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Isotope dependence of the lattice parameter of germanium
from path-integral Monte Carlo simulations
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The dependence of the lattice parameter upon the isotope mass for five isotopically pure Ge crystals was
studied by quantum path-integral Monte Carlo simulations. The interatomic interactions in the solid were
described by an empirical potential of the Stillinger-Weber type. At 50 K the isotopic effect leads to an
increase of 2.810 % A in the lattice parameter of’Ge with respect td®Ge. Comparison of the simulation
results with available experimental data fdGe shows that the employed model provides a realistic descrip-
tion of this anharmonic effect. The path-integral results were compared to those derived from a quasiharmonic
approximation of the crystal. Within this approximation, the calculated fractional change of the lattice param-
eter of "“Ge with respect to a crystal whose atoms have the average mass of natural Ge amounts to
Aal/a=—9.2x107% at T=0 K. Some limitations of the quasiharmonic approximation are shown at tempera-
tures above 200 K.S0163-182807)01725-9

I. INTRODUCTION effects upon the lattice constant of solid nedfiNe and
2Ne),'* and on the melting curves of heliunfHe and
The availability of isotopically pure crystals with low car- 3He).»> An alternative approach to study anharmonic effects
rier and impurity concentrations has allowed in the last year$h solids is the so-called quasiharmonic approximation
the investigation of isotope effects on lattice dynamical andQHA).* In this approximation, frequencies of the vibra-
electronic properties of semiconductdrBue to zero-point tional modes in a crystal are made volume dependent, and
motion, the atoms in a solid feel the anharmonicity of thefor given volume and temperature, the crystal is assumed to
interatomic potentials even at low temperatures. Thereford?® harmonic. _ _ .
the lattice parameters of two chemically identical crystals 1€ purpose of the present work is twofold: first, to obtain
formed by different isotopes do not coincitié, heavier iso- the change in lattice constant for different Ge isotopes by a

topes having smaller zero-point delocalizati@s expected mhanyk-kiﬁdy C?(I;_:tmat'fog]PlMi :|;nu(|jat|on_$t,) a?r? secr(])nd o
in a harmonic approximatiorand smaller lattice parameters check the validity of the Q 0 describe the anharmonic

(an anharmonic effeitMoreover, phonon-related properties effects which appear in crystals at finite temperatures. Thus,

such as thermal expansion or melting temperature. are e)(()_ne can discriminate between anharmonic effects due to ther-
P X 9 P ' mal expansion of the latticétreated in the QHA by the
pected to depend on the isotope mass.

. : . . renormalization of mode frequencjeand other effects, such

In this context, the existence of mass differences in theas phonon-phonon interactions, not included in the GRIA.
isotope  distribution in the natural materials causes & \ye present several mass-related equilibrium properties of
translatlonal-symmetry breaking, which affects crystal Propssptopically pure Ge crystals, derived from PIMC simula-
erties such as the phonon spectr@phonon energy shifts tions in the isothermal-isobaric ensemble. The interatomic
and band broadeningsand the atomic hopping mobility. potentials are described by an empirical potential of the
These effects have been studied by different experimentatillinger-WeberSW) typel’~°The reliability of this effec-
techniques on germanitrir® and diamon@'®*? single  tive potential has been assessed by comparison of several
crystals, either isotopically pure or intentionally disorderedcalculated crystal propertigghonon dispersion curves, vi-
with controlled isotope concentrations. Also, the study ofbrational density of states, Graisen and elastic constants
order-disorder features in the phonon or electron states of & experimental data. The results obtained in the MC simu-
crystal via isotopes addresses questions such as the applidations for the lattice constant have been compared to x-ray
bility of different theories to weak forms of disordr.

This work is focused on the dependence upon the isotope

. - . TABLE |. Stable isotopes of Ge and their relative abundance.
mass of the lattice parameter in isotopically pure Ge crystals

The germanium isotope_s, their masses and_ re_lative nat“@otope Masgamu Abundance
abundance are shown in Table I. Since this isotope-mass

effect is caused by the quantum nature of the atomic nuclei’Ge 69.92 20.5%
and the anharmonicity of the interaction potentials, a conve!*Ge 71.92 27.4%
nient approach to this question is the path-integral Monte’*Ge 72.92 7.8%
Carlo (PIMC) method, that allows one to study finite- Ge 73.92 36.5%
temperature properties of many-body systems without thé&ge 75.92 7.8%
simplifying assumption of harmonic potentials. In this line, Average,2Ge 72.63

path-integral MC simulations have been reported on isotope
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diffraction data for ““Ge and to those obtained in a QHA was made temperature dependent, and was taken as the inte-
with the same interatomic potential. gral number closest to 1600/ At temperatures higher than
The paper is organized as follows. In Sec. Il we describet00 K, we tookP=4.
the computational methopath-integral Monte Carlo and The interaction between germanium atoms was modeled
quasiharmonic approximatigrthe results and discussion are by a potential proposed by Ding and Andergérslightly
presented in Sec. I, and the paper closes with a summamnodified by Laradjiet alX® to give a lattice parameter at 0 K
(Sec. V). closer to the experimental data. It has the analytical form of
a SW potential® where the set of potential parameters was
adjusted to reproduce some experimental features of germa-
IIl. COMPUTATIONAL METHOD nium, as the cohesive energy of the crystal at 0 K, the den-
A. Path-integral Monte Carlo sity and the elastic constants at atmospheric pressure, and the
radial distribution function of amorphous germanium. This
otential is not adequate to reproduce the properties of liquid
germanium-’

The path-integral Monte Carlo method is based on th
evaluation of the partition function of a quantum system
through a decomposition of its density matrix at a given
temperature intd® (Trotter number density matrices, each
one being evaluated at a higher temperateiie Good re-
views of the method can be found elsewh®&&? The feasi- In the quasiharmonic approximation, the anharmonicity is
bility of the method relies on an isomorphism between theconsidered a weak effect and the phonon frequencies of the
guantum system and a classical one, obtained by substitutiamrystal are renormalized by taking into account the thermal
of each quantum particl@.e., atomic nucleus in the present expansiort® The vibrational free energy of a crystal of vol-
contex) by a cyclic chain ofP classical particlesbeads.  umeV and isotope masM, at temperaturd, is given by®
We denote byj the index, running from 1 té®, that labels
sequentially the beads of the cyclic chains. Interatomic inter-
actions in the classical isomorph are then restricted to beads
of different chains sharing the same lakelMoreover, a

B. Quasiharmonic approximation

1 1
F(V,T,M)=Uq(V)+, Shoi(a)+ EkBT
q,l

given bead in a chain interacts harmonically with the beads _ _
j—1 andj+1 of the same chain with a spring constant XIn{1-exf —fwi(a)/keTl} |, (2)
given by

whereUy(V) is the the potential energy of the crystal with
the atoms fixed at their equilibrium positiorg,indicates a
wave vector within the Brillouin zon€BZ) of the crystal,
andi is the band index. The free energy depends implicitly
whereM is the mass of the quantum particle=(ksT) ',  on the isotope mass through the mass dependence of the
andkg is the Boltzmann constant. Although the isomorphismphonon frequenciesy;(q) <M ~*2 The dependence of each

is exact in the limitP— o, in practice very good approxima- phonon mode;(q) on the crystal volum& is given by the
tions can be obtained at finite temperatures for moderate Va%rijneisen constant;(q),?° defined as:

ues of P.2% In the classical limit, the cyclic chain collapses

k=MP/B%h?, )

into a single point P=1). Note that within the path-integral dInlnw;(q)]

formalism, the dependence of the thermodynamic properties Yild)=— W- ©)
upon the particle maddl enters through the renormalization

of the spring constant. We have calculated the phonon frequencies of Ge by di-

The simulation ofc-Ge was performed on 222X 2 su-  agonalization of the dynamical matrix derived from the SW-
percell of the germanium face-centered-cutiec) cell con-  type potential on a grid of 1140 wave vectors in the irreduc-
taining 64 Ge atoms, with periodic boundary conditions. Weiple part of the BZ. The set of] points were chosen
have checked that there is no significant difference in theiccording to the method of Ref. 3B(V,T,M) was evalu-
calculated lattice parameters when the simulation cell isited by means of Eq2) for a set of volumes and tempera-
taken as a 33 supercell. The Ge nuclei were treated astures, and for each isotope mass. The equilibrium volume
quantum particles interacting through an empirical SW-typeyas then determined by the minimum B{V,T,M) as a
potential(see below Finite-temperature properties were de- function of V for fixed M and T. The same procedure was
rived from Metropolis Monte Carlo samplirfd**~® A employed to evaluate the classical limit of the vibrational
Monte Carlo stegMCS) consists of sequential moves @f  free energy within the QHA. The Gneisen constants were

the beads associated to each nucléisthe center of gravity  determined from Eq(3) by numerical differentiation.
of the cyclic chain associated to each nucleus, @ingthe

logarithm of the volume of the simulation céll.After an
initial equilibration of 5x10* MCS, the calculation of en-
semble average properties was performed ovel @ MCS. To characterize the interatomic potential employed in our
The simulations have been performed in a temperature ranggmulations'® we have calculated the phonon dispersion
between 50 K and 600 K, and at constant pressiratm). curves, the phonon density of states, thér@igen constants,
Natural germanium was modeled by setting a value for thes well as the elastic constants and bulk modulus of an
atomic massM =72.63 amu, corresponding to the average®Ge crystal. The phonon dispersion curves along several
mass of natural germaniuni¥Ge). The Trotter numbelP symmetry directions in the BZ are shown in Fig. 1. These

Ill. RESULTS AND DISCUSSION
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FIG. 1. Phonon dispersion curves Ye along several symme- g 3. Calculated Gmeisen constants oGe along several

try direction.s in the irreducible Brillouin zone. Dotted .Iines are symmetry directions in the BZ. Black circles are experimental re-
results obtained from the SW-type potential. The experimental results (Ref. 31.

sults(Ref. 31 are shown by open symbols.

tal curve by about 67 cirt toward higher frequencies.
curves are almost identical to those presented by Ding and The calculated Gmeisen constants for the optical and
Andersen’ who employed a potential slightly different from acoustic modes of'Ge are shown in Fig. 3 along several
that used in the present work. The frequencies predicted fadirections in the BZ, and are compared to available experi-
the optical modes are larger than the experimentamental datd’ The employed SW-type potential predicts
values’3132y about 2 THz(67 cnmY). The employed po-  Grineisen constants for the optical modes that are about 0.35
tential model reproduces well the dispersion of the acoustitower than the experimental valugd’ The calculated G+
modes near th& point. However, near the boundary of the eisen constants for the acoustic modes amount to about 0.4
BZ, the acoustic modes are found at higher frequencies thamlong the direction§100] and[111] in the BZ. The value
experimental modes. Ding and AnderSeshowed that it is  found at thel" point is in good agreement with the experi-
not possible to fit simultaneously the optical-phonon fre-ment. However, at the reciprocal poibt the experimental
quencies and the slopes of the acoustic branches nedr theGruneisen constant is negativabout —0.4. This negative
point, by means of a potential of the SW type. value has important physical consequences for the thermal

The calculated phonon density of states®®e is dis- properties of the crystal, as it is the origin of the negative

played in Fig. 2, and compared to the data derived fronthermal expansion found for Ge at temperatures between 15
inelastic neutron scattering:>® The area of both curves is and 40 K* The SW-type potential is unable to reproduce the
normalized to unity. The maxima of the acoustic and opticanegative thermal expansion of Ge, since it givesr@isen
bands for the phonon density of states obtained from theonstants for the phonon modes that are always positive. In
SW-type potential are shifted with respect to the experimenthis context, it has been sho#ri’ that positive Graeisen

constants are obtained when the magnitude of noncentral

forces(angular forces that stabilize the diamond strugtise

1 T T T T T dominant with respect to that of central forces. The SW-type
potential overestimates the strength of angular forces, as it is

— Experimental not able to reproduce the negative thermal expansion of Ge.

08F | SW potential i This deficiency of the SW potential has been already studied

in a PIMC simulation of silicorf/ In spite of the shortcom-
ings of this kind of interatomic potential, it is much more
suited for finite-temperature simulations of the crystal than
other currently employed potentials, such as the Keating
- model potentiaf® which gives a negative linear thermal ex-
pansion at all temperaturé%
From the slope of the dispersion curves for the acoustic
. modes near thé' point, we calculated the elastic constants
and bulk modulus of“Ge atT=0.® At finite temperatures,
these parameters were obtained within the QHA, by taking
into account the mode-dependent “Geisen constants
vi(Q). The results are shown in Table Il, along with the
Frequency (THz) experimental data at 100 K and 300*k32 The deviation of
the calculated values with respect to the experiment is about
FIG. 2. Phonon density of states 8Ge. The solid line is de- 5% for both the elastic constants and the bulk modulus. We
rived from inelastic neutron scattering dgfef. 33. The dashed have checked that the bulk modulus obtained &« in the
line is the result for the SW-type potential. classical limit from the phonon dispersion curves agrees with

0.6 .

DOS (arbitrary units)

0 2 4 6 8 10 12
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TABLE I1l. Calculated and experimental elastic constants and . . . : .

bulk modulus of®Ge, in units of 18 dyn cm 2. o< 4| /I-

< s OGe af
TemperaturdK) Cus Cuy C Bo o - C T Ge // 2
0 (classical 05893  1.3845 05104  0.8018 : 3T ®Ge I
0 (quantum 0.5879 1.3770 0.5045 0.7953 < - P
100 (quantum 0.5878  1.3763  0.5040  0.7948 5 5 | o // |
100 (expt) 0.6820 1.3120 0.4930 0.7660 :" as °
300 (quantum 0.5867  1.3702  0.4996  0.7898 , - Vd 1
300 (expt) 0.6710 1.2880 0.4830 0.7513 6 1} 2 // .
500 (quantum 0.5852 1.3624 0.4939 0.7834 s L a »u/ |

E B a _S_Ar’//

= 0 o 8
the value found from the change in the potential energy in a n L L L L
homogeneous deformation of the crystal. 0 200 400 600

The temperature dependence of the lattice parameter of Temperature (K)

&Ge obtained by the PIMC simulations and by the QHA is
presented in Fig. 4 for both the classical and the quantum

treatments of the Ge nuclei. The quasiharmonic results ShoY\\fveen the lattice parameter obtained in the PIMC simulations and in

an ovgrall agreement with .the PIMC data. However, a sysy, QHA. Results are shown fdfGe, *Ge, and’®Ge. The dashed
tematic deviation is appreciable as the temperature increasgs, i 4 guide to the eye
above 200 K. We note that the classical result is independent '
of the isotope mass. At 0 K, we see a non-negligible lattice

. . : . ““anharmonicity of the interatomic potential. An improved pa-
Eal);r:)?\ns\llz?hifezsglcjtt 8)(1?]2 'g t(t)igtealgaegrlr?ettre]? ggtaa?;zly i?]'r?hue'rametrization of the potential would imply to fit, in the clas-
classical limit @=5.648 786 A. This effect is due to the Sical limit at O K, the equilibrium lattice parameter to a value

anharmonicity of the zero-point motion. The dotted line is about 0.006 A smaller than the experimental one. Second,

: . . 4he employed potential predicts a thermal expansion of the
fit to experimental datd: The comparison between the Ge lattice smaller than the experimental one, as shown by the

PIMC re;ults and the experimental data deserves.two COMYitterent slopes of the simulated and experimental curves in
ments. First, at low temperatures, the PIMC data differ fromFig 4

experiment by_ aetl)aout 0.006 A. The employ_ed potentiql for Ge We turn now to compare the PIMC results with the QHA
was parametrized to reproduce the experimental lattice pa- results in order to check the limitations of the QHA. We

f%rg(reétfaorr : (t)hlg dt;(\a/:i:\;?gn tgfet r?;CFI’?;VI ésré:islgczgrgag'(‘ggz'_ have found that the lattice parameters for the isotopically
ment is rélated to the quantum nature of the nuclei and th ure crystals ob.tamed from the PIMC S|mulat|on§ are I_ar_ger
an those obtained from the QHA, and that this deviation
goes up as temperature increases. This difference is shown in
Fig. 5 for three isotopes”Ge,” Ge, and’®Ge. At T=500 K
- the deviation is about 2610 * A, which is of the same
----- Exp. - order as the change in the lattice parameter due to the isotope
5665L | @ Quantum e mass(see below. The difference between the QHA and the
o Classical ,«3 PIMC results is due to anharmonic effects not taken into
--~- QHA p,;%r" account in the QHA. The data in Fig. 5 show that these
5.66 | 4 . effects do not depend on the isotope mass and are significant
above 200 K. Another evidence of anharmonic effects not
S included in the QHA can be obtained by plotting the
potential-to—kinetic-energy ratio derived from the PIMC
g simulations vs. temperature. This ratio is shown in Fig. 6 for

ses L7 | three isotopes?’Ge, "°Ge, and"®Ge. The energy ratio in-

R creases with temperature, departing appreciably from the
value expected in a harmonic or quasiharmonic approxima-
5.645 L L L : tion, where it should be unity irrespective of temperature
200 400 600 (virial theorem).
In the following, we present the results derived from the
PIMC simulations and the QHA for the isotopic effect on the

FIG. 4. Temperature dependence of the lattice parameter (J]attice constant of isot_opically pure crystals. In the fra”.‘e'
&Ge. The dotted line corresponds to a fit to x-ray diffraction data\’vork of the QHA of solids, the difference between the lattice

(Ref. 31). The open squares are results from the quantum MC Simupararpﬁeters corresponding to an isotope SHMS‘md the iso-
lations. The circles are results of the classical MC simulation. ThdOP€ “Ge (taken as referengés given by"

dashed and dash-dotted lines are results obtained in the quantum
and classical quasiharmonic approximation, respectively. a(MGe) —a("%Ge)=C(T)[M ~¥2-78m ~12], (4)

FIG. 5. Temperature dependence of the difference found be-

5.67 T T T T

56551

Lattice parameter (A)
1
&)

Temperature (K)
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FIG. 8. Fractional change of the lattice parametka/a, vs

. ) temperature for three different germanium isotopes. Dashed lines

73 76

EIME ;llr_nula_tlons v_;; tetmpiﬁrature f_(?;jGe, Gte and hG?. TI:el i are results obtained from the quantum quasiharmonic approxima-
ashed in€ 1 a guide fo the eye. The continuous horizontal NG, Open symbols represent PIMC simulation results: squares for
represents the result expected in a harmonic or a quaS|harmonb@Ge circles for “Ge, and triangles for®Ge. Solid circles are

approximation. experimental results fof‘Ge (Ref. 5. The continuous horizontal

line represents the classical limiA&=0).

FIG. 6. Potential-to—kinetic-energy ratio obtained from the

whereC(T) is a temperature-dependent constant, idl is

the mass of the isotop€Ge. In Fig. 7, we show this lattice . L
parameter increment for the different Ge isotopes versus thté:‘e systematic deviation between the PIMC and QHA results

M .
inverse square of the isotope mass for several temperaturdSF &(" G€) found at temperatures above 20Qs¢e Fig. 4
as derived from the PIMC simulations and the QHA. In this@0€S not depend on the isotope mass, and therefore it disap-

figure, the value of the lattice constaat°Ge) taken as ref- pears in thg subtraction given by Ed). Within the statisti-
erence was obtained from a least-squares fit of the dai | uncertainty Of. our smulgthn results, both PIMC anq
a(MGe), obtained for the different isotopes, to a linear equa- HA qata shown in Fig. 7 comc!de. As expec_ted, the_ max-
tion cM~Y2+d. In this way, the statistical noise in the sub- MUM isotope effect on the lattice constant is obtained at

traction of the left-hand side in E¢4) is reduced. Note that T:O. K. .Thus, frqm the results of the qugsmarmomc ap-
proximation, the difference between the lattice parameters of

%Ge and"%Ge atT=0 K is found to be 2.310 4 A. By
T T fitting the results aff=0 (continuous ling to Eqg. (4), we

—
ot L | obtain C(0)=0.047 24 A ami2 At this temperature, we

< 5L i checked that the extrapolation of this equation to infinite
2 mass(classical limi} yields the same lattice parameter as
N i ] that corresponding to the absolute minimum of the employed
P - - SW potential. As temperature increas€¢T) in Eq. (4) (the

8 L slope of the lines in Fig.)7decreases, since the system ap-
3 1k proaches the classical regime, in which the isotope mass ef-
;s/ fect disappears.

, i i The fractional change of the lattice parameter with respect
> - 1 to 2Ge, Aa/a=[a(MGe)-a(*Ge)]/a(*Ge), for "Ge,

@] 5 1 "“Ge, and’®Ge, is presented in Fig. 8 in a temperature range
i ok i between 0 and 350 K. Both PIMC and QHA results are iden-

< . . tical within the statistical uncertainty of the simulation. As

one goes to higher temperatures, the isotopic effect on the
lattice parameter decreases, and the results converge to the
M (amu-?) horizontal thin line(zero fractional change in the lattice pa-
rametey. We show also the experimental data fdGe ob-

FIG. 7. Difference between the latiice parameter of the stabidained by Buscheret al®at T=78 K and 300 K. A compari-
germanium isotopes and that &Ge vs the inverse square of the SON Of the experimental results with those obtained in the
isotope mass for different temperatures. Symbols are results froffuantum QHA is given in Table Ill. The QHA results deviate
the quantum simulations: squares at 50 K, circles at 350 K, an®y about 40% from experiment. We expect that the low val-
triangles at 600 K. Lines are results from the quantum quasiharues of the Groeisen constants of the optical modes of Ge
monic approximation: continuous line at 0 K, dashed at 50 K, dotfound for the SW-type potential are in part responsible for
ted at 350 K, and dash-dotted line at 600 K. this deviation from experimentt**To check this point, we

0.114 0.116 0.118 0.120
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TABLE lIl. Fractional change of the isotopic lattice parameter assumed a Debye spectrum for the acoustic phonons and a

of ™Ge, in units of 10°. constant frequency for the optical phonons. Using the experi-
mental values for these paramet&rsBuschertet al. ob-
TemperaturgK) Expt. value QHA tained a fractional change of 12.0< 10" ® for "“Ge. If we
— — — — 14
78 149+ 03 _89 use the vallies ofyp=0.85, ya—O.A_fO, hwoe=7.04<10
300 63+ 03 37 erg, and®p=310 K (Ref. 42 obtained from our calcula-

tions, the result is\a/a=—9.0x 10 %, in close agreement
with the value obtained from the QHAta0 K of
performed a QHA increasing the Greisen constants of the Aa/a=—9.2x10°.

optical modes by 0.35. The deviation from experiment found

for "“Ge was then reduced by a factor of 2. IV. SUMMARY

In the comparison between the simulation and QHA re- | this contribution we have calculated the lattice param-
sults with experiment, we made the approximation of treateter for the five stable isotopes eiGe. This dependence on
ing natural Ge as*Ge, i.e., the atomic mass was set equal toihe isotope mass is directly related to the anharmonicity of
the average mass of natural germanium. Another approximane interatomic potentials and to the quantum nature of the
tion to the lattice parameter of natural germanium is given by, clei (different zero-point energy for different isotope
the averagga) of the lattice parameters of the pure isotopemasg. The QHA fails to reproduce the MC simulation re-
crystals weighted by their relative abundance. Itis interesting|ts as temperature rises, due to anharmonicities not in-
to note that both results are different, giving"'Ge)<(a).  cluded in this approximation. This translates into simulated
Thus, at T=0 K, the QHA result is (a)—a("Ge) |attice parameters shifted toward values higher than those
=1.4x10"° A, At T=600 K this value is reduced t0 optained from the QHA, and a potential—to—kinetic energy
(a)—a("Ge)=2x10"" A. The results shown in Fig. 8 ratio increasing with temperature. At=500 K, this shift is
would change by less than 3% if we useal) instead of  apout 2.5¢107* A, which is of the same order as the maxi-
a(®'Ge) for defining the fractional change in the lattice pa-mum isotope effect (2:810 4 A), found & 0 K between
rameter. _ _ “Ge and "°Ge. At T=500 K the PIMC potential-to—

It is interesting to compare the QHA results with thoseyinetic-energy ratio is 1.02, i.e., higher than the value 1 cor-
obtained from a theoretical expression derived by Buscherﬁesponding to the QHA. Comparison of the isotopic effect
et al® for the fractional change in the lattice parameter atfound for the lattice parameter to experimental results shows
T=0: a relatively good agreement, given the shortcomings de-
scribed for the employed potential, especially for the iGGru

E: _ _1§A_M yohiwo+ §')’akB®D , (5)  eisen constants of the optical modes, which are underesti-
a Boa® M 4 mated by about 25%.

wherey, andy, are the average Gneisen constants for the
optical and acoustic modes, respectiveBy is the bulk
modulus atT=0 K, wq is the frequency for the optical This work was supported by CICY{Spain under Con-
modes near thE point, and® is the Debye temperature of tract No. PB93-1254. One of 3.C.N) thanks the Ministe-
the crystal. This formula is a simplified QHA where it was rio de Educacio y Cultura(Spain for financial support.
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