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Shot-noise current-current correlations in multiterminal diffusive conductors

Ya. M. Blanter and M. Bu¨ttiker
Département de Physique The´orique, Universite´ de Gene`ve, CH-1211, Gene`ve 4, Switzerland

~Received 28 January 1997!

We investigate the correlations in the current fluctuations at different terminals of metallic diffusive con-
ductors. We start from scattering matrix expressions for the shot noise and use the Fisher-Lee relation in
combination with diagram technique to evaluate the noise correlations. Of particular interest are exchange
~interference! effects analogous to the Hanbury Brown–Twiss effect in optics. We find that the exchange effect
exists in the ensemble-averaged current correlations. Depending on the geometry, it might have the same
magnitude as the mean-square current fluctuations of the shot noise. The approach that we use is also applied
to present a different derivation of the 1/3 suppression of shot noise in a two-terminal geometry, which is valid
for an arbitrary relation between the length and wire width. We find that in all geometries correlations are
insensitive to dephasing.@S0163-1829~97!03127-5#
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I. INTRODUCTION

The shot noise in mesoscopic systems1 continues to attrac
the attention of both theorists and experimentalists. For
fusive conductors, which are considered here, the t
terminal shot noise is studied quite well. The remarka
1/3 suppression of the shot noise with respect to the Pois
value

S~v50!5
1

3
eGV

@here, as usual,S(v) is the Fourier transform of the curren
current correlator,S(t)5^DI (t)DI (0)&, while G andV are
the conductance of the wire and the applied voltage, res
tively; DI5I (t)2^I &] was derived in three different ways
from the distribution of transmission eigenvalues in a wir2

semiclassically from the Langevin equation,3 and through a
microscopic calculation of local current densities.4 Later,
Nazarov5 claimed that this 1/3 suppression holds for an
bitrary two-terminal geometry~not necessarily quasi-one
dimensional!. Subsequent to experiments by Liefrinket al.,6

which demonstrated shot-noise suppression even for con
tors much longer than the dephasing length, de Jong
Beenakker7 provided a semiclassical discussion that show
that the 1/3 suppression is insensitive to dephasing. M
recent experiments by Steinbachet al.8 demonstrated the
transition from the 1/3-suppression regime in wires sh
compared to an inelastic length through an interacti
dominated regime9,10 to a regime where shot noise is su
pressed by inelastic scattering.2,11,12A macroscopic metal ex
hibits no shot noise.13

Here we investigate the shot noise in mesoscopic di
sive conductors in a multiterminal geometry. Primarily, w
focus on the interference experiment,14 which is analogous to
the experiment of Hanbury Brown and Twiss in optics15

Namely, we consider a conductor, connected to four re
voirsa, b, g, andd at equilibrium~Fig. 1!, and discuss three
types of experiments. In experimentA current is incident
from the probeb, i.e., ma5mg5md andmb2ma5eV, ml

being the chemical potential of electrons in the reservoirl.
560163-1829/97/56~4!/2127~10!/$10.00
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In experimentB current is incident from the probed:
ma5mb5mg and md2ma5eV. Finally, in experimentC
current is incident from both probesb and d: ma5mg ,
mb5md , and mb2ma5eV. The current correlation in
probes a and g is measured in all the experiment
Sj (t)52^DI a(t)DI g(0)&, j5A,B,C.

The general analysis of Ref. 14 allows one to expr

FIG. 1. Four-terminal conductors; the disordered area is sha
2127 © 1997 The American Physical Society
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these quantities in terms of scattering matricesŝln, with in-
dicesl andn labeling the probes. Thus, for zero frequen
and temperature16 one obtains

H SA

SB

SC
J 5

e2

p
euVuH J1

J2

J11J21J31J4

J , ~1!

with quantitiesJ i defined as

J15Tr~s†absabs†gbsgb!,

J25Tr~s†adsads†gdsgd!,
~2!

J35Tr~s†absads†gdsgb!,

J45Tr~s†adsabs†gbsgd!.

The scattering matrices are evaluated at the Fermi sur
and the trace is taken with respect to channel indices.

ThusSCÞSA1SB : ExperimentsA andB are not additive
due to the interference termsJ3 andJ4. It was shown in
Ref. 14 that these terms have different signs for fermions
bosons; hence we will call them exchange terms. We de
an exchange contribution as

DS5SC2SA2SB .

It follows from the unitarity of matricessln that the quan-
tities J1 and J2, which represent the classical result, a
positively defined.17 At the same time, tracesJ3 andJ4 can
have either sign: they are in fact not even real. This me
that exchange interference may either suppress or enh
the classical value.

In a disordered system all these quantities should be
eraged over impurity configurations. Naively, one mig
think that due to the phases contained in the quantitiesJ3
andJ4 these will average to zero and thus the average of
exchange term̂ DS& vanishes~here angular brackets ar
used to indicate the disorder average!. Below we explicitly
calculate disorder-averaged correlation functionsSj and
demonstrate that it is not the case. The average exch
correlator^DS& generally has a nonzero value. An analy
of the exchange correlator for chaotic cavities, repor
elsewhere,18 leads to a similar conclusion.

The paper is organized as follows. First, we investig
disorder averages of scattering matrices starting from E
~2! and using the Fisher-Lee relation, which connects s
tering matrices and Green’s functions. We then use diag
techniques developed for disordered systems to find the
semble averages. As a simple check of the method de
oped, we give a derivation of the 1/3 suppression of
two-terminal shot noise for an arbitrary~not necessarily
quasi-one-dimensional! geometry, thus confirming the resu
by Nazarov.5 Then we turn to exchange-interference expe
ments and consider the two particular four-terminal geo
etries, shown in Fig. 1. We demonstrate that the geometr
Fig. 1~a! implies a negative exchange correlation, with t
quantityDS being of the same order of magnitude as co
elatorsSA andSB themselves. In contrast, the cross geome
of Fig. 1~b! shows a strong suppression of exchange effe
and gives a positive sign of the latter, provided the mot
ce
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through the center of a cross is ballistic. Otherwise the
change effect is governed by the scattering inside the c
center only.

In the calculations below we disregard electron-elect
interaction. The latter is known not to produce an essen
effect on two-terminal shot noise9,10 provided the wire is
short in comparison to the inelastic scattering length. W
will show that the origin for this is that in the ensembl
averaged quantities the effect is local and electron traje
ries enclosing a large area are suppressed. This explains
the shot noise is not sensitive to dephasing. Hence we
lieve that electron-electron interactions are not important
the exchange effects in shot noise. Note, however, that n
linear noise is affected by interactions, as was sho
recently.19 Interactions are also expected to affect the f
quency dependence of the shot-noise power.

II. GENERAL FORMALISM
AND TWO-TERMINAL SHOT NOISE

We consider a disordered two-dimensional system, c
nected to reservoirs by ideal leads. Transverse motion
electrons in each lead is quantized and we assume tha
leads are wide, i.e., the number of transverse channels a
Fermi surface in the leadl is large,Nl;pFWl@1. Here
pF is the Fermi momentum, whileWl is the width of the
lead.

General relations20–22allow one to express scattering m
trices for an arbitrary geometry through retarded and
vanced Green’s functions of the system. The stand
procedure22 is as follows. One chooses arbitrary cross s
tions of the leadsCl and introduces local coordinates relat
to these cross sections~Fig. 2!. Since none of the quantitie
discussed here depends on the choice of these cross sec
it is convenient to choose them as the boundary betw
disordered region and leads. One obtains

smn
ln ~E!52

i

4M2~vmvn!
1/2E

Cl

dylE
Cn

dynGE
R~r l ,r n!~Dln̂l!

3~Dnn̂n!exp~2 ikmxl2 iknxn!xm~yl!xn~yn! ~3!

and

FIG. 2. Contact of a disordered region~shaded! with an ideal
leadl.
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snm
†ln~E!5

i

4M2~vmvn!
1/2E

Cl

dylE
Cn

dynGE
A~r n ,r l!~Dln̂l!

3~Dnn̂n!exp~ ikmxl1 iknxn!xm~yl!xn~yn!. ~4!

Herevm5km /M , M being the effective electron mass. Th
longitudinal wave vectors in the leadl are

km5@pF
22~pm/Wl!2#1/2

and those in leadn are denoted bykn . Furthermore,n̂l is the
unit vector in the directionxl , while xm and xn are wave
functions of transverse motion in the leadsl andn, respec-
tively; for simplicity we choose them to be real. Finally,D
denotes a double-sided derivative

fDg5 f¹g2g¹ f .

In principle, Eqs.~3! and ~4! allow one to average arbi
trary combinations of scattering matrices over disorder,
ing the standard diagram technique.23 It seems that the ap
proach outlined here has not been used so far for
~analytical! calculation of any physical properties. Howeve
it is rather close to the Hamiltonian approach, employed
tensively for the calculation of conductance and conducta
fluctuations.24–28 Below we demonstrate that our formalis
reproduces the 1/3 suppression of two-terminal shot noise
particular, as a simplest check, we also reproduce the D
formula for conductance.

The rest of the section is devoted to the two-terminal
ometry: a diffusive wire of the lengthL and widthW, con-
nected to two ideal leadsa andb; L,W@ l , with l being the
mean free path. For a moment we also assumeL@W, a
restriction that eventually will be lifted. We introduce an ax
x̂ directed along the wire, 0<x<L, and an axisŷ directed
across the wire. The general expressions~3! and ~4! can be
rewritten as

smn
ab~E!5

i

4M ~kmkn!
1/2E

Ca

dy1xm~y1!E
Cb

dy2xn~y2!

3@2]x11 ikm#@2]x22 ikn#GE
R~r 1 ,r 2!ux25L

x150

~5!

and

smn
†ab~E!52

i

4M ~kmkn!
1/2E

Ca

dy1xn~y1!E
Cb

dy2xm~y2!

3@2]x12 ikn#@2]x21 ikm#GE
A~r 2 ,r 1!ux25L

x150 .

~6!

Two-terminal shot-noise powerS[S(v50) can be con-
veniently expressed through scattering matrices evaluate
the Fermi level,29,30

S5
e2

2p
eV^Tr@s†absab#2Tr@s†absabs†absab#&. ~7!
s-

e

-
e

in
de

-

at

Note that the first trace on the right-hand side is related to
conductance

G5
e2

2p
^Tr@s†absab#&.

It is convenient to calculate both traces separately.

A. Evaluation of ŠTr †s†absab
‡‹.

Using Eqs.~5! and ~6!, we find for the conductance

g[^Tr@s†absab#&

5
1

~4M !2(m,n
1

kmkn
E
Ca

dy2dy3xn~y2!xn~y3!

3E
Cb

dy1dy4xm~y1!xm~y4!@ ikm2]x1#@2 ikn2]x2#

3@ ikn2]x3#@2 ikm2]x4#

3^GA~r 1 ,r 2!G
R~r 3 ,r 4!&ux25x350

x15x45L , ~8!

where the Green’s functions are taken at the Fermi ene
Since the averaged Green’s functions decay on scales o
mean free path, the average product of two Green’s fu
tions, each of them taken in remote points, is due only to
diffusion ~see, e.g., Ref. 31!:

^GA~r 1 ,r 2!G
R~r 3 ,r 4!&5E dr adr b^G

A~r 1 ,r a!&

3^GA~r b ,r 2!&^G
R~r 3 ,r b!&

3^GR~r a ,r 4!&

3P~r a ,r b!. ~9!

The diffusion propagatorP(r ,r 8) is a solution of the equa
tion

2D¹ r
2P~r ,r 8!5~2pnt2!21d~r2r 8! ~10!

with appropriate boundary conditions (P50 at the contact to
the ideal leads andn¹P50 at the walls!. Heren5M /2p,
D5vFl /2, andt are the density of states, the diffusion c
efficient, and the elastic lifetime, respectively. Under the
sumptionL@W, the diffusion can be considered to be o
dimensional and the diffusion propagator does not depend
y,

P~x,x8!5~Mt2DWL!21H x~L2x8!, x,x8

x8~L2x!, x.x8.
~11!

Now we insert Eq.~9! into Eq. ~8!. The diagram forg is
shown in Fig. 3. One can approximate the short-rang
Green’s functions as

^GR~r ,r 8!&52
iM

pF
expF S ipF2

1

2l D ux2x8uGd~y2y8!.

~12!

Then, integrating over transverse coordinates, we obtain
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g5
M

16Dt2LWF(
m

1

km
S 11

km
pF

D 2G2E
0

L

dxadxb

3exp@2xa / l #exp@2~L2xb!/ l #xa~L2xb!. ~13!

Taking into account that

(
m

1

km
S 11

km
pF

D 252W,

we obtain

g5
l

2L
pFW. ~14!

Multiplied by e2/2p, Eq. ~14! gives the Drude formula, as i
should be.

B. Evaluation of ŠTr †s†absabs†absab
‡‹.

The trace of a product of four scattering matrices can
written as

t[^Tr@s†absabs†absab#&

5
1

~4M !4 (
k,l ,m,n

1

kkklkmkn
E
Ca

dy2dy3dy6dy7x l~y2!x l~y3!

3xn~y6!xn~y7!E
Cb

dy1dy4dy5dy8xk~y1!xm~y4!xm~y5!

3xk~y8!@ ikk2]x1#@2 ik l2]x2#@ ik l2]x3#@2 ikm2]x4#

3@ ikm2]x5#@2 ikn2]x6#@ ikn2]x7#@2 ikk2]x8#

3^GA~r 1 ,r 2!G
R~r 3 ,r 4!G

A~r 5 ,r 6!

3GR~r 7 ,r 8!&ux25x35x65x750
x15x45x55x85L . ~15!

Employing Eq.~9! again, we find the diagrams shown in Fi
4. We omitted all diagrams containing a single electron l
connecting two different leads since these are exponent
small; the diagrams in Figs. 4~a! and 4~e! contain also coun-
terparts, similar to Figs. 4~c! and 4~d!.

The diagrams in Figs. 4~b!–4~d! turn out to give the lead-
ing contribution, whereas others carry small factors. Th
for the diagram in Fig. 4~a! pointsy1 andy4 should lie not
farther apart than a mean free path, which, due to the
thogonality of transverse wave functions, impliesk5m.
Therefore, the contribution of this diagram is suppressed

FIG. 3. Diagram for the conductance. The double dashed
represents the diffusion propagator. The position and the transv
channel number of the points on the surfacesCa (x50) andCb

(x5L) are shown. For example, the transverse wave functionxm is
taken at the pointy1.
e

e
lly

s,

r-

y

a factor (pFW)21!1. The diagram in Fig. 4~e!, which is
topologically equivalent to that in Fig. 4~b!, is suppressed a
(pFW)23. Taking into account the explicit form~11! for the
diffusion propagator and integrating over coordinatesyi and
over one of two pair of coordinates in the diffusion propag
tors ~those lying close to one of the ends of the wire!, we
arrive at the expression

t5
l 8

2~4Dt2WL!4F(m 1

km
S 11

km
pF

D 2G4E dr adr bdr cdr d

3~L2xa!~L2xc!xbxdF~r a ,r b ,r c ,r d!. ~16!

Here F is the Hikami box.32 It is short ranged~all points
r a , r b , r c , andr d should be close to each other! and in the
Fourier space has the form

e
rse

FIG. 4. Diagrams for the quantityt in the same notation as in
Fig. 3. The single dashed line with a cross represents impurity s
tering.
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F~qa ,qb ,qc ,qd!52Mt5vF
2~2p!2d~qa1qb1qc1qd!

3@2~qaqc1qbqd!1~qa1qc!~qb1qd!#.

~17!

Integration of the Hikami box over the cross section of t
wire yields

E F~r a ,r b ,r c ,r d!dyadybdycdyd5Mt5vF
2W@2]xa]xc

12]xb]xd1]xa]xb1]xa]xd1]xb]xc1]xc]xd#

3d~xa2xb!d~xa2xc!d~xa2xd!. ~18!

Inserting Eq.~18! into Eq. ~16! and performing the remain
ing integrations, we obtain

t5
l

3L
pFW52g/3, ~19!

which immediately gives the 1/3 shot-noise suppression.

C. Universality

Now we lift the requirementL@W, but still consider a
diffusive system W,L@ l . The result ~14! for
g5^Tr@s†absab#& is equivalent, in fact, to the Drude for
mula and is therefore valid for an arbitrary relation betwe
W andL. In the derivation oft5^Tr@s†absabs†absab#& we
should now take into account that the diffusion is not on
dimensional anymore and write the diffusion propagator
the form

P~r ,r 8!5
1

Mt2D(
q

1

q2
fq~r !fq~r 8! ~20!

instead of Eq.~11!. Herefq(r ) and2q2 are eigenfunctions
and eigenvalues of the Laplace operator with appropr
boundary conditions. In our particular geometry one obta

q5S p

L
nx ,

p

W
nyD ,

with integersnx.0 and ny>0. It is easy to see that th
integration overy1 andy8 in the diagrams of Figs. 4~b!–4~d!
places a constraint on the wave vectorn1y of the diffusion
propagator connecting these two pointsn1y52k ~unless
n1y50). In the same way, the other integrations overyi
imply other constraints, which, due to thed function in the
expression for the Hikami box~17!, yield a constraint on the
channel indicesk,l ,m,n. Therefore, all terms with nonzer
transverse harmonics are as small as (pFW)21. Up to terms
proportional to this small parameter the result~19! is exact.
Thus the 1/3 shot-noise suppression is indeed universal
does not depend on the ratioW/L, provided the system is
diffusive, in accordance with the conclusion of Ref. 5.

To conclude this section, we compare the method u
above with other derivations of the 1/3 shot-noi
suppression.2–4 As is well known, there exist two principally
different methods of calculating conductance. One can
evaluate conductivity~which is a local quantity!, starting
n

-
n

te
s

nd

d

st

from the Kubo formula, and then, after integration over
cross section, one obtains the conductance. Alternativ
one can calculate conductance directly, starting from
Landauer formula.~In fact, our derivation of the quantityg
given above is of this kind.! Both derivations are equivalen
although at intermediate stages they do not have muc
common.

A similar situation happens in the calculation of sh
noise. On the one hand, one can calculate the microsc
correlator of currents and upon integration over a cross s
tion obtain the shot noise power. The derivation of Altshul
Levitov, and Yakovets4 is exactly of this type.33 It can be
generalized to an arbitrary geometry and, in principle, can
used for a broad class of problems. The local current c
elator contains more information than is necessary for
calculation of the shot-noise power. The method of Naga3

and de Jong and Beenakker,7 who employ the Langevin
equation, is somewhat similar, although the equivalence
tween these two approaches~Ref. 4 and Refs. 3 and 7! is not
evident. The generalization of the latter approach for a m
titerminal geometry does not seem to be quite obvious.

The derivation of Beenakker and one of the auth
~M.B.!,2 as well as the present method, belong to anoth
scattering~or Landauer! type of approach. Reference 2 d
rives the shot-noise power with the use of the distribution
transmission eigenvalues of the diffusive wire. This pro
seems to be the most elegant. However, one should not
get that the distribution of transmission eigenvalues itsel
derived by sophisticated methods such as the Dorokh
Mello-Pereyra-Kumar equation.34 Although Nazarov5 suc-
ceeded in extending this derivation to the case of an arbit
two-terminal geometry, most probably it cannot be gene
ized to the multiterminal case: For conductors with four~or
more! probes the shot noise is not expressed through eig
values of the scattering matrixs†s. The derivation given in
this paper is more general and self-contained; it does
require the distribution of transmission eigenvalues a
hence allows a generalization to an arbitrary scattering
ometry.

Our derivation resembles in some respects those of R
4 and 7. In particular, de Jong and Beenakker7 at some stage
express the scattering matrixs†absab through the Green’s
function and proceed with impurity averaging. We shou
stress, however, that their semiclassical approach does
take into account phase-sensitive effects~exchange terms!, in
contrast to the approach presented here. In addition, eve
the semiclassical level the equivalence between these
discussions is not evident.

FIG. 5. Typical diagram for the quantityJ1.
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III. MULTITERMINAL SHOT NOISE

Now we turn to the exchange-interference experiment
scribed in the Introduction. We consider a four-terminal g
ometry ~examples are shown in Fig. 1; for convenience,
still use the coordinates of Fig. 2! and calculate the curren
correlation for experimentsA–C.

The quantityJ15Tr(s†absabs†gbsgb) is determined by
the diagrams of Fig. 4, where now pointsy1 ,y4 ,y5 ,y8 be-
e
ti-

ula

-

ed
a
dl
th
d
fe
or

ec
ho

io
on
wn
e-
-
e

long to the contact with leadb; points y2 ,y3 and y6 ,y7
belong to the contacts with leadsa and g, respectively.
Therefore, the diagram in Fig. 4~e! is exponentially small,
while the diagram in Fig. 4~a! is suppressed in the paramet
(pFWb)

21. Hence the quantityJ1 is given by the same dia
grams@Figs. 4~b!–4~d!#, as the quantityt. Using Eq.~12! and
integrating over the cross section of the leads, we ob
~Fig. 5!
J15
1

2SM4 D 4 (
k,l ,m,n

1

kkklkmkn
S 11

kk
pF

D 2S 11
kl
pF

D 2S 11
km
pF

D 2S 11
kn
pF

D 2E
Ca

dyfx l
2~yf !E

Cb

dyadycxk
2~ya!xm

2 ~yc!

3E
Cg

dyhxn
2~yh!E

2`

0

dxadxcdxfdxhexp@~xa1xc1xf1xh!/ l #E dr a•••dr hP~r a ,r b!P~r c ,r d!

3P~r e ,r f !P~r g ,r h!F~r b ,r e ,r d ,r g!. ~21!

Here the pointsr a ,r c ,r f ,r h are given in the coordinates of the contactsb,b,a,g, respectively.
In the same way, for the quantityJ3 one obtains

J35
1

2SM4 D 4 (
k,l ,m,n

1

kkklkmkn
S 11

kk
pF

D 2S 11
kl
pF

D 2S 11
km
pF

D 2S 11
kn
pF

D 2E
Ca

dyfx l
2~yf !E

Cb

dyaxk
2~ya!E

Cg

dyhxn
2~yh!

3E
Cd

dycxm
2 ~yc!E

2`

0

dxadxcdxfdxhexp@~xa1xc1xf1xh!/ l #

3E dr a•••dr hP~r a ,r b!P~r c ,r d!P~r e ,r f !P~r g ,r h!F~r b ,r e ,r d ,r g! ~22!
for

n,
en

or

ay

,

e

and the pointsr a ,r c ,r f ,r h are given in the coordinates of th
contactsb,d,a,g, respectively. Expressions for the quan
ties J2 andJ4 can be obtained from Eqs.~21! and ~22!,
respectively, by interchangingb↔d.

Expressions~21! and ~22! are valid for an arbitrary four-
terminal geometry and can be used for numerical calc
tions. It is important that not only tracesJ1 andJ2, as one
could expect, but also quantitiesJ3 andJ4 are phase insen
sitive. Indeed, the electron motion that Eqs.~21! and ~22!
imply is just the diffusion between different leads. No clos
paths are formed, except for ballistic motion due to the sc
tering described by the Hikami box somewhere in the mid
of the sample. Since the size of this loop is very small, of
order of the mean free path, dephasing is not expecte
have an effect on the exchange noise. Certainly, some ef
similar to weak localization exist, however, as f
conductance,31 they are relatively weak@as (pFl )

21# in com-
parison to the main effect. We do not discuss these eff
here and only mention that universal fluctuations of the s
noise were studied in Ref. 35.

To make further progress we have to solve the diffus
equation in a given geometry with appropriate boundary c
ditions. We turn now to the two different geometries, sho
in Fig. 1.

A. Box geometry

First, we consider the geometry of Fig. 1~a!. We assume
all leads to be wideWl@ l . Then pointsr a , r c , r f , and r h
-

t-
e
e
to
cts

ts
t

n
-

are typically far from the lead’s boundaries. This means,
example, that in the integral overyf one can replace the
diffusion propagator P(r e ,r f) by another function
P̃(r e ,r f), which is also a solution to the diffusion equatio
but with another boundary condition, appropriate for an op
surface,

P̃~r ,r 8!ux5050.

We do not need to specify boundary conditions f
P̃(r e ,r f) on the other boundaries since the pointr e is typi-
cally in the middle of the sample. Consequently, we m
substitute for all ‘‘true’’ diffusion propagatorsP the func-
tions P̃, the solution withP̃50 everywhere on the boundary
as is appropriate for an open system. The solutionP̃ is

P̃~r ,r 8!5
4

Mt2DLxLy
(

nx ,ny51

`
1

p2nx
2/Lx

21p2ny
2/Ly

2sin
pnxx

Lx

3sin
pnxx8

Lx
sin

pnyy

Ly
sin

pnyy8

Ly
. ~23!

Furthermore, the functionsP̃ vary considerably on the scal
of the size of a sampleLx and Ly . If we assume
Wl!Lx ,Ly , the functionP̃(r e ,r f) in the integral overyf
may be taken to be independent ofyf . Thus we obtain
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J15
1

2SM2 D 4WaWb
2WgE dyadycdxfdxhexpS 2

Ly2ya
l

2
Ly2yc

l
2
xf
l

2
Lx2xh

l D E dr bdr ddr edr g

3 P̃@Xb ,ya ;r b# P̃@Xb ,yc ;r d# P̃@r e ;xf ,Ya#

3 P̃@r g ;xh ,Yg#F~r b ,r e ,r d ,r g! ~24!

and

J35
1

2SM2 D 4WaWbWgWdE dyadycdxfdxhexpS 2
Ly2ya

l

2
yc
l

2
xf
l

2
Lx2xh

l D E dr bdr ddr edr gP̃@Xb ,ya ;r b#

3 P̃@Xd ,yc ;r d# P̃@r e ;xf ,Ya# P̃@r g ;xh ,Yg#

3F~r b ,r e ,r d ,r g!. ~25!

HereYa , Xb , Yg , andXd denote the positions of the co
responding leads.

We see already from Eqs.~24! and~25! that the results are
not universal in the sense that they depend on the geom
of the sample. Indeed, within the approximation in which
replaceP by P̃, the quantityJ1 does not contain any infor
mation on the location and width of leadd; at the same time
it depends essentially on the location and width of ot
leads. The quantityJ2 contains information of all leads ex
ceptb, whereas bothJ3 andJ4 are governed by the geom
etry of all leads. Therefore, all ratiosJ i /J j depend essen
tially on the geometry of the sample. This is in contrast w
the case of a chaotic cavity,18 where one obtains
J15J2523J3523J4 irrespective of geometry, pro
vided the leads are wide enough.

Performing the integration and taking into account th
the remaining sums are converging rapidly forLx;Ly ~the
case we assume from now on!, one obtains cumbersome e
pressions for the quantitiesJ i . In the symmetric case
Lx5Ly5L, Wl5W, andYa5Yg5Xb5Xd5L/2 they sim-
plify. We obtain

H J15J2

J35J4
J 5H h1

2h3
J pFl SWL D 4, ~26!

with positive constants

h15
1

2sinh3p
~coshp21!~2pcoshp2sinhp!'0.21

and

h35
1

sinh3p
~2pcoshp2sinhp!'0.03.

It is seen that the exchange effect exists and has anegative
sign ~i.e., exchange suppresses the result of experimentC in
comparison to the sum of the results of experimentsA and
B). Although the relative value of the effect i
J3 /J1;0.1, the effect should be clearly observable.
try

r

t

B. Cross geometry

We consider now the cross geometry of Fig. 1~b!. We
assume that all arms of the cross have equal36 lengthsL and
widthsW. For L@W we can consider diffusion as one d
mensional. We also assume that the center of the cros
described by a reflection coefficientR and a transmission
coefficientT5(12R)/3 between any two different arms.

The diffusion propagator is a solution of Eq.~10!. We
move to the coordinate system of Fig. 1~b! and fix the point
r near the origin of the leada, x.L. We introduce

Pal~x,x8!5P~x,x8! if x8lies in the arml,

which is proportional to the time-integrated probability
diffusion from pointx in the arma to point x8 in the arm
l. The solution satisfying the boundary conditions and
condition of current conservation in the cross,

(
l

]x8Pal~x,x8!ux85050,

is

Paa~x,xa!5
1

MDt2W

~L2x!~Le13xa!

31e
, x.xa

Pal~x,xl!5
1

MDt2W

~L2x!~L2xl!

31e
, lÞa. ~27!

The constante, defined as the ratio of diffusion probabilitie

e5
Paa~x,0!

Pab~x,0!
, ~28!

is calculated in the Appendix. The result is

e5H 11 l ~LT!21~122T!, T@ l /L

l ~LT!21, T! l /L.
~29!

Now we substitute Eq.~27! into the general expression
~21! and ~22!. Since the area of the cross is negligible
comparison to the areas of the arms, we can neglect
possibility of finding the Hikami box inside the cross an
allow it to be situated only in one of the arms. Upon integ
tion we obtain

J15J25
l

3L
WpF

3~11e2!14

~31e!4
,

J35J45
4l

L
WpF

e21

~31e!4
. ~30!

Thus, in the caseT@ l /L, when the overall transmissio
through the sample is governed by the diffusive arms rat
than by the center of the cross, one hase;1. The quantities
J1 andJ2 are regular fore51 and therefore assume th
finite valueJ15J25(5/192)(pFWl/L). At the same time,
the exchange termsJ3 andJ4 are strongly suppressed in th
parameterl /L, J35J45(1/64)(pFWl2/L2T)(122T). In
the less realistic caseT! l /L ~the transmission is determine
by the center of the cross! one obtainse@1. All quantities
J1 are small since now all channels are nearly closed~cf. the
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situation for two-terminal shot noise29,30!; however exchange
terms are additionally suppressed in the parametere21.

Thus, in the cross geometry of Fig. 1~b! the exchange
noise^DS& is suppressed in comparison to the regular ter
^SA1SB& irrespective of the transmission properties of t
center of the cross. It is also quite remarkable that for
cross geometry the exchange contribution ispositive, al-
though small: The total effect is enhanced by the exchan

IV. CONCLUSION

We have investigated shot noise in diffusive conduct
on the basis of Eq.~2! and the Fisher-Lee relation, whic
expresses scattering matrices through advanced and ret
Green’s functions. In this way, one can reduce disorder
erages of various combinations of scattering matrices to s
dard diagram technique for Green’s functions.31 Although
this approach resembles previously published calculation
conductance and conductance fluctuations,24–28we believe it
to be more transparent. We are not aware of any applicat
of this approach to noise problems.

As a check of the method, we first reproduced the
shot-noise suppression in the two-terminal geometry
confirmed the statement of Ref. 5 that it is in fact superu
versal and holds for an arbitrary relation between the len
and width of a wire, provided the system is diffusive. O
proof bears some similarity to other ones existing in
literature;2–4however, it is different, and a direct equivalen
to any of the existing proofs is not evident~see the discus
sion at the end of Sec. II!.

Then we turned to the multiterminal geometry and inv
tigated the interference experiment, similar to the Hanb
Brown–Twiss experiment known in optics.15 We obtained
general expressions for scattering matrix combinations~21!
and ~22!, determining noise intensities~1!; then we investi-
gated them for the two different geometries of Fig. 1.

The important point we make is that the exchange effe
even when averaged over disorder, does not vanish. The
son is that typical electron trajectories, contributing toall

FIG. 6. Typical electron trajectories, contributing to the quant
J3. Solid lines denote ballistic propagation~described by average
single-particle Green’s function! and dashed lines denote diffusiv
propagation~described by the diffusionP).
s

e
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ded
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averaged traces of scattering matrices, considered above~i.e.,
quantitiesg and t for the two-terminal geometry andJ i in
the four-terminal case! do not contain large closed loops. I
particular, it is valid for the ‘‘exchange’’ tracesJ3 and
J4. A typical trajectory for the quantityJ3 is shown in Fig.
6. It is a direct translation of diagrams contributing to th
quantity. The electron motion is essentially diffusion b
tween different leads with ballistic propagation~described by
disorder-averaged single-particle Green’s function! close to
the leads and somewhere in the middle of the sample@the
later motion described by the Hikami box in Eq.~22!#. Thus
closed loops are related to ballistic motion over distances
an elastic scattering length only and therefore neither
shot noise in two-terminal conductors nor the shot noise
multiterminal structures should be sensitive to dephasing

Another observation is that exchange corrections are
universal, in contrast to what is found in the chaotic case18

The ratio ^DS&/^SA1SB& depends on the geometry of
sample in an essential way. Even the sign of the effect m
change: For the box geometry of Fig. 1~a! it is negative, i.e.,
interference suppresses the total effect, while for the cr
geometry @Fig. 1~b!# interference enhances the effect~al-
though weakly!.

The results obtained for the cross geometry allow us
make predictions for experiments in real systems. Indeed
found that the exchange contribution is suppressed stro
with respect to the average noise intensities^SA& and ^SB&.
This result was obtained by assuming that the intermed
scattering, described by the Hikami box, does not happe
the center of the cross, i.e., strictly speaking, for ballis
propagation through the center. In more complicated sit
tions the entire exchange effect will be determined by pr
erties of the center of the cross. If the motion within t
center is diffusive, one can apply the results obtained ab
for the box geometry. The total exchange effect is expec
to be negative. However, since the arms of the cross~which
correspond to disordered leads in the real experiments! con-
tribute to the intensitieŝSA& and ^SB&, but not to the ex-
change contribution, the latter will still be suppressed if d
order extends far into leads. Finally, if the center of the cr
is a chaotic cavity, one may use the results of Ref. 18. T
exchange contribution in the chaotic cavity separated fr
ideal leads by high barriers~disordered arms play the role o
these barriers! is positive: The interference enhances the
fect.
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APPENDIX

To find the coefficiente defined by Eq.~28! it is instruc-
tive to consider a discrete model of diffusion.37 Each arm is
modeled by a one-dimensional array of scatterers, placed
distancel from each other; the total number of scatterers
each arm isN5L/ l . Each scatterer is described by transm
sion t51/2 and reflectionr51/2 probabilities. We denote
the carrier flux densities in the arma between sitesn and
n11 away from the center of the cross byan and the flux
towards the center of the cross bybn . Corresponding ampli-
tudes in other arms are denoted byan8 andbn8 ~Fig. 7!. The
total flux at each site is given byrn5an1bn and
rn85an81bn8 . The coefficient e can be expressed a
e5r0 /r08 .

The diffusion equation implies that all densities should
linear functions ofn; furthermore, matching conditions a
each scatterer requirebn215an and bn218 5an8 . Thus we
write
. d
-
nc

.

,

0
, t
he

v

,

na

ge
i-

t a

-

e

an5A1B~n21!, an85A81B8~n21!, ~A1!

bn5A1Bn, bn85A81B8n. ~A2!

The four constantsA,B,A8,B8 obey four equations:~i! the
boundary condition for the armb, bN8 50; ~ii ! and ~iii ! the
matching conditions at the center of the cross,

a085Tb012Tb081Rb0 ~A3!

and

a053Tb081Rb0 ; ~A4!

and ~iv! Eq. ~10!, which, however, it is not required for th
calculation of the constante. We obtain

e5
2~N1T21!23

2N11
~A5!

and the limiting cases given by Eq.~29! follow immediately.
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28A. D. Mirlin, A. Mü ller-Groeling, and M. R. Zirnbauer, Ann

Phys.~N.Y.! 236, 325 ~1994!.
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