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Equation of state of the hard-disc solid
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We present a study of the equation of state of the hard-disc solid, including the freezing transition. The study
is based on a weighted-density approximation scheme for the free-energy density functional of hard discs.
Using a standard procedure to construct such a functional in terms of a suitably chosen weighting function,
augmented to include a cubic~rather than quadratic! approximation for the density dependence of the latter, we
obtain the equation of state of the solid and use it to locate the densities where solid and fluid coexist. The
equation of state is compared with constant-pressure Monte Carlo simulation data obtained by us and reason-
able agreement is found. Also the location of the freezing transition is compared with available estimates based
on extensive simulations performed by other groups. Although our mean-field-type theory does not take proper
account of fluctuations and defects~which are believed to be important to determine the nature of this transi-
tion! are not treated at all, its prediction for the transition densities are quantitatively correct; however, the
density gap at the~first-order! transition is overestimated. In addition, we observe that our results for the
location of the transition crucially depend on how accurately the weighting function models the direct corre-
lation function of the uniform fluid: As this description becomes better, the agreement with simulations
improves.@S0163-1829~97!02329-1#
i
r
g
s
hi
ra

fe
rn
ed

t
e
e
.
e
ea

ic
s
u

f a
he
m
l
l

a
io
a
u

and
ee-

del
at-

s-
f
the
il-
ere

k-
in

died
n
rt-
tud-
ed
cal
cs
mi-
ive
uc-
the
of
rs-
in

uan-

ped
of
the
I. INTRODUCTION

Two-dimensional systems have attracted considerable
terest in the last few decades.1 Two issues are of particula
importance: the effect of the low dimensionality on meltin
and the phase behavior and nature of phase transition
adsorbates physisorbed on substrates, which can ex
competition between commensurate and incommensu
phases.2

These topics have been tackled using a number of dif
ent theoretical tools. Classical density-functional theory tu
out to provide a useful framework since it gives a unifi
description of fluid and solid phases.3 Thus far, however,
effort has been mainly concentrated on the developmen
accurate free energy density functionals for thre
dimensional models, most notably hard spheres, and r
tively successful approximations have been constructed4–8

These approximations give very accurate results for the m
ing properties of hard spheres. When combined with id
borrowed from perturbation theory for fluids,9 these approxi-
mations provide an accurate theoretical device with wh
one can predict thermodynamic and structural propertie
model systems of molecules interacting through both rep
sive and attractive interactions.10–12

In perturbation theory the thermodynamic potential o
realistic molecular system is expressed in terms of the t
modynamic and correlation functions of a reference syste9

The importance of the hard-sphere fluid as a useful mode
perturbation theories largely stems from this fact. Know
edge about correlations of the reference system is a b
requirement of the theory. Unfortunately the implementat
of the perturbative program in the context of solids is not
direct as one might think, due to lack of knowledge abo
560163-1829/97/56~5!/2432~9!/$10.00
n-

,
in

bit
te

r-
s

of
-
la-

lt-
s

h
of
l-

r-
.
in
-
sic
n
s
t

correlations in nonuniform phases. Recently an accurate
easy-to-implement perturbation theory for classical thr
dimensional solids has been developed.11,12 The theory has
been shown to provide accurate results for a variety of mo
systems, ranging from Lennard-Jones to very short-range
tractive interaction potentials, intended to mimic real sy
tems ~e.g., colloidal suspensions!. The basic ingredients o
the theory are a new theoretical procedure to approximate
two-body correlation function, together with one of the ava
able density-functional approximations for the hard-sph
solid equation of state and density distribution.

Similar progress for two-dimensional solids is still lac
ing, due in part to the fact that the natural reference system
two dimensions, the hard-disc model, has not been stu
with so much detail.4,13 The nature of the melting transitio
in two-dimensional systems of particles interacting via sho
range potentials, and hard discs in particular, has been s
ied by computer simulation, but it still remains a debat
subject.14–18 On top of that, there is no adequate theoreti
framework providing information on the thermodynami
and correlations of the hard-disc solid. This is a severe li
tation for the successful implementation of the perturbat
program in two-dimensional systems. For example, a str
tured substrate generates a certain amount of order in
adsorbed film, even if the latter is fluid; the precise nature
the ensuing correlations is unknown, and the situation wo
ens if the film becomes solid. This poses some difficulties
the development of any theoretical scheme aimed at a q
titative understanding of film phase behavior.

A few years ago Mederoset al.19 attempted to generalize
the zeroth-order weighted-density approximation, develo
by Tarazona4 to describe the freezing transition in systems
hard spheres and discs, to the study of hard discs in
2432 © 1997 The American Physical Society
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56 2433EQUATION OF STATE OF THE HARD-DISC SOLID
presence of a substrate. Despite the power of the den
functional predictions as regards the qualitative descrip
of the complex adsorption phase diagram, the theory
some limitations. In particular, the description of the prop
ties of the hard-disc solid were rather poor. Obviously, a
attempt at an adequate implementation of perturbation the
for realistic systems demands a more accurate descriptio
the hard-disc solid. The present paper presents a system
study of how the full~second-order! weighted-density ap-
proximation of Tarazona5 can be extended successfully f
hard discs. Recently, Takamiya and Nakanishi20 made a first
attempt along these lines with a view to understanding
structure of a fluid in the environment of a triatomic mo
ecule. However, the hard-disc solid was not studied by Ta
miya and Nakanishi.

In this paper we show that the explicit second-ord
scheme of Tarazona cannot be implemented as directly a
the hard-sphere case, and that the particular nature of
discs requires going beyond the second-order virial appr
mation for the weighted density suggested by Takamiya
Nakanishi. The resulting equation of state for the solid is
relatively good agreement with the computer-simulation
sults obtained by us, and the location of the freezing tra
tion is quite reasonable as compared with the results of
most recent computer work.

The paper is organized as follows. Section II is devoted
a brief presentation of the density functional theory and
ingredients, and we discuss how the weighting function
constructed. In Sec. III we give some details on the appro
mations used to describe the solid phase, and Sec. IV
vides some information pertaining to the constant-press
Monte Carlo simulations used to obtain the equation of st
Section V presents the results and finally in Sec. VI
present some conclusions.

II. THEORY

A. Density-functional formalism

In density-functional theory the free energy of an inhom
geneous system is written as a functionalF@r# of the one-
particle density,r(r ), such that the equilibrium state is give
by the functional minimum with respect to variations
r(r ).3 The functional is constructed using information o
correlations in the uniform phase. Of particular importan
to our subsequent discussion is the two-particle direct co
lation function c(r ,r 8), related to the second derivative o
the free energy by

c~r ,r 8!52b
d2DF@r#

dr~r !dr~r 8!
. ~1!

Here b51/kBT, and DF@r# is the excess free energy ov
the ideal gas, so that the total free energy is

F@r#5F id@r#1DF@r#, ~2!

andF id@r# is the ~exact! ideal gas free energy,

F id@r#5b21E drr~r !$ ln@L2r~r !#21%, ~3!

whereL is the de Broglie wavelength. The excess free
ergy is not known exactly and consequently it has to
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approximated. One crucial point is that an accurate desc
tion of highly nonuniform systems~like solids! requires go-
ing beyond the usual local-density approximation. Vario
schemes have been proposed to take into account cor
tions in nonuniform systems approximately; these are
viewed in Ref. 3. One of the most successful approache
the weighted-density approximation~WDA! of Tarazona,4,5

which approximatesDF in terms of a local-density-like ex
pression but uses an averaged~or weighted! density r̄ (r ):

DF@r#5E drr~r !DC„ r̄ ~r !…. ~4!

In Eq. ~4!, DC(r) is the excess free energy per particle o
uniform system of densityr. The weighted density is calcu
lated as a spatial average of the one-particle density,

r̄ ~r !5E dr 8r~r 8!w„ur 82r u; r̄ ~r !…, ~5!

wherew(r ;r) is a weighting function. The weighting func
tion is chosen such that the free-energy functional recov
the correct direct correlation function in the uniform limi
The two basic ingredients of the WDA functional for a give
model system are thenDC(r) and c(r ;r) for the corre-
sponding uniform system, which are supposed to be kno
For hard spheres one can use the quasiexact Carna
Starling equation of state together with the~closed! Percus-
Yevick expression for the direct correlation function.

The above scheme has provided very successful appr
mations for the thermodynamic and structural properties
systems of hard spheres in the presence of various type
external potentials.21 When the external potential is zero, th
theory predicts a spatially self-structured phase which
identified as the hard-sphere solid, studied from the six
by computer simulation.22,23 In fact, good agreement be
tween the various versions and extensions of WDA the
and simulation has been found as regards the location of
transition, the equation of state, and the Lindema
parameter.3

The construction of WDA theories relies heavily on th
availability of accurate closed expressions for the free ene
and correlation function of the uniform system. Undoubted
the availability of the Percus-Yevick approximation fo
c(r ;r) and the Carnahan-Starling quasiempirical express
for DC(r) has permitted the implementation of the WD
ideas into quantitatively successful functionals. However,
situation is not so satisfactory in the case of hard discs: Th
is no such thing as a Carnahan-Starling expression, and
Percus-Yevick theory does not provide a closed-form f
mula. Naturally this is an upsetting complication, but not
impediment, since at least one can obtain the necessary
modynamic and structural ingredients numerically.

B. Properties of the hard-disc fluid

A number of theories have been proposed to account
the thermodynamic properties of the hard-disc fluid.24 Except
for scaled-particle theory~which is known to be inaccurate a
high density!, all these approaches are based on particu
resummations of the virial series. The standard procedur
based on the fact that knowledge of the first few virial co
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2434 56E. VELASCO AND L. MEDEROS
ficients~either analytically or by simulation! permits the con-
struction of accurate Pade´ approximants for the compress
ibility factor Z(r),

Z~r!5
11(n50

N anhn

~12h!2 , ~6!

whereh5prs2/4 is the packing function ands is the hard-
disc diameter. The free energy per moleculeDC(r) follows
from Eq. ~6! by integration.9 Theories for the structure of
fluid of hard discs in terms of the direct correlation functi
are much more scarce. This function cannot be obtained
curately by simulation. One obvious choice is the Perc
Yevick approximation to the Orstein-Zernike equation: Ev
though the resulting equation cannot be solved in clo
form, it is possible to obtain the solution numerically witho
much computational effort. A critical issue is that of therm
dynamic consistency. Since there are two independent r
tions between the thermodynamics and the structure fu
tions, consistency should be imposed on the theory
demanding that the two relations be satisfied at the s
time. This is an essentially unsolved problem. In the the
of Baus and Colot25 ~BC!, the direct correlation function is
constructed from a rescaled low-density expression, and
made to be consistent with a Pade´ approximant for the com-
pressibility factor through the compressibility equation. T
virial equation is satisfied only at second order in dens
and so thermodynamic consistency is not complete~it must
be mentioned that, for hard spheres, the Carnahan-Sta
equation of state and the Percus-Yevick direct correla
function also suffer from a similar shortcoming!. However,
since the expression forc(r ;r) provided by BC comes in
closed analytic form, in the following we will take it as ou
reference direct correlation function, together with their Pa´
approximant for the compressibility factorZ(r) and its as-
sociated free energy. Despite the incomplete thermodyna
consistency, the BC compressibility factorZ(r) provides
fairly accurate results at high fluid densities.25

C. Weighting function

In this section we show how to construct a weighti
function for the WDA free-energy functional of hard disc
DifferentiatingDF twice with respect tor(r ) and taking the
uniform limit r(r )→r leads to

c~r ;r!522bDC8~r!w~r ;r!2rbDC9~r!

3E dtw~ ur2tu;r!w~ t;r!22rbDC8~r!

3E dtw~ ur2tu;r!
]w~ t;r!

]r
. ~7!

Now the WDA strategy consists of optimizing the weightin
function so as to reproduce the correct direct correlat
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function in this limit. Taking c(r ;r)5cBC(r ;r),
DC(r)5DCBC(r), and Fourier transforming the above e
pression, we obtain

cBC~q;r!522bDCBC8 ~r!w~q;r!2rbDC BC9 ~r!

3@w~q;r!#222rbDCBC8 ~r!w~q;r!
]w~q;r!

]r
.

~8!

For each wave vectorq, this is a differential equation inr,
with w(q;r) as the dependent variable, which is solved n
merically. This approach was used by Curtin and Ashcro6

in their version of the WDA for hard spheres. Now the n
merically exact weighting function inq space is transformed
back to real space to give the weighting function which
produces the ‘‘correct’’~i.e., BC! direct correlation function.
The latter can be used in Eq.~5! to compute the average
density. However, this is not the approach we will follo
since, from a practical point of view, the full density depe
dence of the weighting function is not easily handled in a
tual calculations; this is the reason why it is convenient
introduce a density parametrization, based on a trunca
virial expansion forw(r ;r):

w~r ;r!5w0~r !1w1~r !r1w2~r !r21•••. ~9!

The coefficientswn(r ) can be obtained order by order if Eq
~8! is expanded in powers ofr. Using

cBC~q;r!5c0~q!1c1~q!r1c2~q!r21••• ~10!

and

bDCBC~r!5 f 1r1 f 2r21 f 3r31•••, ~11!

explicit formulas for the virial coefficientswn(q), with

w~q;r!5w0~q!1w1~q!r1w2~q!r21•••, ~12!

are obtained in terms ofcn(q) and f n by identifying powers
of r. The first three coefficients are

w0~q!52
c0~q!

2 f 1
, ~13!

w1~q!52
c1~q!14 f 2w0~q!12 f 2@w0~q!#2

2 f 1@11w0~q!#
, ~14!

and

w2~q!52$c2~q!16 f 3@11w0~q!#w0~q!

14 f 2@112w0~q!#w1~q!

12 f 1@w1~q!#2%/$2 f 1@112w0~q!#%. ~15!

Transforming Eq.~12! back to real space provides the ne
essary coefficientswn(r ).

In practice, Tarazona used the exactw0(r ) and w1(r )
coefficients in his theory for hard spheres and optimiz
w2(r ) in such a way that the high-density behavior of t
resultingc(r ;r) were in agreement with the Percus-Yevic
result. This strategy yields direct correlation functions in re
sonable agreement with the aimed-at Percus-Yev
function,5 except at high density. A similar approach w



C
h

ia

fo
ch

at

re

th
ly
in
itio
-

o
n-

on
ur
di
c

c-

i

m

cle
r t
y
e

e,
;

n
id

ial
rs

-

ry
nt
of

g-
tion;
ort-

56 2435EQUATION OF STATE OF THE HARD-DISC SOLID
followed by Takamiya and Nakanishi20 ~TN! to construct a
corresponding functional in two dimensions, using the B
direct correlation function and equation of state as input. T
first virial coefficientw0(r ) follows directly by identifying
the coefficient of the density-independent term in the vir
expansion of Eq.~7! and usingc0(r )52Q(r 2s). We ob-
tain

w0~r !5
1

ps2 Q~s2r !. ~16!

An alternative method to findw0(r ) is to use Eq.~13! with
f 15ps2/2 and

c0~q!5E drc0~r !eiq•r52
2p

q
J1~qs!, ~17!

and then apply inverse Fourier transform. TN used
w1(r ) a parametrized form fitted to the exact function, whi
follows from Eq.~14!. Finally, following Tarazona, TN op-
timized w2(r ) using a simple parabolic form, truncated
r 5s:

w2~r !5H a01a1r 1a2r 2, r ,s,

0, r.s.
~18!

However, the approximation forc(r ;r) obtained with this
approach is rather poor, even at moderate densities. Figu
depicts the BC and TN direct correlation functions26 at two
different densities. We note the gross discrepancy in
whole interval inr . The TN parametrization worsens rapid
for increasing density~note that the densities considered
the figures are within the expected range where the trans
to the solid phase should occur!. The disagreement is par
ticularly acute forr .s; the nonvanishing tail in the TN
direct correlation function is partly due to the truncation
thew2(r ) coefficient atr 5s which generates a noncompe
sated structure through the convolution equation~7!.27

On the basis of the results presented in Fig. 1, we c
clude that the TN parametrization is not suitable for our p
poses: Since we are interested in describing the hard-
solid, it is of paramount importance to use a weighting fun
tion which reproduces faithfully the direct correlation fun
tion in the entire density range up to the solid regime~i.e.,
r;1s22; we note that the close-packing density for discs
rcp'1.15s22). The TN approximation forw2(r ) is not flex-
ible enough, in that the absence of a tail forr .s prevents an
adequate cancellation of the tail inc(r ;r).

To improve the fitting, we have to use a different para
etrization. Let us consider the extended virial expansion~9!.
Various strategies are possible at this stage. It seems
that the first two coefficients should be kept exact in orde
reproduce both the limitw(r ;r50) and the correct densit
dependence at low density. In the following we will consid
parabolic ~truncated at second order in density! and cubic
~truncated at third order! parametrizations. In the latter cas
the coefficientsw2(r ) andw3(r ) can be optimized together
one could keep the exactw2(r ), obtained from Eq.~15! and
optimizew3(r ), but this is not so flexible a parametrizatio
and we have chosen to use the first strategy since it prov
better results.
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To optimize the coefficients we used parametrized vir
coefficients containing a few variational paramete
w2(r ;$l i%) and w3(r ;$m i%) and minimized in the least
squares sense; i.e., we minimized the function

Sc~$l i%,$m i%!5(
kl

W~r k ;r l !@cBC~r k ;r l !

2c~r k ;r l ;$l i%,$m i%!#2, ~19!

whereW(r ;r) is a weight function~to put more emphasis in
particular regions ofr and r during the minimization! and

FIG. 1. Direct correlation function of the Baus-Colot theo
~solid line! and the corresponding predictions from differe
weighted-density approximation theories using different forms
the weighting function and for two different densities. The lon
dashed line corresponds to the Takamiya-Nakanishi approxima
the dotted line is our parabolic approximation, whereas the sh
dashed line corresponds to our cubic approximation.~a! rs250.8,
~b! rs250.9.
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2436 56E. VELASCO AND L. MEDEROS
c(r k ;r l ;$l i%,$m i%) is obtained from the functional, Eq.~7!.
Different parametrizations forw2 and w3 and different
weight functionsW were used, but the accuracy of the
was not satisfactory. In particular, the resulting direct cor
lation function~not shown! does not follow the reference BC
function for r>s very accurately. We believe the reason f
these discrepancies is twofold:~i! the real-space~double! in-
tegrals~7! connecting the direct correlation function and t
weighting function in real space are sensitive to the num
cal approximations used to evaluate them, and~ii ! the mini-
mization is numerically difficult since the functionSc in Eq.
~19! shows a shallow minimum with respect to the var
tional parameters.

An alternative strategy is to make direct use of the ex
weighting function and perform an optimization wit
w(r ;r) instead ofc(r ;r) as target function; since we hav
the exact weighting function in real space, obtained from
~7!, we can minimize

Sw„$ŵi~r !%…5(
l

$wBC~r ;r l !2@w0~r !1w1~r !r l

1Dw„r l ;$ŵi~r !%…#%2, ~20!

where the exact first two virial coefficientsw0(r ) and
w1(r ) are retained and the minimization is performed at e
value of r with respect to the variational paramete

$ŵi(r )%, i 52,3, . . . ,K11. The sum is extended over a de
sity grid $r l%, l 50,2, . . . ,N, with r l5 lh, h50.1. The func-
tion Dw can be taken as a polynomial inr,

Dw„r;$ŵi~r !%…5 (
k51

K

ŵk11~r !rk11, ~21!

so that the ~optimized! coefficients ŵi(r ),
i 52,3, . . . ,K11, give approximate~or resummed! higher-
order virial coefficients for the weighting function~in the
following the caret onw will be dropped, and so it is to be
understood thatwi , i>2, are the weighting function viria
coefficients resulting from the least-squares fit!. In principle
one can include as many coefficients as desired but, as m
tioned earlier, we have limited ourselves to the casesK51
~parabolic approximation! andK52 ~cubic approximation!.
The method has the advantage that, by retaining the e
first two coefficients and, in particular, the zeroth-order c
efficient, the discontinuity of

wBC~r ;r!2w0~r !2w1~r !r ~22!

is largely suppressed. The reason is that, in a thermodyn
cally consistent theory~i.e., a theory with an equation o
state and a direct correlation function compatible at the le
of both the virial equation and the compressibility equatio!,
the whole discontinuity ofw(r ;r) at r 5s is collected by
w0(r ) only; thus, wn(r ), with n51,2, . . . , should be con-
tinuous functions atr 5s. Since the BC theory provides con
sistent expressions forbDC(r) andc(r ;r) with respect to
the compressibility equation, but is consistent only up to s
ond order with respect to the virial equation, it is possib
that the above procedure generates small discontinuitie
the higher virial coefficientswn(r ), n.1.
-
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Figure 2 shows the virial coefficients which result fro
the above procedure. In Fig. 2~a! the fitting was limited to
only one functionw2(r ), corresponding to the parabolic ap
proximation. In Fig. 2~b! we include two functionsw2(r )
and w3(r ), corresponding to the cubic approximation. No
that in both cases we used the exactw0(r ) andw1(r ) virial
coefficients@depicted in Fig. 2~a!#. As expected, the coeffi
cientsw2(r ) andw3(r ) show a small discontinuity, althoug
from the figure this is not evident in thew2(r ) corresponding
to the cubic approximation.

Figure 1 also contains the direct correlation functions c
culated from the above parabolic and cubic approximatio
Note that in both cases ther .s tail is almost completely
suppressed, but there is an important difference between
two approximations at small distancesr , the cubic approxi-
mation giving a better agreement with the reference BC
rect correlation function in this region. We may conclu
that the parabolic approximation~9! is too simple to accoun

FIG. 2. ~a! Weighting functionsw0(r ) ~solid line!, w1(r ) ~dot-
ted line!, andw2(r ) ~dashed line! used in our parabolic approxima
tion for the weighting function.w0(r ) and w1(r ) are the exact
functions appearing in the virial expansion of the weighting fun
tion, whereasw2(r ) is the optimized function obtained from a leas
squares fit to the Baus-Colot reference weighting function using
parabolic approximation.~b! Optimized weighting functions
w2(r ) ~solid line! andw3(r ) ~dotted line!, using the cubic approxi-
mation for the full weighting function.
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56 2437EQUATION OF STATE OF THE HARD-DISC SOLID
for the rapid density variations ofc(r ;r) in the density range
of interest~viz., r/rcp;0.78, compared with 0.74 for har
spheres!. The discrepancy at short distances of the parab
approximation is, as will be shown later, crucial and affe
the results for the solid properties quite substantially. The
fore, it is neccessary to go beyond the parabolic approxi
tion and include an additional virial term in the weightin
function.

Once the weighting function coefficients have been
tained there remains the problem of extracting the avera
density from Eq.~5!, which defines it in implicit form:

r̄ ~r !5E dr 8r~r 8!w„ur2r 8u; r̄ ~r !…

5 r̄ 0~r !1 r̄ 1~r ! r̄ ~r !1 r̄ 2~r !@ r̄ ~r !#2

1 r̄ 3~r !@ r̄ ~r !#31•••, ~23!

where the virial averaged densitiesr̄ i(r ) are defined by

r̄ i~r !5E dr 8r~r 8!wi~ ur 82r u!. ~24!

The value of the averaged density at some pointr , r̄ (r ), is
given by the~possibly multiple! roots of the polynomial

r̄ 01~ r̄ 121! r̄ 1 r̄ 2~ r̄ !21 r̄ 3~ r̄ !31•••50. ~25!

Truncation of the polynomial at second order leads to
second-degree equation, with only one physically accept
solution:

r̄ 5
2 r̄ 0

12 r̄ 11A~12 r̄ 1!224 r̄ 0 r̄ 2

. ~26!

The cubic approximation leads to a cubic equation, wh
acceptable solution can be found by using a simple New
iterative scheme:

r̄ [k11]5 r̄ [k]2
r̄ 01~ r̄ 121! r̄ [k]1 r̄ 2@ r̄ [k] #21 r̄ 3@ r̄ [k] #3

r̄ 12112 r̄ 2@ r̄ [k] #13 r̄ 3@ r̄ [k] #2
,

k50,1,2,. . . , ~27!

and starting from the initial guessr̄ [0] provided by the qua-
dratic approximation~26!.

III. SOLID PHASE

Our treatment of the solid phase is based on a real-sp
representation for the density distributionr(r ) in terms of
ic
s
-

a-

-
ed

a
le

e
n

ce

Gaussian peaks centered at the lattice sites$R% of a regular
triangular lattice,

r~r !5S a

p D(
R

e2a~r2R!2
, ~28!

wherea is a variational parameter, related to the Gauss
width. This approximation, which closely follows that o
previous studies of the hard-sphere crystal, ensures a nor
ization of one molecule per lattice site. For the fluid pha
a50.

The virial averaged densitiesr̄ i(r ) are obtained as fol-
lows. Using Eqs.~24! and ~28!,

r̄ i~r !5S a

p D(
R

E dr 8e2a~r82R!2
wi~ ur 82r u!

5S a

p D(
R

E dr 8e2a~r82~R2r !!2
wi~r 8!

5S a

p D(
R

E
0

`

dr8r 8wi~r 8!e2a~r 821uR2r u2!

3E
0

2p

df8e2ar 8uR2r ucosf8. ~29!

Now, introducing the modified Bessel function of zeroth o
der, I 0(x), with integral representation

I 0~x!5
1

2pE0

2p

dfexcosf, ~30!

we have

r̄ i~r !52a(
R

E
0

`

dr8r 8wi~r 8!e2a~r 82uR2r u!2

3@e22ar 8uR2r uI 0~2ar 8uR2r u!#. ~31!

The function between square brackets behaves smoothly
values of its argumentx52ar 8uR2r u in the whole interval
0<x,`, though it decays slowly withx; it can be computed
numerically with high accuracy using asymptotic expansio
and power series. The integral overr 8 can be approximated
by Gaussian quadrature in the intervals 0<r 8<uR2r u and
uR2r u<r 8,` separately.

The integrals involved in the free-energy calculatio
were also computed using quadratures. Using the form~28!
for the ~periodic! density distributionr(r ), we have
bF5E drr~r !$ ln@L2r~r !#211bDC„ r̄ ~r !…%5S a

p D(
R

E dre2a~r2R!2
$ ln@L2r~r !#211bDC„ r̄ ~r !…%

5NS a

p D E
all space

dre2ar 2
$ ln@L2r~r !#211bDC„ r̄ ~r !…%

5NS a

p D E
0

`

drre2ar 2E
0

2p

df$ ln@L2r~r ,f!#211bDC„ r̄ ~r ,f!…%. ~32!
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Taking advantage of this factorization, the integrals over
and f can be approximated numerically using differe
quadratures. This is convenient, since in the solid phase
r dependence of the integrand is very strong, whereas
angular dependence is much smoother. The angular inte
was computed using a 12-point trapezoidal rule, whereas
integral overr was approximated using an especially co
structed 6-point quadrature formula involving orthogon
polynomials in the interval@0,̀ ) with respect to the weigh
function exp(2ar2). The accuracy of these quadratures w
checked independently against Monte Carlo integrati
over the unit cell.

IV. SIMULATION DETAILS

Phase transitions in purely two-dimensional systems h
continued to prompt a large amount of interest in rec
years. A basically unsolved problem concerns the natur
the freezing transition in systems of molecules interact
via short-range forces. Since the pioneering work by Ald
and Wainwright,22 several computer studies have been u
dertaken in an effort to unveil the character of the transiti
However, different research groups, using different simu
tion techniques, have reported results which are at varia
with each other. The basic problem is related to the la
amplitude of transitional fluctuations and its depende
with the system size. Although there seems to be a conse
that the freezing transition in hard discs is weakly first ord
there is some recent work supporting the second-order na
of the transition.18 In the present work we do not intend t
add any new contribution to that forum. Rather, we wish
concentrate on the solid phase with a view to obtaining
curate data for the equation of state and the mean-sq
molecular displacement. To our knowledge, there are no
curate simulations on the equation of state of the hard-
solid which can be used to support our density-functio
results.

Standard constant-pressure Monte Carlo simulation28

were performed on systems of hard discs with a range
system sizes. The technique involves random displacem
of the discs and global changes in area, to ensure the
equilibrium at the specified constant external pressure. F
given value of the pressure, the simulations provide the e
librium density and also structural properties like two-bo
distribution functions. The simulations for the fluid pha
were performed on systems of 700 discs, spanning typic
23105 steps per disc. Selected checks were performed
systems an order of magnitude larger, but no significant s
tem size effects were observed. Typical errors involved
the density were of order 0.01s22.

In the solid phase simulations required considera
larger systems and longer runs than in the fluid. Typica
our systems contained 10 864 discs. As observed by o
groups, the evolving density took inordinate amounts
computer time to fluctuate about an average, constant va
and this was especially so close to the phase transition.
simulations also provided the root-mean-square displa
ments about the lattice sites,^r 2&; from the latter the Gauss
ian width parametera can be estimated asa51/̂ r 2&. The
mean-square displacement was observed to exhibit l
fluctuations, leading to extremely long relaxation times.
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our simulations we used special bookkeeping techniq
such as link cells. Also, at high densities, an efficie
constant-neighbor technique was used where, for a mov
disc, overlaps were checked only with its nearest neighb
the identity of the latter taken as fixed during the who
simulation~this method assumes no defects are created;
validity of this assumption was explicitly checked as t
simulation proceeded!. The length of the runs was typicall
106 Monte Carlo steps per state point, with a few selec
checks using longer runs. The errors in the density w
estimated to be;0.004s22 at low mean densities an
;0.002s22 at the highest densities.

V. RESULTS

Figure 3 shows the equation of state,P(r), of both the
fluid and solid branches. In the case of the solid phase,
include the results obtained from the TN approximation a
our quadratic and cubic approximations~note that all three
approximations reduce to the BC theory in the uniform lim
i.e., in the fluid phase!. Also shown are our computer simu
lation results. In the fluid phase the BC equation of state g
through the simulation points. The cubic theory is quite a
curate and improves upon the results of the parabolic
proximation. The TN equation of state, on the other ha
slightly overestimates the pressure and does not seem
show the correct curvature.

The results for the freezing transition, indicated in Fig
by line segments, are summarized in Table I. Note the la
discrepancy between the parabolic and cubic approxi
tions, both in the location of the transition and in the dens
gap. The location predicted by the cubic approximation
much closer to the simulation results15 of r l50.887s22 and
rs50.904s22, but the density gap is still very much overe
timated; i.e., the transition is predicted to be too strongly fi

FIG. 3. Equation of state of the hard-disc system in the fluid a
solid density ranges. Open circles correspond to our const
pressure Monte Carlo simulations. The solid line is the equation
state obtained from the Baus-Colot theory~for the fluid phase! and
our proposed cubic parametrization of the weighting function~for
the solid phase!. The dotted line corresponds to the quadratic p
rametrization, and the dashed line is the equation of state comp
using the Takamiya-Nakanishi weighting function.
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order. Even though the solid density is very accurate,
fluid density is;5% lower than the simulation result. O
course we do not expect the density-functional approxim
tion to give accurate predictions for the freezing transitio
for the following reasons:~i! Fluctuation effects, not in-
cluded in the mean-field-like density-functional theory, a
very important in two dimensions, and~ii ! the presence o
defects, its dynamics, and mutual interaction might unde
the freezing mechanism in two dimensions, according to
Kosterlitz-Thouless-Halperin-Nelson-Young theory, a
change qualitatively the freezing scenario from that o
simple first-order transition; these effects are not taken c
of in our theory either. However, our theory should beco
more accurate as soon as the density is sufficiently high
the presence of defects and fluctuations is negligible
does not play any role.

As regards the behavior of the Gaussian width parame
the results from the density-functional minimizations and
simulations are pictured in Fig. 4. We again stress the d
culty involved in estimating this parameter with good acc
racy by simulation: Only at high density was it possible
obtain fully equilibrated values~fluctuating around a stabl
mean value!; at low density our simulations are probably to
short to produce stable mean values. Despite these cons
ations, it is clear from the figure that the density-function
results substantially overestimate the simulation data. Th
to be expected since, as already discussed, fluctuation
fects must have a large influence in the properties of the s
phase, especially close to the transition. Since the Gaus
width parameter is the inverse mean-square displacem
fluctuations tend to reduce thea parameter. A similar behav
ior, namely, the overestimation of the Gaussian width,
observed in the three-dimensional case; however, the e
is reduced in this case due to the higher dimensionality.

A standard way to combine the mean-square displacem
to the mean distance between neighbors,a, is the Lindemann
parameterL5^r 2&1/2/a. According to Toxvaerd,29 diffusion
in a ~soft! repulsive solid sets in whenL;0.18; taking this
~arbitrarily! as the critical point where the crystal melts,30 we
can compare it with our value forL at the transition,
L50.148~Table I!, and conclude that the density-function

TABLE I. Results for the freezing transition of hard discs fro
the different weighted-density approximations considered in
paper and the computer simulations of Alder and Wainwright~Ref.
22!, Hoover and Ree~Ref. 23!, and Zollweg, Chester, and Leun
~Ref. 15!. r l andrs are the fluid and solid densities at coexisten
respectively;Dr/r l is the density gap at the transition, relative
the density of the fluid;L is the Lindemann parameter of the sol
at the transition, defined byL5(rsA3/a)1/2. TN, Takamiya-
Nakanishi weighting function;parabolic, our parabolic approxima-
tion ~see text!; cubic, our cubic approximation~see text!.

Theory r ls
2 rss

2 Dr/r l L

TN 0.957 1.005 0.050 0.058
parabolic 0.907 0.984 0.085 0.095
cubic 0.843 0.907 0.076 0.148
Alder and Wainwright 0.880 0.912 0.036 -
Hoover and Ree 0.878 0.922 0.050 -
Zollweg et al. 0.887 0.904 0.019 -
e
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theory at least provides a qualitatively correct Lindema
parameter at melting. Note that the results obtained with
TN and the parabolic approximation for the weighting fun
tion are significantly smaller~see Table I!.

VI. SUMMARY AND CONCLUSIONS

In summary, we have presented an extension of the id
of the weighted-density approximation for the free-ener
density-functional of hard spheres to their two-dimensio
counterpart, the hard-disc system. We have shown that
crucial both to perform a careful optimization of the weigh
ing function virial coefficients and to go beyond the qu
dratic approximation for the weighting function in order
accurately reproduce the direct correlation function in
uniform limit which is, together with the fluid equation o
state, the basic ingredient of the theory. As comparison w
our computer simulation results indicates, the improv
theory shows much better agreement for the equation of s
than the quadratic approximation. Also, even though
density-functional theory does not contain fluctuatio
~which makes any attempt to make a quantitatively meani
ful comparison with simulation futile!, it seems that the ac
curate implementation of the uniform direct correlation fun
tion into the functional is important to reproduce the locati
of the phase transition. Results of comparable accuracy h
been obtained by Tejero and Cuesta31 using a different
density-functional approximation. This is to be contrast
with the three-dimensional case, where despite the quan
tively inaccurate behavior of the direct correlation functi
resulting from the parabolic approximation at high densi
the weighted-density-approximation results for the locat
of the phase transition and equation of state are more a
rate.

The present form of the functional can be used as a
erence system for the study of a variety of problems, incl

FIG. 4. Gaussian width parameter of the solid phase as a fu
tion of density. Solid line, cubic approximation; dashed line, pa
bolic approximation; dotted line, Takamiya-Nakanishi approxim
tion; open circles, results from our Monte Carlo runs.
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ing the description of more realistic two-dimensional sy
tems, e.g., Lennard-Jones molecules, and the behavio
films adsorbed on substrates of different symmetry and
tice parameter. In the latter case the difficulties involved
the accurate description of the freezing transition in tw
dimensional systems disappear due to the presence of a
strate.
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