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Diffusion on a stepped substrate: Collective diffusion in the Langmuir gas model
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We study collective diffusion of adatoms on a stepped substrate within a Langmuir gas model. Our model
allows for modified potential barriers and wells near the step edges, as well as different prefactors for intrinsic
jump rates at step edges. The diffusion tensor is calculated using projection operator techniques. We study
in detail the dependence of the macroscopic collective diffusion on the microscopic parameters in the
model. Collective effects due to finite coverage turn out to be crucial in determining the influence of steps
on measurable activation barriers and effective prefactors already at low coVe&ag63-18207)03928-3

I. INTRODUCTION The organization of the present work is as follows. In Sec.
Il we present the model we use to describe diffusion on a
In the study of surface dynamics, many important pro-stepped substrate. The different theoretical approaches to
cesses such as thin film growth and spreading of densitgolve the model are discussed in Sec. Ill. In Sec. IV we
profiles depend crucially on the macroscopic collective dif-pPresent the results for the components of the collective dif-
fusion rate! Since this rate is concerned with the motion of fusion tensor in various limits. We also apply our results to
the adsorbate over macroscopic distances, it is unavoidab@nalyze recent surface diffusion data obtained for the system
affected by the existence of surface defects, especially in theO/Ni(110.>° Section V comprises a discussion of the main

form of impurities and surface stépeven on a well- implications of our results.
prepared sample substrate. Scanning tunneling microscope
(STM) and field emission studies have confirmed the Il. MODEL AND ITS STATIC PROPERTIES

predictior? that there exist extra activation barriers at the ) ] ) ]

steps leading to a different microscopic mobility for adsor- Fogllowm_g the earlier work dealing with the zero-coverage
bates there as compared to the flat terrace region. The cdimit,” we introduce several energy barriers in our model
lective diffusion rate has been studied experimentally bycharacterizing the adsorption on the stepped substrate. The
various method&:” However, there exist only limited correspondlng_pote_zntla_ll profile in dlrectlon perpen_d_lcular to
efforts'€in trying to understand how macroscopic collective Step edgesxdirection is shown in Fig. 1a). An additional

diffusion depends on the microscopic jump rates near the
steps. This is the question we address in this paper. V(x)

In an earlier study, diffusion of a single atom on a stepped @) _
substrate with a periodic array of straight steps was studied -
within a lattice-gas model by Natori and Godbyn this —
work, we generalize this model to study collective diffusion
at finite coverages within a Langmuir gas model, where the —>
“interaction” between adsorbate particles is the exclusion of
double occupancy in lattice sites. The model includes the (b) El

effect of the Schwoebel barrier, extra binding at step edge, ;_1:1' .\l'('j T side view
and the enhanced diffusion along step edges. We solve the : (_._,0
model using a variety of approaches including the Mori pro- 'E L R

jection operator formalisff Green’s  functions ' | |
techniques’*?and Monte CarldMC) simulations® In the ! ' '
presence of the extra binding at step edges, the collective (c) I I
effects turn out to totally change the physics already at rela- y é 2 {_é_}o top view
tively low coverage. A preliminary report of some of the

results presented in this paper has already been given in Ref. s={1[2]..[1]
14, where we discussed the properties of the diffusion tensor X

only in certain limits relevant to particular experimental situ-

ations. Here we shall systematically consider the temperature g 1. Geometry and jump rates of the lattice model for diffu-
and coverage dependence of the diffusion tensor in theion on a stepped substrate) The potential profile i direction.
model. We have generalized our original mddié» consider (b) Side view of the model showing the various intrinsic hopping
the role of intrinsic prefactors of the jump rates in determin-rates for jumps inx direction near step edges. The raté (not
ing the effective prefactors of the diffusion coefficients. Also shown is the rate for the process reverse to that with theFatéc)

a more detailed description of the analytic and numericafrop view of the model showing the size of one unit cell with the
work involved is given. indicess=1,2,. .. L of each lattice site within the cell.
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binding energyEg at the lower step edges can arise as a 1
consequence of extra coordination for the adsorption sites Ce=Ce(§,L,C)= m(/h—vﬁﬂ%l).
there. Similarly, a Schwoebel barrigi for jumps from the (2.5

terrace to the lower step eddesan exist due to the reduced 1
coordination at the saddle point compared to the one for a  c,=c,({£,L,0)= = (B_+B% +a),
jump on a terrace, for which the activation barrier is denoted 2(6=D(L=1)
by Eo. In this work, the barrier for jumps along lower step whereB.=(é—1)(Lc+1)*L anda=4(é—1)(L—1)Lc.
edgesE,, is taken to be lower thaR,, leading to a higher Under conditions typical to experiments on smooth sur-
jump rate along the lower step edges. The inert substrattaces, the value of the terrace widthranges from 50 to 500,
surface is assumed to have a periodic array of straight stepgd the extra binding at the step edges, characterized by
separated by terraces of width bflattice sites. £=eFe/KT satisfies the conditiog>1. Equation(2.5) then

The energy barriers lead to the following rates for nearestieads to the following observations. At very low coverages
neighbor jumps as shown in Fig(l} and Fig. 1c): I'y on  such thatc<1/L, the particles adsorb preferentially at the
the terraces]’; from the lower edge to the same terrace,step edges because of the extra binding there so that
I'; from the terrace to lower edgg,, from the lower edge c.~cL while terraces are practically empty wit~0.15
across the step up to the neighboring terrdég,from the  This situation continues as the coverage is increased until
upper edge across the step down to the lower edge on thlane reaches the valwe=1/L. At this point, the step edges
neighboring terrace, ant, along the lower step edge. We are fully occupied and the terraces remain empty with
have generalized the set of rates used in Refs. 9 and 14 ly~1 and c;~0. Beyond that point, fot>1/L, terraces
allowing for modified prefactorg's, vg and v,, for jumps  start to be populated while the edge rows remain fully occu-
over step edge, detachment frdattachment tpstep edge, pied, i.e.ce~1 with c,~c. This can be seen more explicitly
and jumps along the lower step edge, respectively. The gerby expandingc, andc; in Eqg. (2.5 to lowest order in the

eralized set of rates can now be written as deviationc—1/L. For é>L we find

1 /L—1+L 1 o ( 1)2)

14 14 14 14 Ce~1— — Tt 5| C— C—— ’
To=vee B/KT= 24T =T} =0T y=—+¢0T,, ° & 2 L L
Vg Vg Vs Vs
2.9 1 L [ 1 o 1)2
““Ni—ne 2-p\° )] )

FZZ Vze_ E /kT, (22) (26)

This behavior ok, andc; is the key to understand the varia-
where the parameters and o defined by &=ef8/XT and tion of the diffusion constant with the coverage Since
o=efs/T describe the effective strengths of the binding attypically for large terrace width L/< few percent, the ex-

step edge and the Schwoebel barrier. Each adsorption site R§fimental situation usually corresponds to the regime
labeled by the coordinatel(a,mb) of the unit cell together €= 1/L, and the influence of the steps on the measured values
with a site indexs=1,2, . . . ,L within the unit cell[see Fig.  ©f diffusion rates differs substantially from the zero-coverage

1(c)]. Herea andb are the nearest-neighbor distances along’€havior described in Ref. 9. _

the x andy directions, respectively. For each site we then AS Will be shown in the next section, a large part of the

define a stochastic occupation variabfe,(t), which due to coverage dependence of thg collective d|ffu5|on comes from

the exclusion of double occupancy can take on only the valth® so-called thermodynamic factdr f defined ab

ues 0 and 1. (Np) cd
In the present model, the adsorption potential is modified f= —AZE — _’u, 2.7

only for lattice sites at the lower step edge, and therefore we ((NA=(Na)?) T dc

have only two distinct row coverages andc,, for lower  \yhich is inversely proportional to the compressibility of the

step edges and terraces, respectively, defined by adsorbate layer. In the Langmuir gas modetan be evalu-
ated exactly and is given by
Ce=<nll,m>’ Ct=<nlz,m>=<nﬁm>="'=<n:_,m>' (2'3) Lc
f (2.8

T (LDt (I-coee’
These occupation numbers are independent of the cell i

dices (.m) by symmetry, and they obey the detailed balancr\Nhen the coverage first increases from the initial zero value,

Ghe adparticles are preferentially adsorbed at the edge rows

conditiori® due to the extra binding there. The suppression of the fluc-
tuations in the occupation of the edge rows then leads to an

Co(1—Cy) initial increase off with the coverage. At=1/L, the edge
ng (2.9 rows are completely occupied and the terraces are empty.

This results in maximum suppression of the occupancy fluc-
tuations, leading to a maximum iin On further increase of
which allows us to express, andc; as a function of the total the coverage, the edge rows remain fully occupied but the
coveragec=c;+(c.—¢;)/L as terraces become partially occupied and hence the compress-
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tifying the pole of the density correlation function in the

L0 L | Y hydrodynamic limit as discussed above. The starting point is
,\\\\ — - kT'=0.50E, the rate equations for the stochastic occupancy variables
075 FANON | Ll =00 Ny m(t). With the definitions of the various rates in the pre-
" M — kr-o00sE ceding section, these can be written as
N B
X o5k V. T 3
- \ e -\\'\\ d . 1 2 L
X —n;,=—(T1+T,+2)n; +Tn+Tgn
05 | \\/, \«\ ] dihm (T'y+ Ty DNt LNt lani gy
+(= TNl (Cy=Tnf 1Ny
0.0 1 1 1 1
00 02 04 06 08 1.0 +T (0 i+ N ),s

¢ (ml)
2

—nN
FIG. 2. Inverse of the thermodynamical facfoas given by Eq.  dt hm
(2.9 at different temperatures as a function of coverage.fer.

=—(3Tp+I P+ Tond  + 110,

+(T =T ont nZ e+ To(nf i1+ im0,
ibility increases andf decreases. The behavior of for

L=4 for several temperaturdsT/Eg is shown in Fig. 2, ins AT A TSt TSt

from which we see thaf decreases very rapidly with de- dt "™ O%m T2 0Fm T2 OFm
creasing temperature at=1/L. The behavior off near

c=1/L for e®8’kT>L can be obtained by substituting Eq. +To(M ety for 2<s<L,
(2.6) into Eqg.(2.8), leading to the expression g
oER/KT antm: —~(BLo+ TN+ Tyniy gt Tonpp?
f~ : (2.9 (3.3
2\L-1

1 L L L
] ] ) . +(Fd_ru)nl+1,mnl,m+ro(nl,m+l+nl,mfl)'
which with decreasing temperature results in an exponen-
tially increasing thermodynamical contribution to the diffu-  Next we generalize the standard descriptidfiof collec-

sion constant. tive diffusion within the framework of the Mori formalisth
to the case with substrate steps. The relevant dynamical vari-
I1l. ANALYTICAL AND COMPUTATIONAL METHODS ables are now the components

The collective(chemical diffusion tensorD can be con- < < < .
veniently defined through the decay of spontaneous density Ao(k,t)zgn [N m(t) =N} ) Jexdi(ILaky+mbk)]
fluctuations. The density-fluctuation autocorrelation function '
RN i (3.9
S(r,r',t) is defined as

of the L-dimensional vectorA,=(A5,A3, ... A5). The
’ gy s /S s’ s quantity of interest is the Laplace transform of the L
S(rriy SES: nE (O = T I e (0) =7 )1, density-fluctuation correlation matrix
(3.9
where the position vector of a unit cellis=(ILa,mb), and Y(k,z)= fo e Y Ag(k,t)|Ag(k))dt, (3.5

the angle brackets denote an ensemble average. In the hydro-

dynamic limit t—c and k—0, its Fourier transform with \,here the angle brackets denote thermodynamical averages

respect to unit cell indices behaves aS(k.t)  gnq A (k)=A,(k,0). Using the projection operator tech-
~exp(—k-D-kt). Correspondingly, the Laplace transform niques it can be formally expressed as
S(k,z) has a pole at=k- D - k. Another approach for evalu-

ation of the collective diffusion is via the Green-Kubo x(K)
relatiorf Y(k2)=—7 b(K) x(K) T+ M,(K.2)’ (3.9
N 2
1 i i where the “jump rate matrix"b(k) = —(Ay(k)|d/dtAy(k))
= _— Mty — M 0 0
D ft|m4Nt< ;1 [, (O =r,(0)] > (3.2 and the “susceptibility matrix”y (k) =(Aq(k)|Aq(k)). The

' memory functionM 4(k,z) originates from the the correla-
whererf,') refers to the component=x,y of the position of tion effects between successive individual adparticle jumps.
adparticlei, the sum is over all particles, arids exactly the  To proceed further, we will sé¥l,(k,z) to zero. This corre-
thermodynamic factor introduced in E@.7) of the preced- sponds to a dynamical mean-fi€ldMF) approximation. For
ing section. the Langmuir gas model in the absence of steps, the correla-

We have used two equivalent analytic approaches to cakion effects cancel out exactly for collective diffusiGhand
culate collective diffusion: the Mori projection operator DMF is exact. For the stepped surface, we will show below
formalism® and the Green’s functions techniqués? In by comparison with direct Monte Carlo simulation studies
both approaches, the diffusion constant is obtained by iderthat DMF remains a very good approximation.
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As discussed earlier, the diffusion tenddrcan be ex- f

tracted from the poles 08(k,z)=3¢ Yse (K,2). Accord- Dyy:L_C[(L_1)(1_Ct)CtFO+(1_Ce)CeF2]b2-

ing to Eq. (3.6 with M;(k,z)=0, each of the elements 3.7)

Y.s(k,z) is inversely proportional to detl

+b(k) x(k) 1] and, therefore, the diffusive pole &(k,z)

atz=k-D-k can be determined from the zeros of this deter-

minant in the limitk—0 andw—0. By expanding the de-

terminant(see the Appendjx collecting the leading terms Heref is the thermodynamic factor given by Eg.8), so the

for small w andk, we find the diagonal elements Bfto be  result forD in Eq. (3.7) is indeed of the form given by the
Green-Kubo formula Eq(3.2). Combining Egs.(3.7) and

D _ (1-ce)(1-cycl oL ?a? (2.8 and using the detailed balance condition of E24)
¥ Le (L—2)(1—co)+ (1—cyvolvg+(volvs) o]’ leads to the form
|
I'pL2a2
D (3.8

P IL=1+ (celc)E TIL-2+(ci/Co)[ vol va+ (vol v9)o1€]’

(/o= | b2, 3.9

D 1+(L—1)(c/co)?€| ©

y=| 1+

which will be useful in our discussion of the coverage de- To test our analytical results, we have performed MC
pendence oD. By symmetry, the nondiagonal elements of simulationd® using both the density-fluctuation and the
D are identically zero. Green-Kubo methods to compule. A detailed discussion

It is easy to see that the DMF results of E€R.8) and and a comparison of these methods as tools in numerical
(3.9 are exact in the following cases. First, fEBg=0 we  work can be found in Ref. 20 and an application to a case of
have c,=c,=c with I';=T; and I',=Ty so that all the
higher-order terms, i.e., the products of two occupation vari-
ables, in Eq(3.3) cancel out, and the final result is indepen-
dent of coveragé® The other special cases ace~0 and O~ (a)

0.4 L] T T T

c—1. These limits correspond to diffusion of a single adpar- g 03 AN 7

ticle or a single vacancy and therefore the correlation effects _Q B

vanish and DMF is exact. N o2k NS _
In our previous treatment of this probléfhwe formulated Q§ O, R

the theory in terms of the Green’s functions metfbt?
where the coupled equations of motion for the Green’s func-
tions

0.1

0.0
Gitrme (D)= — 2711 O(t)([Nfry (1) — €SI}, (0) — € 1)
(3.10 s
. . 8 5.0
can be solved by decoupling the higher-order Green'’s func- S
tions L
ss's” . s s/ Q 30
G|m|/m/|/rmr/(t)=_277| 9(t)<[n|’m(t)—cs][n|,Vm,(t)—Csr]
X[, (0) — o), (311 10
. . . . 00 02 04 06 08 10
where 6(t) is the Heaviside step function. After Fourier ¢ (ml)

transforming the resulting mean-field equations with respect

to time and unit cell coordinates, a closed set of equations for FIG. 3. Analvii d Monte Carl s fr dD
’ . . . . . 9. Anhalytic an onte Carlo results an as a
& (w) is obtained. The study of diffusive poles then leads; ciion of coverage foEg /kT— ES/kT:(EO—EXzX)/kT: > with

to the evaluation of the same determinant and to the samg _ , — . Lines show the dynamical mean-field theory of Eq.
final result forD as obtained above using the projection 0p-(3.7), and plotting symbols denote the results of Monte Carlo simu-

erator techniques. In this paper we shall not discuss thgtions with error bars less than the size of the symbols. Here dif-
Green’s functions formalism in more detail; major differ- fusion coefficients are shown in units &, =T,a? that is, the

ences between these two formalisms appear only in the wayalue for infinite terrace width and coverage in units of one mono-
possible higher-order approximations are construtietf. layer so that the value df, does not need to be specified.
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a stepped substrate in Ref. 8. The coverage dependence infagreement with the result of Ref. 9. In E¢.1), the effect

D as given by Eq(3.7) together with the MC simulation of the extra binding energi#g and that of the Schwoebel
results using the Green-Kubo method are shown in Fig. 3 fobarrier Eg appear in different factors of the denominator.
a temperature comparable to the various activation barriers iNote that the first factor containing the effect Bf comes

the system,Egx/KT=Eg/kT=(Ey;—E,)/kT=2, and with  from thec—O0 limit of the thermodynamic factdf, which is
identical intrinsic prefactorsy=vs=vg. With this choice, a static property and, therefore, is not affected by the intrin-
the ratio of the fastest and slowest jump rate is approxisic prefactors® Evidently, fore®s’kT>1 theL dependence
mately 400, and going further down in temperature wouldof Eq. (4.1) is very different in casesfs’™>L and
increase the computational cost considerably. To computeFs’kT<| .

the diffusion constant, we have to study the:0 limit. The As the coverage increases, the valu®gf increases with
smallest value ok, is equal to 27/N,, whereN, is the increasing coverage and reaches a maximumm=at/L be-
number of unit cells each containirlg sites. The accurate fore starting to decrease as c increases further. This behavior
determination of the diffusion constant therefore requires as illustrated in Fig. 8). This somewhat surprising result can
large system size. Typical simulation parameters to producke understood from the Green-Kubo relation in E8.2).

Fig. 3 were 18 MC steps per atom for about 1000 atoms. Obviously, the center-of-mass mobility cannot have any spe-
The size of the simulation cell, depending on coverage andial behavior at the point=1/L, so that this special cover-
the terrace width &L <8, varied up to maX,)=64 and age variation ofD,, comes entirely from the coverage de-
max(N,)=128. Long simulation time was needed to revealpendence of the thermodynamic facfoas detailed earlier
the fine structure in the coverage dependenc®gf. We by Eq.(2.9) and Fig. 2. Note that for decreasing temperature
have performed a similar set of simulations for f increases exponentially and can therefore partially com-
Eg/kT=Eg/kT=(Ey—E,)/kT=1/2, where simulations are pensate the effect of the decreasing intrinsic jump rates at
easier, but the coverage dependenc® o much weaker. step edges.

The results plotted in Fig. 3 show that between its exact Since step spacings of the order of a few hundred lattice
limits c—0 andc—1 the analytic theory agrees very well constants can be achieved for good sample surfaces, the re-
with the MC data, with no discernible systematic deviation.gime c>1/L is the most relevant one for most experiments.
Thus the DMF provides a very accurate description of thdn this limit, with e*8’">1 andL>1, we havec,~1 and

present system. c,~c, and the expression &,, in Eqg. (3.8 reduces to
In the remainder of this paper we shall use the analytic )
DMF result as given by Eg93.8) and (3.9 to study the IoLa

Dxx 4.2

properties ofD in various limits. For the reasons explained
above, computational effort in the MC simulations increases == L ) i
rapidly for increasing terrace width, and a full numerical With flxgd \'/alues' of |ntr!nS|c barrlers and prefactors,_ this
study of stepped surfaces with realistic terrace widths an§XPression is an increasing function lofand a decreasing
system sizes is not feasible. The analytic DMF developedunction ofc. The 1t behavior ofD,, at largec is visible
here thus provides an accurate and powerful tool for studying/féady in the result fot =8 in Fig. 3a).

problems such as the crossover from step-dominated to

T L+c[vglvg+(volvs)eFsKT eFs /KT

terrace-dominated diffusion as a function of temperature and B. Diffusion parallel to step edges
terrace width. In general, diffusion in the direction parallel to the steps
appears to have a relatively simple dependence on coverage
IV. PROPERTIES OF THE DIFFUSION TENSOR and terrace width. The zero-coverage limitlyf, is particu-

) _ _ larly simple: In the absence of blocking we have
In this section we shall consider the coverage and temg_/c ~ —eFs/kT 50 that Eq(3.9) leads to

perature dependence of the diffusion tenBols given by

Egs.(3.8 and(3.9). As explained above, fdEg=0 all row 0 I,/To—1 X

coverages are equal with=c,=c so that all coverage de- Dy, =|1+ 1+ (L—1)e BT I'ob?, (4.3
pendence oD cancels out, and even with large Schwoebel

effect the properties db are relatively simple. Therefore the which is the result obtained in Ref. 9. Here the effects of the
main emphasis will be on cases where the extra binding agxtra binding and the enhanced jump rate at step eldgts
step edge is strong, i.&=e"8/“T>1 2! Based on the analy- increaseDy, .

sis below, behavior ob in other cases can be easily under- In the case oD, the minimum in the compressibility
stood. close toc=1/L due to the suppression of the fluctuatidok
Sec. IV A is largely canceled out by the enhanced blocking
of jumps along the lower step edges whep=1. This leads

. to the monotonically decreasing behavior»§, as a func-

At low coverages such that<1/L, behavior ofDyy can  tion of coverage at low coverages as shown in Fitp).3
be understood by examining the zero-coverage limit of EqThere is no peak at the special valuecef 1/L as shown in
(3.8). In this limit c./c,=e"8 T so that Eq(3.8) reduces to  the case oD, ,.

For a fixed coverage>1/L at low temperature two ef-
DS—0_ [oL%a? fects compete with each other. First, faBp<E, the ratio
X TTL—14eP8 KT [L—2+ vo/vg+ (vo/vg)eFs’vT]” I', /T gocelFo~E/KT angd diffusion along the step edge row is
(4.2 increasingly faster than in the terrace region. At the same

A. Diffusion perpendicular to step edges
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time, the occupation of the edge row increases as the factdiinding energyEg is comparable to that of the terrace barrier
é=e8/KT which leads to an exponential increase in theE, within a crossover regime characterized by
blocking factor for diffusion along the step edge. These two

effects determine the coverage and temperature dependence L~ Yo | 20| EgikT 46
of the diffusion in the direction parallel to the steps. In the ~c vg Vg e ) (4.6
low temperature limit withL>1, we havec,~1 andc;~c _ )
so that Eq(3.9) reduces to For this regime, the temperature dependenc® gf cannot
be described by the simple Arrhenius form. In the terrace-
o vy dominated regime, i.e., fdr>c(vo/vg+ vo/ve)e’kT, we
Dy,~|1+eFo~E2 EB)IKTTOCz [ob?. (4.4 obtain from Eq.(4.2) the expected form
From this form we see that fd€,— E,>Eg the main con- Dy~ voa’e” Fo/kT, (4.7

tribution at low temperature comes from diffusion along the
lower step edge, i.e., from the second term on the right-han
side. If, on the other hand,— E,<Eg, then at low tem-

here diffusion is characterized by the terrace energy barrier
o and the terrace prefactar,. In the the step-dominated

i ; s Eg /KT
perature the increase in the edge fBsds not big enoughto  'c9"Me: 1€+ for.>c(vo/vgtrvo/v)e , We get
compensate the enhanced blocking, and the less-blocked ter- La2
race jumps with ratd’, dominate. In other word€),, de- Dxxmﬁgﬁﬁ Eg)/KT 4.9
pends on whether the larger proportion of mass transport C(vg +rs7)
occurs at step edges or on terraces. Clearly Eq.(4.8) is of the Arrhenius form

C. Crossover from step-dominated D= vega’e Eei/kT, 4.9

to terrace-dominated diffusion ] ) ]
) i . with an energy barrieE 4= Eq+ Eg. Another important ob-
At high temperature or for very wide terraces, diffusion ggryation is  that the effective prefactor  veg

perpendicularto the steps is expected to be dominated by the_ L/c(vgl+ vg 1 of the exponential form contains an addi-
terrace ratd’(, and the effect of the steps vanishes. In the,; 22

- tional factorL.
other limit of low temperature and narrow terraces, the

. o Next we show how this theory can be used to analyze the
slower jump rates at step edges become the rate-limiting fa

N ine th p h domi d Gffect of steps in a typical experimental situation. As an ex-

:Ori ext wde examt'”gt erossoverfrom the step-dominate ample, we shall discuss the recent measurements of diffusion

0 terrace-dominated regime. . . of CO on Ni110 surface through the optical grating
In the low-coverage limitc<1/1., we see immediately method~" We concentrate on the data for diffusion along

from Egq. (4.1) that the crossover occurs at —
g @ v N the (110) direction at the coverage 0.98. We expect our

L~maxeFs’*T vy /vg+ (vo/vs)eFs’KT). For terrace widths . ) .
much larger than this crossover value, the effect of the step@odel to describe this case rather well, especially for the

is negligible, whereas for terrace widths much smaller tharp_igh-coverage limit— 1, which can be interpreted as diffu-

this value, the step barriers and prefactors dominate the dift'on .Of an |solate@agancy|n_the qdlaye_r. Then the effe_ct of
fusion constant. In the experimentally more relevant highpOSS|bIe adsorbate interactions is mainly to renormalize the

coverage limitc>1/L, the crossover criterion is quite differ- microscopic activation barriers and intrinsic prefactors of the

ent from the low-coverage situation. According to E42), flcal J?m? rates oflthe Ivacf.‘lzcycog iﬁrraqes Iant;l)lat i_tep eglges.
it is now determined by the condition SO, Tor large molecules lixe e simple blocking pic-

ture of our model is supposedly valid for processes at step
Yo Vo edges. Note that for smaltompared to step heighadsor-

—+ —eES“‘T) eFe/kT, (4.5  bates this is not necessarily always true because particles
Vs Vs hopping from the upper terrace over the step edge could then

For L much smaller than this crossover value, the diffusionlU™P on top of the adsorbate layer on the lower terrace, i.e.,

constanD,, is again dominated by the steps and the barrierd© the segond layer. Since thg influence of steps is expected

at the step edges. We note that in the step-dominated regimi@, P& dominantly due to diffusion across step edgésye

in general the diffusion constant has a complicated tempergihall below use our results fd@,, . .

ture dependence and not the simple Arrhenius form. The From a measurement on a good sample wits 520,

exact temperature dependence can be obtained explicithfia0 6a?nd co-workers obtained an activation barrier of 95

from Eq.(3.8) and depends on a complicated interplay of theMeV."" Based on another measurement for a sample with a

intrinsic activation barriers, prefactors, and the terrace widthlgher step density they estimate the value of the step-
Instead of considering all the possible variations, we illus-dominated barrier to b&;=239 meV:” Then they use a

trate the crossover behavior for one particular case, namel§/0SSOVer criterion obtained by heuristic argumenigich

the caseefe/KT>1 with c>1/L andL>1 described by Eq. C¢an be written in our notation als®~e(Fe~ kT for the

(4.2) above. We shall take®s’kT~ 1, which corresponds toa Case of equal prefactors for e_lll jumps. Bgsed on this form,

negligible Schwoebel effect within the temperature range othese authors concluded that in the experimental temperature

interest. Other cases as well as the crossover at lower coveidnge of 100-200 K with.~520 the effect of steps should

ages can be treated in an analogous way using the expree negligible and the value of 95 meV should represent the

sions forD,, given in Sec. IV A. With the given conditions, diffusion barrier along the (1Q) direction for the clean sur-

we observe immediately from E¢4.2) that the effect of the face. The crossover criterion we obtained analytically,

L=c
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tropy factors for the jumps at step edges as well as the nona-
diabatic frictional coupling to the substrate excitations at the
step edges, which are substantially different from that on
terraces. The effective prefactog; measured on a high step
density surfac is indeed several orders of magnitude larger
than the corresponding value on a surface with low step den-
sity. Because the experiment probes ¢ffectiveprefactor, at
least part of the increase in the measured value in the pref-
actor is due to the extra factor bfin v, as demonstrated
above by Eq(4.8). Also, other parameters such as impurity
concentrations may be different for the two sampfeshus

it remains an open question whether th&insic prefactors

vg and vq can differ by almost three orders of magnitude.

13 . . L This is an important and fundamental question that remains
0.004 0.005 0.006 0.007 0.008 to be investigated.

ur (KM

D (cm2/s)

10

. . . . V. DISCUSSION
FIG. 4. Arrhenius plots oD,, using experimental estimates for

activation barriers for diffusion of CO on Mi10 (Refs. 6, 7, and To summarize, we have presented a theoretical analysis of
23). Our theory for different choices of the ratig;/v, of the in-  collective diffusion on stepped substrates, and studied the
trinsic prefactors is shown by lines. Note that the valuegbnly  dependence of the diffusion tensor on the terrace width, cov-
shifts the curves in vertical direction; we have chosen the valueerage, and temperature in the case where on-site blocking is
vo=2x10"%cn¥/s to obtain a good fit for large values o&/v,.  the dominant interaction between the adsorbate particles. In
The experimental data points from Ref. 6 are denoted by squareparticular, we have established criteria for crossover from
See text for detailed parametrization. terrace-dominated diffusion to step-dominated diffusion.
Compared with the heuristic criterion used befdfeour
namely, Eq.(4.6), is quite different, withL instead ofL? on  theory predicts a much stronger influence of the steps on the
the left-hand side. Next we examine using our analysisiiffusion barrier. Our present results demonstrate that even
whether the effect of steps in this case can indeed be neglfer surfaces with low step densities under typical experimen-
gible. tal conditions, the influence of steps on measured diffusion
As explained above, for coverage close to one, the variousarriers and effective prefactors can still be considerable,
activation barriers in the system can be interpreted as barrietghd a careful theoretical analysis is needed to understand the
experienced by a single vacancy. Then, following Ref. 5, wedetailed influence of the steps on the diffusive motion of the
can in our theory seE;=95 meV andEy+Eg+Es=239  adsorbates.
meV, which values through the experimental measurement The effect of the steps on collective diffusion at finite
also include the effect of adparticle interactions. To proceedoverages turns out to be very different from the correspond-
further, we observe that witks=0 (Ref. 24 in Eq. (4.2),  ing result in the zero-coverage limit. This is true especially
we can without a loss of generality takkg= vg. With these  for diffusion perpendicular to the steps, describedhy;.
choices andc=0.98, the only free parameters left in Eq. Due to the compressibility contribution @,,, considerable
(4.2) are vy and the ratiovs/vg. In Fig. 4, we show the deviations from the zero-coverage behavior appear already at
Arrhenius plot ofD vs 1/T as given by our theory for dif- coverages neac=1/L. The compressibility has a strong
ferent values of the prefactor ratig;/ vy. First consider the minimum at this coverage due to the preferential filling of
curve for equal prefactors withg/vy=1. Clearly in the ex- the step edge sites, leading to a corresponding maximum in
perimental temperature range, the step effects are not negld. This effect is not just peculiar to the Langmuir gas model
gible and the effective barrier observed is considerablystudied here, but should persist in systems with direct adpar-
higher than the input value 95 meV, actually very close toticle interactions as wef Experimental observations of this
the step-dominated value 239 meV, as expected on the bas#fect should be feasible for vicinal substrates with narrow
of the crossover criterion of Eq4.6). Two possibilities terraces.
remain®® One is that the intrinsic barrier is substantially — The generic form of the criterion for the crossover from
smaller than the quoted value of 95 meV. The other is thastep-dominated to terrace-dominated diffusion at high cover-
the prefactorg at the step edges is considerably larger tharage can be written ds~T";/Isip, Wherel 'y, characterizes
the intrinsic prefactor, on the terraces so that tiempen-  diffusion within the flat terrace region anldg., describes
sation effect reduces the influence of the steps on the meadiffusion across step edgésDifferent chacraterizations of
sured value of the barrier. To test this hypothesis, we show ithe barriers and prefactors near the steps would only lead to
Fig. 4 also the “best fits” to the experimental data set froma different form ofl".,,, but do not change qualitatively the
Ref. 6 for larger values ofvg/vy. Clearly the fits with dependence on terrace width presented here. This form
vs/vo=10° and 1¢ are within reasonable experimental er- should be valid even in the presence of short-range adsorbate
ror bars, and with increasing the ratig/vq the theoretical interactions, as long as the local coverage and the micro-
curve gets more linear, i.e., further away from the stepscopic jump rates are roughly constant through the terrace
dominated regime. region so that rates are modified only in the immediate vi-
The possible difference afs and v, arises from the en- cinity of step edge&® The values of the barriers and prefac-
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tors of course would be modified by the interactions betweeanm(l— “f/mf)rs—s'):Cs(l—Csr)F%su where (,m;s)

the adsorbates. and (',m’;s’) refer to nearest-neighbor adsorption sites.

qu interacting adsorba'tes at submonola'y(.a.r coverages, ﬂlﬁter neglecting the memory function, the correlation matrix
possible complex behavior of compressibility at speC|aIY is inversely proportional to det where the interior ele-
points® can change the thermodynamical contributiorDto ments related to terrace jumps are given by

Also, in some cases for coverages considerably below one, a

nonuniforz?zgovgrage profile across the terra.ce region can be Ves=2— 2T gcosk,b+ 4T,

induced®?%2°which naturally leads to a variation of the local

jump rates there, and thereby to a more complex kinetic con- V =T A2
s,s*1 0 ( )

tribution to D. These effects can lead to a coverage depen-

dence very different from that of the present model. We areand the modified elements at the corners related to jumps

now employing the DMF formalism in conjunction with nu- near step edges are given by

merical sampling of local jump rates to systematically ex-

plore the in teraction and impurity effect¥3! Vi=z—2Icokb+ 1"+, +2I;

+(T;—T1+T4—
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In this Appendix we shall outline the derivation of the ilka
elements of the diffusion tensor from the zeros of the deter- Vi =—[Fy+(Tg—Ty)c e
minant of theL X L matrix V=z1+b(k) x(k) ! in the hy- ik
drodynamic limitk—0 andw—0. The differentiation with Vip=—[Tgt+(Ty=Tg)cele” 4 (A3)

respect to time in the jump rate matrix ) ) )
b(K) =(Aq(K)|(d/dt)A(k)) can be carried out by substitut-  The phase factors in EqeA2) and(A3) arise from jumps
ing the rate equations of E¢B.3), after which the elements from one unit cell to another, i.e., from all jumps in the
of b and also the elements of the susceptibility matrixdirection and from jumps across the step edges inxtiie:
x(K)=(Aq(k)|Ag(k)) are found using the following equal- rection. All thg other elements. di are identically zero so
time identity of the Langmuir gas model: that the matrixV is almost tridiagonal and détcan be
evaluated after first expanding the minor involving only the
s _ S N S S S (11— _ middle elements of Eq(A2) for generalL. The element
(i = Co) 1) = s it Orm (1. C5) s (AL D,x, €.0., is then extracted as the ratip/a, of the coeffi-
The resulting elements df are combinations of average cients of the leading terms of détza,+a,kZ+--- in the
rates of occurrence of the different jumps of the formhydrodynamic limitz—0 andk,—0 with k,=0.
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