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Slow electrons impinging on dielectric solids. Il. Implantation profiles, electron mobility,
and recombination processes
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When an insulator is subject to electron irradiation, a fraction of electrons is absorbed while the rest is
backscattered. The injected electrons cannot be definitely trapped but they must instead recombine with posi-
tive charges left near the irradiated surface when secondary electrons are emitted; this is justified on the basis
that dielectric breakdown is not observed during specific experiments of electron irradiation of insulators. The
dynamics of the absorbed electrons depend on a number of parameters: the number of trapped electrons, the
charge-space distribution, the mobility, and the number of secondary electrons emitted from the region near the
surface of the dielectric. The time evolution of the surface electric has been studied by integration of the
continutity equation for the relevant transport processes of the injected charge by adopting, as the charge
source term, the distribution of the absorbed electrons as obtained by a Monte Carlo simulation. The image
charge has been also introduced in the calculation in order to take into account the change in the dielectric
constant when passing from the material to the vacuum. Selected computational results are reported to illustrate
the role of the relevant parameters which control the charging effects in electron-irradiated insulators.
[S0163-182607)04328-2

I. INTRODUCTION Il. THEORETICAL FRAMEWORK
. L. A. The Monte Carlo simulation
Charging phenomena in insulators, due, for example, to
electron irradiation as it occurs in an Auger analysis, can be The Monte Carlo methodsee, for example, Ref.)2s a

theoretically studied if the absorbed charge and its depth didumerical procedure involving random numbers suitable for
tribution are known. Moreover, one needs to evaluate th&©!Ving certain mathematical problems. This method is con-
transport processes of the injected electrons in order to cayenient for stu_c_iylng el_ectron penetration In matter, so long
culate the time evolution of the electric field both at the &S the probabilities of interactions of an individual electron

surface and along the depth of the irradiated insulator. Thg\'Ith the.aftoms constituting the target are k”OV.V”- Conse-
quently, it is possible to compute the macroscopic phenom-

kr;gvs:letdgeVOI dth;i (Iale(t:rtirlct:‘:eldk:js \:lnso Lelgv?nntnbect:;\]us%, II na characteristic of the interaction processes by simulating a
order o avo clectric breakdown phenomena, e M€l qqt number of trajectories and then taking an average.

car71n0t exceed_some critical valu_e Wh'Ch is of the order 0Many analytical approaches concerning particle-solid inter-
107 v/em for SiO,. The charge diffusion processes gener-,ciion have been proposed which, as opposed to the Monte
ally depend on the electric field, on sample temperature, ang4yio procedures, are appealing descriptions because of the
on electron mobility inside the insulator. simplicity of the involved closed formulas. On the other
The mobility of the injected electrons is an important pa-hand, since the Monte Carlo method is a very powerful nu-
rameter. Another important process is the charge recombinanerical tool, it has been frequently used to investigate elec-
tion near the surfacévhere the positive charge is left when tron and positron penetration in solid targ&t$’ especially
secondary electrons are emittedhdeed, when neglecting when purely analytical models and simple approaches using
the electron mobility and the charge-recombination processlosed formulas are not able to give satisfactory results. The
the dielectric breakdown conditions may be quickly attainedrapid evolution of the computer calculation capability has
in insulators. Let us illustrate this point with a specific ex- made possible, and convenient, detailed Monte Carlo simu-
ample. For a 3-keV electron irradiation at a current densitylations in which all scattering events are described. Such
of 1 mA/cm? (these are usual conditions in Auger analysis Simulations are exact except for the statistical uncertainties
the dielectric breakdowrii.e., ~10” V/cm) is attained in and should give the same results as that obtained by solving
~10 2 s. However, if the injected electrons are not simplythe transport equatiorfs.
implanted into the dielectric but allowed to diffuse towards
the surface through the ordinary and electric field assisted
diffusion processes, they may recombine with the positive Here we wish to describe the Monte Carlo scheme we
charges left by the secondary emission phenomena near thave adopted to calculate the electron-implantation profile in
irradiated surface, then dielectric breakdown can be avoide®&iO,. Let us introduce spherical coordinates {,¢) and
as proved also experimentalfly. assume that a stream of monoenergetic electrons impinges

1. The Monte Carlo scheme
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on a semi-infinite solid target in the x direction. The path- anday,=#%2%/mé€? is the Bohr radius of hydrogen, the differ-
length distribution is assumed to follow the Poisson statisential elastic scattering cross section can be given in the fol-

tics. The step-lengtiAs is then given by lowing closed form:
As=—\In(rnd,), (1) do(6) _ K Z_2 sing @
wherernd, is a random number uniformly distributed in the dé "E* (1-cosh+24)*"
range[0,1]. The elastic mean free path, is calculated as  where
1 7213
Nei= Nog' 2 B=k—=, ©)

whereay, is the total elastic scattering cross section Bhid ¢ is the scattering angledQ)=2msinédd), K,=(me*2),
the number of atomér molecules in the case of compound andk= (e?/8a,).
material$ for a unit of volume in the solid. The energy loss  The total cross section, in such a case, is given by
AE along the segment of trajectotys is approximated by

mdo K,Z2
AE:(dE/dS)AS, (3) 0'e|=2’7TJ'0 msmadﬁzm, (10)

where —dE/ds is the stopping power. The polar scattering il the probabilityP( 6) of elastic scattering into an angu-
angle ¢ after an elastic collision is calculated by assuming,,, range from O tod can be calculated as

that the probabilityP(8) of elastic scattering into an angular

range from 0 tof is a random numbemd, uniformly dis- ,da
tributed in thg rangé0,1]. The azimuthal angle> can take waomsmeda (1+ B)(1— cos)
on any value in the rand®,27] selected by a random num- P(0)= = . (1D
berrnd; uniformly distributed in such a range. Tel (1+2B~cos)
Both the 6 and ¢ angles are calculated relative to the last
direction in which the electron was moving before the im- 3. Elastic scattering: low energy electrons
pact. The directi0n9)'( in which the electron is mOVing after For an electron primary energy h|gher than 10 keV, the
the last deflection, relative to thedirection, is given by screened Rutherford formul&q. (8)] has been frequently
used’1"192%t can be rewritten as
coY, = coY,co¥ + Sinb,Sinfcosp, 4
i . o dao(0) sing
where 6, is the angle relative to the direction before the W:f(Z,E)mﬁ, (12
impact. The incremovx along thex direction is then cal-
culated as where[see Eqgs(8) and(9)]
Ax=Ascosd;, . (5) st 72
f(Z,E)= — =3, (13
The new angley;, then becomes the incident anglgfor the 2 E
next path length. In the present calculation an electron i%nd
followed into the solid target until its energy becomes lower
than 100 eV. g2 723
Y=28=— —. (14)
2. Elastic scattering: high energy electrons 4ay E

The screened Rutherford’s cross section, based on the Thjs analytical form is very convenient because it permits

o . : \ , .
Wentzel modef, _has been widely used in Monte Carlo ;5 1o sample the scattering angle by using the following
simulations due its simplicity. However, unfortunately, it is simple closed formula:

valid only for high energy electrof€, = 10 keV (Ref. 19]

because it was derived from the first Born approximation. In 2P(0)Y

this approximation and assuming that the penetrating elec- cop=1— 2¥Y—2P(0)" (15
trons are subject to a screened Coulomb potential of the

form:*

For this reason it can be convenient to use the functional
762 form of Eq. (12) in order to approximate the differential
V(r)= —exp —ar), (6)  elastic scattering cross section even when the energies of the
r electrons are low. In this cadéZ,E) andY must be deter-
mined, of course, in order to accurately fit the cross sections
of low energy electrons numerically computed by the partial
713 wave expansion methofi(Z,E) and\(, in other_words, must
a=—, ) be computed so that the total elastic scattering cross section
2N ¢ and the transport elastic scattering cross seatigras-

where
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sume the values calculated by the partial wave expansiothe surface positive charge left by the secondary-electron
method described in the previous paPdsee, for example, emissionF(x,t) may be calculated by integrating Poissons’s

Baroet al. 4%, equation:
Since
IF(x,t X,t
e , (xb) _qxt (21)
. _ ox €0€;
O'el_f ﬁdﬁ—f(Z,E)m, (16)
0 where €y is the vacuum permittivity and, the dielectric
then constant, the value of which, for a typical glass, igfér
example,e, =4.6 for a quartz®
do oy Y(Y+2) In the right-hand side of the continuity E0) one may
O ﬂ‘COTY)Z' (17) recognize three contributions to the space-charge evolution

as function of time* the first term is simply related to the

I . . ordinary diffusion procesgwith a charge-concentration inde-
By definition and using the last equation we get, on thependent diffusion coefficiehtas given by the first Fick’s

other hand, law; the second term is related to the drift velocity, of the
Y(Y+2) Y+2 charged particles, triggered by the electric field, and finally

0y= 0| ——=——1In —Y}. (18) S(x,t) is the deposition function of the injected electrons to

2 Y be computed with the Monte Carlo method as described in

the previous section.
Finally, to account for the injected-electron recombination
process at the surface, where positive charges are generated

Let us define

=_ O _ Y+2 Y+2_ when secondary electrons are emitted, the appropriate
BE=—= In 1|. (19 A
Ol 2 Y boundary condition is
Once the values of, and of o) NumMerically calculated are ek T 9q(X,t)
known, they can be used to obtéthand hence, by mean of meF (X, 1)q(x,t) — =hq(x,t), (22

. . . . X
a bisection algorithm, the values af as a function of the

electron energy. The sampling of the scattering agt&an  atx=0.

thus be performed by inserting in E@L5) the value ofY Such a condition is used whenever a recombination pro-

corresponding to the energy that the electron had before theess characterized by a rate proportionah tis at work333*

elastic collision and, foP(#), a random number uniformly in a system where both a diffusion and a drift current exist

distributed in the rangg0,1]. For each step along each elec- (instantaneous recombinatjorin the actual calculations this

tron path, the electron energy is different: then the value otorresponds to valuds= 1.5 cm/s. Equation&l3)—(15) de-

Y has to be computed by cubic spline interpolation of a setcribe the time evolution of the global charge density when

of tabulated values oY previously calculated and stored. the positive charges are immobile. The charged holes, cre-
ated by bond breaking during electron irradiation, are also

B. Transport equation considered immobile. The electric field is calculated at

. o L x=0 at any time by using the Gauss law. We have in addi-
Starting from a realistic distribution of the injected elec- 4o the obvious condition

trons in an insulator, as obtained by the above illustrated
Monte Carlo simulation, it is possible to calculate the surface lim q(x,t)=0, (23
electric field of the electron-irradiated solid by using the x50
Gauss law and including image-charge effects.

Since, typically, the electron-beam size, utilized, for ex-for t=0. _ _
ample, in Auger analysis, is much larger than the other im- The image charge has been also introduced in the calcu-
portant lengths, namely, the maximum electron-penetratiofition in order to take into account the change in the dielec-
range and migration depth, it is reasonable to consider thiC constant when passing from the dielectric to the vacuum.
continuity equation for the ordinary and electric field assisted! he introduction of such an image charge is a standard math-

diffusion process for the injected electrons in the followingematical procedure to take into account that only a portion
one-dimensional form: (half) of space is occupied by the insulating material; the
related boundary condition can then be treated as if an image
9 of the actual charge is created in the vacuum. The vaule of
—pezz[F(X,0)a(x,t)]+S(x,t),  the image charge will depend on the dielectric constant of
X . . . . C .
(20 the msulatmg material. Then, at qny_tlme, the electric field is
obtained as the sum of the electric field created by the actual
where q(x,t) is the electron charge density at timeand  charge distributiorg(x,t) and by its imageKq(x,t) placed
depthx (x=0 is the surface positionkg the Boltzmann in the vacuum, the plane of symmetry beirg 0. HereK
constante the electron chargel the temperature, and,  'epresents the image weight and is giveri®by
the electron mobility connected to the electron diffusion co-
efficient through the Nernst-Einstein equatiéi{x,t) is the K= &1 (24)

electric field induced by the primary electrons as well as by e+1°

ﬂq(xvt) _ MekBT &Zq(x,t)
a e NG
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C. The surface positive charge 0.50
in electron-irradiated insulators

When an electron stream is bombarding a solid target,
secondary electrons are emitted from a surface layer. The
thickness of this layer, which becomes positively charged in
the case of electron-irradiation of insulators, is of the order
of 5-30 A(i.e., a thickness comparable to the inelastic mean = 0.251
free path of an electron traveling into a solf§=’

The primary electrons, on the other hand, after a number
of elastic and inelastic collisions with the atoms of the target,
are trapped in the material, apart from a fraction of them
which come back and emerge from the surface. Since we are
considering a bulk, the sum of the fractions of trapped and ¢, — : — :
backscattered electrons is equal to 1. 0 2000 4000 6000 8000 10000

The penetration depth of the absorbed electrons depend: Eo (eV)
on the material and on the energy of the primary electrons; in
general, this depth is much more greater than the thickness of FIG. 1. Backscattering coefficient of electrons impinging on Al.
the layer positively charged, at the top of the surface, proEmpty squares: Reimer and TollkartRef. 3§ experimental data.
duced by secondary-electron emission. For 3-keV electronkilled squares: Bogeler et al. (Ref. 39 experimental data. Tri-
impinging on SiQ, for instance, the penetration depth of the angles: Present Monte Carlo results using the Ashley and Anderson
primary electrons is= 1500 A For these reasons, the Charge_(Ref. 40 stopping power. Rhombs: Present Monte Carlo results
recombination process was described as a boundary condising Joy and LudRef. 41 stopping power.
tion, atx=0, in Eq.(22).

Since the total stored charges, namely, the positive charge The backscattering coefficient, as computed by the Monte
at the surface and the negative charge inside the bulk are &arlo simulation as a function of the primary energy for
the same order of magnitudend in the case of low energy e€lectron impinging on SiQis compared in Table I, with the
electrons impinging on SiQthey must be practically equal, Vicanek and Urbassek formula given“fy
since dielectric breakdown conditions are not attathéie
positive charge density near the surface must be much Lo
greater than the negative charge density trapped into the n=|1+a,—pt+a
solid. Concerning the nature of the surface positive charges, v
these are most probably trapped holes generated by the . . .
electron-collisionail) event)é Whﬁ)(?h may alsg induce AuygerWh.ere.'“0 (=1 in the present ca}és the cosine of the angle
electron emission. of.|nC|denc§,alz3.39,a228.59,.a3z4.16,a4zl35.9, and
v is the ratio between the maximum ranBeand the trans-
port mean free path\,=1/No,,. The adopted stopping
power was that of Ashley and Andersth.

A
o

A
LI

HI.e [
.qﬂlnunanunnﬁnnnng

2 3 4\ —1/2
@Jra Fo +a ®o (25
” 3,32 T2 )

I1l. RESULTS AND DISCUSSION
A. Monte Carlo calculation of the backscattering coefficient

Figure 1 shows the experimental data of Reimer and B. Monte Carlo calculation
Tollkamp®® and of Bageler et al3® concerning the back- of the electron-implantation profile
scattering coefficient of electrons, impinging on Al, with ki-
netic energy ranging from 500 to 10 000 eV. The results ofSi
our Monte Carlo calculations, performed along the lines de

Selected examples of the electron-implantation profiles, in
O,, as obtained with the above illustrated Monte Carlo
. . A= . .~ ~procedure, are reported in Fig. 2. In particular, the depen-
scribed in Sec. Il, and considering two different StOPPING{ence of the electron-implantation profiles on the electron

0,41
poytveré I a_rt?] ?rl]so repor_ted. ;H:ed I\ilontehCartlﬁ res_ults agree'energy is illustrated when the Ashley and Anderson stopping
quite well wi € expenmental data, when the primary en'powef‘o is adopted in the Monte Carlo scheme.

ergy is higher thar-1 keV. Furthermore, for energies higher Starting from these electron depth-deposition functions,

ﬂ}a?] 1 k;V' tf:je Monte Carlo reslultfs are r(}:learly_ independeng, o g rface electric field and potential can be calculated by
of the adopted stopping power. In fact, the various stopping,, nerica| integration of the relevant continuity equation

powers are similar when the electron energy is higher tha b0 d the bound ditioniga1)—(22) for the ordi
~500 eV3! On the other hand, when the energy is Iowerra ) and the boundary conditio1)~(22), for the ordinary

than 1 keV some departure from the experimental data is . - L

. . . TABLE |. Backscattering coefficient of electrons impinging on

observed. This departure becomes particularly evident at SOQiO
ev. -

More precisely, the experimental data are lower than th

. . . 0 Monte Carlo Theory of
\{alues predicted by all thg Monte Qarlo S|muI§1t|0ns. We be-, simulation Vicanek and UrbasséRef. 42
lieve that both the approximations introduced in our calcula-
tions and the uncertainty in the backscattering measure- 3000 0.163 0.149
ments, possibly due to the contamination of the surfaces, can 5000 0.150 0.143
explain the slight discrepancy between theory and experi- 10000 0.139 0.137

ment.
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FIG. 2. Implantation profiles of electrons in SjOPresent

Monte Carlo results using the Ashley and Ander¢Ref. 40 stop-
ping power.

FIG. 4. Surface electric field as a function of the electron-
irradiation time. Diffusion coefficient: 10° cm?/s. Current density:
1073 Alcm?. 6=1—1. Electron energy: 3 ke\(squarel 5 keV

and electric-field assisted diffusion process. The main resultdriangles.
are reported in the following section.
Now, coming back to the relevance of the diffusion coef-

ficient, note that a higher value of this parameter implies a
more efficient charge-recombination process at the surface,
In Fig. 3, the numerical results for the time dependence ofjong with a reduction of the unbalanced charge density and
the surface electric field are reported. The calculatipBgs.  a lower value of the electric field. In the limit of a zero value
(20—(22)], are related to a primary-electron current densityof the electron mobility, a linear increasing of the surface
of 107° A/cm? and a 3-keV electron energy. Moreover, electric field is easily anticipated with dielectric breakdown
since the diffusion coefficient of the injected electrons inconditions attained in a very short interval time of irradia-
SiO; is not known, we have chosen to consider three valuegion, as discussed in the introduction. This is, on the other
for it (107°%, 1077, and 10°® cm?/s, respectively while  hand, not the case: breakdown conditions are not observed in
maintaining a fixed target temperature of 300 K. With theseelectron irradiation of Si@, in typical Auger analysis con-
choices, the three curves were obtained. They clearly indiditions, and we explain such an experimental fact by looking
cate the relevance of the diffusion coefficient parameter irat the electron mobility and surface recombination processes.
determining the steady-state value of the surface electric fieltthe electron mobility alone, indeed, cannot explain station-
as well as the interval time necessary to attain stationardry conditions; it is necessary that the mobile electrons re-
conditions. In Fig. 4 we presented the surface electric fieldombine with the positive charges that are present near to the
for a diffusion coefficient of 10® cm?/s and at primary irradiated surface.
energies of 3 and 5 keV: note that the energy of the primary  An additional important point related to Fig. 3 is the in-
electrons modifies the steady-state value of the electric fielderval time necessary to attain steady-state conditions: this is
dependent on the electron-diffusion coefficient but remains,
1075 in any case, confined to an interval time less than 18,

] i.e., negligible on the time scale typical, for example, of Au-
ger analysigminutes.

At this point, one may ask if the chosen values of the
diffusion coefficients may have some physical basis, or, on
the contrary, they are completely arbitrary. To give an an-
swer, we note that the computed electric fields of Figs. 3, 4
correspond to values of the surface electric potentials of

C. Surface electric field calculation

ELECTRON IRRADIATION TIME (s)

10°®
10°

T
10

SURFACE ELECTRIC FIELD (V/em)

4

T
10

5

106

some electronvolts: similar values are typically observed in
the shift of Auger lines, in the electron spectra, when asso-
ciated to charging phenomeh#n addition, it is known that
the stability of the Auger lines, against charging phenomena,
is generally attained in a short time. The secondary emission
coefficient,s, was set, in the present calculatidifsgs. 3,4,

to be equal to + 7, n being the backscattering coefficient of
electrons impinging on SiQ

In Fig. 5 we present computational results obtained with
6<1-7 (6=0.5 and 6>1—7 (6=1.0) as compared to re-
sults for §=1—7 (6=0.837. The stationary conditions are
reached only whens=1—#, while in the other cases the

FIG. 3. Surface electric field as a function of the electron-
irradiation time. Electron energy: 3 keV. Current density: %0
Alcm?. § = 1 — 7. Diffusion coefficient: 10® cm?/s (square}
10~7 cm?/s (triangles; 10~ cm?/s (rhombs3.
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FIG. 5. Surface electric field as a function of the electron-

irradiation time. Electron energy: 3 kel¢quares Current density: FIG. 6. Surface electric field as a function of the electron-
103 A/cm?. Diffusion coefficient: 107 cm%/s.8 = 1—5 = 0.837 irradiation time. Electron energy: 3 keV. Current density:” 30
(squares & = 0.5 (triangle; & = 1 (rhombs. Alcm?. 5=1—7. Diffusion coefficient: 108 cm?/s (square}

10~7 cm?/s (triangles; 10~ cm?/s (rhombg. The irradiation has

time evolution of the surface electric field exhibits an ini- been supposed to be switched off after 4G of irradiation.
tially more complicate structure, with respect to that of Figs.
3,4, after which the field begins to increase, again towardgeen calculated by using a depth distribution of the initially
dielectric breakdown conditions. trapped electrons as obtained by a Monte Carlo simulation. It

By swiching off the electron source, we expect that theis shown that steady-state values of the electric fields are
surface electric field should decrease, due to the chargettained very quickly. Their steady value depends on the
recombination process; this is indeed demonstrated in Fig. 8lectron mobility. The mobility of primary electrons and the
where the irradiation has been supposed to be swiched ofélectron-hole recombination processes at the surface of the

10™“ s after the initial stage of irradiation. irradiated insulators explain why the Auger technique may
be applied to dielectric solids without inducing dielectric
IV. CONCLUSION breakdown. On the other hand, the values of the electron

mobility may be calculated starting from the shifts in the
The time evolution of the surface electric field in an Auger lines, when these are associated to charging phenom-
electron-irradiated insulataiSiO, in the present cagéhas ena.
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