheres and discs, to the study of hard discs in the
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presence of a substrate. Despite the power of the densitgpproximated. One crucial point is that an accurate descrip-
functional predictions as regards the qualitative descriptioriion of highly nonuniform systemdike solids requires go-

of the complex adsorption phase diagram, the theory hathg beyond the usual local-density approximation. Various
some limitations. In particular, the description of the proper-schemes have been proposed to take into account correla-
ties of the hard-disc solid were rather poor. Obviously, anytions in nonuniform systems approximately; these are re-
attempt at an adequate implementation of perturbation theoryiewed in Ref. 3. One of the most successful approaches is
for realistic systems demands a more accurate description tfie weighted-density approximatidiVDA) of Tarazond®

the hard-disc solid. The present paper presents a systematitich approximatedF in terms of a local-density-like ex-
study of how the full(second-ordgrweighted-density ap- pression but uses an averaged weighted density p(r):
proximation of Tarazorfacan be extended successfully for

hard discs. Recently, Takamiya and NakarfiShiade a first —

attempt along these lines with a view to understanding the AF[PFJ drp(r)AV(p(r)). (4)
structure of a fluid in the environment of a triatomic mol-

ecule. However, the hard-disc solid was not studied by Takaln Eq. (4), AW (p) is the excess free energy per particle of a
miya and Nakanishi. uniform system of density. The weighted density is calcu-

In this paper we show that the explicit second-orderlated as a spatial average of the one-particle density,
scheme of Tarazona cannot be implemented as directly as in
the hard-sphere case, and that the particular nature of hard
discs requires going beyond the second-order virial approxi-

mation for the weighted density suggested by Takamiya and L . . —_
Nakanishi. The resulting equation of state for the solid is inVherew(r;p) is a weighting function. The weighting func-

relatively good agreement with the computer-simulation relion is chosen such that the free-energy functional recovers

sults obtained by us, and the location of the freezing transilhe correct direct correlation function in the uniform limit.

tion is quite reasonable as compared with the results of th&N€ two basic ingredients of the WDA functional for a given
most recent computer work. model system are theAW¥(p) and c(r;p) for the corre-

The paper is organized as follows. Section Il is devoted tgPonding uniform system, which are supposed to be known.
a brief presentation of the density functional theory and itd~0" hard spheres one can use the quasiexact Carnahan-
ingredients, and we discuss how the weighting function i>taring equation of state together with ttwtosed Percus-
constructed. In Sec. Ill we give some details on the approxi- Vick expression for the direct correlation function. _
mations used to describe the solid phase, and Sec. IV pro- 1he above scheme has provided very successful approxi-
vides some information pertaining to the constant-pressurgations for the thermodynamic and structural properties of

Monte Carlo simulations used to obtain the equation of stateSyStems of hard s?heres in the presence of various types of
Section V presents the results and finally in Sec. VI weexternal potential$! When the external potential is zero, the
present some conclusions. theory predicts a spatially self-structured phase which is

identified as the hard-sphere solid, studied from the sixties
by computer simulatiof®?® In fact, good agreement be-
tween the various versions and extensions of WDA theory
A. Density-functional formalism and simulation has been found as regards the location of the
transition, the equation of state, and the Lindemann
parameter.

The construction of WDA theories relies heavily on the
availability of accurate closed expressions for the free energy

by the functional minimum with respect to variations of : X .
p(r).2 The functional is constructed using information on and correlation function of the uniform system. Undoubtedly
) the availability of the Percus-Yevick approximation for

correlations in the uniform phase. Of particular importance

to our subsequent discussion is the two-particle direct correg(r;p) and the Carnahan-Starling quasiempirical expression

lation functionc(r,r'), related to the second derivative of for A¥(p) has permitied the implementation of the WDA
the free energy by ideas into quantitatively successful functionals. However, the

situation is not so satisfactory in the case of hard discs: There
5?AF[p] is no such thing as a Carnahan-Starling expression, and the
W- 1) Percus-Yevick thgory does not provide a cl_osed-form for-
mula. Naturally this is an upsetting complication, but not an
Here B=1/kgT, and AF[p] is the excess free energy over impediment, since at least one can obtain the necessary ther-
the ideal gas, so that the total free energy is modynamic and structural ingredients numerically.

Flpl=Fidpl+AF[p], 2
andF;4[ p] is the (exac} ideal gas free energy,

Hr)zj dr'p(r yw(r' —rl;p(r), ©)

Il. THEORY

In density-functional theory the free energy of an inhomo-
geneous system is written as a functiof@p] of the one-
particle densityp(r), such that the equilibrium state is given

c(r,r')y=—8

B. Properties of the hard-disc fluid

A number of theories have been proposed to account for
the thermodynamic properties of the hard-disc ffifixcept
Fid[p]=,8*1J drp(r){In[A%p(r)]—1}, (3)  for scaled-particle theorfwhich is known to be inaccurate at
high density, all these approaches are based on particular
where A is the de Broglie wavelength. The excess free entesummations of the virial series. The standard procedure is
ergy is not known exactly and consequently it has to bebased on the fact that knowledge of the first few virial coef-
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ficients(either analytically or by simulatigrpermits the con-  function in this limit. Taking c(r;p)=cgc(r;p),
struction of accurate Padapproximants for the compress- AW (p)=AW¥g(p), and Fourier transforming the above ex-

ibility factor Z(p), pression, we obtain
Cec(d;p) = —2BAWc(p)W(Q;p) — pBAV 5c(p)
1+szoan7]n ow(a: )
e © XU ) = 2083V pcl ppw(aip) "
8

where = mpa?/4 is the packing function andt is the hard-
disc diameter. The free energy per molecAM (p) follows it w(q:p) as the dependent variable, which is solved nu-

from Eq. (6) by integratior® Theories for the structure of a merically. This approach was used by Curtin and Ash&roft
fluid of hard discs in terms of the direct correlation function i, their version of the WDA for hard spheres. Now the nu-

are much more scarce. This function cannot be obtained agnerically exact weighting function ig space is transformed

Curately by simulation. One obvious choice is the PerCUSback to real space to give the We|ght|ng function which re-
Yevick approximation to the Orstein-Zernike equation: Evenproduces the “correctli.e., BO direct correlation function.
though the resulting equation cannot be solved in closedhe latter can be used in E¢p) to compute the averaged
form, it is possible to obtain the solution numerically without density. However, this is not the approach we will follow
much computational effort. A critical issue is that of thermo- since, from a practical point of view, the full density depen-
dynamic consistency. Since there are two independent relalence of the weighting function is not easily handled in ac-
tions between the thermodynamics and the structure fundual calculations; this is the reason why it is convenient to
tions, consistency should be imposed on the theory byntroduce a density parametrization, based on a truncated
demanding that the two relations be satisfied at the samsérial expansion forw(r;p):

time. This is an essentially unsolved problem. In the theory
of Baus and ColdP (BC), the direct correlation function is
constructed from a rescaled low-density expression, and it i¥he coefficientsv,(r) can be obtained order by order if Eq.
made to be consistent with a Paajgproximant for the com- (8) is expanded in powers ¢f. Using

pressibility factor through the compressibility equation. The 5

virial equation is satisfied only at second order in density, Cec(d;p) =Co(d) +Co(A)p+Ca(q)p=+--- (10
and so thermodynamic consistency is not comp(étenust  and

be mentioned that, for hard spheres, the Carnahan-Starling

equation of state and the Percus-Yevick direct correlation BAWgc(p)=fip+Tp®+Tapd+. -, (11)
function also suffer from a similar shortcomingdowever, gy pjicit formulas for the virial coefficients,(q), with

since the expression fax(r;p) provided by BC comes in
closed analytic form, in the following we will take it as our W(Q;p) =Wo(q) +W1(q)p+Wy(q)p?+---, (12
reference direct correlation function, together with their Pade . . . .
approximant for the compressibility fact@{(p) and its as- are obtamr—_:d In terms Gf“(.q.) andf, by identifying powers
sociated free energy. Despite the incomplete thermodynamﬁf p- The first three coefficients are

consistency, the BC compressibility fact@(p) provides

For each wave vectay, this is a differential equation ip,

W(r;p)=Wo(r)+wy(r)p+wy(r)p?+---. 9

. A . . Co(q)
fairly accurate results at high fluid densitf@s. wo(Q)=— T (13
1
2
C. Weighting function wy(q)=— €1(q) +4fawWo(q) +2f5[Wo(d)] (14)
In this section we show how to construct a weighting 2h[1+wo(a)]
function for the WDA free-energy functional of hard discs. and
Differentiating A F twice with respect tg(r) and taking the
uniform limit p(r)—p leads to Wa(q) = —{c(q) +6f3[ 1+wo(a) Jwe(q)
+4f,[ 1+2wo(q)wa(q)
c(r;p)=—2BAY (p)W(r;p)—pBAY"(p) +2f5[wy(a) 1 {2f [ 1+ 2we(q) ]} (15)
Transforming Eq(12) back to real space provides the nec-
XJdtW(|f—t|;p)W(t;p)—ZPBA‘I"(p) essary coefficients/(r).
In practice, Tarazona used the exaegf(r) and wq(r)
L ow(t;p) coefficients in his theory for hard spheres and optimized
X f dtw(|r—t|;p) aip (M) w,(r) in such a way that the high-density behavior of the

resultingc(r;p) were in agreement with the Percus-Yevick

result. This strategy yields direct correlation functions in rea-
Now the WDA strategy consists of optimizing the weighting sonable agreement with the aimed-at Percus-Yevick
function so as to reproduce the correct direct correlatiorfunction? except at high density. A similar approach was
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followed by Takamiya and Nakanigfi(TN) to construct a L L R LA EL A
corresponding functional in two dimensions, using the BC
direct correlation function and equation of state as input. The
first virial coefficientwg(r) follows directly by identifying
the coefficient of the density-independent term in the virial
expansion of Eq(7) and usingcy(r)=—0(r—o). We ob-
tain

1
Wo(r)=——0(o—r). (16) 3}

An alternative method to findy(r) is to use Eq(13) with
f,=mo?2 and

_217'

co<q>=fdrco<r>eiq-f— Ta@), a7

and then apply inverse Fourier transform. TN used for
w4 (r) a parametrized form fitted to the exact function, which
follows from Eq.(14). Finally, following Tarazona, TN op-
timized w,(r) using a simple parabolic form, truncated at
r=o:

agtarta,? r<o,

Wy(r)= (18)

0, r>o.

However, the approximation foe(r;p) obtained with this
approach is rather poor, even at moderate densities. Figure 1
depicts the BC and TN direct correlation functiéhat two
different densities. We note the gross discrepancy in the
whole interval inr. The TN parametrization worsens rapidly
for increasing densitynote that the densities considered in
the figures are within the expected range where the transition
to the solid phase should ocguiThe disagreement is par-
ticularly acute forr>o¢; the nonvanishing tail in the TN
direct correlation function is partly due to the truncation of
thews(r) coefficient atr = o which generates a noncompen- - ]
sated structure through the convolution equationf’ -80 Ll
On the basis of the results presented in Fig. 1, we con- ’ )
clude that the TN parametrization is not suitable for our pur- (b) r/o
poses: Since we are interested in describing the hard-disc
solid, it is of paramount importance to use a weighting func-

tion which reproduces faithfully the direct correlation func- weighted-density approximation theories using different forms of
tion in the entire density range up to the solid regitne., the weighting function and for two different densities. The long-

PP i . . . .
P 3'(]): 15;)’!2 nc_:_ts tl'_:_aNt the cloge ptaCkTg dens.lty fotrf(ljlscs ISdashed line corresponds to the Takamiya-Nakanishi approximation;
%clrf ) h ) h N h algprOXImaflon ?‘:fVZ(r) IS NOLTIEX" " the dotted line is our parabolic approximation, whereas the short-
Ible enough, in that the absence of a tail for o prevents an dashed line corresponds to our cubic approximati@npo?=0.8,

FIG. 1. Direct correlation function of the Baus-Colot theory
(solid line and the corresponding predictions from different

adequate cancellation of the tail afr;p). (b) po?=0.9.
To improve the fitting, we have to use a different param-
etrization. Let us consider the extended virial expans@n To optimize the coefficients we used parametrized virial

Various strategies are possible at this stage. It seems cleggefficients containing a few variational parameters
that the first two coefficients should be kept exact in order tQNz(f'{)\i}) and ws(r;{x;}) and minimized in the least-

reproduce both the limiwv(r;p=0) and the correct density gqyares sense; i.e., we minimized the function
dependence at low density. In the following we will consider
parabolic (truncated at second order in dengignd cubic

(truncated at third ord@parametrizations. In the latter case, SN =2 W(r;pDlCec(Teipr)
the coefficientsv,(r) andws(r) can be optimized together; Kl
one could keep the exawt,(r), obtained from Eq(15) and —c(riipr Nt {mh 13 (19)

optimizewsz(r), but this is not so flexible a parametrization
and we have chosen to use the first strategy since it provideghereW(r;p) is a weight functionto put more emphasis in
better results. particular regions of andp during the minimizatiop and



2436 E. VELASCO AND L. MEDEROS 56

c(ri;pri{Ni}.{wi}) is obtained from the functional, Eg7). 1.0 | | | | |
Different parametrizations fow, and w; and different

weight functionsW were used, but the accuracy of the fit 0.8 |- -
was not satisfactory. In particular, the resulting direct corre- o \

lation function(not shown does not follow the reference BC b 06K —
function forr= ¢ very accurately. We believe the reason for gN \

these discrepancies is twofold) the real-spacédouble in- - 041 -
tegrals(7) connecting the direct correlation function and the = X

weighting function in real space are sensitive to the numeri- et 0RO\ -
cal approximations used to evaluate them, @ndthe mini- b N

mization is numerically difficult since the functid®. in Eq. go 0.0 |- AN T ——

(19) shows a shallow minimum with respect to the varia- \\"r“'

tional parameters. -0.2 N .

An alternative strategy is to make direct use of the exact ' ' : ' .
weighting function and perform an optimization with :

w(r;p) instead ofc(r;p) as target function; since we have (a) r/a
the exact weighting function in real space, obtained from Eq.
(7), we can minimize 1.4 I I I I I
1.2 | -
Su(Wi(r} =2 {Wec(r;p) = [Wo(r) +Wa(r)p, ok i
Tb 0.8
+Aw(pr {wi(DDIF, (20 2
0.6 |- —
where the exact first two virial coefficienta/y(r) and o
w4 (r) are retained and the minimization is performed at each 'b 04~ a ]
value of r with respect to the variational parameters = 02l % -
{\7vi(r)}, i=2,3,...,K+1. The sum is extended over a den- :

sity grid{p,}, 1=0,2,... N, with p;=Ih, h=0.1. The func-
tion Aw can be taken as a polynomial jin

K
Aw(p;{wi(N})= >, Wi 1(r)pkHe, (21) (b) r/o
k=1

.. - ~ FIG. 2. (a) Weighting functionswg(r) (solid line), w,(r) (dot-
,SO that the . (optlmlzeg coefficients V,Vi(r)* ted ling, andw,(r) (dashed Iinbsusegl in our parabolic lapproxima—
i=23,... K+1, give approximateor resummeghigher- o for the weighting functionw,(r) and wy(r) are the exact
order virial coefficients for the weighting functiofin the  fnctions appearing in the virial expansion of the weighting func-
following the caret orw will be dropped, and so it is to be tion, whereasv,(r) is the optimized function obtained from a least-
understood thawv;, i=2, are the weighting function virial squares fit to the Baus-Colot reference weighting function using the
coefficients resulting from the least-squares fit principle  parabolic approximation.(b) Optimized weighting functions
one can include as many coefficients as desired but, as mew(r) (solid line) andw,(r) (dotted ling, using the cubic approxi-
tioned earlier, we have limited ourselves to the casesl mation for the full weighting function.

(parabolic approximationand K= 2 (cubic approximation ) . . )

The method has the advantage that, by retaining the exact Figuré 2 shows the virial coefficients which result from
first two coefficients and, in particular, the zeroth-order co-the above procedure. In Fig(a the fitting was limited to

efficient, the discontinuity of only one functionw,(r), corresponding to the parabolic ap-
' proximation. In Fig. 2b) we include two functionsw,(r)
Wac(rp) —Wo(r) —wq(r)p (22)  andws(r), corresponding to the cubic approximation. Note

that in both cases we used the exag(r) andw(r) virial
is largely suppressed. The reason is that, in a thermodynamioefficients[depicted in Fig. 22)]. As expected, the coeffi-
cally consistent theoryi.e., a theory with an equation of cientsw,(r) andws(r) show a small discontinuity, although
state and a direct correlation function compatible at the levefrom the figure this is not evident in tive,(r) corresponding
of both the virial equation and the compressibility equation to the cubic approximation.
the whole discontinuity ofv(r;p) atr=o is collected by Figure 1 also contains the direct correlation functions cal-
wo(r) only; thus,w,(r), with n=1,2,.. ., should be con- culated from the above parabolic and cubic approximations.
tinuous functions at=o. Since the BC theory provides con- Note that in both cases the> o tail is almost completely
sistent expressions f@BA W (p) andc(r;p) with respect to  suppressed, but there is an important difference between the
the compressibility equation, but is consistent only up to sectwo approximations at small distancesthe cubic approxi-
ond order with respect to the virial equation, it is possiblemation giving a better agreement with the reference BC di-
that the above procedure generates small discontinuities irect correlation function in this region. We may conclude
the higher virial coefficientsv,(r), n>1. that the parabolic approximatig) is too simple to account
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for the rapid density variations afr;p) in the density range Gaussian peaks centered at the lattice iRsof a regular

of interest(viz., plpepy~0.78, compared with 0.74 for hard triangular lattice,

spheres The discrepancy at short distances of the parabolic

approximation is, as will be shown later, crucial and affects

the results for the solid properties quite substantially. There- p(r)=

fore, it is neccessary to go beyond the parabolic approxima-

tion and include an additional virial term in the weighting where « is a variational parameter, related to the Gaussian

function. width. This approximation, which closely follows that of
Once the weighting function coefficients have been obprevious studies of the hard-sphere crystal, ensures a normal-

tained there remains the problem of extracting the averagegation of one molecule per lattice site. For the fluid phase,

); e—alr= R)2 (28)

density from Eq.(5), which defines it in implicit form: a=0.
o o The virial averaged densitieE(r) are obtained as fol-
p(r)=f dr’p(r"Yw(r—r'[;p(r)) lows. Using Eqs(24) and(28),
=po(N)+p1(r) p()+ po(N)[p(r)]?

po(N+pa(r)p(N)+pa(Np(r)] o) ( )2 f dr'e—e" Ry (1))

+pa(Nlp(NP+---, (23)
where the virial averaged densities(r) are defined by :(E)E f dr’e el ~(R=ry (1)

7| R
Pi(r):f dr'p(r")wi([r" —=r|). (24) :( )2 f dr'r/wi(r"ye~ 2 HR=r?)
The value of the averaged density at some pojrﬂr), is
. . B . 277
given by the(possibly multiple roots of the polynomial Xf d¢’e2“"|R"‘°°5¢’. 29)
0
pot(p1—1)p+pa(p)*+pa(p)®+---=0. (25  Now, introducing the modified Bessel function of zeroth or-
Truncation of the polynomial at second order leads to &€ !o(X), with integral representation
second-degree equation, with only one physically acceptable
PR, 1 2
solution: o lo(x) = _f dbereosh, (30
p=— — (26)

1-psit \/(1—P1) —4pop2 we have
The cubic approximation leads to a cubic equation, whose "
acceptable solution can be found by using a simple Newton E(r)zzaz f dr/rfwi(rf)e—a(r’—lR—rDZ
iterative scheme: R Jo
ey —q_ Pot (Pa= DM+ pal M2+ po pM2 x[e 2 IR Mlg(2ar [R=r])]. (3D
p =p ,

p1=1+2p5[ pM]+3p5[ p™M]? The function between square brackets behaves smoothly for

K= 0.1.2 5 values of its argument=_2ar’'|R—r| in the whole interval
=01.2,..., (@27 0=x<, though it decays slowly witl; it can be computed
and starting from the initial gues,?o] provided by the qua- numerically with high accuracy using asymptotic expansions

dratic approximatior(26). and power series. The integral owercan be approximated
by Gaussian quadrature in the intervals 0 <|R—r| and
[Il. SOLID PHASE |[R—r|<r’'<= separately.

The integrals involved in the free-energy calculations
Our treatment of the solid phase is based on a real-spacgere also computed using quadratures. Using the @&
representation for the density distributiiir) in terms of  for the (periodig density distributiornp(r), we have

a

—) ; f dre= " RHIn[A%p(r)]— 1+ BAY (p (1))}

ko

BF= f drp(r){ln[Azp(r)]—1+,8A‘1’(Hr))}:(

R

=N(—)f" dre=**{In[A2p(r)]— 1+ BAY (p (1))}
T/ J all space

M

| 8

) P 2 N
)fodrre—c" fo (I AZ(r, )]~ 1+ BAT (p(r,$))}. (32

3
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Taking advantage of this factorization, the integrals aver 24
and ¢ can be approximated numerically using different

guadratures. This is convenient, since in the solid phase the

r dependence of the integrand is very strong, whereas its 18
angular dependence is much smoother. The angular integral
was computed using a 12-point trapezoidal rule, whereas the
integral overr was approximated using an especially con-
structed 6-point quadrature formula involving orthogonal
polynomials in the interval0,0) with respect to the weight
function expfar?). The accuracy of these quadratures was
checked independently against Monte Carlo integrations
over the unit cell.

12

Po?/kgT

IV. SIMULATION DETAILS 06 07 08 09 10 1.1

Phase transitions in purely two-dimensional systems have po?

continued to prompt a large amount of interest in recent ) _ _ .
years. A basically unsolved problem concemns the nature of _FIG. 3. I_Equatlon of state of t_he hard-disc system in the fluid and
the freezing transition in systems of molecules interactin olid density ranges. Open circles correspond to our constant-
via short-range forces. Since the pioneering work by Alde ressure Monte Carlo simulations. The solid line is the equation of
and Wainwrigh122 sevéral computer studies have been un_state obtained from the Baus-Colot thedfyr the fluid phasgand

. ! . ... _our proposed cubic parametrization of the weighting function
dertaken in an effort to unveil the character of the transition

H diff h ina diff imul the solid phase The dotted line corresponds to the quadratic pa-
1owever, di erent research groups, using di erent SIMUI8:.5metrization, and the dashed line is the equation of state computed
tion techniques, have reported results which are at varianGgsing the Takamiya-Nakanishi weighting function.

with each other. The basic problem is related to the large

amplitude of transitional fluctuations and its dependence

with the system size. Although there seems to be a consens34’ simulations we used special bookkeeping techniques

that the freezing transition in hard discs is weakly first order,SUCh as I|r!k cells. AIS.O’ at high densities, an eff'c'ef‘t
nstant-neighbor technique was used where, for a moving

there is some recent work supporting the second-order natu o .
PP g Isc, overlaps were checked only with its nearest neighbors,

of the transition® In the present work we do not intend to the identity of the latter tak fixed during th hol
add any new contribution to that forum. Rather, we wish to 1€ dentity of the latler taken as fixed during the whole
simulation (this method assumes no defects are created; the

concentrate on the solid phase with a view to obtaining ac*

curate data for the equation of state and the mean—squayé‘“d'ty of this assumption was explicitly checked as the

molecular displacement. To our knowledge, there are no acs_lmulation proceedgdThe length of 'ghe runs was typically
curate simulations on the equation of state of the hard-distj:06 Monte Carlo steps per state point, with a few selected

solid which can be used to support our density—functionaf"he_CkS using longer run§.2 The errors in the d?’ﬁs”y were
results. estimated 2to bevO'.OOAb at'I.ow mean densities and
Standard constant-pressure Monte Carlo simulatfons ~0-0027 “ at the highest densities.
were performed on systems of hard discs with a range of
system sizes. The technique involves random displacements
of the discs and global changes in area, to ensure thermal
equilibrium at the specified constant external pressure. For a Figure 3 shows the equation of staf(p), of both the
given value of the pressure, the simulations provide the equifluid and solid branches. In the case of the solid phase, we
librium density and also structural properties like two-bodyinclude the results obtained from the TN approximation and
distribution functions. The simulations for the fluid phaseour quadratic and cubic approximatiofrsote that all three
were performed on systems of 700 discs, spanning typicallapproximations reduce to the BC theory in the uniform limit,
2X 10° steps per disc. Selected checks were performed one., in the fluid phase Also shown are our computer simu-
systems an order of magnitude larger, but no significant sydation results. In the fluid phase the BC equation of state goes
tem size effects were observed. Typical errors involved irthrough the simulation points. The cubic theory is quite ac-
the density were of order 0.01 2. curate and improves upon the results of the parabolic ap-
In the solid phase simulations required considerablyproximation. The TN equation of state, on the other hand,
larger systems and longer runs than in the fluid. Typicallyslightly overestimates the pressure and does not seem to
our systems contained 10 864 discs. As observed by otheshow the correct curvature.
groups, the evolving density took inordinate amounts of The results for the freezing transition, indicated in Fig. 3
computer time to fluctuate about an average, constant valuby line segments, are summarized in Table I. Note the large
and this was especially so close to the phase transition. Thdiscrepancy between the parabolic and cubic approxima-
simulations also provided the root-mean-square displaceions, both in the location of the transition and in the density
ments about the lattice site,?); from the latter the Gauss- gap. The location predicted by the cubic approximation is
ian width parameterr can be estimated as=1Kr?). The  much closer to the simulation resdft®f p,=0.887% 2 and
mean-square displacement was observed to exhibit large,=0.904 2, but the density gap is still very much overes-
fluctuations, leading to extremely long relaxation times. Intimated; i.e., the transition is predicted to be too strongly first

V. RESULTS
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TABLE I. Results for the freezing transition of hard discs from 1.00
the different weighted-density approximations considered in this
paper and the computer simulations of Alder and Wainwr{ggf.
22), Hoover and Re€Ref. 23, and Zollweg, Chester, and Leung
(Ref. 15. p, andp, are the fluid and solid densities at coexistence, 0.75
respectively;Ap/p, is the density gap at the transition, relative to
the density of the fluidL is the Lindemann parameter of the solid

at the transition, defined by =(ps\V3/a)Y2 TN, Takamiya- Ng 0.50 o |

Nakanishi weighting functionparabolic our parabolic approxima- ® :

tion (see text cubig our cubic approximatiorisee text 2 i
Theory p|0'2 pSO'2 Ap/p| L 0.25 |

TN 0.957 1.005 0.050 0.058 i

parabolic 0.907 0.984 0.085 0.095

cubic 0.843 0.907 0.076 0.148 0.00 [

Alder and Wainwright 0.880  0.912 0.036 - 0.9 1.0 1.1

Hoover and Ree 0.878 0.922 0.050 - poz

Zollweg et al. 0.887 0.904 0.019 -

FIG. 4. Gaussian width parameter of the solid phase as a func-
tion of density. Solid line, cubic approximation; dashed line, para-
order. Even though the solid density is very accurate, théolic approximation; dotted line, Takamiya-Nakanishi approxima-
fluid density is~5% lower than the simulation result. Of tion; open circles, results from our Monte Carlo runs.
course we do not expect the density-functional approxima-
tion to give accurate predictions for the freezing transition
for the following reasons{(i) Fluctuation effects, not in-
cluded in the mean-field-like density-functional theory, are
very important in two dimensions, ard) the presence of
defects, its dynamics, and mutual interaction might underli
the freezing mechanism in two dimensions, according to the
Kosterlitz-Thouless-Halperin-Nelson-Young theory, and
change qualitatively the freezing scenario from that of a VI. SUMMARY AND CONCLUSIONS
simple first-order transition; these effects are not taken care In summary,

fi h ither. H h hould b we have presented an extension of the ideas
of in our theory either. However, our theory should DECOMEy¢ 4, weighted-density approximation for the free-energy
more accurate as soon as the density is sufficiently high th

. . y ensity-functional of hard spheres to their two-dimensional
the presence of defects and fluctuations is negligible an . L
counterpart, the hard-disc system. We have shown that it is
does not play any role.

As regards the behavior of the Gaussian width parameteﬁruc'al both to perform a careful optimization of the weight-

the results from the density-functional minimizations and the9 _funct|on \_/|r|al_ coefficients a_nd _to g0 be_yon_d the qua-
simulations are pictured in Fig. 4. We again stress the diffidratic approximation for the weighting function in order to
culty involved in estimating this parameter with good accu-2ccurately reproduce the direct correlation function in the
racy by simulation: Only at high density was it possible to uniform limit \_/vh_lch is, together with the fluid equa_t|0n of_
obtain fully equilibrated value¢fluctuating around a stable State, the basic ingredient of the theory. As comparison with
mean valug at low density our simulations are probably too Our computer simulation results indicates, the improved
short to produce stable mean values. Despite these considéheory shows much better agreement for the equation of state
ations, it is clear from the figure that the density-functionalthan the quadratic approximation. Also, even though the
results substantially overestimate the simulation data. This idensity-functional theory does not contain fluctuations
to be expected since, as already discussed, fluctuations dfvhich makes any attempt to make a quantitatively meaning-
fects must have a large influence in the properties of the soliéul comparison with simulation futile it seems that the ac-
phase, especially close to the transition. Since the Gaussiaurate implementation of the uniform direct correlation func-
width parameter is the inverse mean-square displacemention into the functional is important to reproduce the location
fluctuations tend to reduce theparameter. A similar behav- of the phase transition. Results of comparable accuracy have
ior, namely, the overestimation of the Gaussian width, isbeen obtained by Tejero and Cuéstaising a different
observed in the three-dimensional case; however, the effediensity-functional approximation. This is to be contrasted
is reduced in this case due to the higher dimensionality.  with the three-dimensional case, where despite the quantita-
A standard way to combine the mean-square displacemetiely inaccurate behavior of the direct correlation function
to the mean distance between neighbarss the Lindemann  resulting from the parabolic approximation at high density,
parametelL =(r2)1%a. According to Toxvaerd? diffusion  the weighted-density-approximation results for the location
in a (soft) repulsive solid sets in wheh~0.18; taking this of the phase transition and equation of state are more accu-
(arbitrarily) as the critical point where the crystal meltsye  rate.
can compare it with our value fobL at the transition, The present form of the functional can be used as a ref-
L=0.148(Table ), and conclude that the density-functional erence system for the study of a variety of problems, includ-

theory at least provides a qualitatively correct Lindemann
parameter at melting. Note that the results obtained with the
TN and the parabolic approximation for the weighting func-

etion are significantly smallefsee Table)l
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