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Isotope dependence of the lattice parameter of germanium
from path-integral Monte Carlo simulations
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The dependence of the lattice parameter upon the isotope mass for five isotopically pure Ge crystals was
studied by quantum path-integral Monte Carlo simulations. The interatomic interactions in the solid were
described by an empirical potential of the Stillinger-Weber type. At 50 K the isotopic effect leads to an
increase of 2.331024 Å in the lattice parameter of70Ge with respect to76Ge. Comparison of the simulation
results with available experimental data for74Ge shows that the employed model provides a realistic descrip-
tion of this anharmonic effect. The path-integral results were compared to those derived from a quasiharmonic
approximation of the crystal. Within this approximation, the calculated fractional change of the lattice param-
eter of 74Ge with respect to a crystal whose atoms have the average mass of natural Ge amounts to
Da/a529.231026 at T50 K. Some limitations of the quasiharmonic approximation are shown at tempera-
tures above 200 K.@S0163-1829~97!01725-6#
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I. INTRODUCTION

The availability of isotopically pure crystals with low ca
rier and impurity concentrations has allowed in the last ye
the investigation of isotope effects on lattice dynamical a
electronic properties of semiconductors.1 Due to zero-point
motion, the atoms in a solid feel the anharmonicity of t
interatomic potentials even at low temperatures. Theref
the lattice parameters of two chemically identical cryst
formed by different isotopes do not coincide,1–7 heavier iso-
topes having smaller zero-point delocalization~as expected
in a harmonic approximation! and smaller lattice paramete
~an anharmonic effect!. Moreover, phonon-related propertie
such as thermal expansion or melting temperature, are
pected to depend on the isotope mass.

In this context, the existence of mass differences in
isotope distribution in the natural materials causes
translational-symmetry breaking, which affects crystal pro
erties such as the phonon spectrum~phonon energy shifts
and band broadenings! and the atomic hopping mobility
These effects have been studied by different experime
techniques on germanium5,7–9 and diamond6,10–12 single
crystals, either isotopically pure or intentionally disorder
with controlled isotope concentrations. Also, the study
order-disorder features in the phonon or electron states
crystal via isotopes addresses questions such as the ap
bility of different theories to weak forms of disorder.13

This work is focused on the dependence upon the isot
mass of the lattice parameter in isotopically pure Ge cryst
The germanium isotopes, their masses and relative na
abundance are shown in Table I. Since this isotope-m
effect is caused by the quantum nature of the atomic nu
and the anharmonicity of the interaction potentials, a con
nient approach to this question is the path-integral Mo
Carlo ~PIMC! method, that allows one to study finite
temperature properties of many-body systems without
simplifying assumption of harmonic potentials. In this lin
path-integral MC simulations have been reported on isot
560163-1829/97/56~1!/237~7!/$10.00
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effects upon the lattice constant of solid neon (20Ne and
22Ne!,14 and on the melting curves of helium (4He and
3He!.15 An alternative approach to study anharmonic effe
in solids is the so-called quasiharmonic approximat
~QHA!.16 In this approximation, frequencies of the vibra
tional modes in a crystal are made volume dependent,
for given volume and temperature, the crystal is assume
be harmonic.

The purpose of the present work is twofold: first, to obta
the change in lattice constant for different Ge isotopes b
many-body calculation~PIMC simulations!, and second to
check the validity of the QHA to describe the anharmon
effects which appear in crystals at finite temperatures. Th
one can discriminate between anharmonic effects due to t
mal expansion of the lattice~treated in the QHA by the
renormalization of mode frequencies! and other effects, such
as phonon-phonon interactions, not included in the QHA16

We present several mass-related equilibrium propertie
isotopically pure Ge crystals, derived from PIMC simul
tions in the isothermal-isobaric ensemble. The interatom
potentials are described by an empirical potential of
Stillinger-Weber~SW! type.17–19The reliability of this effec-
tive potential has been assessed by comparison of se
calculated crystal properties~phonon dispersion curves, vi
brational density of states, Gru¨neisen and elastic constant!
to experimental data. The results obtained in the MC sim
lations for the lattice constant have been compared to x

TABLE I. Stable isotopes of Ge and their relative abundance

Isotope Mass~amu! Abundance

70Ge 69.92 20.5%
72Ge 71.92 27.4%
73Ge 72.92 7.8%
74Ge 73.92 36.5%
76Ge 75.92 7.8%
Average,avGe 72.63
237 © 1997 The American Physical Society
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238 56NOYA, HERRERO, AND RAMÍREZ
diffraction data for 74Ge and to those obtained in a QH
with the same interatomic potential.

The paper is organized as follows. In Sec. II we descr
the computational method~path-integral Monte Carlo and
quasiharmonic approximation!; the results and discussion a
presented in Sec. III, and the paper closes with a summ
~Sec. IV!.

II. COMPUTATIONAL METHOD

A. Path-integral Monte Carlo

The path-integral Monte Carlo method is based on
evaluation of the partition function of a quantum syste
through a decomposition of its density matrix at a giv
temperature intoP ~Trotter number! density matrices, each
one being evaluated at a higher temperaturePT. Good re-
views of the method can be found elsewhere.20–22The feasi-
bility of the method relies on an isomorphism between
quantum system and a classical one, obtained by substitu
of each quantum particle~i.e., atomic nucleus in the prese
context! by a cyclic chain ofP classical particles~beads!.
We denote byj the index, running from 1 toP, that labels
sequentially the beads of the cyclic chains. Interatomic in
actions in the classical isomorph are then restricted to be
of different chains sharing the same labelj . Moreover, a
given beadj in a chain interacts harmonically with the bea
j21 and j11 of the same chain with a spring constantk
given by

k5MP/b2\2, ~1!

whereM is the mass of the quantum particle,b5(kBT)
21,

andkB is the Boltzmann constant. Although the isomorphis
is exact in the limitP→`, in practice very good approxima
tions can be obtained at finite temperatures for moderate
ues ofP.23 In the classical limit, the cyclic chain collapse
into a single point (P51). Note that within the path-integra
formalism, the dependence of the thermodynamic proper
upon the particle massM enters through the renormalizatio
of the spring constantk.

The simulation ofc-Ge was performed on a 23232 su-
percell of the germanium face-centered-cubic~fcc! cell con-
taining 64 Ge atoms, with periodic boundary conditions. W
have checked that there is no significant difference in
calculated lattice parameters when the simulation cel
taken as a 33333 supercell. The Ge nuclei were treated
quantum particles interacting through an empirical SW-ty
potential~see below!. Finite-temperature properties were d
rived from Metropolis Monte Carlo sampling.20,24–26 A
Monte Carlo step~MCS! consists of sequential moves of~i!
the beads associated to each nucleus,~ii ! the center of gravity
of the cyclic chain associated to each nucleus, and~iii ! the
logarithm of the volume of the simulation cell.27 After an
initial equilibration of 53104 MCS, the calculation of en-
semble average properties was performed over 63105 MCS.
The simulations have been performed in a temperature ra
between 50 K and 600 K, and at constant pressure~1 atm!.
Natural germanium was modeled by setting a value for
atomic massM572.63 amu, corresponding to the avera
mass of natural germanium (avGe!. The Trotter numberP
e
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was made temperature dependent, and was taken as the
gral number closest to 1600/T. At temperatures higher tha
400 K, we tookP54.

The interaction between germanium atoms was mode
by a potential proposed by Ding and Andersen,17 slightly
modified by Laradjiet al.18 to give a lattice parameter at 0 K
closer to the experimental data. It has the analytical form
a SW potential,19 where the set of potential parameters w
adjusted to reproduce some experimental features of ge
nium, as the cohesive energy of the crystal at 0 K, the d
sity and the elastic constants at atmospheric pressure, an
radial distribution function of amorphous germanium. Th
potential is not adequate to reproduce the properties of liq
germanium.17

B. Quasiharmonic approximation

In the quasiharmonic approximation, the anharmonicity
considered a weak effect and the phonon frequencies of
crystal are renormalized by taking into account the therm
expansion.16 The vibrational free energy of a crystal of vo
umeV and isotope massM , at temperatureT, is given by28

F~V,T,M !5U0~V!1(
q,i

S 12 \v i~q!1
1

2
kBT

3 ln$12exp@2\v i~q!/kBT#% D , ~2!

whereU0(V) is the the potential energy of the crystal wi
the atoms fixed at their equilibrium positions,q indicates a
wave vector within the Brillouin zone~BZ! of the crystal,
and i is the band index. The free energy depends implic
on the isotope mass through the mass dependence o
phonon frequencies,v i(q)}M

21/2. The dependence of eac
phonon modev i(q) on the crystal volumeV is given by the
Grüneisen constantg i(q),

29 defined as:

g i~q!52
]@ lnlnv i~q!#

]~ lnV!
. ~3!

We have calculated the phonon frequencies of Ge by
agonalization of the dynamical matrix derived from the SW
type potential on a grid of 1140 wave vectors in the irredu
ible part of the BZ. The set ofq points were chosen
according to the method of Ref. 30.F(V,T,M ) was evalu-
ated by means of Eq.~2! for a set of volumes and tempera
tures, and for each isotope mass. The equilibrium volu
was then determined by the minimum ofF(V,T,M ) as a
function of V for fixed M andT. The same procedure wa
employed to evaluate the classical limit of the vibration
free energy within the QHA. The Gru¨neisen constants wer
determined from Eq.~3! by numerical differentiation.

III. RESULTS AND DISCUSSION

To characterize the interatomic potential employed in o
simulations,18 we have calculated the phonon dispersi
curves, the phonon density of states, the Gru¨neisen constants
as well as the elastic constants and bulk modulus of
avGe crystal. The phonon dispersion curves along sev
symmetry directions in the BZ are shown in Fig. 1. The
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56 239ISOTOPE DEPENDENCE OF THE LATTICE PARAMETER . . .
curves are almost identical to those presented by Ding
Andersen,17 who employed a potential slightly different from
that used in the present work. The frequencies predicted
the optical modes are larger than the experimen
values17,31,32by about 2 THz~67 cm21!. The employed po-
tential model reproduces well the dispersion of the acou
modes near theG point. However, near the boundary of th
BZ, the acoustic modes are found at higher frequencies
experimental modes. Ding and Andersen17 showed that it is
not possible to fit simultaneously the optical-phonon f
quencies and the slopes of the acoustic branches near tG
point, by means of a potential of the SW type.

The calculated phonon density of states ofavGe is dis-
played in Fig. 2, and compared to the data derived fr
inelastic neutron scattering.32,33 The area of both curves i
normalized to unity. The maxima of the acoustic and opti
bands for the phonon density of states obtained from
SW-type potential are shifted with respect to the experim

FIG. 1. Phonon dispersion curves ofavGe along several symme
try directions in the irreducible Brillouin zone. Dotted lines a
results obtained from the SW-type potential. The experimental
sults ~Ref. 31! are shown by open symbols.

FIG. 2. Phonon density of states ofavGe. The solid line is de-
rived from inelastic neutron scattering data~Ref. 33!. The dashed
line is the result for the SW-type potential.
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tal curve by about 67 cm21 toward higher frequencies.
The calculated Gru¨neisen constants for the optical an

acoustic modes ofavGe are shown in Fig. 3 along sever
directions in the BZ, and are compared to available exp
mental data.31 The employed SW-type potential predic
Grüneisen constants for the optical modes that are about
lower than the experimental values.5,34 The calculated Gru¨n-
eisen constants for the acoustic modes amount to abou
along the directions@100# and @111# in the BZ. The value
found at theG point is in good agreement with the exper
ment. However, at the reciprocal pointL, the experimental
Grüneisen constant is negative~about –0.4!. This negative
value has important physical consequences for the ther
properties of the crystal, as it is the origin of the negat
thermal expansion found for Ge at temperatures between
and 40 K.35 The SW-type potential is unable to reproduce t
negative thermal expansion of Ge, since it gives Gru¨neisen
constants for the phonon modes that are always positive
this context, it has been shown36,37 that positive Gru¨neisen
constants are obtained when the magnitude of noncen
forces~angular forces that stabilize the diamond structure! is
dominant with respect to that of central forces. The SW-ty
potential overestimates the strength of angular forces, as
not able to reproduce the negative thermal expansion of
This deficiency of the SW potential has been already stud
in a PIMC simulation of silicon.27 In spite of the shortcom-
ings of this kind of interatomic potential, it is much mor
suited for finite-temperature simulations of the crystal th
other currently employed potentials, such as the Keat
model potential,38 which gives a negative linear thermal e
pansion at all temperatures.18,39

From the slope of the dispersion curves for the acou
modes near theG point, we calculated the elastic constan
and bulk modulus ofavGe atT50.40 At finite temperatures,
these parameters were obtained within the QHA, by tak
into account the mode-dependent Gru¨neisen constants
g i(q). The results are shown in Table II, along with th
experimental data at 100 K and 300 K.31,32The deviation of
the calculated values with respect to the experiment is ab
5% for both the elastic constants and the bulk modulus.
have checked that the bulk modulus obtained at 0 K in the
classical limit from the phonon dispersion curves agrees w

-

FIG. 3. Calculated Gru¨neisen constants ofavGe along several
symmetry directions in the BZ. Black circles are experimental
sults ~Ref. 31!.
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240 56NOYA, HERRERO, AND RAMÍREZ
the value found from the change in the potential energy i
homogeneous deformation of the crystal.

The temperature dependence of the lattice paramete
avGe obtained by the PIMC simulations and by the QHA
presented in Fig. 4 for both the classical and the quan
treatments of the Ge nuclei. The quasiharmonic results s
an overall agreement with the PIMC data. However, a s
tematic deviation is appreciable as the temperature incre
above 200 K. We note that the classical result is independ
of the isotope mass. At 0 K, we see a non-negligible latt
expansion of about 0.006 Å obtained in the quantum sim
lation, with respect to the lattice parameter obtained in
classical limit (a55.648 786 Å!. This effect is due to the
anharmonicity of the zero-point motion. The dotted line is
fit to experimental data.31 The comparison between th
PIMC results and the experimental data deserves two c
ments. First, at low temperatures, the PIMC data differ fr
experiment by about 0.006 Å. The employed potential for
was parametrized17 to reproduce the experimental lattice p
rameter at 0 K treating the nuclei as classical particle
Therefore, the deviation of the PIMC results from expe
ment is related to the quantum nature of the nuclei and

TABLE II. Calculated and experimental elastic constants a
bulk modulus ofavGe, in units of 1012 dyn cm22.

Temperature~K! C44 C11 C12 B0

0 ~classical! 0.5893 1.3845 0.5104 0.8018
0 ~quantum! 0.5879 1.3770 0.5045 0.7953
100 ~quantum! 0.5878 1.3763 0.5040 0.7948
100 ~expt.! 0.6820 1.3120 0.4930 0.7660
300 ~quantum! 0.5867 1.3702 0.4996 0.7898
300 ~expt.! 0.6710 1.2880 0.4830 0.7513
500 ~quantum! 0.5852 1.3624 0.4939 0.7834

FIG. 4. Temperature dependence of the lattice paramete
avGe. The dotted line corresponds to a fit to x-ray diffraction d
~Ref. 31!. The open squares are results from the quantum MC si
lations. The circles are results of the classical MC simulation. T
dashed and dash-dotted lines are results obtained in the qua
and classical quasiharmonic approximation, respectively.
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anharmonicity of the interatomic potential. An improved p
rametrization of the potential would imply to fit, in the cla
sical limit at 0 K, the equilibrium lattice parameter to a valu
about 0.006 Å smaller than the experimental one. Seco
the employed potential predicts a thermal expansion of
Ge lattice smaller than the experimental one, as shown by
different slopes of the simulated and experimental curve
Fig. 4.

We turn now to compare the PIMC results with the QH
results in order to check the limitations of the QHA. W
have found that the lattice parameters for the isotopica
pure crystals obtained from the PIMC simulations are lar
than those obtained from the QHA, and that this deviat
goes up as temperature increases. This difference is show
Fig. 5 for three isotopes:70Ge,73Ge, and76Ge. AtT5500 K
the deviation is about 2.531024 Å, which is of the same
order as the change in the lattice parameter due to the iso
mass~see below!. The difference between the QHA and th
PIMC results is due to anharmonic effects not taken i
account in the QHA. The data in Fig. 5 show that the
effects do not depend on the isotope mass and are signifi
above 200 K. Another evidence of anharmonic effects
included in the QHA can be obtained by plotting th
potential–to–kinetic-energy ratio derived from the PIM
simulations vs. temperature. This ratio is shown in Fig. 6
three isotopes:70Ge, 73Ge, and76Ge. The energy ratio in-
creases with temperature, departing appreciably from
value expected in a harmonic or quasiharmonic approxim
tion, where it should be unity irrespective of temperatu
~virial theorem!.

In the following, we present the results derived from t
PIMC simulations and the QHA for the isotopic effect on t
lattice constant of isotopically pure crystals. In the fram
work of the QHA of solids, the difference between the latti
parameters corresponding to an isotope massM and the iso-
tope 76Ge ~taken as reference! is given by1,3

a~MGe!2a~76Ge!5C~T!@M21/2276M21/2#, ~4!

d

of
a
u-
e
um

FIG. 5. Temperature dependence of the difference found
tween the lattice parameter obtained in the PIMC simulations an
the QHA. Results are shown for70Ge, 73Ge, and76Ge. The dashed
line is a guide to the eye.
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56 241ISOTOPE DEPENDENCE OF THE LATTICE PARAMETER . . .
whereC(T) is a temperature-dependent constant, and76M is
the mass of the isotope76Ge. In Fig. 7, we show this lattice
parameter increment for the different Ge isotopes versus
inverse square of the isotope mass for several temperat
as derived from the PIMC simulations and the QHA. In th
figure, the value of the lattice constanta(76Ge) taken as ref-
erence was obtained from a least-squares fit of the
a(MGe), obtained for the different isotopes, to a linear eq
tion cM21/21d. In this way, the statistical noise in the su
traction of the left-hand side in Eq.~4! is reduced. Note tha

FIG. 6. Potential–to–kinetic-energy ratio obtained from t
PIMC simulations vs temperature for70Ge,73Ge, and 76Ge. The
dashed line is a guide to the eye. The continuous horizontal
represents the result expected in a harmonic or a quasiharm
approximation.

FIG. 7. Difference between the lattice parameter of the sta
germanium isotopes and that of76Ge vs the inverse square of th
isotope mass for different temperatures. Symbols are results
the quantum simulations: squares at 50 K, circles at 350 K,
triangles at 600 K. Lines are results from the quantum quasi
monic approximation: continuous line at 0 K, dashed at 50 K, d
ted at 350 K, and dash-dotted line at 600 K.
he
es,

ta
-

the systematic deviation between the PIMC and QHA res
for a(MGe) found at temperatures above 200 K~see Fig. 4!
does not depend on the isotope mass, and therefore it d
pears in the subtraction given by Eq.~4!. Within the statisti-
cal uncertainty of our simulation results, both PIMC a
QHA data shown in Fig. 7 coincide. As expected, the ma
mum isotope effect on the lattice constant is obtained
T50 K. Thus, from the results of the quasiharmonic a
proximation, the difference between the lattice parameter
70Ge and76Ge atT50 K is found to be 2.331024 Å. By
fitting the results atT50 ~continuous line! to Eq. ~4!, we
obtain C(0)50.047 24 Å amu1/2. At this temperature, we
checked that the extrapolation of this equation to infin
mass~classical limit! yields the same lattice parameter
that corresponding to the absolute minimum of the emplo
SW potential. As temperature increases,C(T) in Eq. ~4! ~the
slope of the lines in Fig. 7! decreases, since the system a
proaches the classical regime, in which the isotope mass
fect disappears.

The fractional change of the lattice parameter with resp
to avGe, Da/a5@a(MGe)2a(avGe)#/a(avGe), for 70Ge,
74Ge, and76Ge, is presented in Fig. 8 in a temperature ran
between 0 and 350 K. Both PIMC and QHA results are ide
tical within the statistical uncertainty of the simulation. A
one goes to higher temperatures, the isotopic effect on
lattice parameter decreases, and the results converge t
horizontal thin line~zero fractional change in the lattice pa
rameter!. We show also the experimental data for74Ge ob-
tained by Buschertet al.5 atT578 K and 300 K. A compari-
son of the experimental results with those obtained in
quantum QHA is given in Table III. The QHA results devia
by about 40% from experiment. We expect that the low v
ues of the Gru¨neisen constants of the optical modes of G
found for the SW-type potential are in part responsible
this deviation from experiment.5,31,34To check this point, we

e
nic

le

m
d
r-
t-

FIG. 8. Fractional change of the lattice parameter,Da/a, vs
temperature for three different germanium isotopes. Dashed l
are results obtained from the quantum quasiharmonic approx
tion. Open symbols represent PIMC simulation results: squares
70Ge, circles for 74Ge, and triangles for76Ge. Solid circles are
experimental results for74Ge ~Ref. 5!. The continuous horizonta
line represents the classical limit (Da50).
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242 56NOYA, HERRERO, AND RAMÍREZ
performed a QHA increasing the Gru¨neisen constants of th
optical modes by 0.35. The deviation from experiment fou
for 74Ge was then reduced by a factor of 2.

In the comparison between the simulation and QHA
sults with experiment, we made the approximation of tre
ing natural Ge asavGe, i.e., the atomic mass was set equa
the average mass of natural germanium. Another approxi
tion to the lattice parameter of natural germanium is given
the averagêa& of the lattice parameters of the pure isoto
crystals weighted by their relative abundance. It is interes
to note that both results are different, givinga(MGe),^a&.
Thus, at T50 K, the QHA result is ^a&2a(MGe)
51.431026 Å. At T5600 K this value is reduced to
^a&2a(MGe)5231027 Å. The results shown in Fig. 8
would change by less than 3% if we used^a& instead of
a(avGe) for defining the fractional change in the lattice p
rameter.

It is interesting to compare the QHA results with tho
obtained from a theoretical expression derived by Busc
et al.5 for the fractional change in the lattice parameter
T50:

Da

a
52

1

B0a
3

DM

M S g0\v01
3

4
gakBQDD , ~5!

whereg0 andga are the average Gru¨neisen constants for th
optical and acoustic modes, respectively,B0 is the bulk
modulus atT50 K, v0 is the frequency for the optica
modes near theG point, andQD is the Debye temperature o
the crystal. This formula is a simplified QHA where it wa

TABLE III. Fractional change of the isotopic lattice paramet
of 74Ge, in units of 1026.

Temperature~K! Expt. value QHA

78 214.96 0.3 28.9
300 26.36 0.3 23.7
hy
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assumed a Debye spectrum for the acoustic phonons a
constant frequency for the optical phonons. Using the exp
mental values for these parameters,41 Buschertet al. ob-
tained a fractional change of212.031026 for 74Ge. If we
use the values ofg050.85, ga50.40, \v057.04310214

erg, andQD5310 K ~Ref. 42! obtained from our calcula-
tions, the result isDa/a529.031026, in close agreemen
with the value obtained from the QHA at 0 K of
Da/a529.231026.

IV. SUMMARY

In this contribution we have calculated the lattice para
eter for the five stable isotopes ofc-Ge. This dependence o
the isotope mass is directly related to the anharmonicity
the interatomic potentials and to the quantum nature of
nuclei ~different zero-point energy for different isotop
mass!. The QHA fails to reproduce the MC simulation re
sults as temperature rises, due to anharmonicities not
cluded in this approximation. This translates into simula
lattice parameters shifted toward values higher than th
obtained from the QHA, and a potential–to–kinetic ener
ratio increasing with temperature. AtT5500 K, this shift is
about 2.531024 Å, which is of the same order as the max
mum isotope effect (2.331024 Å!, found at 0 K between
70Ge and 76Ge. At T5500 K the PIMC potential–to–
kinetic-energy ratio is 1.02, i.e., higher than the value 1 c
responding to the QHA. Comparison of the isotopic effe
found for the lattice parameter to experimental results sho
a relatively good agreement, given the shortcomings
scribed for the employed potential, especially for the Gru¨n-
eisen constants of the optical modes, which are undere
mated by about 25%.
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