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Diffusion on a stepped substrate: Collective diffusion in the Langmuir gas model

J. Merikoski* and S. C. Ying
Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912

~Received 7 February 1997!

We study collective diffusion of adatoms on a stepped substrate within a Langmuir gas model. Our model
allows for modified potential barriers and wells near the step edges, as well as different prefactors for intrinsic
jump rates at step edges. The diffusion tensor is calculated using projection operator techniques. We study
in detail the dependence of the macroscopic collective diffusion on the microscopic parameters in the
model. Collective effects due to finite coverage turn out to be crucial in determining the influence of steps
on measurable activation barriers and effective prefactors already at low coverage.@S0163-1829~97!03928-3#
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I. INTRODUCTION

In the study of surface dynamics, many important p
cesses such as thin film growth and spreading of den
profiles depend crucially on the macroscopic collective d
fusion rate.1 Since this rate is concerned with the motion
the adsorbate over macroscopic distances, it is unavoid
affected by the existence of surface defects, especially in
form of impurities and surface steps2 even on a well-
prepared sample substrate. Scanning tunneling micros
~STM! and field emission studies have confirmed t
prediction3 that there exist extra activation barriers at t
steps leading to a different microscopic mobility for ads
bates there as compared to the flat terrace region. The
lective diffusion rate has been studied experimentally
various methods.4–7 However, there exist only limited
efforts7,8 in trying to understand how macroscopic collecti
diffusion depends on the microscopic jump rates near
steps. This is the question we address in this paper.

In an earlier study, diffusion of a single atom on a stepp
substrate with a periodic array of straight steps was stud
within a lattice-gas model by Natori and Godby.9 In this
work, we generalize this model to study collective diffusi
at finite coverages within a Langmuir gas model, where
‘‘interaction’’ between adsorbate particles is the exclusion
double occupancy in lattice sites. The model includes
effect of the Schwoebel barrier, extra binding at step ed
and the enhanced diffusion along step edges. We solve
model using a variety of approaches including the Mori p
jection operator formalism,10 Green’s functions
techniques,11,12 and Monte Carlo~MC! simulations.13 In the
presence of the extra binding at step edges, the collec
effects turn out to totally change the physics already at r
tively low coverage. A preliminary report of some of th
results presented in this paper has already been given in
14, where we discussed the properties of the diffusion ten
only in certain limits relevant to particular experimental sit
ations. Here we shall systematically consider the tempera
and coverage dependence of the diffusion tensor in
model. We have generalized our original model14 to consider
the role of intrinsic prefactors of the jump rates in determ
ing the effective prefactors of the diffusion coefficients. Al
a more detailed description of the analytic and numer
work involved is given.
560163-1829/97/56~4!/2166~9!/$10.00
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The organization of the present work is as follows. In S
II we present the model we use to describe diffusion o
stepped substrate. The different theoretical approache
solve the model are discussed in Sec. III. In Sec. IV
present the results for the components of the collective
fusion tensor in various limits. We also apply our results
analyze recent surface diffusion data obtained for the sys
CO/Ni~110!.5,6 Section V comprises a discussion of the ma
implications of our results.

II. MODEL AND ITS STATIC PROPERTIES

Following the earlier work dealing with the zero-covera
limit,9 we introduce several energy barriers in our mod
characterizing the adsorption on the stepped substrate.
corresponding potential profile in direction perpendicular
step edges (x direction! is shown in Fig. 1~a!. An additional

FIG. 1. Geometry and jump rates of the lattice model for diff
sion on a stepped substrate.~a! The potential profile inx direction.
~b! Side view of the model showing the various intrinsic hoppi
rates for jumps inx direction near step edges. The rateG18 ~not
shown! is the rate for the process reverse to that with the rateG1. ~c!
Top view of the model showing the size of one unit cell with t
indicess51,2, . . . ,L of each lattice site within the cell.
2166 © 1997 The American Physical Society
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56 2167DIFFUSION ON A STEPPED SUBSTRATE: . . .
binding energyEB at the lower step edges can arise as
consequence of extra coordination for the adsorption s
there. Similarly, a Schwoebel barrierES for jumps from the
terrace to the lower step edges3 can exist due to the reduce
coordination at the saddle point compared to the one fo
jump on a terrace, for which the activation barrier is deno
by E0. In this work, the barrier for jumps along lower ste
edges,E2, is taken to be lower thanE0, leading to a higher
jump rate along the lower step edges. The inert subst
surface is assumed to have a periodic array of straight s
separated by terraces of width ofL lattice sites.

The energy barriers lead to the following rates for neare
neighbor jumps as shown in Fig. 1~b! and Fig. 1~c!: G0 on
the terraces,G1 from the lower edge to the same terrac
G18 from the terrace to lower edge,Gu from the lower edge
across the step up to the neighboring terrace,Gd from the
upper edge across the step down to the lower edge on
neighboring terrace, andG2 along the lower step edge. W
have generalized the set of rates used in Refs. 9 and 1
allowing for modified prefactorsnS , nB and n2, for jumps
over step edge, detachment from~attachment to! step edge,
and jumps along the lower step edge, respectively. The g
eralized set of rates can now be written as

G05n0e2E0 /kT5
n0

nB
jG15

n0

nB
G185

n0

nS
sGd5

n0

nS
jsGu ,

~2.1!

G25n2e2E2 /kT, ~2.2!

where the parametersj and s defined byj5eEB /kT and
s5eES /kT describe the effective strengths of the binding
step edge and the Schwoebel barrier. Each adsorption s
labeled by the coordinate (lLa,mb) of the unit cell together
with a site indexs51,2, . . . ,L within the unit cell@see Fig.
1~c!#. Herea andb are the nearest-neighbor distances alo
the x and y directions, respectively. For each site we th
define a stochastic occupation variablenl ,m

s (t), which due to
the exclusion of double occupancy can take on only the
ues 0 and 1.

In the present model, the adsorption potential is modifi
only for lattice sites at the lower step edge, and therefore
have only two distinct row coveragesce and ct , for lower
step edges and terraces, respectively, defined by

ce5^nl ,m
1 &, ct5^nl ,m

2 &5^nl ,m
3 &5•••5^nl ,m

L &. ~2.3!

These occupation numbers are independent of the cel
dices (l ,m) by symmetry, and they obey the detailed balan
condition15

ce~12ct!

ct~12ce!
5j, ~2.4!

which allows us to expressce andct as a function of the tota
coveragec5ct1(ce2ct)/L as
a
es

a
d

te
ps

t-

,

he

by

n-

t
is

g

l-

d
e

n-
e

ce5ce~j,L,c!5
1

2~j21!
~b12Ab2

2 1a!,
~2.5!

ct5ct~j,L,c!5
1

2~j21!~L21!
~b21Ab2

2 1a!,

whereb65(j21)(Lc61)6L anda54(j21)(L21)Lc.
Under conditions typical to experiments on smooth s

faces, the value of the terrace widthL ranges from 50 to 500
and the extra binding at the step edges, characterized
j5eEB /kT, satisfies the conditionj@1. Equation~2.5! then
leads to the following observations. At very low coverag
such thatc<1/L, the particles adsorb preferentially at th
step edges because of the extra binding there so
ce'cL while terraces are practically empty withct'0.16

This situation continues as the coverage is increased u
one reaches the valuec51/L. At this point, the step edge
are fully occupied and the terraces remain empty w
ce'1 and ct'0. Beyond that point, forc.1/L, terraces
start to be populated while the edge rows remain fully oc
pied, i.e.ce'1 with ct'c. This can be seen more explicitl
by expandingce and ct in Eq. ~2.5! to lowest order in the
deviationc21/L. For j@L we find

ce'12AL21

j
1

L

2S c2
1

L D1OS S c2
1

L D 2D ,

ct'A 1

~L21!j
1

L

2~L21!S c2
1

L D1OS S c2
1

L D 2D .

~2.6!

This behavior ofce andct is the key to understand the varia
tion of the diffusion constant with the coveragec. Since
typically for large terrace width 1/L< few percent, the ex-
perimental situation usually corresponds to the regi
c.1/L, and the influence of the steps on the measured va
of diffusion rates differs substantially from the zero-covera
behavior described in Ref. 9.

As will be shown in the next section, a large part of t
coverage dependence of the collective diffusion comes fr
the so-called ‘‘thermodynamic factor’’ f defined as4

f 5
^NA&

Š~NA2^NA&!2
‹

[
c

T

]m

]c
, ~2.7!

which is inversely proportional to the compressibility of th
adsorbate layer. In the Langmuir gas model,f can be evalu-
ated exactly and is given by

f 5
Lc

~L21!~12ct!ct1~12ce!ce
. ~2.8!

When the coverage first increases from the initial zero va
the adparticles are preferentially adsorbed at the edge r
due to the extra binding there. The suppression of the fl
tuations in the occupation of the edge rows then leads to
initial increase off with the coverage. Atc51/L, the edge
rows are completely occupied and the terraces are em
This results in maximum suppression of the occupancy fl
tuations, leading to a maximum inf . On further increase of
the coverage, the edge rows remain fully occupied but
terraces become partially occupied and hence the comp
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2168 56J. MERIKOSKI AND S. C. YING
ibility increases andf decreases. The behavior off for
L54 for several temperatureskT/EB is shown in Fig. 2,
from which we see thatf decreases very rapidly with de
creasing temperature atc51/L. The behavior of f near
c51/L for eEB /kT@L can be obtained by substituting E
~2.6! into Eq. ~2.8!, leading to the expression

f '
eEB/2kT

2AL21
, ~2.9!

which with decreasing temperature results in an expon
tially increasing thermodynamical contribution to the diff
sion constant.

III. ANALYTICAL AND COMPUTATIONAL METHODS

The collective~chemical! diffusion tensorD can be con-
veniently defined through the decay of spontaneous den
fluctuations. The density-fluctuation autocorrelation funct
S(r ,r 8,t) is defined as

S~r ,r 8,t !5(
s,s8

Š@nl ,m
s ~ t !2Šnl ,m

s &] @nl 8,m8
s8 ~0!2^nl 8,m8

s8 &#‹,

~3.1!

where the position vector of a unit cell isr5( lLa,mb), and
the angle brackets denote an ensemble average. In the h
dynamic limit t→` and k→0, its Fourier transform with
respect to unit cell indices behaves asS(k,t)
;exp(2k•D•kt). Correspondingly, the Laplace transfor
S(k,z) has a pole atz5k•D•k. Another approach for evalu
ation of the collective diffusion is via the Green-Kub
relation4

Dnn5 f lim
t→`

1

4NtK F(
i 51

N

@r n
~ i !~ t !2r n

~ i !~0!#G2L , ~3.2!

wherer n
( i ) refers to the componentn5x,y of the position of

adparticlei , the sum is over all particles, andf is exactly the
thermodynamic factor introduced in Eq.~2.7! of the preced-
ing section.

We have used two equivalent analytic approaches to
culate collective diffusion: the Mori projection operat
formalism10 and the Green’s functions techniques.11,12 In
both approaches, the diffusion constant is obtained by id

FIG. 2. Inverse of the thermodynamical factorf as given by Eq.
~2.8! at different temperatures as a function of coverage forL54.
n-

ity
n

ro-

l-

n-

tifying the pole of the density correlation function in th
hydrodynamic limit as discussed above. The starting poin
the rate equations for the stochastic occupancy varia
nl ,m

s (t). With the definitions of the various rates in the pr
ceding section, these can be written as

d

dt
nl ,m

1 52~G11Gu12G2!nl ,m
1 1G18nl ,m

2 1Gdnl 21,m
L

1~G12G18!nl ,m
2 nl ,m

1 1~Gu2Gd!nl 21,m
L nl ,m

1

1G2~nl ,m11
1 1nl ,m21

1 !,

d

dt
nl ,m

2 52~3G01G18!nl ,m
2 1G0nl ,m

3 1G1nl ,m
1

1~G182G1!nl ,m
1 nl ,m

2 1G0~nl ,m11
2 1nl ,m21

2 !,

d

dt
nl ,m

s 524G0nl ,m
s 1G0nl ,m

s111G0nl ,m
s21

1G0~nl ,m11
s 1nl ,m21

s ! for 2,s,L,

d

dt
nl ,m

L 52~3G01Gd!nl ,m
L 1Gunl 11,m

1 1G0nl ,m
L21

~3.3!

1~Gd2Gu!nl 11,m
1 nl ,m

L 1G0~nl ,m11
L 1nl ,m21

L !.

Next we generalize the standard description17,18of collec-
tive diffusion within the framework of the Mori formalism10

to the case with substrate steps. The relevant dynamical v
ables are now the components

A0
s~k,t !5(

l ,m
@nl ,m

s ~ t !2^nl ,m
s &#exp@ i ~ lLakx1mbky!#

~3.4!

of the L-dimensional vectorA05(A0
1 ,A0

2 , . . . ,A0
L). The

quantity of interest is the Laplace transform of theL3L
density-fluctuation correlation matrix

Y~k,z!5E
0

`

e2zt^A0~k,t !uA0~k!&dt, ~3.5!

where the angle brackets denote thermodynamical aver
and A0(k)[A0(k,0). Using the projection operator tech
niques it can be formally expressed as

Y~k,z!5
x~k!

z11b~k!x~k!211M1~k,z!
, ~3.6!

where the ‘‘jump rate matrix’’b(k)52^A0(k)ud/dtA0(k)&
and the ‘‘susceptibility matrix’’x(k)5^A0(k)uA0(k)&. The
memory functionM1(k,z) originates from the the correla
tion effects between successive individual adparticle jum
To proceed further, we will setM1(k,z) to zero. This corre-
sponds to a dynamical mean-field~DMF! approximation. For
the Langmuir gas model in the absence of steps, the corr
tion effects cancel out exactly for collective diffusion,19 and
DMF is exact. For the stepped surface, we will show bel
by comparison with direct Monte Carlo simulation studi
that DMF remains a very good approximation.
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As discussed earlier, the diffusion tensorD can be ex-
tracted from the poles ofS(k,z)[Ss,s8Ys,s8(k,z). Accord-
ing to Eq. ~3.6! with M1(k,z)50, each of the element
Ys,s8(k,z) is inversely proportional to det@z1
1b(k)x(k)21] and, therefore, the diffusive pole ofS(k,z)
at z5k•D•k can be determined from the zeros of this det
minant in the limitk→0 andv→0. By expanding the de
terminant ~see the Appendix!, collecting the leading terms
for smallv andk, we find the diagonal elements ofD to be

Dxx5
f

Lc

~12ce!~12ct!ctG0L2a2

~L22!~12ce!1~12ct!@n0 /nB1~n0 /nS!s#
,

e
of

ar
n-

ar
c

nc

n

r
e
f

d
am
p
th
r-
w

-

Dyy5
f

Lc
@~L21!~12ct!ctG01~12ce!ceG2#b2.

~3.7!

Here f is the thermodynamic factor given by Eq.~2.8!, so the
result forD in Eq. ~3.7! is indeed of the form given by the
Green-Kubo formula Eq.~3.2!. Combining Eqs.~3.7! and
~2.8! and using the detailed balance condition of Eq.~2.4!
leads to the form
Dxx5
G0L2a2

@L211~ce /ct!
2j21#@L221~ct /ce!@n0 /nB1~n0 /nS!s#j#

, ~3.8!

Dyy5H 11
~G2 /G021!

11~L21!~ct /ce!
2jJ G0b2, ~3.9!
C
e

rical
of

q.
u-

dif-

no-
which will be useful in our discussion of the coverage d
pendence ofD. By symmetry, the nondiagonal elements
D are identically zero.

It is easy to see that the DMF results of Eqs.~3.8! and
~3.9! are exact in the following cases. First, forEB50 we
have ce5ct5c with G15G18 and Gu5Gd so that all the
higher-order terms, i.e., the products of two occupation v
ables, in Eq.~3.3! cancel out, and the final result is indepe
dent of coverage.19 The other special cases arec→0 and
c→1. These limits correspond to diffusion of a single adp
ticle or a single vacancy and therefore the correlation effe
vanish and DMF is exact.

In our previous treatment of this problem14 we formulated
the theory in terms of the Green’s functions method,11,12

where the coupled equations of motion for the Green’s fu
tions

Glml8m8
ss8 ~ t ![22p iu~ t !^@nlm

s ~ t !2cs#@~nl 8m8
s8 ~0!2cs8#&

~3.10!

can be solved by decoupling the higher-order Green’s fu
tions

Glml8m8 l 9m9
ss8s9 ~ t !522p iu~ t !^@nl ,m

s ~ t !2cs#@nl 8,m8
s8 ~ t !2cs8#

3@nl 9,m9
s9 ~0!2cs9#&, ~3.11!

where u(t) is the Heaviside step function. After Fourie
transforming the resulting mean-field equations with resp
to time and unit cell coordinates, a closed set of equations

Gk
ss8(v) is obtained. The study of diffusive poles then lea

to the evaluation of the same determinant and to the s
final result forD as obtained above using the projection o
erator techniques. In this paper we shall not discuss
Green’s functions formalism in more detail; major diffe
ences between these two formalisms appear only in the
possible higher-order approximations are constructed.10–12
-
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To test our analytical results, we have performed M
simulations13 using both the density-fluctuation and th
Green-Kubo methods to computeD. A detailed discussion
and a comparison of these methods as tools in nume
work can be found in Ref. 20 and an application to a case

FIG. 3. Analytic and Monte Carlo results forDxx andDyy as a
function of coverage forEB /kT5ES /kT5(E02E2)/kT52 with
n05nS5nB . Lines show the dynamical mean-field theory of E
~3.7!, and plotting symbols denote the results of Monte Carlo sim
lations with error bars less than the size of the symbols. Here
fusion coefficients are shown in units ofD`5G0a2, that is, the
value for infinite terrace width and coverage in units of one mo
layer so that the value ofE0 does not need to be specified.
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2170 56J. MERIKOSKI AND S. C. YING
a stepped substrate in Ref. 8. The coverage dependen
D as given by Eq.~3.7! together with the MC simulation
results using the Green-Kubo method are shown in Fig. 3
a temperature comparable to the various activation barrie
the system,EB /kT5ES /kT5(E02E2)/kT52, and with
identical intrinsic prefactorsn05nS5nB . With this choice,
the ratio of the fastest and slowest jump rate is appro
mately 400, and going further down in temperature wo
increase the computational cost considerably. To comp
the diffusion constant, we have to study thek→0 limit. The
smallest value ofkx is equal to 2p/Nx , where Nx is the
number of unit cells each containingL sites. The accurate
determination of the diffusion constant therefore require
large system size. Typical simulation parameters to prod
Fig. 3 were 108 MC steps per atom for about 1000 atom
The size of the simulation cell, depending on coverage
the terrace width 2<L<8, varied up to max(Nx)564 and
max(Ny)5128. Long simulation time was needed to reve
the fine structure in the coverage dependence ofDxx . We
have performed a similar set of simulations f
EB /kT5ES /kT5(E02E2)/kT51/2, where simulations are
easier, but the coverage dependence ofD is much weaker.
The results plotted in Fig. 3 show that between its ex
limits c→0 andc→1 the analytic theory agrees very we
with the MC data, with no discernible systematic deviatio
Thus the DMF provides a very accurate description of
present system.

In the remainder of this paper we shall use the anal
DMF result as given by Eqs.~3.8! and ~3.9! to study the
properties ofD in various limits. For the reasons explaine
above, computational effort in the MC simulations increa
rapidly for increasing terrace width, and a full numeric
study of stepped surfaces with realistic terrace widths
system sizes is not feasible. The analytic DMF develop
here thus provides an accurate and powerful tool for study
problems such as the crossover from step-dominated
terrace-dominated diffusion as a function of temperature
terrace width.

IV. PROPERTIES OF THE DIFFUSION TENSOR

In this section we shall consider the coverage and te
perature dependence of the diffusion tensorD as given by
Eqs.~3.8! and ~3.9!. As explained above, forEB50 all row
coverages are equal withce[ct[c so that all coverage de
pendence ofD cancels out, and even with large Schwoeb
effect the properties ofD are relatively simple. Therefore th
main emphasis will be on cases where the extra bindin
step edge is strong, i.e.,j5eEB /kT@1.21 Based on the analy
sis below, behavior ofD in other cases can be easily unde
stood.

A. Diffusion perpendicular to step edges

At low coverages such thatc,1/L, behavior ofDxx can
be understood by examining the zero-coverage limit of
~3.8!. In this limit ce /ct5eEB /kT so that Eq.~3.8! reduces to

Dxx
c→05

G0L2a2

@L211eEB /kT#@L221n0 /nB1~n0 /nS!eES /kT#
,

~4.1!
of

r
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i-
d
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in agreement with the result of Ref. 9. In Eq.~4.1!, the effect
of the extra binding energyEB and that of the Schwoebe
barrier ES appear in different factors of the denominato
Note that the first factor containing the effect ofEB comes
from thec→0 limit of the thermodynamic factorf , which is
a static property and, therefore, is not affected by the int
sic prefactors.15 Evidently, foreEB /kT@1, theL dependence
of Eq. ~4.1! is very different in caseseES /kT@L and
eES /kT!L.

As the coverage increases, the value ofDxx increases with
increasing coverage and reaches a maximum atc51/L be-
fore starting to decrease as c increases further. This beha
is illustrated in Fig. 3~a!. This somewhat surprising result ca
be understood from the Green-Kubo relation in Eq.~3.2!.
Obviously, the center-of-mass mobility cannot have any s
cial behavior at the pointc51/L, so that this special cover
age variation ofDxx comes entirely from the coverage d
pendence of the thermodynamic factorf as detailed earlier
by Eq.~2.9! and Fig. 2. Note that for decreasing temperatu
f increases exponentially and can therefore partially co
pensate the effect of the decreasing intrinsic jump rate
step edges.

Since step spacings of the order of a few hundred lat
constants can be achieved for good sample surfaces, th
gime c@1/L is the most relevant one for most experimen
In this limit, with eEB /kT@1 andL@1, we havece'1 and
ct'c, and the expression ofDxx in Eq. ~3.8! reduces to

Dxx'
G0La2

L1c@n0 /nB1~n0 /nS!eES /kT#eEB /kT . ~4.2!

With fixed values of intrinsic barriers and prefactors, th
expression is an increasing function ofL and a decreasing
function of c. The 1/c behavior ofDxx at largec is visible
already in the result forL58 in Fig. 3~a!.

B. Diffusion parallel to step edges

In general, diffusion in the direction parallel to the ste
appears to have a relatively simple dependence on cove
and terrace width. The zero-coverage limit ofDyy is particu-
larly simple: In the absence of blocking we hav
ce /ct'5eEB /kT so that Eq.~3.9! leads to

Dyy
c→05S 11

G2 /G021

11~L21!e2EB /kTDG0b2, ~4.3!

which is the result obtained in Ref. 9. Here the effects of
extra binding and the enhanced jump rate at step edgesboth
increaseDyy .

In the case ofDyy , the minimum in the compressibility
close toc51/L due to the suppression of the fluctuations~cf.
Sec. IV A! is largely canceled out by the enhanced blocki
of jumps along the lower step edges whence'1. This leads
to the monotonically decreasing behavior ofDyy as a func-
tion of coverage at low coverages as shown in Fig. 3~b!.
There is no peak at the special value ofc51/L as shown in
the case ofDxx .

For a fixed coveragec@1/L at low temperature two ef-
fects compete with each other. First, forE2,E0 the ratio
G2 /G0}e(E02E2)/kT and diffusion along the step edge row
increasingly faster than in the terrace region. At the sa



c
he
w
e
he

he
an

t

po

n
th
he
h
fa

t

te
a
d
h

-

io
ier
im
er
h

ici
he
th
s
e

o
v

pr
,

er

ce-

rier

i-

the
x-

sion
g
g
ur
the
-
f
the

the
ges.

c-
tep

icles
then
i.e.,
cted

95
th a
ep-

rm,
ture

d
the

-
lly,

56 2171DIFFUSION ON A STEPPED SUBSTRATE: . . .
time, the occupation of the edge row increases as the fa
j5eEB /kT, which leads to an exponential increase in t
blocking factor for diffusion along the step edge. These t
effects determine the coverage and temperature depend
of the diffusion in the direction parallel to the steps. In t
low temperature limit withL@1, we havece'1 andct'c
so that Eq.~3.9! reduces to

Dyy'S 11e~E02E22EB!/kT
n2

Ln0c2DG0b2. ~4.4!

From this form we see that forE02E2.EB the main con-
tribution at low temperature comes from diffusion along t
lower step edge, i.e., from the second term on the right-h
side. If, on the other hand,E02E2,EB , then at low tem-
perature the increase in the edge rateG2 is not big enough to
compensate the enhanced blocking, and the less-blocked
race jumps with rateG0 dominate. In other words,Dyy de-
pends on whether the larger proportion of mass trans
occurs at step edges or on terraces.

C. Crossover from step-dominated
to terrace-dominated diffusion

At high temperature or for very wide terraces, diffusio
perpendicularto the steps is expected to be dominated by
terrace rateG0, and the effect of the steps vanishes. In t
other limit of low temperature and narrow terraces, t
slower jump rates at step edges become the rate-limiting
tor. Next we examine thecrossoverfrom the step-dominated
to terrace-dominated regime.

In the low-coverage limitc!1/L, we see immediately
from Eq. ~4.1! that the crossover occurs a
L'max„eEB /kT,n0 /nB1(n0 /nS)eES /kT

…. For terrace widths
much larger than this crossover value, the effect of the s
is negligible, whereas for terrace widths much smaller th
this value, the step barriers and prefactors dominate the
fusion constant. In the experimentally more relevant hig
coverage limitc@1/L, the crossover criterion is quite differ
ent from the low-coverage situation. According to Eq.~4.2!,
it is now determined by the condition

L'cS n0

nB
1

n0

nS
eES /kTDeEB /kT. ~4.5!

For L much smaller than this crossover value, the diffus
constantDxx is again dominated by the steps and the barr
at the step edges. We note that in the step-dominated reg
in general the diffusion constant has a complicated temp
ture dependence and not the simple Arrhenius form. T
exact temperature dependence can be obtained expl
from Eq.~3.8! and depends on a complicated interplay of t
intrinsic activation barriers, prefactors, and the terrace wid

Instead of considering all the possible variations, we illu
trate the crossover behavior for one particular case, nam
the caseeEB /kT@1 with c@1/L andL@1 described by Eq.
~4.2! above. We shall takeeES /kT'1, which corresponds to a
negligible Schwoebel effect within the temperature range
interest. Other cases as well as the crossover at lower co
ages can be treated in an analogous way using the ex
sions forDxx given in Sec. IV A. With the given conditions
we observe immediately from Eq.~4.2! that the effect of the
tor
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binding energyEB is comparable to that of the terrace barri
E0 within a crossover regime characterized by

L'cS n0

nB
1

n0

nS
DeEB /kT. ~4.6!

For this regime, the temperature dependence ofDxx cannot
be described by the simple Arrhenius form. In the terra
dominated regime, i.e., forL@c(n0 /nB1n0 /nS)eEB /kT, we
obtain from Eq.~4.2! the expected form

Dxx'n0a2e2E0 /kT, ~4.7!

where diffusion is characterized by the terrace energy bar
E0 and the terrace prefactorn0. In the the step-dominated
regime, i.e., forL@c(n0 /nB1n0 /nS)eEB /kT, we get

Dxx'
La2

c~nB
211nS

21!
ē~E01EB!/kT. ~4.8!

Clearly Eq.~4.8! is of the Arrhenius form

Dxx5neffa
2e2Eeff /kT, ~4.9!

with an energy barrierEeff5E01EB . Another important ob-
servation is that the effective prefactor neff

5L/c(nB
211nS

21) of the exponential form contains an add
tional factorL.22

Next we show how this theory can be used to analyze
effect of steps in a typical experimental situation. As an e
ample, we shall discuss the recent measurements of diffu
of CO on Ni~110! surface through the optical gratin
method.5–7 We concentrate on the data for diffusion alon
the (1 1̄0) direction at the coverage 0.98. We expect o
model to describe this case rather well, especially for
high-coverage limitc→1, which can be interpreted as diffu
sion of an isolatedvacancyin the adlayer. Then the effect o
possible adsorbate interactions is mainly to renormalize
microscopic activation barriers and intrinsic prefactors of
local jump rates of the vacancy on terraces and at step ed
Also, for large molecules like CO the simple blocking pi
ture of our model is supposedly valid for processes at s
edges. Note that for small~compared to step height! adsor-
bates this is not necessarily always true because part
hopping from the upper terrace over the step edge could
jump on top of the adsorbate layer on the lower terrace,
into the second layer. Since the influence of steps is expe
to be dominantly due to diffusion across step edges,5–7 we
shall below use our results forDxx .

From a measurement on a good sample withL'520,
Xiao and co-workers obtained an activation barrier of
meV.6,7 Based on another measurement for a sample wi
higher step density they estimate the value of the st
dominated barrier to beEeff5239 meV.23 Then they use a
crossover criterion obtained by heuristic arguments,5 which
can be written in our notation asL2'e(Eeff2E0)/kT for the
case of equal prefactors for all jumps. Based on this fo
these authors concluded that in the experimental tempera
range of 100–200 K withL'520 the effect of steps shoul
be negligible and the value of 95 meV should represent
diffusion barrier along the (1 1̄0) direction for the clean sur
face. The crossover criterion we obtained analytica
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namely, Eq.~4.6!, is quite different, withL instead ofL2 on
the left-hand side. Next we examine using our analy
whether the effect of steps in this case can indeed be n
gible.

As explained above, for coverage close to one, the var
activation barriers in the system can be interpreted as bar
experienced by a single vacancy. Then, following Ref. 5,
can in our theory setE0595 meV andE01EB1ES5239
meV, which values through the experimental measurem
also include the effect of adparticle interactions. To proce
further, we observe that withES50 ~Ref. 24! in Eq. ~4.2!,
we can without a loss of generality takenS5nB . With these
choices andc50.98, the only free parameters left in E
~4.2! are n0 and the rationS /n0. In Fig. 4, we show the
Arrhenius plot ofD vs 1/T as given by our theory for dif-
ferent values of the prefactor rationS /n0. First consider the
curve for equal prefactors withnS /n051. Clearly in the ex-
perimental temperature range, the step effects are not n
gible and the effective barrier observed is considera
higher than the input value 95 meV, actually very close
the step-dominated value 239 meV, as expected on the b
of the crossover criterion of Eq.~4.6!. Two possibilities
remain.25 One is that the intrinsic barrier is substantia
smaller than the quoted value of 95 meV. The other is t
the prefactornS at the step edges is considerably larger th
the intrinsic prefactorn0 on the terraces so that thiscompen-
sation effect reduces the influence of the steps on the m
sured value of the barrier. To test this hypothesis, we show
Fig. 4 also the ‘‘best fits’’ to the experimental data set fro
Ref. 6 for larger values ofnS /n0. Clearly the fits with
nS /n05103 and 104 are within reasonable experimental e
ror bars, and with increasing the rationS /n0 the theoretical
curve gets more linear, i.e., further away from the st
dominated regime.

The possible difference ofnS andn0 arises from the en-

FIG. 4. Arrhenius plots ofDxx using experimental estimates fo
activation barriers for diffusion of CO on Ni~110! ~Refs. 6, 7, and
23!. Our theory for different choices of the rationS /n0 of the in-
trinsic prefactors is shown by lines. Note that the value ofn0 only
shifts the curves in vertical direction; we have chosen the va
n05231028cm2/s to obtain a good fit for large values ofnS /n0.
The experimental data points from Ref. 6 are denoted by squa
See text for detailed parametrization.
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tropy factors for the jumps at step edges as well as the no
diabatic frictional coupling to the substrate excitations at
step edges, which are substantially different from that
terraces. The effective prefactorneff measured on a high ste
density surface23 is indeed several orders of magnitude larg
than the corresponding value on a surface with low step d
sity. Because the experiment probes theeffectiveprefactor, at
least part of the increase in the measured value in the p
actor is due to the extra factor ofL in neff , as demonstrated
above by Eq.~4.8!. Also, other parameters such as impur
concentrations may be different for the two samples.23 Thus
it remains an open question whether theintrinsic prefactors
nS and n0 can differ by almost three orders of magnitud
This is an important and fundamental question that rema
to be investigated.

V. DISCUSSION

To summarize, we have presented a theoretical analys
collective diffusion on stepped substrates, and studied
dependence of the diffusion tensor on the terrace width, c
erage, and temperature in the case where on-site blockin
the dominant interaction between the adsorbate particles
particular, we have established criteria for crossover fr
terrace-dominated diffusion to step-dominated diffusio
Compared with the heuristic criterion used before,5,7 our
theory predicts a much stronger influence of the steps on
diffusion barrier. Our present results demonstrate that e
for surfaces with low step densities under typical experim
tal conditions, the influence of steps on measured diffus
barriers and effective prefactors can still be considerab
and a careful theoretical analysis is needed to understand
detailed influence of the steps on the diffusive motion of
adsorbates.

The effect of the steps on collective diffusion at fini
coverages turns out to be very different from the correspo
ing result in the zero-coverage limit. This is true especia
for diffusion perpendicular to the steps, described byDxx .
Due to the compressibility contribution toDxx , considerable
deviations from the zero-coverage behavior appear alread
coverages nearc51/L. The compressibility has a stron
minimum at this coverage due to the preferential filling
the step edge sites, leading to a corresponding maximum
D. This effect is not just peculiar to the Langmuir gas mod
studied here, but should persist in systems with direct ad
ticle interactions as well.26 Experimental observations of thi
effect should be feasible for vicinal substrates with narr
terraces.

The generic form of the criterion for the crossover fro
step-dominated to terrace-dominated diffusion at high cov
age can be written asL'Gflat /Gstep, whereGflat characterizes
diffusion within the flat terrace region andGstep describes
diffusion across step edges.27 Different chacraterizations o
the barriers and prefactors near the steps would only lea
a different form ofGstep, but do not change qualitatively th
dependence on terrace width presented here. This f
should be valid even in the presence of short-range adsor
interactions, as long as the local coverage and the mi
scopic jump rates are roughly constant through the terr
region so that rates are modified only in the immediate
cinity of step edges.28 The values of the barriers and prefa
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tors of course would be modified by the interactions betw
the adsorbates.

For interacting adsorbates at submonolayer coverages
possible complex behavior of compressibility at spec
points29 can change the thermodynamical contribution toD.
Also, in some cases for coverages considerably below on
nonuniform coverage profile across the terrace region ca
induced,8,26,29which naturally leads to a variation of the loc
jump rates there, and thereby to a more complex kinetic c
tribution to D. These effects can lead to a coverage dep
dence very different from that of the present model. We
now employing the DMF formalism in conjunction with nu
merical sampling of local jump rates to systematically e
plore the in teraction and impurity effects.30,31
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APPENDIX

In this Appendix we shall outline the derivation of th
elements of the diffusion tensor from the zeros of the de
minant of theL3L matrix V5z11b(k)x(k)21 in the hy-
drodynamic limitk→0 andv→0. The differentiation with
respect to time in the jump rate matr
b(k)5^A0(k)u(d/dt)A0(k)& can be carried out by substitu
ing the rate equations of Eq.~3.3!, after which the elements
of b and also the elements of the susceptibility mat
x(k)5^A0(k)uA0(k)& are found using the following equa
time identity of the Langmuir gas model:

^~nlm
s 2cs!nl 8m8

s8 &5dss8d l l 8dmm8~12cs!cs . ~A1!

The resulting elements ofb are combinations of averag
rates of occurrence of the different jumps of the fo
n

the
l

, a
be

n-
n-
e

-

d

g

r-

^nlm
s (12nl 8m8

s8 )Gs→s8&5cs(12cs8)Gs→s8, where (l ,m;s)
and (l 8,m8;s8) refer to nearest-neighbor adsorption site
After neglecting the memory function, the correlation mat
Y is inversely proportional to detV, where the interior ele-
ments related to terrace jumps are given by

Vss5z22G0coskyb14G0 ,

Vs,s6152G0 , ~A2!

and the modified elements at the corners related to jum
near step edges are given by

V115z22G2coskyb1G11Gu12G2

1~G182G11Gd2Gu!ct ,

V225z22G0coskyb13G01G181~G12G18!ce ,

VLL5z22G0coskyb13G01Gd1~Gu2Gd!ce ,

V1252G12~G182G1!ct ,

V2152G182~G12G18!ce ,

V1L52@Gu1~Gd2Gu!ct#e
1 iLkxa,

VL152@Gd1~Gu2Gd!ce#e
2 iLkxa. ~A3!

The phase factors in Eqs.~A2! and~A3! arise from jumps
from one unit cell to another, i.e., from all jumps in they
direction and from jumps across the step edges in thex di-
rection. All the other elements ofV are identically zero so
that the matrixV is almost tridiagonal and detV can be
evaluated after first expanding the minor involving only t
middle elements of Eq.~A2! for generalL. The element
Dxx , e.g., is then extracted as the ratioax /az of the coeffi-
cients of the leading terms of detV5zaz1axkx

21••• in the
hydrodynamic limitz→0 andkx→0 with ky50.
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