
PHYSICAL REVIEW B 15 JULY 1997-IIVOLUME 56, NUMBER 4
Slow electrons impinging on dielectric solids. II. Implantation profiles, electron mobility,
and recombination processes

Antonio Miotello
INFM and Dipartimento di Fisica dell’Universita` di Trento, I-38050 Povo, Trento, Italy

Maurizio Dapor
INFM and Centro Materiali e Biofisica Medica, Istituto Trentino di Cultura, I-38050 Povo, Trento, Italy
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When an insulator is subject to electron irradiation, a fraction of electrons is absorbed while the rest is
backscattered. The injected electrons cannot be definitely trapped but they must instead recombine with posi-
tive charges left near the irradiated surface when secondary electrons are emitted; this is justified on the basis
that dielectric breakdown is not observed during specific experiments of electron irradiation of insulators. The
dynamics of the absorbed electrons depend on a number of parameters: the number of trapped electrons, the
charge-space distribution, the mobility, and the number of secondary electrons emitted from the region near the
surface of the dielectric. The time evolution of the surface electric has been studied by integration of the
continutity equation for the relevant transport processes of the injected charge by adopting, as the charge
source term, the distribution of the absorbed electrons as obtained by a Monte Carlo simulation. The image
charge has been also introduced in the calculation in order to take into account the change in the dielectric
constant when passing from the material to the vacuum. Selected computational results are reported to illustrate
the role of the relevant parameters which control the charging effects in electron-irradiated insulators.
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I. INTRODUCTION

Charging phenomena in insulators, due, for example
electron irradiation as it occurs in an Auger analysis, can
theoretically studied if the absorbed charge and its depth
tribution are known. Moreover, one needs to evaluate
transport processes of the injected electrons in order to
culate the time evolution of the electric field both at t
surface and along the depth of the irradiated insulator.
knowledge of the electric field is also relevant because
order to avoid dielectric breakdown phenomena, the fi
cannot exceed some critical value which is of the order
107 V/cm for SiO2. The charge diffusion processes gen
ally depend on the electric field, on sample temperature,
on electron mobility inside the insulator.

The mobility of the injected electrons is an important p
rameter. Another important process is the charge recomb
tion near the surface~where the positive charge is left whe
secondary electrons are emitted!. Indeed, when neglecting
the electron mobility and the charge-recombination proce
the dielectric breakdown conditions may be quickly attain
in insulators. Let us illustrate this point with a specific e
ample. For a 3-keV electron irradiation at a current dens
of 1 mA/cm2 ~these are usual conditions in Auger analysi!,
the dielectric breakdown~i.e., '107 V/cm! is attained in
;1022 s. However, if the injected electrons are not simp
implanted into the dielectric but allowed to diffuse towar
the surface through the ordinary and electric field assis
diffusion processes, they may recombine with the posit
charges left by the secondary emission phenomena nea
irradiated surface, then dielectric breakdown can be avoid
as proved also experimentally.1
560163-1829/97/56~4!/2241~7!/$10.00
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II. THEORETICAL FRAMEWORK

A. The Monte Carlo simulation

The Monte Carlo method~see, for example, Ref. 2! is a
numerical procedure involving random numbers suitable
solving certain mathematical problems. This method is c
venient for studying electron penetration in matter, so lo
as the probabilities of interactions of an individual electr
with the atoms constituting the target are known. Con
quently, it is possible to compute the macroscopic pheno
ena characteristic of the interaction processes by simulati
great number of trajectories and then taking an avera
Many analytical approaches concerning particle-solid int
action have been proposed which, as opposed to the M
Carlo procedures, are appealing descriptions because o
simplicity of the involved closed formulas. On the oth
hand, since the Monte Carlo method is a very powerful n
merical tool, it has been frequently used to investigate e
tron and positron penetration in solid targets,2–29 especially
when purely analytical models and simple approaches u
closed formulas are not able to give satisfactory results.
rapid evolution of the computer calculation capability h
made possible, and convenient, detailed Monte Carlo si
lations in which all scattering events are described. S
simulations are exact except for the statistical uncertain
and should give the same results as that obtained by sol
the transport equations.25

1. The Monte Carlo scheme

Here we wish to describe the Monte Carlo scheme
have adopted to calculate the electron-implantation profile
SiO2. Let us introduce spherical coordinates (r ,u,f) and
assume that a stream of monoenergetic electrons impin
2241 © 1997 The American Physical Society
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2242 56ANTONIO MIOTELLO AND MAURIZIO DAPOR
on a semi-infinite solid target in the1x direction. The path-
length distribution is assumed to follow the Poisson sta
tics. The step-lengthDs is then given by

Ds52lelln~rnd1!, ~1!

wherernd1 is a random number uniformly distributed in th
range@0,1#. The elastic mean free pathlel is calculated as

lel5
1

Nsel
, ~2!

wheresel is the total elastic scattering cross section andN is
the number of atoms~or molecules in the case of compoun
materials! for a unit of volume in the solid. The energy los
DE along the segment of trajectoryDs is approximated by

DE5~dE/ds!Ds, ~3!

where2dE/ds is the stopping power. The polar scatterin
angleu after an elastic collision is calculated by assumi
that the probabilityP(u) of elastic scattering into an angula
range from 0 tou is a random numberrnd2 uniformly dis-
tributed in the range@0,1#. The azimuthal anglef can take
on any value in the range@0,2p# selected by a random num
ber rnd3 uniformly distributed in such a range.

Both theu andf angles are calculated relative to the la
direction in which the electron was moving before the i
pact. The directionux8 in which the electron is moving afte
the last deflection, relative to thex direction, is given by

cosux85cosuxcosu1sinuxsinucosf, ~4!

whereux is the angle relative to thex direction before the
impact. The incremovDx along thex direction is then cal-
culated as

Dx5Dscosux8 . ~5!

The new angleux8 then becomes the incident angleux for the
next path length. In the present calculation an electron
followed into the solid target until its energy becomes low
than 100 eV.

2. Elastic scattering: high energy electrons

The screened Rutherford’s cross section, based on
Wentzel model,30 has been widely used in Monte Car
simulations due its simplicity. However, unfortunately, it
valid only for high energy electrons@E0 * 10 keV~Ref. 19!#
because it was derived from the first Born approximation
this approximation and assuming that the penetrating e
trons are subject to a screened Coulomb potential of
form:30

V~r !5
Ze2

r
exp~2ar !, ~6!

where

a5
Z1/3

a0
, ~7!
-

t
-
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r

he

n
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e

anda05\2/me2 is the Bohr radius of hydrogen, the differ
ential elastic scattering cross section can be given in the
lowing closed form:

ds~u!

du
5Kn

Z2

E2

sinu

~12cosu12b!2
, ~8!

where

b5k
Z2/3

E
, ~9!

u is the scattering angle (dV52psinudu), Kn5(pe4/2),
andk5(e2/8a0).

The total cross section, in such a case, is given by

sel52pE
0

p ds

dV
sinudu5

KnZ
2

2b~11b!E2 , ~10!

while the probabilityP(u) of elastic scattering into an angu
lar range from 0 tou can be calculated as

P~u!5

2p*0
u ds

dV
sinudu

sel
5

~11b!~12cosu!

~112b2cosu!
. ~11!

3. Elastic scattering: low energy electrons

For an electron primary energy higher than 10 keV, t
screened Rutherford formula@Eq. ~8!# has been frequently
used.7,17,19,20It can be rewritten as

ds~u!

du
5 f ~Z,E!

sinu

~12cosu1Y!2
, ~12!

where@see Eqs.~8! and ~9!#

f ~Z,E!5
pe4

2

Z2

E2 , ~13!

and

Y52b5
e2

4a0

Z2/3

E
. ~14!

This analytical form is very convenient because it perm
us to sample the scattering angle by using the follow
simple closed formula:

cosu512
2P~u!Y

21Y22P~u!
. ~15!

For this reason it can be convenient to use the functio
form of Eq. ~12! in order to approximate the differentia
elastic scattering cross section even when the energies o
electrons are low. In this casef (Z,E) andY must be deter-
mined, of course, in order to accurately fit the cross secti
of low energy electrons numerically computed by the par
wave expansion method.f (Z,E) andY, in other words, must
be computed so that the total elastic scattering cross sec
sel and the transport elastic scattering cross sections tr as-
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56 2243SLOW ELECTRONS IMPINGING ON . . . . II. . . .
sume the values calculated by the partial wave expan
method described in the previous paper31 ~see, for example
Baróet al. 24,25!.

Since

sel5E
0

p ds

du
du5 f ~Z,E!

2

Y~21Y!
, ~16!

then

ds

dV
5

sel

4p

Y~Y12!

~12cosu1Y!2
. ~17!

By definition and using the last equation we get, on
other hand,

s tr5selFY~Y12!

2
ln

Y12

Y
2YG . ~18!

Let us define

J5
s tr

sel
5YFY12

2
ln

Y12

Y
21G . ~19!

Once the values ofs tr and ofsel numerically calculated are
known, they can be used to obtainJ and hence, by mean o
a bisection algorithm, the values ofY as a function of the
electron energy. The sampling of the scattering angleu can
thus be performed by inserting in Eq.~15! the value ofY
corresponding to the energy that the electron had before
elastic collision and, forP(u), a random number uniformly
distributed in the range@0,1#. For each step along each ele
tron path, the electron energy is different: then the value
Y has to be computed by cubic spline interpolation of a
of tabulated values ofY previously calculated and stored.

B. Transport equation

Starting from a realistic distribution of the injected ele
trons in an insulator, as obtained by the above illustra
Monte Carlo simulation, it is possible to calculate the surfa
electric field of the electron-irradiated solid by using t
Gauss law and including image-charge effects.

Since, typically, the electron-beam size, utilized, for e
ample, in Auger analysis, is much larger than the other
portant lengths, namely, the maximum electron-penetra
range and migration depth, it is reasonable to consider
continuity equation for the ordinary and electric field assis
diffusion process for the injected electrons in the followi
one-dimensional form:

]q~x,t !

]t
5

mekBT

e

]2q~x,t !

]x2
2me

]

]x
@F~x,t !q~x,t !#1S~x,t !,

~20!

where q(x,t) is the electron charge density at timet and
depth x (x50 is the surface position!, kB the Boltzmann
constant,e the electron charge,T the temperature, andme
the electron mobility connected to the electron diffusion c
efficient through the Nernst-Einstein equation.F(x,t) is the
electric field induced by the primary electrons as well as
n
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the surface positive charge left by the secondary-elec
emission.F(x,t) may be calculated by integrating Poissons
equation:

]F~x,t !

]x
5
q~x,t !

e0e r
, ~21!

where e0 is the vacuum permittivity ande r the dielectric
constant, the value of which, for a typical glass, is 5~for
example,e r54.6 for a quartz.32!

In the right-hand side of the continuity Eq.~20! one may
recognize three contributions to the space-charge evolu
as function of time:33 the first term is simply related to th
ordinary diffusion process~with a charge-concentration inde
pendent diffusion coefficient! as given by the first Fick’s
law; the second term is related to the drift velocity, of t
charged particles, triggered by the electric field, and fina
S(x,t) is the deposition function of the injected electrons
be computed with the Monte Carlo method as described
the previous section.

Finally, to account for the injected-electron recombinati
process at the surface, where positive charges are gene
when secondary electrons are emitted, the appropr
boundary condition is

meF~x,t !q~x,t !2
mekBT

e

]q~x,t !

]x
5hq~x,t !, ~22!

at x50.
Such a condition is used whenever a recombination p

cess characterized by a rate proportional toh is at work,33,34

in a system where both a diffusion and a drift current ex
~instantaneous recombination!. In the actual calculations this
corresponds to valuesh* 1.5 cm/s. Equations~13!–~15! de-
scribe the time evolution of the global charge density wh
the positive charges are immobile. The charged holes,
ated by bond breaking during electron irradiation, are a
considered immobile. The electric field is calculated
x50 at any time by using the Gauss law. We have in ad
tion the obvious condition

lim
x→`

q~x,t !50, ~23!

for t>0.
The image charge has been also introduced in the ca

lation in order to take into account the change in the diel
tric constant when passing from the dielectric to the vacuu
The introduction of such an image charge is a standard m
ematical procedure to take into account that only a port
~half! of space is occupied by the insulating material; t
related boundary condition can then be treated as if an im
of the actual charge is created in the vacuum. The vaule
the image charge will depend on the dielectric constant
the insulating material. Then, at any time, the electric field
obtained as the sum of the electric field created by the ac
charge distributionq(x,t) and by its imageKq(x,t) placed
in the vacuum, the plane of symmetry beingx50. HereK
represents the image weight and is given by35

K5
e r21

e r11
. ~24!
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C. The surface positive charge
in electron-irradiated insulators

When an electron stream is bombarding a solid targ
secondary electrons are emitted from a surface layer.
thickness of this layer, which becomes positively charged
the case of electron-irradiation of insulators, is of the or
of 5–30 Å ~i.e., a thickness comparable to the inelastic me
free path of an electron traveling into a solid!.36,37

The primary electrons, on the other hand, after a num
of elastic and inelastic collisions with the atoms of the targ
are trapped in the material, apart from a fraction of th
which come back and emerge from the surface. Since we
considering a bulk, the sum of the fractions of trapped a
backscattered electrons is equal to 1.

The penetration depth of the absorbed electrons dep
on the material and on the energy of the primary electrons
general, this depth is much more greater than the thicknes
the layer positively charged, at the top of the surface, p
duced by secondary-electron emission. For 3-keV electr
impinging on SiO2, for instance, the penetration depth of t
primary electrons is'1500 Å. For these reasons, the charg
recombination process was described as a boundary co
tion, atx50, in Eq. ~22!.

Since the total stored charges, namely, the positive ch
at the surface and the negative charge inside the bulk ar
the same order of magnitude~and in the case of low energ
electrons impinging on SiO2 they must be practically equa
since dielectric breakdown conditions are not attained1! the
positive charge density near the surface must be m
greater than the negative charge density trapped into
solid. Concerning the nature of the surface positive char
these are most probably trapped holes generated by
electron-collisional events which may also induce Aug
electron emission.

III. RESULTS AND DISCUSSION

A. Monte Carlo calculation of the backscattering coefficient

Figure 1 shows the experimental data of Reimer a
Tollkamp38 and of Böngeler et al.39 concerning the back
scattering coefficient of electrons, impinging on Al, with k
netic energy ranging from 500 to 10 000 eV. The results
our Monte Carlo calculations, performed along the lines
scribed in Sec. II, and considering two different stoppi
powers40,41 are also reported. The Monte Carlo results ag
quite well with the experimental data, when the primary e
ergy is higher than'1 keV. Furthermore, for energies high
than 1 keV, the Monte Carlo results are clearly independ
of the adopted stopping power. In fact, the various stopp
powers are similar when the electron energy is higher t
'500 eV.31 On the other hand, when the energy is low
than 1 keV some departure from the experimental dat
observed. This departure becomes particularly evident at
eV.

More precisely, the experimental data are lower than
values predicted by all the Monte Carlo simulations. We
lieve that both the approximations introduced in our calcu
tions and the uncertainty in the backscattering meas
ments, possibly due to the contamination of the surfaces,
explain the slight discrepancy between theory and exp
ment.
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The backscattering coefficient, as computed by the Mo
Carlo simulation as a function of the primary energy f
electron impinging on SiO2 is compared in Table I, with the
Vicanek and Urbassek formula given by42

h5S 11a1
m0

n1/2
1a2

m0
2

n
1a3

m0
3

n3/2
1a4

m0
4

n2 D
21/2

, ~25!

wherem0 ~51 in the present case! is the cosine of the angle
of incidence,a1.3.39,a2.8.59,a3.4.16,a4.135.9, and
n is the ratio between the maximum rangeR and the trans-
port mean free pathl tr51/Ns tr . The adopted stopping
power was that of Ashley and Anderson.40

B. Monte Carlo calculation
of the electron-implantation profile

Selected examples of the electron-implantation profiles
SiO2, as obtained with the above illustrated Monte Ca
procedure, are reported in Fig. 2. In particular, the dep
dence of the electron-implantation profiles on the elect
energy is illustrated when the Ashley and Anderson stopp
power40 is adopted in the Monte Carlo scheme.

Starting from these electron depth-deposition functio
the surface electric field and potential can be calculated
numerical integration of the relevant continuity equati
~20!, and the boundary conditions~21!–~22!, for the ordinary

FIG. 1. Backscattering coefficient of electrons impinging on A
Empty squares: Reimer and Tollkamp~Ref. 38! experimental data.
Filled squares: Bo¨ngeler et al. ~Ref. 39! experimental data. Tri-
angles: Present Monte Carlo results using the Ashley and Ande
~Ref. 40! stopping power. Rhombs: Present Monte Carlo resu
using Joy and Luo~Ref. 41! stopping power.

TABLE I. Backscattering coefficient of electrons impinging o
SiO2.

E0 Monte Carlo Theory of
~eV! simulation Vicanek and Urbassek~Ref. 42!

3000 0.163 0.149
5000 0.150 0.143
10000 0.139 0.137
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and electric-field assisted diffusion process. The main res
are reported in the following section.

C. Surface electric field calculation

In Fig. 3, the numerical results for the time dependence
the surface electric field are reported. The calculations,@Eqs.
~20!–~22!#, are related to a primary-electron current dens
of 1023 A/cm2 and a 3-keV electron energy. Moreove
since the diffusion coefficient of the injected electrons
SiO2 is not known, we have chosen to consider three val
for it ~1026, 1027, and 1028 cm2/s, respectively!, while
maintaining a fixed target temperature of 300 K. With the
choices, the three curves were obtained. They clearly i
cate the relevance of the diffusion coefficient paramete
determining the steady-state value of the surface electric
as well as the interval time necessary to attain station
conditions. In Fig. 4 we presented the surface electric fi
for a diffusion coefficient of 1026 cm2/s and at primary
energies of 3 and 5 keV: note that the energy of the prim
electrons modifies the steady-state value of the electric fi

FIG. 2. Implantation profiles of electrons in SiO2. Present
Monte Carlo results using the Ashley and Anderson~Ref. 40! stop-
ping power.

FIG. 3. Surface electric field as a function of the electro
irradiation time. Electron energy: 3 keV. Current density: 1023

A/cm2. d 5 1 2 h. Diffusion coefficient: 1026 cm2/s ~squares!;
1027 cm2/s ~triangles!; 1028 cm2/s ~rhombs!.
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Now, coming back to the relevance of the diffusion coe
ficient, note that a higher value of this parameter implie
more efficient charge-recombination process at the surf
along with a reduction of the unbalanced charge density
a lower value of the electric field. In the limit of a zero valu
of the electron mobility, a linear increasing of the surfa
electric field is easily anticipated with dielectric breakdow
conditions attained in a very short interval time of irradi
tion, as discussed in the introduction. This is, on the ot
hand, not the case: breakdown conditions are not observe
electron irradiation of SiO2, in typical Auger analysis con-
ditions, and we explain such an experimental fact by look
at the electron mobility and surface recombination proces
The electron mobility alone, indeed, cannot explain stati
ary conditions; it is necessary that the mobile electrons
combine with the positive charges that are present near to
irradiated surface.

An additional important point related to Fig. 3 is the in
terval time necessary to attain steady-state conditions: th
dependent on the electron-diffusion coefficient but rema
in any case, confined to an interval time less than 1024 s,
i.e., negligible on the time scale typical, for example, of A
ger analysis~minutes!.

At this point, one may ask if the chosen values of t
diffusion coefficients may have some physical basis, or,
the contrary, they are completely arbitrary. To give an a
swer, we note that the computed electric fields of Figs. 3
correspond to values of the surface electric potentials
some electronvolts: similar values are typically observed
the shift of Auger lines, in the electron spectra, when as
ciated to charging phenomena.1 In addition, it is known that
the stability of the Auger lines, against charging phenome
is generally attained in a short time. The secondary emiss
coefficient,d, was set, in the present calculations~Figs. 3,4!,
to be equal to 12h, h being the backscattering coefficient o
electrons impinging on SiO2.

In Fig. 5 we present computational results obtained w
d,12h (d50.5! andd.12h (d51.0! as compared to re
sults ford512h (d50.837!. The stationary conditions ar
reached only whend512h, while in the other cases th

-

FIG. 4. Surface electric field as a function of the electro
irradiation time. Diffusion coefficient: 1026 cm2/s. Current density:
1023 A/cm2. d512h. Electron energy: 3 keV~squares!; 5 keV
~triangles!.
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2246 56ANTONIO MIOTELLO AND MAURIZIO DAPOR
time evolution of the surface electric field exhibits an in
tially more complicate structure, with respect to that of Fi
3,4, after which the field begins to increase, again towa
dielectric breakdown conditions.

By swiching off the electron source, we expect that t
surface electric field should decrease, due to the cha
recombination process; this is indeed demonstrated in Fi
where the irradiation has been supposed to be swiched
1024 s after the initial stage of irradiation.

IV. CONCLUSION

The time evolution of the surface electric field in a
electron-irradiated insulator~SiO2 in the present case! has

FIG. 5. Surface electric field as a function of the electro
irradiation time. Electron energy: 3 keV~squares!. Current density:
1023 A/cm2. Diffusion coefficient: 1027 cm2/s.d 5 12h 5 0.837
~squares!; d 5 0.5 ~triangles!; d 5 1 ~rhombs!.
al

se

rf.

ulz
.
s

e
e-
6
ff,

been calculated by using a depth distribution of the initia
trapped electrons as obtained by a Monte Carlo simulatio
is shown that steady-state values of the electric fields
attained very quickly. Their steady value depends on
electron mobility. The mobility of primary electrons and th
electron-hole recombination processes at the surface of
irradiated insulators explain why the Auger technique m
be applied to dielectric solids without inducing dielectr
breakdown. On the other hand, the values of the elec
mobility may be calculated starting from the shifts in th
Auger lines, when these are associated to charging phen
ena.

-
FIG. 6. Surface electric field as a function of the electro

irradiation time. Electron energy: 3 keV. Current density: 1023

A/cm2. d512h. Diffusion coefficient: 1026 cm2/s ~squares!;
1027 cm2/s ~triangles!; 1028 cm2/s ~rhombs!. The irradiation has
been supposed to be switched off after 1024 s of irradiation.
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39R. Böngeler, U. Golla, M. Ka¨ssens, L. Reimer, R. Senkel, and M

Sprank, Scanning15, 1 ~1993!.
40J. C. Ashley and V. E. Anderson, IEEE Trans. Nucl. Sci.10, 349

~1981!.
41D. C. Joy and S. Luo, Scanning11, 176 ~1989!.
42M. Vicanek and H. M. Urbassek, Phys. Rev. B44, 7234~1991!.


