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1/r? t-J model in a magnetic field

James T. Liu
Department of Physics, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399

D. F. Wang
Institut de Physique Tleeique, Ecole Polytechnique Berale de Lausanne, PHB-Ecublens, CH-1015 Lausanne, Switzerland
(Received 28 June 1996; revised manuscript received 20 September 1996

We study the one-dimensional supersymmetricmodel with 1f2 interaction threaded by magnetic flux.
Because of the long-range interaction, the effect of this flux leads to a modification of the electron hopping
term. We present an exact solution of this model for all values of the flux, concisely formulated as a set of
Bethe-ansatz-like equations. Examination of the ground state shows that the persistent currents at zero tem-
perature do not exhibit a parity effect despite the fact that the long-rtadgeodel falls in the Luttinger-liquid
universality class. This exception to Leggett's conjecture arises because of the special nature of the long-range
hopping.[S0163-18207)01730-X

Exact solutions have provided us with an interesting way 1

to deal nonperturbatively with systems of strongly correlated Hiy=— 5
electrons. Notable examples are the electron systems with

1

2

s m)c/ Cme+ H.CJ]
s-function interactior!, the Hubbard modél,and the short-
ranget-J model® These models are solvable by Bethe ansatz
and have played an important role in understanding the phys-
ics of the one-dimensional electron gas. A particularly inter- @
esting class of lattice models that are exactly solvable despite
long-range interactions are the Haldane-Shastry spin chain dfhere the hopping strength(n), and exchange interaction,
1/r2 exchange interactidi? and its many variations. The lat- J(n), are functions only of separation due to the rotational
ter include the supersymmetric] models of long-range invariance of the ringP7, is the spin exchange operator and
hopping and exchanfett as well as multicomponent gener- Ni is the ele(;tron number_operator. We have implicitly as-
alizations. Since the closed spin chain admits a Bethe-ansat$¥med a projection onto single occupancy at each site.
like solution, this indicates that the quasiparticle interactions Without magnetic flux, the supersymmetric long-range
are statistical in nature and arise from demanding periodicity"de! ha52 an interaction ~strength given bi(n)
of the chain. =J(n)=1/d“(n) where d(n)=(L/m)sin(mn/L). While
While it is natural to close the chain by imposing periodicd(n) is most readily interpreted as the chord length between

boundary conditions, we may also consider the case wher%'tesn units apart, this interpretation is not easily generalized

the closed chain is threaded by magnetic flux. Due to th(—%oI encomphasznonzero fluxl. l{: part;::ulhar,.an e.lectr?nr?op.pmg
nontrivial topology, electrons transported around the chairﬁ”long a chord must travel through the interior of the ring
’ where it would be sensitive to the actual magnetic field and

then pick up an Aharonoy-Bohm phase' in the presence Qf_ ﬂotjust the flux. To avoid this difficulty, we use the alternate
nonzero flux. In models with nearest-neighbor exchange it '1°hterpretation of J(n) as the periodic version of 17
straightforward to encode this pha@nd hence the flyxoy namely2 1113 '

imposing twisted boundary conditions on the wave func-

tions. However such a prescription needs to be modified in "

the presence of long-range interactions where particles may =3 1 :(z>2 1
hop between any arbitrary pair of sites. We show how this . (n+kL)? | L/ sirf(wn/L)’
may be done for the supersymmetrid model with inverse

square interaction and investigate its ground state and fu{hich represents the sum of hopping over all multiples of the
energy spectrum. Based on previous results in the absencelgériod L with periodic boundary conditions. It is now
magnetic flux,” we derive a set of Bethe-ansatz-like equa-straightforward to generalize this to twisted boundary condi-
tions appropriate to twisted boundary conditions. tions appropriate to a ring threaded by flux. We introduce a

We consider a system of electrons on a one-dimensionalimensionless fluxp, represented by the vector potential
ring described by the S@) supersymmetri¢-J model. Fora A= ¢(¢,/L) where ¢o=hc/e, so that electrons pick up a
uniform and closed chain df lattice sites, the Hamiltonian phasee?™ ¢ when transported once around the ring. In this
takes the form case, the hopping interaction is twisted and becomes

Jd —mM)[Piyp—(1-n)(1-ny)],

@
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© g2mia(n+kL)L range O< ¢<1, obviating the need for the greatest integer
ty(n)= 2 WT)Z 3 function. Other values of the flux may always be brought
k== into this range by a gauge transformation with resultant shift
Since the exchange interaction is insensitive to the fluxin the lattice momentum. In this case, Eg) becomes
J(n) is still given by Eq.(2). This interaction was introduced
by Fukui and Kawakami for the twisted Haldane-Shastry t,(N)=J(M[(1— ¢)+ 2], (5)
model in Ref. 13 where the sum was carried out for rational
twists, ¢=p/q. It turns out, however, that this infinite sum

can actually be evaluated for arbitragy yielding the result demonstrating that the effect of an arbitrary flux is to simply

give a linear interpolation between different systems, each
201 — (h— +(d—|d)Z" with an integral value ofp.

i ((iir;(q:ii]]/L)((ﬁ 4D }, (4) Previous techniques for solving the Haldane-Shastry and

t-J models without fluf®® are easily extended to the

wherez=e¢e and| ¢] is the greatest integer not exceeding present case, given by the twisted hoppip(n). In particu-
¢. This expression is remarkable for the fact that it is piecedar, thet-J model may be solved by introducing a basis of
wise linear and continuous irp, even though the flux origi- Jastrow wave functions describing the down-spin and hole
nally entered in the exponent of E¢3). We note that excitations about a fully polarized up-spin background.
ty(n) satisfies the conditionst_,(n)=t,(n)* and While this background may appear unnatural in the presence
t_,(—n)=ty(n), which is readily apparent from Ed3), of flux, it nevertheless allows an immediate generalization of
but hidden in the summed expression of E4). To simplify  the exact solution constructed in Ref. 10. In order to apply
our subsequent discussion, we may resteicto lie in the  the techniques of Ref. 10, we need the sum formula

T
t¢(n):<f

27i/L

L 2
> ZJ”(l—Z”)at¢(n)=2%{5a,o[%(L2—1)+ $(1=¢) =+ ) (L= I+ )]+ 0aaL—2(I+ @)~ 1]+25, 5, (6)

n=1

which follows from Eq.(5) and the zero-flux sum formufa.
This expression holds for non-negativd whenever Z 6(q,—pi) =27l ,, (7)
0=¢=1 and O=a<L—1-J and generalizes the result for

rational twists presented in Ref. 13, while reducing t0 th&yhere the step functiom(x)=sgn () is the (statistical
standard expressidmwhen ¢=0. These results indicate that scattering phase. The fermionic quantum numberand |
the restriction to rational twists is unnecessary, so that thergye either integers or half-integers and are restricted to lie in
is no distinction between rational and irrational twist anglesy,q ranges |Jj|<(L—M,+1)/2 and —(M,+Q)/2

i =

in_this strictly one-dimensional system. We note that the_, <(M, +Q)/2—1, respectively. Since thg,’s label the

2 - o
¢* terms cancel in the above sum formula as they must; it ig,g|e degrees of freedom, it gives rise to a natural splitting of
the vanishing of this quadratic terwhich persists in the o pseudomomentg;} into M spin andQ hole degrees of

ground-state energythat is ultimately responsible for the reedom. Namely we také to be the set of pseudomomenta
disappearance of the ground-state parity effect in this mode[} satisfying
I

Based on the fact that the three terms in E). corre-
spond to constant, two-body, and three-body terms in the
Hamiltonian?® we see that the flux has no effect on the > [6(pi—q,)— 0(p;_1—1q,)]=2. ®)
cancellation of three-body terms. This immediately shows a

that the quasiparticles remain free, up to statistical interac- )
tions, even in the presence of flux. From the constant andnere are exactlf) such pseudomomenta, corresponding to

two-body terms, it is apparent that acts to shift the quasi- e hole excitations. The remaining, pseudomomenta then
particle momenta, leading to a modified dispersion relationc0rrespond to spin excitations. Using this distinction, the en-
Since this is the extent of the modification to the solution€r9Y SPectrum and momentum of the system are given by
caused by nonzere, the results of Ref. 10 are easily ex-
tended to the case of twisted hopping.

For a spin chain withM; down spins andQ holes, we
introduce two sets of pseudomomenta: p;
(i=1,2,... M +Q) andq, (¢=1,2,...,Q). The solution
to this supersymmetrit-J model may then be written in a
Bethe-ansatz-like form

2
E($)= g LA-112+ 3 P+ eylp),
i¢Q ieQ
P(d)=(L—1)m+2mw¢(1—QJL)
M +Q
-~ 21 (pi— 7)mod2, 9

L=27J;+ o(pi—pP;i)— o(p;— , . . . . L
Pi e JE#. (Pi=Py) za: (Pi—0a) where the single-particle dispersion relation is
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e¢(k)=%[(k+277¢/L)2—772+4772¢(1—¢)/L2] TABLE |. Exact ground-state energielS(¢) and momenta
P(¢) of the t-J model with twisted boundary conditions for
=(1—¢p)eg(k)+ peg(k+27/L), (10 0< ¢=13. Taking into account a level crossingdt 3, the absolute

L . . ) _ ground state foés ¢=1 instead has enerdy(1— ¢) and momen-
for 0O<¢=<1. This piecewise linear form of the dispersion yym —p(1- ¢).

relation follows directly from the behavior of the hopping

term, Eq.(5). We wish to stress that, while this solution has N, mod 4 E(¢) P(¢)
the form of a Bethe ansatz, it was actually derived as an

i i N Eq+ 72n, /L Pyt m(1+ny)
exact solution based on the construction of a complete bas ol h g h
of Jastrow wave functions and a proper ordering of the Hil-1 Egt m[2+ny(1+8¢)]/4L

ctions Py~ = (1—ny—11L)
bert space, as described in Refs. 12 and 10. > E,+4m2n, /L 2 p
States in the excitation spectrum are labeled by individu-3 E +W2‘E’2+n (1+8¢)7/4L o
ally nonoverlapping quantum numbeds and |,. The J; 9 h Pg—g(l—thr 1)
may be represented as a string of 0's and 1's of length
L—M with M, +Q occupied positions represented by 1's.
The I; then in turn label which of these 1's correspond toyye note that the linear spectral flow apparent from the can-
hole excitations(and hence are sensitive to the fluXhe cellation of #2 terms in Eq.(10) indicates that the ground

interpretation of the Bethe-ansatz-like equatiais is 10 gate at zero flux is always the absolute lowest energy state
separate the spin excitations by insegtia 0 before every since any flow to lower energy has nowhere to terminate.

spin _excitation. The. re;ultmg string then - specifies theHence the ground state is always diamagnetic, regardless of
pseudomomentgq;, lying in the rangd — =, 7). From Eq.

(10), it is evident that states in the middle of the string havethe number of electrons. . .
It is well known that the ground state of a noninteracting

lowest energy. Therefore the ground state of thlemodel, . . S ; .
one-dimensional electron gas is either diamagnetic or para-

in a sector of fixedM, andQ, has pseudomomenta of the magnetic, depending on whether the number of electrons in

general f_ormpi e(...0010101111010100 i ), with the the system is even or odd. Leggett has conjectured that this
hole excitations centrally locate@nd underlined In order . L ) : _
arity effect persists in the presence of interactibhthis

to .study the ground-state propgrtles, we mtro_duce unlfornﬁas subsequently been proven by Loss for generic Luttinger
spin and hole momentd, andJ, (integral or half-integral as liquids® Thus it is somewhat of a surprise that this long

%pfr:?spggéi Fiﬁretuggrlrgstgi;t:ngeiOfeieSntgr tihees Igl;teor right. ranget-J model provides an exception to Leggett's conjec-
' P g9 €9 9 ture despite the fact that its low-lying physics is still de-

9

L2 scribed by a Luttinger-liquid fixed-point Hamiltonian. The
?E(JS"]h)ZEO_}_ 2MlJ§+ 2Q[(Ip+ ¢)2 o'r|g|n.of thI'S brea}kdown may be traced to the unusual qua-
siparticle dispersion relation, Eq10), which in turn is an
2 542 artifact of the long-range nature of the electron hopping in-
T35t It ¢)" =247, (1) teraction. Therefore this model does not invalidate Leggett's
where conjecture, but rather emphasizes the peculiar features of
long-range hopping in the presence of a magnetic field, as
Eo=5L(L*=1)+3(Q+M)[(Q+M)*—1]+4¢Q was already apparent in the subtleties in constructig)
and its resulting linearity ing. This shows that there are
—3(Q+M))L*-3Q(Q+M)(Q+2M ). (120  sharp differences between models with and without long-
range hopping in the presence of a magnetic field.
We now turn to a generalization to the SUK) super-
§9mmetrict-J model with long-range interactions. Since the

For fixed M, and Q, the ground state has both, and
Jnt ¢ as close to zero as possible. These states correspo

to exact Jastrow product wave functions describing they, hody nature of the quasiparticle interactions is unaf-

ground state as well as uniform excitations of th& model. fected by the flux, we may approach the SUK} generali-
To further examine the ground state of this model, We, qtion via the as;/mptotic Bethe ans#fsBA), which was
work at a fixed hole fractiom,=Q/L. Denoting the number ’

- " ' constructed at zero flux in Refs. 7 and 17. Since the magnetic
of electrons byNe=M;+M =L—Q, the ground state is g ists allK fermionic species identically, it is natural to
either a SW2) singlet for everN, or a doublet for odNe.  \yrite the ABA in terms of fermionic excitations above the
Due to finite-size effects, the ground-state properties depenﬂjrely bosonic vacuuntwhich we denoteF¥B). For this

on the value ofN. mod 4. At zero flux, wheneveN.#2  cpoice of grading, only the first nesting is affected by the
mod 4, the ground state carries momentum and is hence tweg, 14 proceed, we introdudé sets of pseudomomenta
fold degenerate. However this degeneracy is always lifted for ’

nonzero¢ which breaks time reversal symmetry. The exact
ground-state energies and momenta are given in Table I,

.(a) =
where the bulk quantities are it 1=12,... Na, (14)

2
L _ B .
Eg=— W—[nh(S—nﬁ)+2(3+2nh)/Lz], wherea—l,z_,. .. K andNa—E;‘:aMi (M; is the nl_meer of
12 electrons with spin componemj. Note thatN; gives the
total number of SUK) electrons. These quasimomenta sat-
Pg=2mp(1—ny). (13 isfy the following ABA equations:
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understoof independent of the SU(2) supermultiplet

structure, which is spontaneously broken for nonzero flux.
In summary, we have provided an exact solution to the

long-ranget-J model in the presence of arbitrary flux. This

2 1)\ _ 2 2 2 . T . . :

Ei 6(p.?—pi ))_ZWI(“)JFEB H(p(a)—pg)) solution indicates that there is no meaningful difference be-

tween rational and irrational values of the flux. We have also

PIL=270+ 3 op? - pl?),

—E PRI given solutions for the full energy spectra of the general
> (Pa” =Py, SU(K) t-J model based on an asymptotic Bethe ansatz. It
should be feasible to prove these solutions exact by studying
the system with a complete basis of Jastrow wave functions
as was done for the SU(2) model. For this latter case, the
form of the exact solutions, only slightly changed in the pres-
ence of flux, indicates that this model remains integrable,
B even though the manifest $12) supersymmetry has been
Ey o(pl —pl 1)):27T|(LYK)+% o(pl —Py). lost. Thus it is apparent that part of the Yangian symniétry
(15) remains. Work on finding an infinite set of commuting con-

) K ) stants of motion in the presence of magnetic flux is currently
The quantum numbers);}, {1}, ... (1%} are integers or progress.

half-integers which are distinct within each set, respectively.

This set of equations is unchanged from the case without Note added Recently, we became aware of Ref. 19,
f|ux;7rl7 the Only p|ace Wher@ enters is in the energy and which Independenﬂy addressed many of the same issues. B.

momentum, given by Sutherland also recently informed us that the linear depen-
dence of the ground-state energy on the flux can be derived

w2 N1 for the twistedt-J model by imposing twisted boundary con-
E(¢)=— 5 LA~ 1/|-2)—Z es(piY), ditions on the continuum mod&%;?* and then by taking the
=t strong interaction limit to decouple the lattice oscillation
Ny modes from the internal degrees of freedom at each site. This

P(p)=2, (pV+27p/L— ) mod 2. (16) approach shquld enable one to_handlie the $IQIlt—J
i=1 model with twisted boundary conditions in a straightforward

This provides the exact energy spectrum of the SU{-J manner.
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ABA equations given in thé=?B grading provide a more systems and H. C. Ren for suggesting how to sum (By.
symmetrical description than the microscopically derivedThis work was supported in part by the U.S. Department of
equations(9). Nevertheless, thBF? picture of Eq.(7) has  Energy under Grant No. DOE-91ER40651-TASKB, and by
an advantage in that the complete level degeneracies atke Swiss National Science Foundation.
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