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1/r 2 t-J model in a magnetic field
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We study the one-dimensional supersymmetrict-J model with 1/r 2 interaction threaded by magnetic flux.
Because of the long-range interaction, the effect of this flux leads to a modification of the electron hopping
term. We present an exact solution of this model for all values of the flux, concisely formulated as a set of
Bethe-ansatz-like equations. Examination of the ground state shows that the persistent currents at zero tem-
perature do not exhibit a parity effect despite the fact that the long-ranget-J model falls in the Luttinger-liquid
universality class. This exception to Leggett’s conjecture arises because of the special nature of the long-range
hopping.@S0163-1829~97!01730-X#
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Exact solutions have provided us with an interesting w
to deal nonperturbatively with systems of strongly correla
electrons. Notable examples are the electron systems
d-function interaction,1 the Hubbard model,2 and the short-
ranget-J model.3 These models are solvable by Bethe ans
and have played an important role in understanding the p
ics of the one-dimensional electron gas. A particularly int
esting class of lattice models that are exactly solvable des
long-range interactions are the Haldane-Shastry spin cha
1/r 2 exchange interaction4,5 and its many variations. The lat
ter include the supersymmetrict-J models of long-range
hopping and exchange6–11 as well as multicomponent gene
alizations. Since the closed spin chain admits a Bethe-ans
like solution, this indicates that the quasiparticle interactio
are statistical in nature and arise from demanding periodi
of the chain.

While it is natural to close the chain by imposing period
boundary conditions, we may also consider the case wh
the closed chain is threaded by magnetic flux. Due to
nontrivial topology, electrons transported around the ch
then pick up an Aharonov-Bohm phase in the presence
nonzero flux. In models with nearest-neighbor exchange
straightforward to encode this phase~and hence the flux! by
imposing twisted boundary conditions on the wave fun
tions. However such a prescription needs to be modified
the presence of long-range interactions where particles
hop between any arbitrary pair of sites. We show how t
may be done for the supersymmetrict-J model with inverse
square interaction and investigate its ground state and
energy spectrum. Based on previous results in the absen
magnetic flux,10 we derive a set of Bethe-ansatz-like equ
tions appropriate to twisted boundary conditions.

We consider a system of electrons on a one-dimensio
ring described by the SU~2! supersymmetrict-J model. For a
uniform and closed chain ofL lattice sites, the Hamiltonian
takes the form
560163-1829/97/56~5!/2312~4!/$10.00
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2 (
s5↑,↓

(
1< lÞm<L

@ t~ l 2m!cls
† cms1H.c.#

1
1

2 (
1< lÞm<L

J~ l 2m!@Plm
s 2~12nl !~12nm!#,

~1!

where the hopping strength,t(n), and exchange interaction
J(n), are functions only of separation due to the rotation
invariance of the ring.Plm

s is the spin exchange operator an
nl is the electron number operator. We have implicitly a
sumed a projection onto single occupancy at each site.

Without magnetic flux, the supersymmetric long-ran
model has an interaction strength given byt(n)
5J(n)51/d2(n) where d(n)5(L/p)sin(pn/L). While
d(n) is most readily interpreted as the chord length betwe
sitesn units apart, this interpretation is not easily generaliz
to encompass nonzero flux. In particular, an electron hopp
along a chord must travel through the interior of the ri
where it would be sensitive to the actual magnetic field a
not just the flux. To avoid this difficulty, we use the alterna
interpretation of J(n) as the periodic version of 1/n2,
namely12,11,13

J~n!5 (
k52`

`
1

~n1kL!25S p

L D 2 1

sin2~pn/L !
, ~2!

which represents the sum of hopping over all multiples of
period L with periodic boundary conditions. It is now
straightforward to generalize this to twisted boundary con
tions appropriate to a ring threaded by flux. We introduc
dimensionless fluxf, represented by the vector potenti
A5f(f0 /L) wheref05hc/e, so that electrons pick up a
phasee2p if when transported once around the ring. In th
case, the hopping interaction is twisted and becomes
2312 © 1997 The American Physical Society
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tf~n!5 (
k52`

`
e2p if~n1kL!/L

~n1kL!2 . ~3!

Since the exchange interaction is insensitive to the fl
J(n) is still given by Eq.~2!. This interaction was introduce
by Fukui and Kawakami for the twisted Haldane-Shas
model in Ref. 13 where the sum was carried out for ratio
twists, f5p/q. It turns out, however, that this infinite sum
can actually be evaluated for arbitraryf, yielding the result

tf~n!5S p

L D 2 znbf c$@12~f2 bf c !#1~f2 bf c !zn%

sin2~pn/L !
, ~4!

wherez5e2p i /L andbf c is the greatest integer not exceedi
f. This expression is remarkable for the fact that it is pie
wise linear and continuous inf, even though the flux origi-
nally entered in the exponent of Eq.~3!. We note that
tf(n) satisfies the conditions t2f(n)5tf(n)* and
t2f(2n)5tf(n), which is readily apparent from Eq.~3!,
but hidden in the summed expression of Eq.~4!. To simplify
our subsequent discussion, we may restrictf to lie in the
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range 0<f<1, obviating the need for the greatest integ
function. Other values of the flux may always be broug
into this range by a gauge transformation with resultant s
in the lattice momentum. In this case, Eq.~4! becomes

tf~n!5J~n!@~12f!1fzn#, ~5!

demonstrating that the effect of an arbitrary flux is to simp
give a linear interpolation between different systems, e
with an integral value off.

Previous techniques for solving the Haldane-Shastry
t-J models without flux4,6,10 are easily extended to th
present case, given by the twisted hoppingtf(n). In particu-
lar, the t-J model may be solved by introducing a basis
Jastrow wave functions describing the down-spin and h
excitations about a fully polarized up-spin backgroun
While this background may appear unnatural in the prese
of flux, it nevertheless allows an immediate generalization
the exact solution constructed in Ref. 10. In order to ap
the techniques of Ref. 10, we need the sum formula
(
n51

L

zJn~12zn!atf~n!52
p2

L2 $da,0@
1
6 ~L221!1f~12f!2~J1f!„L2~J1f!…#1da,1@L22~J1f!21#12da,2%, ~6!
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which follows from Eq.~5! and the zero-flux sum formula.4

This expression holds for non-negativeJ whenever
0<f<1 and 0<a<L212J and generalizes the result fo
rational twists presented in Ref. 13, while reducing to
standard expression4 whenf50. These results indicate tha
the restriction to rational twists is unnecessary, so that th
is no distinction between rational and irrational twist ang
in this strictly one-dimensional system. We note that
f2 terms cancel in the above sum formula as they must;
the vanishing of this quadratic term~which persists in the
ground-state energy! that is ultimately responsible for th
disappearance of the ground-state parity effect in this mo

Based on the fact that the three terms in Eq.~6! corre-
spond to constant, two-body, and three-body terms in
Hamiltonian,4,6 we see that the flux has no effect on t
cancellation of three-body terms. This immediately sho
that the quasiparticles remain free, up to statistical inter
tions, even in the presence of flux. From the constant
two-body terms, it is apparent thatf acts to shift the quasi
particle momenta, leading to a modified dispersion relati
Since this is the extent of the modification to the soluti
caused by nonzerof, the results of Ref. 10 are easily e
tended to the case of twisted hopping.

For a spin chain withM ↓ down spins andQ holes, we
introduce two sets of pseudomomenta: pi
( i 51,2, . . . ,M ↓1Q) andqa (a51,2, . . . ,Q). The solution
to this supersymmetrict-J model may then be written in a
Bethe-ansatz-like form

piL52pJi1(
j Þ i

u~pi2pj !2(
a

u~pi2qa!,
e

re
s
e
is

l.

e

s
c-
d

.

(
i

u~qa2pi !52pI a , ~7!

where the step functionu(x)5psgn (x) is the ~statistical!
scattering phase. The fermionic quantum numbersJi and I a
are either integers or half-integers and are restricted to li
the ranges uJi u<(L2M ↓11)/2 and 2(M ↓1Q)/2
<I a<(M ↓1Q)/221, respectively. Since theqa’s label the
hole degrees of freedom, it gives rise to a natural splitting
the pseudomomenta$pi% into M ↓ spin andQ hole degrees of
freedom. Namely we takeQ to be the set of pseudomomen
pi satisfying

(
a

@u~pi2qa!2u~pi 212qa!#52p. ~8!

There are exactlyQ such pseudomomenta, corresponding
the hole excitations. The remainingM ↓ pseudomomenta the
correspond to spin excitations. Using this distinction, the
ergy spectrum and momentum of the system are given b

E~f!5
p2

6
L~121/L2!1 (

i ¹Q
e0~pi !1 (

i PQ
ef~pi !,

P~f!5~L21!p12pf~12Q/L !

2 (
i 51

M↓1Q

~pi2p!mod2p, ~9!

where the single-particle dispersion relation is
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ef~k!5 1
2 @~k12pf/L !22p214p2f~12f!/L2#

5~12f!e0~k!1fe0~k12p/L !, ~10!

for 0<f<1. This piecewise linear form of the dispersio
relation follows directly from the behavior of the hoppin
term, Eq.~5!. We wish to stress that, while this solution h
the form of a Bethe ansatz, it was actually derived as
exact solution based on the construction of a complete b
of Jastrow wave functions and a proper ordering of the H
bert space, as described in Refs. 12 and 10.

States in the excitation spectrum are labeled by indivi
ally nonoverlapping quantum numbersJi and I a . The Ji
may be represented as a string of 0’s and 1’s of len
L2M ↓ with M ↓1Q occupied positions represented by 1’s14

The I i then in turn label which of these 1’s correspond
hole excitations~and hence are sensitive to the flux!. The
interpretation of the Bethe-ansatz-like equations~7! is to
separate the spin excitations by inserting a 0 before every
spin excitation. The resulting string then specifies
pseudomomentapi , lying in the range@2p,p). From Eq.
~10!, it is evident that states in the middle of the string ha
lowest energy. Therefore the ground state of thet-J model,
in a sector of fixedM ↓ and Q, has pseudomomenta of th
general formpiP( . . . 001010111110101000 . . . ), with the
hole excitations centrally located~and underlined!. In order
to study the ground-state properties, we introduce unifo
spin and hole momenta,Js andJh ~integral or half-integral as
appropriate!, perturbing the string of 1’s to the left or righ
In this case, the corresponding eigenenergies are

L2

p2 E~Js ,Jh!5E012M ↓Js
212Q@~Jh1f!2

1~Js1Jh1f!222f2#, ~11!

where

E05 1
6 L~L221!1 2

3 ~Q1M ↓!@~Q1M ↓!
221#14fQ

2 1
2 ~Q1M ↓!L

22 1
2 Q~Q1M ↓!~Q12M ↓!. ~12!

For fixed M ↓ and Q, the ground state has bothJs and
Jh1f as close to zero as possible. These states corres
to exact Jastrow product wave functions describing
ground state as well as uniform excitations of thet-J model.

To further examine the ground state of this model,
work at a fixed hole fraction,nh[Q/L. Denoting the number
of electrons byNe5M ↑1M ↓5L2Q, the ground state is
either a SU~2! singlet for evenNe or a doublet for oddNe .
Due to finite-size effects, the ground-state properties dep
on the value ofNe mod 4. At zero flux, wheneverNeÞ2
mod 4, the ground state carries momentum and is hence
fold degenerate. However this degeneracy is always lifted
nonzerof which breaks time reversal symmetry. The exa
ground-state energies and momenta are given in Tab
where the bulk quantities are

Eg52
p2L

12
@nh~32nh

2!12~312nh!/L2#,

Pg52pf~12nh!. ~13!
n
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We note that the linear spectral flow apparent from the c
cellation of f2 terms in Eq.~10! indicates that the ground
state at zero flux is always the absolute lowest energy s
since any flow to lower energy has nowhere to termina
Hence the ground state is always diamagnetic, regardles
the number of electrons.

It is well known that the ground state of a noninteracti
one-dimensional electron gas is either diamagnetic or p
magnetic, depending on whether the number of electron
the system is even or odd. Leggett has conjectured that
parity effect persists in the presence of interactions;15 this
has subsequently been proven by Loss for generic Luttin
liquids.16 Thus it is somewhat of a surprise that this lon
ranget-J model provides an exception to Leggett’s conje
ture despite the fact that its low-lying physics is still d
scribed by a Luttinger-liquid fixed-point Hamiltonian. Th
origin of this breakdown may be traced to the unusual q
siparticle dispersion relation, Eq.~10!, which in turn is an
artifact of the long-range nature of the electron hopping
teraction. Therefore this model does not invalidate Legge
conjecture, but rather emphasizes the peculiar feature
long-range hopping in the presence of a magnetic field
was already apparent in the subtleties in constructingtf(n)
and its resulting linearity inf. This shows that there ar
sharp differences between models with and without lo
range hopping in the presence of a magnetic field.

We now turn to a generalization to the SU(1uK) super-
symmetrict-J model with long-range interactions. Since th
two-body nature of the quasiparticle interactions is un
fected by the flux, we may approach the SU(1uK) generali-
zation via the asymptotic Bethe ansatz~ABA !, which was
constructed at zero flux in Refs. 7 and 17. Since the magn
flux twists allK fermionic species identically, it is natural t
write the ABA in terms of fermionic excitations above th
purely bosonic vacuum~which we denoteFKB). For this
choice of grading, only the first nesting is affected by t
flux. To proceed, we introduceK sets of pseudomomenta

pi
~a! : i 51,2, . . . ,Na , ~14!

wherea51,2, . . . ,K andNa5( i 5a
K Mi (Mi is the number of

electrons with spin componenti ). Note thatN1 gives the
total number of SU(K) electrons. These quasimomenta s
isfy the following ABA equations:

TABLE I. Exact ground-state energiesE(f) and momenta
P(f) of the t-J model with twisted boundary conditions fo
0<f< 1

2. Taking into account a level crossing atf5
1
2, the absolute

ground state for12<f<1 instead has energyE(12f) and momen-
tum 2P(12f).

Ne mod 4 E(f) P(f)

0 Eg1p2nh /L Pg1p(11nh)
1 Eg1p2@21nh(118f)#/4L

Pg2
p

2
(12nh21/L)

2 Eg14p2fnh /L Pg

3 Eg1p2@21nh(118f)#/4L
Pg2

p

2
(12nh11/L)
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pi
~1!L52pJi1(

a
u~pi

~1!2pa
~2!!,

(
i

u~pa
~2!2pi

~1!!52pI a
~2!1(

b
u~pa

~2!2pb
~2!!

2(
g

u~pa
~2!2pg

~3!!,

•

•

•

(
g

u~pa
~K !2pg

~K21!!52pI a
~K !1(

b
u~pa

~K !2Pb
~K !!.

~15!

The quantum numbers$Ji%,$I a
(2)%, . . . ,$I a

(K)% are integers or
half-integers which are distinct within each set, respective
This set of equations is unchanged from the case with
flux;7,17 the only place wheref enters is in the energy an
momentum, given by

E~f!52
p2

6
L~121/L2!2(

i 51

N1

ef~pi
~1!!,

P~f!5(
i 51

N1

~pi
~1!12pf/L2p! mod 2p. ~16!

This provides the exact energy spectrum of the SU(K) t-J
model in the presence of fluxf, even in the nonasymptoti
regime.

For the ordinary SU~2! t-J model threaded by flux, the
ABA equations given in theF2B grading provide a more
symmetrical description than the microscopically deriv
equations,~9!. Nevertheless, theBF2 picture of Eq.~7! has
an advantage in that the complete level degeneracies
.

.
ut

re

understood10 independent of the SU(1u2) supermultiplet
structure, which is spontaneously broken for nonzero flux

In summary, we have provided an exact solution to
long-ranget-J model in the presence of arbitrary flux. Th
solution indicates that there is no meaningful difference
tween rational and irrational values of the flux. We have a
given solutions for the full energy spectra of the gene
SU(K) t-J model based on an asymptotic Bethe ansatz
should be feasible to prove these solutions exact by stud
the system with a complete basis of Jastrow wave functi
as was done for the SU(2) model. For this latter case,
form of the exact solutions, only slightly changed in the pre
ence of flux, indicates that this model remains integrab
even though the manifest SU~1u2! supersymmetry has bee
lost. Thus it is apparent that part of the Yangian symmetr18

remains. Work on finding an infinite set of commuting co
stants of motion in the presence of magnetic flux is curren
in progress.

Note added: Recently, we became aware of Ref. 1
which independently addressed many of the same issue
Sutherland also recently informed us that the linear dep
dence of the ground-state energy on the flux can be der
for the twistedt-J model by imposing twisted boundary con
ditions on the continuum model,20,21 and then by taking the
strong interaction limit to decouple the lattice oscillatio
modes from the internal degrees of freedom at each site.
approach should enable one to handle the SU(1uK) t-J
model with twisted boundary conditions in a straightforwa
manner.

We wish to thank C. Gruber, H. Kunz, R. Khuri, and X
Q. Wang for stimulating discussions. In addition, we wish
thank C. A. Stafford for fruitful discussions on mesoscop
systems and H. C. Ren for suggesting how to sum Eq.~3!.
This work was supported in part by the U.S. Department
Energy under Grant No. DOE-91ER40651-TASKB, and
the Swiss National Science Foundation.
o-

tt.
1C. N. Yang, Phys. Rev. Lett.19, 1312~1967!.
2E. H. Lieb and F. Y. Wu, Phys. Rev. Lett.20, 1445~1968!; C. N.

Yang, ibid. 63, 2144~1989!; C. N. Yang and S. C. Zhang, Mod
Phys. Lett. B4, 759 ~1990!.

3B. Sutherland, Phys. Rev. B12, 3795~1975!.
4F. D. M. Haldane, Phys. Rev. Lett.60, 635 ~1988!.
5B. S. Shastry, Phys. Rev. Lett.60, 639 ~1988!.
6Y. Kuramoto and H. Yokoyama, Phys. Rev. Lett.67, 1338

~1991!.
7N. Kawakami, Phys. Rev. B46, 1005~1992!.
8D. F. Wang and C. Gruber, Phys. Rev. B49, 15 712~1994!.
9C. Gruber and D. F. Wang, Phys. Rev. B50, 3103~1994!.

10D. F. Wang, J. T. Liu, and P. Coleman, Phys. Rev. B46, 6639
~1992!.

11Z. N. C. Ha and F. D. M. Haldane, Phys. Rev. B46, 9359~1992!.
12B. Sutherland, J. Math. Phys.~N.Y.! 12, 246 ~1971!; 12, 251
~1971!; Phys. Rev. A4, 2019~1971!; 5, 1372~1972!.
13T. Fukui and N. Kawakami, Phys. Rev. Lett.76, 4242~1996!.
14F. D. M. Haldane, Phys. Rev. Lett.66, 1529~1991!.
15A. J. Leggett, inGranular Nanoelectronics, edited by D. K. Ferry

et al., NATO ASI Series B, Vol 251~Plenum, New York, 1991!,
p. 297.

16D. Loss, Phys. Rev. Lett.69, 343 ~1992!.
17J. T. Liu and D. F. Wang, Int. J. Mod. Phys. B10, 3685~1996!;

D. F. Wang and J. T. Liu, Phys. Rev. B54, 584 ~1996!.
18F. D. M. Haldane, inProceedings of the 16th Taniguchi Symp

sium on Condensed Matter Physics, Kashikojima, Japan, edited
by A. Okiji and N. Kawakami~Springer, Berlin, 1994!.

19T. Fukui and N. Kawakami, Phys. Rev. B54, 5346~1996!.
20B. Sutherland and B. S. Shastry, Phys. Rev. Lett.71, 5 ~1993!.
21B. Sutherland, R. A. Ro¨mer, and B. S. Shastry, Phys. Rev. Le

73, 2154~1994!.


