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Shot-noise current-current correlations in multiterminal diffusive conductors
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We investigate the correlations in the current fluctuations at different terminals of metallic diffusive con-
ductors. We start from scattering matrix expressions for the shot noise and use the Fisher-Lee relation in
combination with diagram technique to evaluate the noise correlations. Of particular interest are exchange
(interferencg effects analogous to the Hanbury Brown—Twiss effect in optics. We find that the exchange effect
exists in the ensemble-averaged current correlations. Depending on the geometry, it might have the same
magnitude as the mean-square current fluctuations of the shot noise. The approach that we use is also applied
to present a different derivation of the 1/3 suppression of shot noise in a two-terminal geometry, which is valid
for an arbitrary relation between the length and wire width. We find that in all geometries correlations are
insensitive to dephasin§S0163-182807)03127-3

I. INTRODUCTION In experimentB current is incident from the probé:
o= Hp=pm, and pus;—u,=eV. Finally, in experimentC
The shot noise in mesoscopic systémsntinues to attract current is incident from both probeg and é: Moo= My,
the attention of both theorists and experimentalists. For difuz=us, and uz—u,=eV. The current correlation in
fusive conductors, which are considered here, the twoprobes o and y is measured in all the experiments,
terminal shot noise is studied quite well. The remarkableS;(t)=—(Al,(t)Al (0)), j=A,B,C.
1/3 suppression of the shot noise with respect to the Poisson The general analysis of Ref. 14 allows one to express
value

1 B
S(w=0)= §eGV y ‘
[here, as usuaB(w) is the Fourier transform of the current-

current correlators(t) =(Al(t)Al(0)), while G andV are

the conductance of the wire and the applied voltage, respec-

tively; Al=1(t)—(1)] was derived in three different ways: o

from the distribution of transmission eigenvalues in a Wire,

semiclassically from the Langevin equatidand through a

microscopic calculation of local current densitfesater,

Nazarov claimed that this 1/3 suppression holds for an ar-

bitrary two-terminal geometrynot necessarily quasi-one- X

dimensional. Subsequent to experiments by Liefrikal.

which demonstrated shot-noise suppression even for conduc- 5

tors much longer than the dephasing length, de Jong and

Beenakkef provided a semiclassical discussion that showed B

that the 1/3 suppression is insensitive to dephasing. More

recent experiments by Steinbaet al® demonstrated the Xg

transition from the 1/3-suppression regime in wires short

compared to an inelastic length through an interaction-

dominated reginte to a regime where shot noise is sup-

pressed by inelastic scatteriftd'*2A macroscopic metal ex-

hibits no shot noisé® o X
Here we investigate the shot noise in mesoscopic diffu- —

sive conductors in a multiterminal geometry. Primarily, we

focus on the interference experiméfityhich is analogous to

the experiment of Hanbury Brown and Twiss in opfies. l

Namely, we consider a conductor, connected to four reser- Xy b)

Voirs a, B, y, andé at equilibrium(Fig. 1), and discuss three

types of experiments. In experimeAt current is incident b

from the probeg, i.e., u,=u,=usand ug—p,=eV, u,

being the chemical potential of electrons in the reserxoir FIG. 1. Four-terminal conductors; the disordered area is shaded.
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these quantities in terms of scattering matrie®$ with in-

dices\ andv labeling the probes. Thus, for zero frequency yx
and temperaturé one obtains
SA e2 »:]_ .
Sp=—elV] =7 , N C;L
Sc E1+E,+EstE, =
with quantitiesZ; defined as 0 X}L
E,=Tr(s'*Ps*PsTvPg7B),
FIG. 2. Contact of a disordered regigshaded with an ideal
2,=Tr(sT*%s*%5Tr057%) leadX\.
2
= _ taBeadatydaypB
H=Tr(s™ sS85, through the center of a cross is ballistic. Otherwise the ex-
= ,=Tr(s'*PseBst 7B79). change effect is governed by the scattering inside the cross
_ _ . center only.
The scattering matrices are evaluated at the Fermi surface In the calculations below we disregard electron-electron
and the trace is taken with respect to channel indices. interaction. The latter is known not to produce an essential

ThusSc# Sy+ Sg: ExperimentsA andB are not additive  effect on two-terminal shot noi$é&® provided the wire is
due to the interference terniS; and Z,. It was shown in  short in comparison to the inelastic scattering length. We
Ref. 14 that these terms have different signs for fermions ang;ij| show that the origin for this is that in the ensemble-

bosons; hence we will call them exchange terms. We defing,eraged quantities the effect is local and electron trajecto-

an exchange contribution as ries enclosing a large area are suppressed. This explains why
AS=Sc—S,—Ss. the shot noise is not sensitive to dephasing. Hence we be-
lieve that electron-electron interactions are not important for
It follows from the unitarity of matrices*” that the quan- the exchange effects in shot noise. Note, however, that non-
tities 2, and Z,, which represent the classical result, arelinear noise is affected by interactions, as was shown
positively defined’ At the same time, traceS; and=, can recently'® Interactions are also expected to affect the fre-
have either sign: they are in fact not even real. This meanguency dependence of the shot-noise power.
that exchange interference may either suppress or enhance
the classical value.
In a disordered system all these quantities should be av- Il. GENERAL FORMALISM
eraged over impurity configurations. Naively, one might AND TWO-TERMINAL SHOT NOISE
think that due to the phases contained in the quantiigs
and= , these will average to zero and thus the average of the We consider a disordered two-dimensional system, con-
exchange term(AS) vanishes(here angular brackets are hected to reservoirs by ideal leads. Transverse motion of
used to indicate the disorder averagBelow we explicitly — electrons in each lead is quantized and we assume that all
calculate disorder-averaged correlation functioBs and leads are wide, i.e., the number of transverse channels at the
demonstrate that it is not the case. The average exchandg@rmi surface in the lead is large, N, ~pgW,>1. Here
correlator(AS) generally has a nonzero value. An analysispr is the Fermi momentum, whilgV, is the width of the
of the exchange correlator for chaotic cavities, reportedead.
elsewheré? leads to a similar conclusion. General relatiorfS~??allow one to express scattering ma-
The paper is organized as follows. First, we investigatdrices for an arbitrary geometry through retarded and ad-
disorder averages of scattering matrices starting from Eqy/anced Green’'s functions of the system. The standard
(2) and using the Fisher-Lee relation, which connects scat[;)roceduré2 is as follows. One chooses arbitrary cross sec-
tering matrices and Green’s functions. We then use diagrartions of the lead€, and introduces local coordinates related
techniques developed for disordered systems to find the efto these cross sectioriBig. 2). Since none of the quantities
semble averages. As a simple check of the method devetliscussed here depends on the choice of these cross sections,
oped, we give a derivation of the 1/3 suppression of thdt is convenient to choose them as the boundary between
two-terminal shot noise for an arbitrargnot necessarily disordered region and leads. One obtains
quasi-one-dimensionageometry, thus confirming the result
by Nazarov’ Then we turn to exchange-interference experi-
ments and consider the two particular four-terminal geom-, =~ i R .
etries, shown in Fig. 1. We demonstrate that the geometry otmn(B) =~ zzr— 2 | A | dY,Ge(ry,r)(Dany)
Fig. 1(a) implies a negative exchange correlation, with the o : !
quantity AS being of the same order of magnitude as corr- X(D,n,)exp —ikmX, —iKnX,) Xm(Ya) Xn(Y,) 3
elatorsS, andSg themselves. In contrast, the cross geometry
of Fig. 1(b) shows a strong suppression of exchange effects
and gives a positive sign of the latter, provided the motionand
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. i A . Note that the first trace on the right-hand side is related to the
Snm (BE)= 12 ——m f dYAJ dy,Gg(r,,r\)(Dyny)  conductance
AM“(v o) Cy c,

2

X(Dynv)exqikmx)\—’—iknxv)Xm(y)\)Xn(yv)- (4) G= ze_<Tr[STaBSaﬁ]>.
Herev,,=k,/M, M being the effective electron mass. The &
longitudinal wave vectors in the leadare It is convenient to calculate both traces separately.
Ky=[p2— (7m/W,)2]¥2 A. Evaluation of (Tr[s'*fs*f]).

. Using Eqgs.(5) and(6), we find for the conductance
and those in lead are denoted by, . Furthermoren, is the

unit vector in the directiorx, , while x,, and x,, are wave g=(Tr[s'*Fs*F])

functions of transverse motion in the leadsand v, respec-

tively; for simplicity we choose them to be real. Finally, 1 1

denotes a double-sided derivative = —(4M)2;] _kmkn,fc dy>dYsxn(Y2) Xn(Y3)
fDg=fVg—gVf.

% | ayidaxy oo ik =ik
In principle, Egs.(3) and (4) allow one to average arbi- ?

trary combinations of scattering matrices over disorder, us-  X[iKn=dy I[ —ikp—dx,]
ing the standard diagram technicfifet seems that the ap- A R N
proach outlined here has not been used so far for the  X{(G"(ry,r)G (fs,r4)>|xizxg:o, 8

(analytica) calculation of any physical properties. However, , ) )
it is rather close to the Hamiltonian approach, employed exWVhere the Green's functions are taken at the Fermi energy.

tensively for the calculation of conductance and conductancence the averaged Green’s functions decay on scales of the
fluctuations?~28 Below we demonstrate that our formalism Mean free path, the average product of two Green's func-
reproduces the 1/3 suppression of two-terminal shot noise; if{oNS: €ach of them taken in remote points, is due only to the
particular, as a simplest check, we also reproduce the Druddffusion (see, e.g., Ref. 31

formula for conductance.

The rest of the section is devoted to the two-terminal ge-
ometry: a diffusive wire of the length and widthW, con-
nected to two ideal leads and 8; L,W=>1, with | being the
mean free path. For a moment we also assurseW, a X(GA(rp,r2) (G (r5.rp)
restriction that eventually will be lifted. We introduce an axis X(GR(r,,r4))

x directed along the wire, 8x=<L, and an axisy directed

(GA(rl,rz)GR(rg,u)):f dr,drp{GA(rq,ra)

across the wire. The general expressi@®sand (4) can be XP(ra,rp)- ©)
rewritten as The diffusion propagatoP(r,r’) is a solution of the equa-
tion
i
Sﬁﬁ(EFchad)ﬁxm(h)Lﬁd)@xn()’z) —DV2P(r,r")=(27v7?) *8(r—r') (10
) ) R X, =0 with appropriate boundary conditionB € 0 at the contact to
X[_‘9X1+'km][_ﬁXz_'kn]GE(rl'rZHXZ:L the ideal leads andVP=0 at the wall$. Here v=M/27,

5) D=vgl/2, and T are the density of states, the diffusion co-
efficient, and the elastic lifetime, respectively. Under the as-

and sumptionL>W, the diffusion can be considered to be one
dimensional and the diffusion propagator does not depend on
i y!
taBiEy= —
Smn (E)= ﬂj dlen(yl)f dyoxm(Y2)
4M(kmkn) C. Cp I , N X(L_X,), Xx<x'
><[—<9x1—ikn][—5x2+ikm]Gé(fz,f1)|§;zE- P(x,x")=(M7°DWL) X(L=x), x>X'. (11

(6) Now we insert Eq.(9) into Eq. (8). The diagram forg is
shown in Fig. 3. One can approximate the short-ranged
Two-terminal shot-noise powe3=S(w=0) can be con- Green’s functions as
veniently expressed through scattering matrices evaluated at
the Fermi levef>3°

iM 1
(GR(r,r"))=- Ip—Fexr{ iPe— 5 IX—X’I}é(y—y’)-
o2 (12

- taBcaBl_ taBeaBetaBcaB
S ZWeV(Tr[s SPI=Ts™ ™S ). (D) Then, integrating over transverse coordinates, we obtain
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A A 21 A Lk
2,n 1,m X
3,1 L R 4m
3,n H 4,m 6n A T 5,m
R R 7,n LR o8k
a)

FIG. 3. Diagram for the conductance. The double dashed line
represents the diffusion propagator. The position and the transverse
channel number of the points on the surfacgs(x=0) andCg o
(x=L) are shown. For example, the transverse wave fungjgis -
taken at the poiny;. ': E .

1 ¥

M kn)|2]? (L L
g:—l6D72LW[§m: m(lJra } fo dxadxy b)
Xexg —Xa/l]lexgd — (L—=xp)/1 ]Xa(L—X%p). (13)
Taking into account that

1 km>2
—l 1+ —] =2W, o
; km pF [
we obtain )
I
9= 5 PeW. (14 s —
Multiplied by e?/2r, Eq.(14) gives the Drude formula, as it ' X li i
should be. . il
B. Evaluation of (Tr[s'*Ps*BstaBsaB]). ' I
The trace of a product of four scattering matrices can be d)
written as
t=(Tr[s'*PsPslabgeF]) X ¥
. 1fdddd<><> L
~ (AM) A P Kk Kok c, y20Yy30YedY7x1(Y2) Xi1(Y3 EE '
X Xn(Ye) Xn(Y7) fc dy1dy,dysdYexi(Y1) Xm(Ya) Xm(Ys) e)
B
Lo L Lo L FIG. 4. Diagrams for the quantity in the same notation as in
XX(Ye) [Tk dh JL1K = )Tk = 0 )= Tk = 0 Fig. 3. The single dashed line with a cross represents impurity scat-

XK= 9 L — 1k — dx 1[1Kn— . 1 — iki— x| tering.
R A a factor W) 1<1. The diagram in Fig. @), which is
X(GA(r1,12)GR(r5,14)GA(rs, o) topologically equivalent to that in Fig.(d), is suppressed as
><GR(r7,r8)>|X1fX4fx5fngL. (15) (peW) 3. Taking into account the explicit forrfl1) for the
Xp=X3=Xg=X7=0 diffusion propagator and integrating over coordinateand
Employing Eq.(9) again, we find the diagrams shown in Fig. over one of two pair of coordinates in the diffusion propaga-
4. We omitted all diagrams containing a single electron lingtors (those lying close to one of the ends of the jree
connecting two different leads since these are exponentiallTive at the expression
small; the diagrams in Figs(& and 4e) contain also coun- |8

.. . 1 k 214
terparts, similar to Figs.(4) and 4d). t=————— > {1+ _m) } jdr dr.dr.dr
The diagrams in Figs.(8)—4(d) turn out to give the lead- 2(4Dr*WL)* zm: Km Pr A b ed
ing contribution, whereas others carry small factors. Thus,
J Y X (L=Xa) (L =X )XeXaF (Fa ol F o) (16

for the diagram in Fig. @) pointsy; andy, should lie not
farther apart than a mean free path, which, due to the omHere F is the Hikami box?? It is short rangedall points
thogonality of transverse wave functions, impliessm.  rg, ry, r., andry should be close to each othe@nd in the
Therefore, the contribution of this diagram is suppressed b¥ourier space has the form
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F(qa,%,qc,%)=—MTsvé(Zﬂ)25(qa+ b+ 0e+dq) from the K_ubo formula, _and then, after integration over a
cross section, one obtains the conductance. Alternatively,
X[2(0abctdpdda) +(datdc)(dptda)]-  one can calculate conductance directly, starting from the
(17) Landauer formula(In fact, our derivation of the quantity
given above is of this kinglBoth derivations are equivalent,

Integration of the Hikami box over the cross section of thealthough at intermediate stages they do not have much in

wire yields common.
A similar situation happens in the calculation of shot
.52 noise. On the one hand, one can calculate the microscopic
f F(ra.rp e ra)dyadypdycdys=M oW 24y dx, correlator of currents and upon integration over a cross sec-
tion obtain the shot noise power. The derivation of Altshuler,
+ 20y dxt dx x, + x Ox T dx Ix t Ix Ix,] Levitov, and Yakovetsis exactly of this typ€® It can be
generalized to an arbitrary geometry and, in principle, can be
X 5(Xa_xb) 5(Xa_xc) E(Xa_xd)- (18

used for a broad class of problems. The local current corr-
Inserting Eq.(18) into Eq. (16) and performing the remain- elator contains more information than is necessary for the
ing integrations, we obtain calculation of the shot-noise power. The method of Nagaev
and de Jong and BeenakKemho employ the Langevin
| equation, is somewhat similar, although the equivalence be-
t=—prW=29/3, (199  tween these two approach@®ef. 4 and Refs. 3 and Ts not
sL evident. The generalization of the latter approach for a mul-
which immediately gives the 1/3 shot-noise suppression. titerminal geometry does not seem to be quite obvious.

The derivation of Beenakker and one of the authors
(M.B.),? as well as the present method, belong to another,
. . ] ) scattering(or Landauer type of approach. Reference 2 de-

Now we lift the requirement.>W, but still consider a rjyes the shot-noise power with the use of the distribution of
diffusive  system W,L>Il. The result (14) for  transmission eigenvalues of the diffusive wire. This proof
g=(Tr[s'*#s*]) is equivalent, in fact, to the Drude for- seems to be the most elegant. However, one should not for-
mula and is therefore valid for an arbitrary relation betweeryet that the distribution of transmission eigenvalues itself is
W andL. In the derivation ot =(Tr[s"*#s*#s"*#s*#]) we  derived by sophisticated methods such as the Dorokhov-
should now take into account that the diffusion is not one-\viello-Pereyra-Kumar equatiof. Although Nazaro¥ suc-
dimensional anymore and write the diffusion propagator inceeded in extending this derivation to the case of an arbitrary
the form two-terminal geometry, most probably it cannot be general-

ized to the multiterminal case: For conductors with féor
1 1 more probes the shot noise is not expressed through eigen-
P(r,r')= mz ai¢q(r)¢q(r/) (200 values of the scattering matri(s. The derivation given in
d this paper is more general and self-contained; it does not
instead of Eq(11). Here ¢(r) and —q? are eigenfunctions require the distribution of transmission eigenvalues and
and eigenvalues of the Laplace operator with appropriattience allows a generalization to an arbitrary scattering ge-
boundary conditions. In our particular geometry one obtain®metry.
Our derivation resembles in some respects those of Refs.
- - 4 and 7. In particular, de Jong and Beenaklersome stage
q—(rnx,v—vny), express the scattering matrs{“As*# through the Green’s
function and proceed with impurity averaging. We should
with integersn,>0 andn,=0. It is easy to see that the stress, however, that their semiclassical approach does not
integration ovely; andyg in the diagrams of Figs.(8)—4(d) take into account phase-sensitive effdetechange termsin
places a constraint on the wave vectqy, of the diffusion contrast _to thg approach presen.ted here. In addition, even at
propagator connecting these two points,=2k (unless the sem|cla§S|caI Iev_el the equivalence between these two
n;y=0). In the same way, the other integrations oygr discussions is not evident.
imply other constraints, which, due to tl#function in the
expression for the Hikami boil7), yield a constraint on the
channel indicek,l,m,n. Therefore, all terms with nonzero o
transverse harmonics are as small psW) ~*. Up to terms 2,1 f € b a 1.k
proportional to this small parameter the regd9) is exact. !
Thus the 1/3 shot-noise suppression is indeed universal and 31
does not depend on the rati/L, provided the system is 6n _h'_'g
diffusive, in accordance with the conclusion of Ref. 5.

To conclude this section, we compare the method used 7n = 8,k
above with other derivations of the 1/3 shot-noise
suppressiof:* As is well known, there exist two principally i B
different methods of calculating conductance. One can first
evaluate conductivitywhich is a local quantity starting FIG. 5. Typical diagram for the quantif ;.

C. Universality

4,m

5,m

PRI SR R —
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. MULTITERMINAL SHOT NOISE long to the contact with leagB; pointsy,,y; and yg,Yy-

Now we turn to the exchange-interference experiment del_)elong to the contacts with leads and y, respectively.

scribed in the Introduction. We consider a four-terminal ge_Therefore, the diagram in Fig.(@ is exponentially small,

ometry (examples are shown in Fig. 1; for convenience, weVNile thidiagram in Fig. @) is suppressed in the parameter
still use the coordinates of Fig) 2nd calculate the current (PFWz) ~. Hence the quantitig, is given by the same dia-
correlation for experimenta—C. gramg[Figs. 4b)—4(d)], as the quantity. Using Eq.(12) and

The quantity=, = Tr(s'*As*Ast7Bs7B) is determined by integrating over the cross section of the leads, we obtain
the diagrams of Fig. 4, where now points,y,.ys.ys be-  (Fig. 5

2

1+

2
k
(1+—m
Pr

Pr

“—1(M)4E ! (1+" 1+k”2fd 2 fdd 2(Ya) X
,_,1—2 4 K Eon kkklkmkn Pe Pe c. YiXi (Yf) CB Ya yCXk(ya)Xm(yc)

0
x| ayndim | drxaidient o x x| dra - dnP(r r P )
C, —©

XP(re,re)P(rg,r)F(rp,re,rg,rg). (21

Here the points ,,r.,r¢,ry are given in the coordinates of the contaBt®, «, y, respectively.
In the same way, for the quantii; one obtains

_ 1( M)“ 1
= 4 k,I,m,n kkk| kmkn

2 k

1+
Pr

kk)z( K,
1+ —=| [1+—
Pr Pr

2 Kn 2 2 2 2
(1+—)f dyfxl(yf)f dyaxk(ya)f dYynxn(Yn)
Pr/ Jc, Cp Cy

372
0

><J dycxﬁq(yc)J dx,dX.AdXdXpeXH (Xa+ X+ Xg+Xp)/1]
Cs —oo

Xf drg- - dryP(ra,rp)P(re,rg) P(re,ro)P(rg,rp)F(rp,re,ra,rg) (22

and the points ,r.,r¢,ry are given in the coordinates of the are typically far from the lead’s boundaries. This means, for
contactsg, 8, «, y, respectively. Expressions for the quanti- example, that in the integral over; one can replace the
ties 2, and 2, can be obtained from Eq$21) and (22),  diffusion propagator P(r.,r;) by another function

respectively, by interchanging é. P(re.rs), which is also a solution to the diffusion equation,

Expressiong21) and (22) are valid for an arbitrary four- p ;+ \yith another boundary condition, appropriate for an open
terminal geometry and can be used for numerical CaICUIaéurface

tions. It is important that not only traceés; and=,, as one
could expect, but also quantiti&s; and= , are phase insen- -
sitive. Indeed, the electron motion that E¢81) and (22) P(r,r")|x=0=0.

imply is just the diffusion between different leads. No closed ] -

paths are formed, except for ballistic motion due to the scat¥/® do not need to specify boundary conditions for
tering described by the Hikami box somewhere in the middleP(re,r¢) on the other boundaries since the paiptis typi-

of the sample. Since the size of this loop is very small, of thecally in the middle of the sample. Consequently, we may
order of the mean free path, dephasing is not expected tgubstitute for all “true” diffusion propagator® the func-
have an effect on the exchange noise. Certainly, some effectnsP, the solution withP =0 everywhere on the boundary,

similar to \{veak Iocahzayon exist, howg\ier, as for 55 is appropriate for an open system. The soluBois
conductancé! they are relatively weafas (pgl) ~] in com-

parison to the main effect. We do not discuss these effects o

here and only mention that universal fluctuations of the shotﬁ(r )= 4 - sinTmXX

noise were studied in Ref. 35. ' M7DL,Ly n, S-1 m2ng/Li+m?ni/LS” Ly
To make further progress we have to solve the diffusion , ,

equation in a given geometry with appropriate boundary con- sinmX G Y Yy 29

ditions. We turn now to the two different geometries, shown Lx Ly Ly

in Fig. 1.

Furthermore, the functionB vary considerably on the scale
A. Box geometry of the size of a sample, and L,. If we assume
First, we consider the geometry of Figal We assume W, <L,,L,, the functionP(r,,r¢) in the integral overy;
all leads to be widaV,>I. Then pointsr,, r¢, r¢, andr,  may be taken to be independentygf. Thus we obtain
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VA Ly—y
:125(7) Wawéwyf dyadycdxfdxhex;<— yl 2

I—x_Xh
I I I

)f drydrqdredrg

XP[Xg,Ya:To]P[Xg,Ye:TalPreiX, Yol

2133

B. Cross geometry

We consider now the cross geometry of Figb)l We
assume that all arms of the cross have efjuahgthsL and
widths W. For L>W we can consider diffusion as one di-
mensional. We also assume that the center of the cross is
described by a reflection coefficieR and a transmission
coefficientT=(1—R)/3 between any two different arms.

The diffusion propagator is a solution of EQL0). We

XPLrg:xn,Y,JF(rp.re.ra.rg) (24 move to the coordinate system of Figbjland fix the point
and r near the origin of the lead, x=L. We introduce
1/M\4 L,y P (X, x")=P(x,x") if x'liesinthe arm\,
2= — . L . L .
=3 2( 2) WoWpW,Ws dyadycdxfdxhexp( | which is proportional to the time-integrated probability of

diffusion from pointx in the arma to pointx’ in the arm
Lx—Xn = \. The solution satisfying the boundary conditions and the
ST )f drydrqdredrgPL X, Ya ro] condition of current conservation in the cross,

XP[Xs,Ye:lalPlre:Xs, Y P[Fg:Xn,Y ,
[X5:YciralPLre:Xs ] [g h 'y] ; Axr P an (X, X )|x’:O:Oa

XF(rb!rElrd!rg)' (25)

. is
HereY,, Xz, Y,, andX; denote the positions of the cor-

responding leads. 1 (L—x)(Le+3x,)

We see already from Eq&4) and(25) that the results are Paa(X,Xo) = 5 . X>X,
. ; MD W 3+e
not universal in the sense that they depend on the geometry
of the sample. Indeed, within the approximation in which we 1 (L=x)(L—x,)
replaceP by P, the quantity=,; does not contain any infor- P (X, X)) = MD W 37 e M (27

mation on the location and width of leat at the same time,
it depends essentially on the location and width of otherThe constant, defined as the ratio of diffusion probabilities
leads. The quantityg, contains information of all leads ex-
ceptB, whereas botfE ; andE , are governed by the geom-
etry of all leads. Therefore, all ratidS;/=; depend essen-
tially on the geometry of the sample. This is in contrast with . ) ,
the case of a chaotic cavi§, where one obtains 'S c@lculated in the Appendix. The result is
E,=E,=—-3E3=—-3E, irrespective of geometry, pro-
vided the leads are wide enough.

Performing the integration and taking into account that
the remaining sums are converging rapidly for~L, (the
case we assume from now)pmmne obtains cumbersome ex-
pressions for the quantitieE;. In the symmetric case
Ly=Ly=L, W,=W, andY¥,=Y ,=Xz=X;=L/2 they sim-
plify. We obtain

P (x0)
T PLX0) 28)

1+1(LT) " Y1-2T),
Tl T<I/L.

T>I/L
(29)

Now we substitute Eq(27) into the general expressions
(21) and (22). Since the area of the cross is negligible in
comparison to the areas of the arms, we can neglect the
possibility of finding the Hikami box inside the cross and
allow it to be situated only in one of the arms. Upon integra-
’51252} [ ” } |(W)4 tion we obtain

E=E, |-ma) PRIL) | 3(1+€2)+4

(26)
2=EWDF(3+—€)4,

I
I
I

with positive constants

_4| e—1

a= T WP 3 g

juil

n1=ZSTlh,?(coshn—1)(2wcosm—sinhw)~o.21 3= E (30)
Thus, in the casd@>1/L, when the overall transmission
through the sample is governed by the diffusive arms rather
1 ) than by the center of the cross, one leasl. The quantities
(2mcoshr —sinhm) ~0.03. E, and E, are regular fore=1 and therefore assume the
finite value 2 ,=E,=(5/192) pcWI/L). At the same time,

the exchange ternig ; and= , are strongly suppressed in the

and

37 Sinf
It is seen that the exchange effect exists and hasgative
sign (i.e., exchange suppresses the result of experient  parameterl/L, E;=2,=(1/64)(WI?/L2T)(1-2T). In
comparison to the sum of the results of experimehtand the less realistic case<I/L (the transmission is determined
B). Although the relative value of the effect is by the center of the cros®ne obtainse>1. All quantities
E4/E,~0.1, the effect should be clearly observable. E, are small since now all channels are nearly clagédhe
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FIG. 7. Discrete diffusion model.

averaged traces of scattering matrices, considered dbeyve
| | guantitiesg andt for the two-terminal geometry ang; in
the four-terminal cagedo not contain large closed loops. In
d particular, it is valid for the “exchange” trace§; and
E 4. A typical trajectory for the guantit§g 5 is shown in Fig.
FIG. 6. Typical electron trajectories, contributing to the quantity 6. It is a direct translation of diagrams contributing to this
E 3. Solid lines denote ballistic propagati¢tiescribed by averaged quantity. The electron motion is essentially diffusion be-
single-particle Green’s functiorand dashed lines denote diffusive tween different leads with ballistic propagati@escribed by
propagation(described by the diffusiof). disorder-averaged single-particle Green’s functiolose to
the leads and somewhere in the middle of the sarfiple
situation for two-terminal shot noi8&%9; however exchange later motion described by the Hikami box in E§2)]. Thus
terms are additionally suppressed in the parametér closed loops are related to ballistic motion over distances of
Thus, in the cross geometry of Fig(bl the exchange an elastic scattering length only and therefore neither the
noise(AS) is suppressed in comparison to the regular terms$hot noise in two-terminal conductors nor the shot noise in
(Sa+Sg) irrespective of the transmission properties of themultiterminal structures should be sensitive to dephasing.
center of the cross. It is also quite remarkable that for the Another observation is that exchange corrections are not
Cross geometry the exchange Contributionp&itive al- universal, in contrast to what is found in the chaotic C’ése:
though small: The total effect is enhanced by the exchangelhe ratio (AS)/(Sy+Sg) depends on the geometry of a
sample in an essential way. Even the sign of the effect may
change: For the box geometry of Figalit is negative, i.e.,
IV. CONCLUSION interference suppresses the total effect, while for the cross

We have investigated shot noise in diffusive conductor eometry[Fig. 1(b)] interference enhances the effe(el
i . i : hough weakly.
on the basis of Eq(2) and the Fisher-Lee relation, which .
The results obtained for the cross geometry allow us to

expresses scattering matrices through advanced and retarded - . :
s ; ; . make predictions for experiments in real systems. Indeed, we
Green'’s functions. In this way, one can reduce disorder av; R
. o : : found that the exchange contribution is suppressed strongly

erages of various combinations of scattering matrices to stan-

dard diagram technique for Green’s functighsAlthough with respect to the average noise intensi(i€g) and(Ss).

this approach resembles previously published calculations o-lf—hIS re;ult was pbtamed by assuming that the |ntermed|a'te
conductance and conductance fluctuatin@we believe it~ Scaterng, described by the Hikami box, does not happen in

- .. the center of the cross, i.e., strictly speaking, for ballistic
to be more transparent. We are not aware of any applications ; . ;

. . propagation through the center. In more complicated situa-
of this approach to noise problems.

As a check of the method, we first reproduced the 1/:‘}ions the entire exchange effect will be determined by prop-

) C ; rties of the center of the cross. If the motion within the
shot-noise suppression in the two-terminal geometry an ST ;

i o . center is diffusive, one can apply the results obtained above
confirmed the statement of Ref. 5 that it is in fact superuni- .
versal and holds for an arbitrary relation between the len trﬁor the box geometry. The total exchange effect is expected

. . . y e 9% be negative. However, since the arms of the ctadsch
and width of a wire, provided the system is diffusive. Our . X .
LN o correspond to disordered leads in the real experimemis-
proof bears some similarity to other ones existing in thetribute t0 the intensitiesS,) and(S), but not to the ex
literature>~*however, it is different, and a direct equivalence A B/

o . . : change contribution, the latter will still be suppressed if dis-
to any of the existing proofs is not evidefstee the discus- X . .
X order extends far into leads. Finally, if the center of the cross
sion at the end of Sec.)ll

Then we turned to the multiterminal geometry and inves s @ chaotic cavity, one may use the results of Ref. 18. The

tigated the interference experiment, similar to the Hanbury%xecgﬁgggscs mr::blﬁtf;rr'ig é‘;;gggg acr?r\lllsty Izeptiréa'[rtca)clief(r)cf)m
Brown—Twiss experiment known in opti¢3.We obtained y g play

general expressions for scattering matrix combinati@is these barriepsis positive: The interference enhances the ef-

and (22), determining noise intensitigd); then we investi- fect.
gated them for the two different geometries of Fig. 1.

The important point we make is that the exchange effect,
even when averaged over disorder, does not vanish. The rea- We thank S. van Langen, who calculated the exchange-
son is that typical electron trajectories, contributingaldb interference correlator for chaotic cavities, for useful discus-
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APPENDIX b,=A+Bn, b;=A’"+B’'n. (A2)
To find the coefficient defined by Eq(29) it is instruc- ~ The four constant#,B,A’,B" obey four equationsti) the

tive to consider a discrete model of diffusidhEach arm is boundary condition for the arng, by=0; (i) and (iii) the

modeled by a one-dimensional array of scatterers, placed ataatching conditions at the center of the cross,

distancel from each other; the total number of scatterers in

each arm isN=L/I. Each scatterer is described by transmis- ag=Thy+2Tb{+Rby (A3)

sion t=1/2 and reflectiorr =1/2 probabilities. We denote

the carrier flux densities in the arm between sitesy and  and

n+1 away from the center of the cross by and the flux

towards the center of the cross by. Corresponding ampli- ap=3Thy+Rby; (A4)

tudes in other arms are denoted &y andb;, (Fig. 7). The

total flux at each site is given by,=a,+b, and and(iv) Eq. (10), which, however, it is not required for the

pn=ap+b;. The coefficient e can be expressed as calculation of the constart We obtain

e=polpp.
The diffusion equation implies that all densities should be 2(N+T7H-3
linear functions ofn; furthermore, matching conditions at € ToON+1 (AS)
each scatterer require,_;=a, and b/_;=a/,. Thus we
write and the limiting cases given by E@9) follow immediately.
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