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Slow electrons impinging on dielectric solids. I. Basic aspects
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The basic aspects related to the scattering processes, useful for both the analytical and Monte Carlo calcu-
lation of backscattering and the depth distribution of low-energy (E0<10 keV! electrons impinging on solid
targets, are described. After a careful analysis of the scattering mechanisms, selected new results regarding
elastic and inelastic scattering of low-energy electrons impinging on SiO2 are reported. Comparison with
experimental data and earlier theoretical results show a general good agreement.@S0163-1829~97!05128-X#
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I. INTRODUCTION

Dielectric materials, namely biological materials, cera
ics, glasses, microelectronic devices and so on, exh
charging effects when irradiated with electrons. Electron
radiation is widely utilized in microanalytical technique
such as Auger electron spectroscopy, transmission elec
microscopy, electron-probe microanalysis, and electr
beam lithography.

The analysis of charging phenomena was already repo
in the literature1–4 and macroscopic equations were utiliz
to compute electric charge distribution, electric fields, a
the surface electrical potential. However, in these
proaches, the microscopic details were not investigated; o
in one case1 the dynamics of the injected charges, along w
charge-recombination processes, were considered.

In this paper and in the following5 we address, both at
microscopic and macroscopic level, problems connecte
the charge injection into insulating materials, and show th
at an atomic level, relevant problems are still open questi
which merit deeper investigations than those reported in
quoted literature.

The study of charging phenomena implies the knowled
of ~1! the depth distribution of the implanted electrons, or t
implantation profile;~2! the amount of the emitted seconda
electrons to make the appropriate charge balance in eva
ing the induced electric fields and surface electric poten
~3! and the dynamics of the charge-recombination proce
to evaluate the conditions to avoid dielectric breakdown.

The absorbed electrons, indeed, represent the ch
source term for the continuity equation in the ordinary a
electric-field-assisted diffusion process. The surface elec
field and potential are computable once the diffusion p
cesses are established. Then we describe here the bas
pects related to a theoretical~Monte Carlo! calculation of the
depth distribution and of the backscattering coefficient
low-energy (E0<10 keV! electrons bombarding insulatin
materials such as Al2O3 and SiO2.

In the following paper5 we will compute the depth-
distribution function of the primary electrons, which will b
used to solve the macroscopic electric-field-assisted di
sion equation. It permits the evaluation of the surface elec
560163-1829/97/56~4!/2234~7!/$10.00
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potential, a key parameter determining the shifts of Aug
lines due to charging effects during Auger analysis of in
lating materials.

II. THEORETICAL FRAMEWORK

Excellent reviews about the subject of electron-solid
teraction have been given, for example, by Niedrig,6 Gold-
steinet al.,7 Newburyet al.,8 Feldman and Mayer,9 and Mes-
sinaet al.10 Here, it is worth analyzing some general aspe
of the problem of the interaction of electrons with solid ta
gets to critically establish the fundamentals of the Mon
Carlo calculations.

When an electron beam impinges on a solid target, so
electrons, after a number of elastic and inelastic collisio
with the atoms of the target, come back and emerge from
surface, while some other electrons are transmitted
emerge from the back of the sample. The remaining e
trons are trapped in the target. The fractions of absorb
backscattered, and transmitted electrons depend on the t
ness of the target.

When the target is a bulk, the fraction of backscatte
electrons reaches its saturation value, generally called
backscattering coefficient, hereafter indicated withh. Then,
it is possible to define a thicknessR so that, for each thick-
ness greater thanR, the fraction of transmitted electrons
zero and that of the reflected ones is equal toh. The quantity
R is generally known as the maximum penetration ran
BothR andh depend on the primary energyE0 of the elec-
tron beam and on the atomic and electronic structure of
irradiated material.

In order to describe the processes that occur during
implantation of the primary electrons in the insulating ma
rial, we need to know the elastic11–34 and inelastic35–61 pro-
cesses suffered by the electrons traveling in the solid tar
Indeed, in each collisional event with an atomic electron o
nucleus, the incident electron both loses energy and cha
its travelling direction. The energy dissipation of the incide
electron mainly occurs through atomic electron excitation
ejection and plasmon excitation. These scattering proce
also influence the electron trajectory in the solid, but on
weakly. The nuclear collisions, on the other hand, due to
2234 © 1997 The American Physical Society
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56 2235SLOW ELECTRONS IMPINGING ON . . . . I. . . .
large mass difference between the electron and the ato
nucleus, are nearly elastic: they strongly affect the direct
of the incident electron in the solid without substantial e
ergy transfer.

The differential elastic-scattering cross section of el
trons interacting with free and bound atoms, particularly
low-medium kinetic energy, is not computable by usi
simple analytical formulas, but numerical quantum mecha
cal calculations are generally necessary. The inelastic ev
can be described by the inelastic mean free path, and, in
continuous-slowing-down approximation, by the stoppi
power, viz., the mean energy loss per unit distance trave
by the electron inside the solid.

A. Elastic scattering

1. Mott cross section

The elastic scattering process can be treated by calc
ing the phase shifts.11–14Since the large-r asymptotic behav-
ior (r is the radial coordinate! of the radial wave function is
known, the phase shifts can be computed by solving
Dirac’s equation for a central electrostatic field up to a la
radius where the atomic potential can be safely neglecte

When the atom is bound in a solid, the interaction pot
tial between the electron and the atom is different from
interaction potential between the electron and the free at
This is due to the atomic configuration in the solid in whi
the outer electronic orbitals of the atoms are modified.
order to take into account such changes, solid-state eff
can be introduced by using the muffin-tin potential in whi
the potential of each atom of the solid is altered by
nearest-neighbor atoms.

The differential elastic-scattering cross section is given

ds

dV
5u f u21ugu2, ~1!

where the direct and spin-flip scattering amplitudesf (u) and
g(u) (u5the scattering angle with respect to the inciden
direction! are given by11,14

f ~u!5
1

2iK(
l50

`

$~ l11!@exp~2id l
2!21#

1 l @exp~2id l
1!21#%Pl~cosu!, ~2!

g~u!5
1

2iK(
l51

`

@2exp~2id l
2!1exp~2id l

1!#Pl
1~cosu!.

~3!

In these equations,K25(E22m2c4)/\2c2, \K is the mo-
mentum of the electron,E the total energy,m the electron
mass,c the speed of light,Pl are the Legendre’s polynomi
als, and

Pl
1~x!5~12x2!1/2

dPl~x!

dx
. ~4!

The phase shiftsd l
2 andd l

1 can be computed by using th
equation~see, for example, Refs. 23,26,32,34!
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K j l11~Kr !2 j l~Kr !@ztanf l
61~11 l1k6!/r #

Knl11~Kr !2nl~Kr !@ztanf l
61~11 l1k6!/r #

,

~5!

where

z5
E1mc2

\c
. ~6!

In equation~5!, k152 l21, andk25 l , j l are the regular
spherical Bessel functions,nl the irregular spherical Besse
functions, and

f l
65 lim

r→`

f l
6~r !, ~7!

wheref l
6(r ) is the solution of the Dirac’s equation whic

can be reduced, as shown by Lin, Sherman, and Percus12 and
by Bunyan and Schonfelder,13 to the first-order differential
equation:

df l
6~r !

dr
5
k6

r
sin@2f l

6~r !#2
mc2

\c
cos@2f l

6~r !#1
E2V~r !

\c
.

~8!

Here,V(r ) is the electron-atom potential.

2. The atomic potential

To calculate the electron-atom potential, for atomic nu
ber Z greater than 18, the Dirac-Hartree-Fock-Slater fie
should be used, while it is preferable to use the Hartree-F
field for atomic numbers lower than 19. The nonrelativis
fields, indeed, are realistic where the relativistic effects
small and the LS angular momentum coupling is adequa

Moreover, in order to reduce the computer calculati
time, the analytical approximation proposed by Cox a
Bonham62 for the Hartree-Fock field and that of Salv
et al.63 for the Dirac-Hartree-Fock-Slater field can be u
lized. The corresponding atomic potential takes the form o
superposition of Yukawa’s potentials which depend on
number of parameters. Such parameters have been d
mined by analytical fitting of self-consistent fields and can
found in Refs. 62,63.

The atomic potential is generally expressed by a p
Coulomb potential multiplied by a dimensionless functi
which approximates the screening of the nucleus by the
bital electrons, i.e., the atomic screening functionc(r ). In
other words, the atomic screening function is defined as
ratio between the electrostatic potential experienced b
point charge at a distancer from the nucleus and the elec
trostatic potential of the bare nucleus~assuming spherica
symmetry!. The atomic screening functions of Cox an
Bonham62 and of Salvatet al.63 are given by

c~r !5(
i51

p

Aiexp~2a i r !, ~9!

wherep, Ai , anda i depend on the element and on the a
thors. Expression~9! has the analytical form originally pro
posed by Molie`re in order to approximate the Thomas-Fer
differential equation.
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2236 56MAURIZIO DAPOR AND ANTONIO MIOTELLO
3. Electron exchange

Since electrons are identical particles, exchange ef
should be taken into account when low-energy elastic s
tering is treated; indeed, the incident electron may be c
tured by an atom with emission of a new electron. Excha
effects can be described by adding the Furness
McCarthy64 expression to the electron-atom potential ene

Vex5
1

2
~E2Vs!2

1

2
@~E2Vs!

214pre2\2/m#1/2, ~10!

whereE is the electron energy,Vs is the electrostatic scala
potential energy,r is the atomic electron density~obtained
by Poisson’s equation!, ande is the electron charge.

4. Solid-state effects

When the target atom is bound in a solid, the outer el
tronic orbitals of the atom are modified. In order to take in
account such a change, solid-state effects should be in
duced. To describe solid-state effects, the muffin-tin mo
can be used in which the potential of each atom of the s
is altered by the nearest-neighbor atoms. Indicating w
rws the radius of the Wigner-Seitz sphere and assuming
the nearest-neighbor atom is located at a distance 2rws, we
may write the resulting potential

Vsolid~r !5V~r !1V~2rws2r !22V~rws!, ~11!

for r,rws, and set it equal to zero elsewhere.
The term 2V(rws), introduced in order to shift the energ

scale so thatVsolid(r )50 at r>rws has also to be subtracte
from the kinetic energy of the incident electron.26

5. Compound materials

The differential-elastic-scattering cross section, in m
lecular solids, can be approximated, by using the additiv
rule,31 as the sum of the atomic differential-elastic-scatter
cross sections of all atoms in the molecule.

For example,

S ds

dV D
SiO2

5S ds

dV D
Si

12S ds

dV D
O

. ~12!

A more accurate approach consists in calculating the
lecular differential-elastic-scattering cross sections. T
computational procedure requires, in this case, the calc
tion of the coherent superposition of the waves scattered
the atoms constituting the molecule.

In our Monte Carlo calculations, however, we used
additivity rule; in order to test its accuracy we compared o
calculation using this rule to experimental data and fou
very good agreement~see Fig. 2!.

6. Total and transport cross section

Once the differential-elastic-scattering cross section
known, the calculation of the total-elastic-scattering cro
section,sel , and of the momentum transfer~or transport!
cross section,s tr , may be performed by the following equa
tions:
ct
t-
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sel52pE
0

p ds

dV
sinudu, ~13!

s tr52pE
0

p

~12cosu!
ds

dV
sinudu. ~14!

B. Inelastic scattering

1. Inelastic mean free path

Several numerical approaches were proposed in the lit
ture, in recent years, to calculate the inelastic mean free p
l inel .

36–48 It is given by~see, for example, Ashley, Ref. 44!:

l inel
215E p~E,v!dv, ~15!

with integration extended over all the allowed values of t
energy transfer,v. Herep(E,v) is the probability for energy
lossv, per unit distance traveled by an electron of ener
E. If q is the momentum transfer ande(q,v) is the complex
dielectric function describing the response of the mediu
assumed homogeneous and isotropic, thenp(E,v) is given
by44

p~E,v!5
me2

p\2EEK1
K2dq

q
ImF 21

e~q,v!G , ~16!

where

K15
A2m

\
~AE2AE2v!, ~17!

and

K25
A2m

\
~AE1AE2v!. ~18!

FIG. 1. Differential-elastic-scattering cross section of 300
electrons in Hg. Solid line: numerical computation. Squares: H
kampet al. ~Ref. 67! experimental data.
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TABLE I. Differential-elastic-scattering cross section~Å 2/ sr! of 1000 eV electrons impinging on Al.

u Fink and Ingram Rileyet al. Salvat Present Present
~deg! ~Ref. 16! ~Ref. 18! and Mayol~Ref. 26! potential: Ref. 62 potential: Ref. 63

10 2.28 2.29 2.40 2.31 2.40
20 0.328 0.329 0.332 0.323 0.332
30 0.106 0.107 0.103 0.105 0.103
40 0.0468 0.0471 0.0457 0.0465 0.0457
50 0.0258 0.0260 0.0252 0.0259 0.0252
60 0.0168 0.0169 0.0160 0.0167 0.0160
70 0.0121 0.0122 0.0114 0.0121 0.0114
80 0.00945 0.00949 0.00886 0.00941 0.00886
90 0.00776 0.00778 0.00733 0.00771 0.00733
100 0.00664 0.00663 0.00637 0.00658 0.00637
110 0.00586 0.00584 0.00576 0.00579 0.00576
120 0.00530 0.00528 0.00535 0.00523 0.00535
130 0.00490 0.00488 0.00508 0.00483 0.00508
140 0.00461 0.00458 0.00490 0.00454 0.00490
150 0.00440 0.00437 0.00479 0.00433 0.00479
160 0.00426 0.00424 0.00471 0.00419 0.00471
170 0.00418 0.00416 0.00467 0.00411 0.00467
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Ashley43,44has shown that, through second-order terms
a5(v8/E), l inel may be computed by the following equa
tion:

l inel
215

me2

2p\2EE0
E/2

ImF 21

e~0,v8!GLeS v8

E Ddv8, ~19!

where

Le~a!5~12a!ln
4

a
2
7

4
a1a3/22

33

32
a2. ~20!

2. Stopping power

An electron can lose a large fraction of its energy in
single collision: nevertheless the continuous-slowing-do
approximation is often used. In this approximation the el
tron is assumed to continuously dissipate its energy du
its travel inside the solid. Thus we need an equation, o
tabulation, to express the rate of energy lost due to
electron-electron and electron-plasmon collisions.

The continuous-slowing-down approximation neglects
fluctuations of the energy-loss around its mean value.
energy-loss distribution, described by energy straggling
rameters, is thus sometimes included in the simulations
the electron travel inside the solid.

When the electron energy is greater than 10 keV, ene
losses are dominated by excitations and ionizations of
core electrons. In that case the stopping power, namely,
rate of energy loss per unit length, is well described by
Bethe-Bloch expression49

2
dE

ds
5
2pe4NZ

E
lnS 1.166EJ D , ~21!

whereJ is the mean-atomic ionization energy65,66 andN is
the number of atoms per unit volume in the target.
n

n
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The Bethe-Bloch stopping power does not work w
when the electron energy becomes lower thanJ. To be more
precise, it reaches a maximum forE'2.5J and then goes to
zero forE5J/1.166. Below this energy value, the predicte
stopping power becomes negative.

Kanaya and Okayama,50 Rao-Sahib and Wittry,51 Fitting52

and, recently, Joy and Luo59 proposed various semiempirica
expressions to describe the electron energy loss per unit
length. Semiempirical expressions may be useful beca
they permit us to quickly calculate electron energy loss wh
computer time-consuming calculations are involved~for ex-
ample in Monte Carlo codes!. On the other hand, the sem
empirical expressions are also inaccurate when the elec
energy is very low (E & 500 eV!.

In recent years, many accurate numerical results h
been proposed by a number of authors in connection b
with the stopping power and with inelastic mean fr
path.36–39,43,44,55–58,61

The stopping power is given by~see Ashley, Refs. 43,44!

2
dE

ds
5E vp~E,v!dv, ~22!

TABLE II. Total elastic-scattering cross section~Å 2) of elec-
trons impinging on Ar atoms.

E0 Jansenet al. DuBois Igaet al.
~eV! ~Ref. 68! and Rudd~Ref. 69! ~Ref. 70! Present

50 7.17 - 7.38
100 3.81 4.79 4.32
200 3.02 3.05 3.05
400 2.13 2.20
500 1.99 2.02 1.71 1.97
800 1.35 1.31 1.52
1000 1.35 1.34
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2238 56MAURIZIO DAPOR AND ANTONIO MIOTELLO
with integration extended over all the allowed values of
energy transferv.

2dE/ds may be computed, through second-order ter
in a5(v8/E), by the following equation~see Ashley, Refs
43,44!:

2
dE

ds
5

me2

p\2EE0
E/2

ImF 21

e~0,v8!GGeS v8

E Dv8dv8, ~23!

where

Ge~a!5 ln
1.166

a
2
3

4
a2

a

4
ln
4

a
1
1

2
a3/22

a2

16
ln
4

a
2
31

48
a2.

~24!

In Monte Carlo simulations, when tabulations are us
the stopping power data must be interpolated by using,
example, cubic-spline interpolation. Also for the stoppi
power it is possible to use the additivity rule~Bragg’s rule!.9

III. RESULTS AND DISCUSSION

A. Elastic scattering

Figure 1 shows the comparison of our theoretical calcu
tions, obtained by Eqs.~1!–~3! and~5! after numerical solu-
tion of the Dirac equation~7! @with the partial wave expan
sion method ~PWEM!#, to the experimental data o
Holtkamp et al.67 concerning differential-elastic-scatterin

FIG. 2. Differential-elastic-scattering cross section of 500
electrons in CO. Solid line: numerical computation. Squar
Bromberg~Ref. 71! experimental data. Triangles: DuBois and Ru
~Ref. 69! experimental data.

TABLE III. Total elastic-scattering cross section~Å 2) of elec-
trons impinging on Hg atoms.

E0 Holtkampet al.
~eV! ~Ref. 67! Present

100 8.99 8.64
150 7.95 7.24
300 4.93 4.72
e

s

,
r

-

cross section of 300-eV electrons in Hg: the introduction
the exchange effects in the atomic potential improves
accuracy of the calculation for the low-angle differentia
elastic-scattering cross section so that the agreement bet
calculations and experiment is excellent at all the scatte
angles. A comparison of the present calculation to numer
results of other authors concerning the differential elect
elastic-scattering cross section in Al is given in Table I. T
present calculation has been performed by using both
atomic potential of Cox and Bonham62 and of Salvatet al.63

Exchange and solid-state effects were included.
The good accuracy of the calculation of the low-ener

differential-elastic-scattering cross section, also at low an
of scattering, is reflected in the total-elastic-scattering cr
section computation: In Tables II and III the experimen
electron-atom total scattering cross sections as reported
Jansenet al.,68 DuBois and Rudd,69 Iga et al.70 and Holt-
kamp et al.67 are compared to our theoretical computatio
~PWEM!. The agreement is satisfactory even for electr
energies lower than 100 eV.

In order to test the additivity rule, we compared our r
sults to the Bromberg71 and the DuBois and Rudd69 experi-

:

FIG. 3. Differential-elastic-scattering cross section of 3000
electrons in SiO2. Numerical calculation.

FIG. 4. Inelastic mean free path of electrons in SiO2. Empty
squares: Present. Triangles: Ashley and Anderson~Ref. 39!.
Rhombs: Tanuma, Powell, and Penn~Ref. 46!.
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56 2239SLOW ELECTRONS IMPINGING ON . . . . I. . . .
mental data for the differential-elastic-scattering cross s
tion of 500 eV electrons impinging on CO molecules: th
comparison is presented in Fig. 2. The agreement is v
good.

As a consequence, in the case of solid SiO2, we used the
additivity rule to calculate the differential and total elast
scattering cross sections after including, in the atomic po
tial of the Si atoms, the solid-state effects described in Se
A 4 ~the muffin-tin model!. These numerical calculations a
used in our Monte Carlo code that will be described in
following paper5 for the evaluation of the backscattering a
of depth distribution of the trapped electrons in SiO2. In Fig.
3 our calculations, concerning the differential-elast
scattering cross section of 3000 eV electrons impinging
SiO2, are presented.

B. Inelastic scattering

Figure 4 shows the results of our numerical computat
@Eqs. ~19! and ~20!# of the inelastic mean free path of low
energy electrons impinging on SiO2 compared to the nu
merical results of Ashley and Anderson39 and to those of
Tanuma et al.46 The energy-loss function of SiO2,
Im$2@1/e(0,v)#%, was obtained from the tabulations o
Henkeet al.72 for energies greater than 100 eV while, f
energies lower than 40 eV, we used the experimental dat
Buechner.73 A linear interpolation was used for energies b
tween 40 and 100 eV. The integration was performed
using the Bode rule74 on a cubic-spline interpolation of th
energy-loss function multiplied byLe(v8/E).

A comparison of our calculated inelastic and elastic me
free paths of electrons in SiO2 was presented in Table IV. I
is interesting to observe that the probability of inelastic sc
tering defined by

pinel5
l inel

21

l inel
211lel

21 ~25!

TABLE IV. Comparison between elastic and inelastic mean f
paths of low-energy electrons impinging on SiO2.

E lel l inel pinel
~eV! Å Å

50 3.17 12.9 0.20
100 4.55 8.49 0.35
1000 17.2 26.4 0.39
2000 29.0 44.7 0.39
3000 40.5 61.8 0.40
4000 51.6 78.1 0.40
c-

ry

n-
II

e

-
n

n

of
-
y

n

t-

reaches a constant value of'0.40 for energies higher tha
'1000 eV~herelel

215Nsel).
Figure 5 shows a comparison of stopping powers of el

trons in SiO2 computed with different formulas and numer
cal procedures that can be found in the literature. The dif
ent calculations give results which are in agreement
energies higher than 500 eV, while as expected, for very
kinetic energy there are great differences thus confirming
necessity to better understand the basic physical aspect
volved in low-energy electron scattering with atoms and s
ids.

IV. CONCLUSION

We have analyzed the problem of the scattering proc
of low-energy electrons impinging on SiO2, by calculating
the elastic and inelastic contributions to the scattering ev
To perform such a calculation, for low-energy electrons,
have carefully considered various approaches, both ana
cal and numerical; this analysis was necessary because
in the low-energy scattering processes, there is no cons
dated general formalism.

The numerical results, presented in this paper, were c
pared to experimental or computed results reported by o
authors to show the validity of our approximations. The
ported results form now the basis for treating the problem
the charging effects in insulators, during electron irradiati
a subject which will be developed in the following pape5

and which is relevant, for example, in Auger analysis
dielectric solids.

e

FIG. 5. Stopping power of electrons in SiO2. Empty squares:
Bethe ~Ref. 49!. Filled squares: Rao-Sahib and Wittry~Ref. 51!.
Triangles: Ashley and Anderson~Ref. 39!. Rhombs: Joy and Luo
~Ref. 59!.
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